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Abstract

Recent research on unspanned stochastic variance raises the possibility that interest

rate derivatives constitute an important component of optimal fixed income portfo-

lios. In this paper, I estimate a flexible dynamic term structure model that allows

for unspanned stochastic variance on an extensive data set of swaps and swaptions.

I find that variance risk is predominantly unspanned by bonds, and that the price

of risk on the unspanned variance factor is significantly larger in absolute value

than the prices of risk on the term structure factors. Consequently, Sharpe ratios

on variance sensitive derivatives are about three times larger than Sharpe ratios on

bonds or short-term bond futures. These findings are corroborated by an analysis of

the Treasury futures market, where the variance risk premium is estimated with a

model independent approach. I then solve the dynamic portfolio choice problem for

a long-term fixed income investor with and without access to interest rate derivatives

and find substantial utility gains from participating in the derivatives market.
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1 Introduction

The market for interest rate derivatives has grown rapidly over the last decade. For instance,

the notional amount of outstanding over-the-counter interest rate options has increased 691

percent from USD 7.6 trillion in June 1998 to USD 62.1 trillion in June 2008, see BIS (2008). In

addition, many standard fixed income securities such as mortgage-backed securities and agency

securities imbed interest rate options. While there is an enormous amount of literature on the

pricing, hedging, and risk management of interest rate derivatives, few papers view interest rate

derivatives from a portfolio perspective, despite the fact that this issue is obviously important

for many fixed income investors. This paper attempts to fill this gap in the literature.

One reason that the portfolio choice literature has ignored interest rate derivatives is that

standard term structure models assume that the fixed income market is complete in the sense

that all risk, including variance risk, is completely spanned by bonds. In these models, interest

rate derivatives are redundant securities that can be perfectly replicated by trading in the

underlying bonds. However, this assumption about market completeness has been challenged

in recent years with a number of papers showing that a component of variance risk is not

spanned by bonds and, therefore, that interest rate derivatives are not redundant securities.

Unspanned stochastic variance was first discussed by Collin-Dufresne and Goldstein (2002) and

further evidence in support for it has been provided by Heidari and Wu (2003), Andersen and

Benzoni (2005), Li and Zhao (2006, 2008), Trolle and Schwartz (2008a), and Collin-Dufresne,

Goldstein, and Jones (2008), among others.

Unspanned stochastic variance raises the possibility that interest rate derivatives constitute

an important component of optimal fixed income portfolios. First, to the extent that the

unspanned component of variance risk is priced, derivatives improve investment opportunities

and second, to the extent that that investment opportunities depend on variance, derivatives

improve the ability to hedge against adverse changes in the investment opportunity set.

The first goal of the paper is to analyze the extent to which interest rate variance risk – in

particular, the unspanned component of variance risk – is priced. I use two approaches; first, I

estimate the variance risk premium in the Treasury futures market without using a particular

pricing model, and, second, I estimate the variance risk premium in the interest rate swap

market using a dynamic term structure model. The reason for using different data in the two

approaches is the following: the model independent analysis is predicated upon the existence

of a liquid market for options across a wide range of strikes. While such a market has long
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existed in the case of options on Treasury futures, it has only recently emerged in the case of

options on interest rate swaps, i.e. swaptions, where only ATM options were actively quoted

until four or five years ago. On the other hand, estimating a dynamic term structure model

simultaneously on Treasury futures and their associated options is rather involved, whereas

it is relatively straightforward to estimate such a model simultaneously on swaps and their

associated swaptions.

The two approaches complement each other. The model independent analysis provides

robust estimates of the variance risk premium with which the model dependent estimates may

be compared, and the model independent analysis also gives insights into the dynamics of the

variance risk premium which forms the basis for parameterizing the market price of variance

risk in the dynamic term structure model.

To estimate the interest rate variance risk premium without a particular pricing model,

I rely on synthetic variance swaps which pay the difference between the realized variance of

a Treasury futures contract over the life of the swap and a fixed variance swap rate, which

can be inferred from a cross-section of options on the Treasury futures contract. The average

payoff or return on a sequence of such variance swaps provides a model independent estimate

of the Treasury futures variance risk premium. I use daily data on 5, 10, and 30 year Treasury

futures and their associated options from January 3, 1995 until March 5, 2008.

I find that 1) the Treasury futures variance risk premium is significantly negative, 2) short-

ing variance swaps generate Sharpe ratios that are about two to three times larger than the

Sharpe ratios of the underlying Treasury futures, 3) the variance risk premium is not a com-

pensation for exposure to bond or equity market risks, suggesting that there is an unspanned

variance factor with a significant risk premium, and 4) the variance risk premium varies over

time and becomes more negative when variance increases, particularly when the premium is

measured in dollar terms.

To estimate the interest rate variance risk premium within a dynamic term structure model,

I develop a model that shares many features with that in Trolle and Schwartz (2008a) but has

a more parsimonious structure. It has N term structure factors and one additional unspanned

variance factor. Innovations to variance and the term structure may be correlated so that

variance can contain both a spanned and an unspanned component. Inspired by the model

independent analysis, I parameterize the variance risk premium such that it is linear in variance

itself. I estimate the model using daily data on LIBOR and swap rates and short-term ATM

swaptions on 2, 5, 10, and 30 year swaps from January 23, 1997 to April 30, 2008. For the last
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four years of the sample period, I also use unique data on swaption “smiles”, i.e. swaptions

with a wide range of strikes, obtained from the largest broker in the interest rate derivatives

market. This “smile” information is important for estimating the extent to which variance

is unspanned, and, to my knowledge, it is the first time that this data has been used in

the empirical term structure literature. I consider model specifications with one, two, and

three term structure factors and estimate with quasi-maximum likelihood in conjunction with

the extended Kalman filter. In a methodological contribution, I derive a fast and accurate

Fourier-based swaption pricing formula that enables me to estimate the model on a large set

of swaptions.

I find that 1) innovations to variance are only weakly related to innovations to the term

structure, i.e. variance risk is predominantly unspanned, 2) the estimated market price of risk

on the unspanned variance factor is strongly negative – much more negative than the prices

of risk on the term structure factors – and statistically significant, and 3) the model-implied

Sharpe ratio on a derivative exposed solely to variance is about three times larger in absolute

value than the model-implied Sharpe ratios on bonds or short-term bond futures, consistent

with the findings in the model-independent analysis. These findings hold true regardless of

the number of term structure factors.

The second goal of the paper is to analyze the benefits of including interest rate derivatives

in fixed income portfolios. I assume that investment opportunities evolve according to the

term structure model estimated in this paper. I then derive the optimal portfolio strategy for

a long-term fixed income investor with CRRA utility over terminal wealth, who either does

or does not participate in the interest rate derivatives market, and I compute the utility gains

from optimally adding interest rate derivatives to fixed income portfolios.1

Interest rate derivatives are attractive for two reasons. First, derivatives provide the in-

vestor with exposure to the unspanned variance factor which, because it carries a market price

of risk that is significantly larger (in absolute value) than the term structure factors, substan-

tially increases the Sharpe ratio of the mean-variance tangency portfolio. Second, because the

Sharpe ratio of the tangency portfolio depends on variance, derivatives improve the ability

of the investor to hedge adverse changes in investment opportunities, which is a concern for

long-term investors that are more risk averse than log-utility investors.

1To focus the discussion, I only consider pure fixed income portfolios. It would be straightforward to extend

the analysis to allow for investments in an equity index. Moreover, in line with much of the literature I also

abstract from portfolio constraints and transaction costs.
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I find substantial utility gains from participating in the interest rate derivatives market.

For instance, an investor with an investment horizon of five years and a relative risk aversion

of three, would be willing to give up between 15 and 20 percent of his wealth, depending on

the specification of the term structure model, to be able to optimally invest in the interest

rate derivatives market.

The paper is related to Duarte, Longstaff, and Yu (2007) who analyze risk and return

in fixed income arbitrage strategies, among these a strategy of selling interest rate volatility

through delta-hedged caps, which they find generate annualized Sharpe ratios between -0.08

and 0.82 depending on the cap maturity. However, a crucial difference between their study and

mine is that their result are model-dependent (caps are delta-hedged using a particular model

to compute hedge ratios), whereas I provide both model independent and model dependent

results.

A number of papers have estimated dynamic term structure models simultaneously on

interest rates and interest rate derivatives, see Bikbov and Chernov (2004), Almeida, Grave-

line, and Joslin (2006), Joslin (2007), and Trolle and Schwartz (2008a). However, except for

Joslin (2007), none of these papers focus directly on the variance risk premium. He studies

a model that is very restrictive in its ability to generate unspanned stochastic variance and,

consequently, he formally rejects the parameter restrictions necessary to generate this feature.

Nevertheless, he finds that a component of variance is only very weakly related to the term

structure and that this approximately unspanned component carries a sizable risk premium.

In contrast to his paper, the model framework used here is much more flexible in terms of its

ability to generate unspanned stochastic variance.

Many papers have studies the price of variance risk in equity indices. For instance, Carr

and Wu (2008), Driessen, Maenhout, and Vilkov (2008), and Bondarenko (2007) use a model

independent approach similar to the one applied in this paper, and find a large negative

variance risk premium, larger than the interest rate variance risk premium estimated here.2

The paper is also related to a literature that analyze optimal positioning in derivatives –

primarily equity derivatives. Closest to my paper are Liu and Pan (2003) and Egloff, Leippold,

2See also Chernov and Ghysels (2000), Coval and Shumway (2001), Pan (2002), Bakshi and Kapadia (2003),

and Jones (2003, 2006), among others. Trolle and Schwartz (2008c) use the model independent approach to

study variance risk premia in energy markets. The magnitude of these premia are comparable to the interest

rate variance risk premium. Hence negative variance risk premia seem to be a characteristic feature across

different markets.
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and Wu (2007) who analyze dynamic equity derivative strategies in Heston (1993) type models

and report large gains from participating in the equity derivatives market.3,4

The paper is structured as follows. Section 2 provides model-free estimates of the vari-

ance risk premium. Section 3 sets up a dynamic term structure model featuring unspanned

stochastic variance and estimates the variance risk premium within this model. Section 4

derives optimal dynamic portfolio strategies for a long-term investor, with and without access

to interest rate derivatives, and estimates the utility gains from participating in the interest

rate derivatives market. Section 5 concludes. Four appendices contain technical details.

2 Estimating the variance risk premium without a model

I first estimate the interest rate variance risk premium without using a particular pricing

model. For this purpose, I use synthetic variance swap contracts, which allow investors to

trade future realized variance of a given asset against current implied variance. At maturity,

a variance swap pays off the difference between the realized variance of the reference asset

over the life of the swap and the fixed variance swap rate. Since a variance swap has zero

net market value at initiation, absence of arbitrage implies that the fixed variance swap rate

equals the conditional risk-neutral expectation of the realized variance over the life of the

swap. Therefore, the time-series average of the payoff or excess return on a variance swap is

a measure of the variance risk premium on the reference asset. A similar methodology is used

by Carr and Wu (2008), Driessen, Maenhout, and Vilkov (2008), and Bondarenko (2007) to

study variance risk premia in equities and by Trolle and Schwartz (2008c) to study variance

risk premia in energy markets.

3Other papers on optimal positioning in derivatives include classis papers such as Brennan and Solanki

(1981) and Leland (1980) on the use of portfolio insurance, Carr and Madan (2001) and Buraschi and Jiltsov

(2007) on the effect of differences in beliefs, Franke, Stapleton, and Subrahmanyam (1998) on the impact of non-

hedgeable background risk, and Back (1993), Biais and Hillion (1994), Brennan and Cao (1996), Easley, O’Hara,

and Srinivas (1998), and John, Koticha, Narayanan, and Subramanyam (2003) on the effect of asymmetric

information.

4More broadly the paper is related to a growing literature, starting with Brennan, Schwartz, and Lagnado

(1997), which analyzes dynamic portfolio strategies for long-term investors when investment opportunities are

stochastic. In the fixed income space, the effects of stochastic interest rates are by now fairly well understood,

see e.g. Sørensen (1999), Brennan and Xia (2000), Campbell and Viceira (2001), Munk and Sørensen (2004)

and Sangvinatsos and Wachter (2005). For that reason my focus is exclusively on the effects of unspanned

stochastic variance.
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Variance swaps are rarely traded in fixed income markets, in contrast to equity markets

where they are very popular. However, it is possible to construct synthetic variance swap

contracts from a cross-section of options on a given reference asset.

I consider the 5 year and 10 year Treasury note futures and the 30 year Treasury bond

future as reference assets. Since there is a very liquid market for options on these futures, I

can compute synthetic variance swap rates at three points on the yield curve. I also report

results for the S&P 500 index to facilitate comparison with the equity market.5

2.1 Methodology

The payoff at time T of a variance swap for the period t to T is given by

(V (t, T ) −K(t, T ))L, (1)

where V (t, T ) denotes the realized annualized return variance between time t and T , K(t, T )

denotes the fixed variance swap rate, determined at time t, and L denotes the notional of the

swap. At initiation, the variance swap has zero net market value. Assuming that short-term

interest rates are uncorrelated with realized variance,6 absence of arbitrage implies that the

fixed variance swap rate is given by

K(t, T ) = EQ
t [V (t, T )]. (2)

That is, the fixed variance swap rate equals the conditional risk-neutral expectation of the

realized variance over the life of the swap.

Let F (t, T1) denote the time-t price of a Treasury futures contract expiring at time T1

and suppose that V (t, T ) is given by the realized annualized continuously sampled futures

return variance (i.e. the realized quadratic variation) over the period [t, T ], T ≤ T1. Then,

following Carr and Madan (1998), Demeterfi, Derman, Kamal, and Zou (1999), Britten-Jones

and Neuberger (2000), Jiang and Tian (2005), Carr and Wu (2008), and others, one can show

that under very general circumstances, K(t, T ) may be inferred from a continuum of European

out-of-the-money (OTM) options. In particular

K(t, T ) =
2

P (t, T )(T − t)

(∫ F (t,T1)

0

P(t, T, T1,X)

X2
dX +

∫
∞

F (t,T1)

C(t, T, T1,X)

X2
dX

)
, (3)

5There is also a 2 year Treasury note future. However, its associated options have, until recently, been very

illiquid.

6Several papers argue that interest rate variance is largely unspanned by the yield curve, see the discussion

and results in Section 3.

6



where P (t, T ) is the time-t price of a zero-coupon bond maturing at time T , and P(t, T, T1,X)

and C(t, T, T1,X) denote the time-t price of a European put and call option, respectively,

expiring at time T with strike X on a futures contract expiring at time T1. This relation is

model-free in the sense that no assumptions are made about the price process of the reference

asset. In particular, the price process may contain jumps.7

In actual variance swap contracts, V (t, T ) is the realized annualized discretely sampled

return variance. Typically, the asset price is sampled each business day at the official close or

settlement, and the mean of daily asset returns is assumed to be zero. For a variance swap

with N business days to expiry, I define a set of dates t = t0 < t1 < ... < tN = T with

∆t = ti − ti−1 = 1/252. V (t, T ) is then computed as

V (t, T ) =
1

N∆t

N∑

i=1

R(ti)
2, (4)

where R(ti) = log(F (ti, T1)/F (ti−1, T1)).

Now, for each business day in the sample, I compute the synthetic variance swap rate,

K(t, T ), using (3) and the realized futures return variance over the life of the swap using (4).

I then compute the dollar payoff of a long position in a variance swap contract with a notional

amount of L = 100 USD held to expiration,

(V (t, T ) −K(t, T ))100. (5)

I also compute the log excess return given by

log (V (t, T )/K(t, T )) , (6)

since K(t, T ) is the forward cost of a variance swap.8 The sample mean of (5) is an estimate of

7The derivations of (3) relies on the assumption that short-term interest rates used for discounting the option

payoffs are uncorrelated with Treasury futures prices. Although this assumption may seem restrictive, in fact

several papers have shown that very short-term interest rates exhibit low correlation with longer-term interest

rates, see e.g. Duffee (1996). To check this finding, I compute correlations between daily changes in the three

month Treasury bill rate and returns on the 5 year, 10 year and 30 year Treasury futures. The correlations

are -0.28, -0.23, and -0.17, respectively. Even if the correlations were not low, the bias in (3) would be small,

since Treasury futures prices are much more volatile than the option discount factor, since I only use short-term

options with maturities between 11 and 35 business days.

8As in Carr and Wu (2008), I report the log excess return rather than the discrete excess return,

V (t, T )/K(t, T ) − 1, in order to facilitate comparison with their results and because the former is closer to

normally distributed.
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the average variance risk premium in dollar terms, while the sample mean of (6) is an estimate

of the average variance risk premium in log return terms.

2.2 Data and implementation details

I use an extensive data set of 5 year and 10 year Treasury note futures and 30 year Treasury

bond futures and their associated options trading on the Chicago Board of Trade (CBOT)

exchange. I use daily settlement prices from January 3, 1995 until March 28, 2008 – a total

of 3334 business days.9,10 For each maturity, CBOT lists futures contracts with expiration in

the first four months in the quarterly cycle (March, June, September, and December). It also

lists options for the first three consecutive contract months (two serial expirations and one

quarterly expiration) plus the next four months in the quarterly cycle. Serial options exercise

into the first nearby quarterly futures contract and quarterly options exercise into futures

contracts for the same month.11 On each business day, among the option contract months

where expiration is more than 10 business days away, I select the one with the shortest time

to expiration. For this options contract month, I select all OTM puts and calls that have open

interest in excess of 100 contracts and have prices larger than 3/64 USD. I only use options

(and, hence, variance swap contracts) with short maturities in order to minimize the overlap

in variance swap returns. However, I set a lower bound on the option maturities in order to

avoid market microstructure related issues. The reason for requiring option prices to exceed

the given thresholds is that options are quoted with a precision of 1/64 USD.12 From these

options, I compute a synthetic variance swap rate (details are given in Appendix A). The

maturity of these synthetic variance swaps varies between 11 and 35 business days.13

9Actual sample sizes are shorter than 3334 business days due to missing or insufficient data.

10Settlement prices for all contracts are determined by a “Settlement Price Committee” at the end of regular

trading hours and represent a very accurate measure of the true market prices at the time of close. Settlement

prices are widely scrutinized by all market participants since they are used for marking to market all account

balances.

11Options expire on the last Friday which precedes by at least two business days, the last business day of

the month preceding the option contract month. Last trading day of the underlying futures contract is the last

business day of the futures expiration month.

12For the interest rate, I use the three month Treasury bill rate.

13A synthetic 30 calendar day variance swap rate for the S&P 500 index (SPX) is easily obtained by squaring

the CBOE volatility index (VIX). This is because the VIX squared approximates the conditional risk-neutral

expectation of the realized 30 calendar day S&P 500 index variance. It is constructed along the lines of (3), using
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2.3 Results

Table 1 shows summary statistics of the variance swap rates and realized variances. For the

Treasury futures, the mean variance swap rate is larger than the mean realized variance,

reflecting a negative variance risk premium in dollar terms on average. As expected, both the

average variance and the volatility of the variance increase with the note/bond maturity. This

holds true for both the variance swap rate and realized variance. Furthermore, variance swap

rates and realized variances display positive skewness and excess kurtosis. The variance swap

rate and realized variance for the S&P 500 index display similar characteristics.

Figure 1 displays the time-series of the variance swap rates and the payoffs on long positions

in variance swaps. Clearly, variances display high volatility and increase around episodes such

as the LTCM crisis, the September 11, 2001 terrorist attacks, the sharp increase in interest

rates in late July, 2003, which caused massive convexity hedging of MBS portfolios, and the

escalation of the credit crisis (all marked with vertical dotted lines). The correlations between

the variance swap rates for the different Treasury futures are very high (between 0.90 and

0.96) but the correlations with the variance swap rate for the S&P 500 index are much lower

(between 0.35 and 0.44). Similarly, the correlations between the variance swap payoffs for the

different Treasury futures are high (between 0.72 and 0.93) while the correlations with the

variance swap payoff for the S&P 500 index are again much lower (between 0.05 and 0.24).

Table 2 shows summary statistics of the dollar payoffs and the log excess returns on long

positions in variance swaps. The T -statistics are adjusted for the autocorrelation induced

by the overlap in observations. The mean payoffs and log excess returns are negative and

statistically significant for all the Treasury futures as well as for the S&P 500 index. For

the Treasury futures variance swaps, the distributions of payoffs exhibit fat tails and positive

skewness. In contrast, the distributions of log excess returns are much closer to normal.

The table also reports the annualized Sharpe ratios (computed from standard deviations

adjusted for the autocorrelation induced by the overlap in observations) of shorting variance

swaps. These are 0.56, 0.56, and 0.34 for the 5 year, 10 year and 30 year Treasury futures, re-

spectively. Although sizable, they are less than the annualized Sharpe ratio of 1.02 for the S&P

500 index. The table also reports the annualized Sharpe ratios of investing in the underlying

OTM S&P 500 index options along with a particular discretization scheme as well as interpolation between two

option maturities to obtain a constant 30 calendar day maturity (the CBOE webiste contains the details of the

construction). Daily data on the VIX and SPX indices was downloaded from the CBOE website.
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Treasury futures or S&P 500 index, which are much lower. The ratios between the annualized

Sharpe ratios of shorting variance swaps and of going long the underlying futures are 3.00,

2.98, and 2.25 for the 5 year, 10 year and 30 year Treasury futures, respectively, suggesting

that variance sensitive derivatives, such as variance swaps, can significantly enhance the per-

formance of fixed income portfolios. In fact, these ratios may to some extent underestimate

the true difference in Sharpe ratios, since the downward trend in interest rates over the sample

period has boosted the return on Treasury futures.

The Sharpe ratios reported in Table 2 are broadly consistent with Duarte, Longstaff, and

Yu (2007), who find annualized Sharpe ratios between -0.08 and 0.82 from shorting interest

rate (specifically cap) volatility. However, a crucial difference between the analysis in this

section and that of Duarte, Longstaff, and Yu (2007) is that their result are model-dependent

(caps are delta-hedged using a particular model to compute hedge ratios), whereas my results

are model independent.

In Table 3, I investigate if the variance risk premium represents a compensation for exposure

to bond or equity market risks. In particular, I regress the log excess returns on a variance

swaps on the the log excess return on the S&P 500 index and the log excess return on three

portfolios of Treasury bonds with maturities 1–3 years, 5–7 years, and greater than 10 years.14

For the Treasury futures variance swaps, the loadings on the equity market portfolio are

insignificant, and although some of the loadings on the bond market portfolios are significant,

the R2s are small and the intercepts, or alphas, remain significant and close to the average

excess returns reported in Table 2.15 This suggests the existence of an unspanned variance

factor with a significant risk premium.

Finally, as in Carr and Wu (2008) I investigate if the risk premium is related to the level

of variance by running the following two regressions:

V (t, T ) = a+ bK(t, T ) + ǫ (7)

14The source for the returns on the Treasury bond portfolios is the Merrill Lynch U.S. Treasury bond index.

This index also has returns on portfolios of Treasury bonds with maturities 3–5 years and 7–10 years. Including

these portfolios in the regressions has virtually no impact except to generate a high degree of multi-collinearity.

Therefore, I have reported the results without these portfolios.

15Other risk factors, such as the Fama-French size and value factors, also come out insignificant. For brevity,

these results are not reported. For the S&P 500 index variance swap, the R2 is larger and the loading on the

equity market factor is significant and negative (consistent with the well documented “leverage effect”), while

the loading on the bond market factor is insignificant. However, the alpha remains significant and strongly

negative as reported by Carr and Wu (2008), and Bondarenko (2007).
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and

logV (t, T ) = a+ blogK(t, T ) + ǫ. (8)

Under the null hypothesis of a constant variance risk premium in dollar terms, the slope in

(7) is one. Absence of a variance risk premium in dollar terms would further imply that

the intercept in (7) is zero. Similarly, under the null hypothesis of constant a variance risk

premium in log return terms, the slope in (8) is one. Zero variance risk premium in log return

terms would further imply that the intercept in (8) is zero.

Table 4 displays estimates of both regressions. The regressions are estimated by OLS with

the T -statistics under the null hypotheses of a = 0 and b = 1 adjusted for the autocorrelation

induced by the overlap in observations. For the Treasury futures, the slope estimates in (7)

are significantly less than one and are of similar magnitude. This indicates that the variance

risk premium in dollar terms becomes more negative when the variance swap rate increases.

The slope estimates in (8) are closer to one, although still significantly less than one. Hence,

the variance risk premium in log return terms, also becomes more negative when the variance

swap rate increases, although the sensitivity is lower than for the variance risk premium in

dollar terms.16

In summary, the Treasury futures variance risk premium is significantly negative, shorting

variance swaps generate Sharpe ratios that are substantially higher than the Sharpe ratios of

the underlying Treasury futures, the variance risk premium is not a compensation for exposure

to bond or equity market risks, suggesting that there is an unspanned variance factor with

a significant risk premium, and the variance risk premium becomes more negative when the

variance swap rate increases, particularly when the premium is measured in dollar terms.

3 Estimating the variance risk premium within a dynamic term

structure model

I now estimate the variance risk premium within a flexible dynamic term structure model

using a panel data set of interest rates and derivatives. The model shares many features with

that in Trolle and Schwartz (2008a), but has a more parsimonious structure. It has N factors,

which drive the term structure, and one additional unspanned variance factor. Innovations

16For the S&P 500 index the variance risk premium depends significantly on the variance swap rate when

measured in dollar terms but not when measured in log return terms as previous found by Carr and Wu (2008).
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to the term structure and variance may be correlated so that variance may contain both a

spanned and an unspanned component. Furthermore, the model accommodates a wide range

of shocks to the term structure including hump-shaped shocks. I parameterize the variance

risk premium such that it is proportional to variance. While this specification is convenient

both for estimation and for solving the dynamic portfolio choice problem in Section 4, it is also

supported by the model-free analysis in Section 2. This is important, because the estimate of

the variance risk premium is clearly conditional upon its parametrization.

The model is estimated on a different data set than that used in Section 2. Rather than

using Treasury futures and options, I use LIBOR and swap rates and swaptions (i.e. options

on swaps), since within a dynamic term structure model it is much easier to price these

instruments than Treasury futures and options.17 An advantage of using a different data set is

that it allows me to compare the variance risk premium in the Treasury futures market with

that in the interest rate swap market, which is an over-the-counter market.

3.1 The dynamic term structure model

The risk-neutral dynamics

Let f(t, T ) denote the time-t instantaneous forward interest rate for risk-free borrowing and

lending at time T . I model the risk-neutral dynamics of forward rates as

df(t, T ) = µf (t, T )dt +
√
v(t)

N∑

i=1

σf,i(t, T )dWQ
i (t) (9)

dv(t) = κ(θ − v(t))dt + σ
√
v(t)




N∑

i=1

ρidW
Q
i (t) +

√√√√1 −
N∑

i=1

ρ2
i dW

Q
N+1(t)


 , (10)

where WQ
i (t), i = 1, ..., N + 1 denote independent standard Wiener processes under the risk-

neutral measure Q. Absence of arbitrage implies that the drift term in (9) is given by

µf (t, T ) = v(t)

N∑

i=1

σf,i(t, T )

∫ T

t

σf,i(t, u)du. (11)

Forward rates are driven by N factors, while forward rate volatilities, and hence interest

rate derivatives, may be driven by an additional unspanned factor. The model in Trolle and

17Swaptions are European-style options with constant maturities, whereas Treasury futures options are

American-style options with fixed expiration dates and therefore varying maturities. Furthermore, the Treasury

futures contracts themselves are fairly complex instruments, since they embed delivery options, where the short

side of a futures contract can decide which (deliverable) bond to deliver and when delivery occurs.
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Schwartz (2008a) allows for N unspanned variance factors but to keep the model relatively

parsimonious, here I only allow for a single unspanned variance factor. Innovations to variance

may be correlated with innovations to the term structure, so the extent to which variance is

unspanned is an empirical question. As in Trolle and Schwartz (2008a), I use the following

flexible specification

σf,i(t, T ) = (α0,i + α1,i(T − t))e−γi(T−t), (12)

which allows for a wide range of shocks to the forward rate curve. In particular it allows for

hump-shaped shocks.

An affine representation

Although the model is based on the Heath, Jarrow, and Morton (1992) framework, it may be

represented as an affine model with a finite-dimensional state vector. In particular, the time-t

short rate, r(t), is given by

r(t) = f(0, t) +

N∑

i=1

Axi
xi(t) +

N∑

i=1

6∑

j=1

Aφj,i
φj,i(t), (13)

where

Axi
= α0i Aφ1,i

= α1i Aφ2,i
= α0i

γi

(
α1i

γi
+ α0i

)

Aφ3,i
= −α0i

γi

(
α1i

γi
+ α0i

)
Aφ4,i

= α1i

γi

(
α1i

γi
+ α0i

)
Aφ5,i

= −α1i

γi

(
α1i

γi
+ 2α0i

)

Aφ6,i
= −α2

1i

γi
,

and f(0, t) is the initial forward curve. The state variables evolve according to

dxi(t) = −γixi(t)dt +
√
v(t)dWQ

i (t) (14)

dφ1,i(t) = (xi(t) − γiφ1,i(t))dt (15)

dφ2,i(t) = (v(t) − γiφ2,i(t))dt (16)

dφ3,i(t) = (v(t) − 2γiφ3,i(t))dt (17)

dφ4,i(t) = (φ2,i(t) − γiφ4,i(t))dt (18)

dφ5,i(t) = (φ3,i(t) − 2γiφ5,i(t))dt (19)

dφ6,i(t) = (2φ5,i(t) − 2γiφ6,i(t))dt, (20)
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subject to xi(0) = φ1,i(0) = ... = φ6,i(0) = 0. Furthermore, the time-t price of a zero-coupon

bond maturing at time T , P (t, T ), is given by

P (t, T ) =
P (0, T )

P (0, t)
exp





N∑

i=1

Bxi
(T − t)xi(t) +

N∑

i=1

6∑

j=1

Bφj,i
(T − t)φj,i(t)



 , (21)

where

Bxi
(τ) =

α1i

γi

((
1

γi
+
α0i

α1i

)(
e−γiτ − 1

)
+ τe−γiτ

)
(22)

Bφ1,i
(τ) =

α1i

γi

(
e−γiτ − 1

)
(23)

Bφ2,i
(τ) =

(
α1i

γi

)2( 1

γi
+
α0i

α1i

)((
1

γi
+
α0i

α1i

)(
e−γiτ − 1

)
+ τe−γiτ

)
(24)

Bφ3,i
(τ) = −α1i

γ2
i

((
α1i

2γ2
+
α0i

γ
+

α2
0i

2α1i

)
(e−2γτ − 1) +

(
α1i

γ
+ α0i

)
τe−2γτ +

α1i

2
τ2e−2γτ

)
(25)

Bφ4,i
(τ) =

(
α1i

γi

)2( 1

γi
+
α0i

α1i

)(
e−γiτ − 1

)
(26)

Bφ5,i
(τ) = −α1i

γ2
i

((
α1i

γ
+ α0i

)
(e−2γτ − 1) + α1iτe

−2γτ

)
(27)

Bφ6,i
(τ) = −1

2

(
α1i

γi

)2

(e−2γiτ − 1). (28)

From the zero-coupon bonds I can compute swap rates, and in Appendix B, I develop a fast

and accurate Fourier-based swaption pricing formula.

Despite the large number of state variables, the model is actually quite parsimonious.18

In a model with N term structure factors, there are N × 4 + 3 parameters that are identified

under Q.19 For instance, in a model with two term structure factors (i.e. a total of three

factors), there are 11 identifiable parameters. In contrast, in the maximal A1(3) model of Dai

and Singleton (2000), which also has two conditionally Gaussian factors and one square-root

factor, there are 14 identifiable parameters.

18Note that there are no stochastic terms in the φ1,i(t),...,φ6,i(t) processes, which are “auxiliary”, locally

deterministic, state variables that reflect the path information of xi(t) and vi(t).

19When estimating the model, I reduce it to its time-homogeneous counterpart by replacing f(0, t) with ϕ

in (13) and P (0,T )
P (0,t)

with exp {−ϕ(T − t)} in (21). This adds one additional parameter under Q. On the other

hand, for the model to be identified, I set σ = 1.
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Market prices of risk

The market prices of risk, Λi, link the Wiener processes under Q and P through

dWi(t) = dWQ
i (t) − Λi(t)dt, (29)

i = 1, ..., N + 1. I specify the market prices of risk as

Λi(t) = λi

√
v(t), (30)

implying that the variance risk premium is linear in variance, which, qualitatively at least, is

consistent with the model-free evidence in Section 2.20 With this specification, the dynamics

of xi(t) and v(t) under P are given by

dxi(t) = (−γixi(t) + λiv(t))dt +
√
v(t)dWi(t) (31)

dv(t) = κ(θ − v(t))dt + σ
√
v(t)




N∑

i=1

ρidWi(t) +

√√√√1 −
N∑

i=1

ρ2
i dWN+1(t)


 , (32)

where κ = κ − σ

(∑N
i=1 λiρi + λN+1

√
1 −

∑N
i=1 ρ

2
i

)
and θ = κθ

κ
. Obviously the dynamics of

φ1,i(t),...,φ6,i(t) do not change since these contain no stochastic terms.

3.2 Data and estimation approach

I estimate the model on an extensive panel data set of LIBOR and swap rates and swaptions.21

The data is daily from January 23, 1997 to April 30, 2008.

The LIBOR/swap term structures consist of LIBOR rates with maturities of 6 and 12

months and swap rates with maturities of 2, 3, 5, 7, 10, 15, and 30 years, which were obtained

from Bloomberg.

20Trolle and Schwartz (2008a) use the “extended affine” market price of risk specification suggested by

Cheredito, Filipovic, and Kimmel (2007) and Collin-Dufresne, Goldstein, and Jones (2008). However, the

“completely affine” specification has several advantages. First, it allows me to solve the dynamic portfolio

choice problem in Section 4 in quasi-closed form, which is not possible with the “extended affine” specification.

Second, it seems more intuitive than the “extended affine” specification, where market prices of risk can become

arbitrarily large as variance approaches the zero boundary. Third, it is parsimonious and one avoids having to

impose the Feller restriction on the process for v(t).

21I am implicitly assuming homogeneous credit quality across the LIBOR, swap, and swaption markets since

all cash-flows are discounted using the same discount factors.
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The swaptions have option maturities of 1 month and underlying swap maturities of 2, 5,

10, and 30 years. From January 23, 1997 until April 30, 2004 I have data on at-the-money-

forward (ATMF) swaptions, where the strikes are equal to the forward rates on the underlying

swaps. This data was also obtained from Bloomberg.

From May 1, 2004 until April 30, 2008 I have data on the entire swaption smiles, where

swaption strikes are -100bp, -50bp, -25bp, 0bp, 25bp, 50bp, and 100bp away from the ATMF

strike. To my knowledge, it is the first time that such data has been used in the empirical

term structure literature.22 This data was obtained from ICAP, which is the largest broker in

the interest rate derivatives market.

Although swaptions with longer option maturities are also available, I only use 1 month

options to make the data comparable to that used in Section 2, where variance swaps have an

average maturity of 21 business days. Furthermore, as shown by Trolle and Schwartz (2008a),

once swaptions with a wide range of option maturities are introduced, multiple variance state

variables are needed to match the data.

Time series of swap rates and ATMF swaption volatilities are given in Figure 2. The

model is estimated by quasi-maximum likelihood in conjunction with the extended Kalman

filter along the lines of Trolle and Schwartz (2008a). In the interest of brevity, the details are

omitted here.

3.3 Results

Parameter estimates are given in Table 5.23 For all the model specifications, the estimates

of α0, α1, and γ imply that the forward rate volatility functions are hump shaped. In the

specification with N = 3, the first factor affects forward rates of all maturities, the second

factor affects forward rates with maturities up to about 10 years, while the third factor affects

forward rates with maturities up to about 3 years.

As N increases, σrates, the standard deviation of LIBOR and swap rate pricing errors,

22A number of papers use data on cap smiles, see e.g. Jarrow, Li, and Zhao (2007) and Trolle and Schwartz

(2008a). However, the shortest cap maturity is one year, whereas here I want to use options with short

maturities.

23The asymptotic covariance matrix of the estimated parameters is computed from the outer-product of

the first derivatives of the likelihood function. Theoretically, it would be more appropriate to compute the

asymptotic covariance matrix from both the first and second derivatives of the likelihood function. In reality,

however, the second derivatives of the likelihood function are somewhat numerically unstable.
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decreases from 50 basis points (bp) to 10 bp to 3 bp. Hence, with three term structure factors,

the model is able to capture virtually all the variation in interest rates, consistent with much

existing term structure literature. σswaptions, the standard deviation of swaption pricing errors,

also decreases as N increases. Figure 3 displays, for the specification with N = 3, the time

series of the root-mean-squared pricing errors (RMSEs) for interest rates and swaptions. The

RMSEs for interest rates fluctuate around 3 bp throughout the entire sample period. The

RMSEs for swaptions is around 1 percent for much of the sample period but is higher and

more volatile during the LTCM crisis, during the period from 2002 until 2004, when interest

rate volatility was high and volatile, and during the credit crisis.

The estimates of ρ indicate that innovations to variance are only weakly related to innova-

tions to the term structure. This finding holds true regardless of the number of term structure

factors. Indeed, it is straightforward to show that in the three model specification, the fraction

of variation in variance that is spanned by the term structure is 0.0004, 0.1432, and 0.1216, re-

spectively. Evidence for unspanned stochastic variance in fixed income markets has previously

been reported by Collin-Dufresne and Goldstein (2002), Heidari and Wu (2003), Andersen and

Benzoni (2005), Li and Zhao (2006, 2008), Trolle and Schwartz (2008a), and Collin-Dufresne,

Goldstein, and Jones (2008), among others.

For the purpose of this paper, the most interesting issue is the market price of risk estimates.

The estimated market prices of risk on the term structure factors are generally moderately

negative, although in many cases not statistically significant, which implies that bonds of all

maturities have positive risk premia. In contrast, the estimated market price of risk on the

unspanned variance factor is strongly negative – much more negative than the prices of risk

on the term structure factors – and statistically significant, in all the model specifications.

To better interpret the market price of risk estimates and to link them with the findings

in Section 2, Table 6 displays, for each model specification, the model implied unconditional

instantaneous Sharpe ratios on zero-coupon bonds, short term futures contracts on zero-coupon

bonds, a derivative exposed solely to variance, and a derivative exposed solely to the unspanned

variance factor.

The instantaneous Sharpe ratio on a zero-coupon bond with maturity τ is given by

SRZCB =

∑N
i=1Bxi

(τ)λi√∑N
i=1Bxi

(τ)2

√
v(t). (33)

Table 6 displays the unconditional SRZCB for maturities of 2, 5, 10, and 30 years. For N = 1,
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it equals 0.13 for all maturities. For N > 1, it varies with bond maturity but is generally of

the same magnitude.

The price of a futures contract on a zero-coupon bond is given in Appendix C. In con-

trast to the zero-coupon bond itself, the futures contract depends on the unspanned variance

factor. However, this dependence is weak, particularly for short term futures contracts. The

instantaneous Sharpe ratio on a futures contract with maturity τf on a zero-coupon bond with

maturity τ is given by

SRFUT =

∑N
i=1

(
B̃xi

(τf ) + B̃v(τf )σρi

)
λi + B̃v(τf )σ

√
1 −

∑N
i=1 ρ

2
iλN+1

√∑N
i=1

(
B̃xi

(τf )2 + 2σρiB̃xi
(τf )B̃v(τf )

)
+ σ2B̃v(τf )2

√
v(t), (34)

where B̃xi
(τf ) and B̃v(τf ) are given in Appendix C. Table 6 shows the unconditional SRFUT

for 1 month futures contracts on zero-coupon bonds with maturities of 2, 5, 10, and 30 years.

Since short term futures contracts have only weak exposure to the unspanned variance factor,

the Sharpe ratios on the futures contracts are virtually identical to the Sharpe ratios on the

underlying zero-coupon bonds.

The instantaneous Sharpe ratio on a derivative exposed solely to variance is given by

SRV AR =




N∑

i=1

λiρi + λN+1

√√√√1 −
N∑

i=1

ρ2
i


√v(t) (35)

with unconditional values of -0.41, -0.40, and -0.43 in the three model specifications. Since

variance is mostly unspanned by the term structure, this derivative is predominantly exposed

to the unspanned variance factor and, therefore, has a significantly higher Sharpe ratio than

an instrument exposed exclusively (in the case of bonds) or predominantly (in the case of short

term futures on bonds) to the term structure factors. In fact, SRV AR is generally about three

times larger in absolute value than the model-implied Sharpe ratios on bonds or short-term

bond futures, which is broadly consistent with the findings in the model-independent analysis

in Section 2.

Finally, the instantaneous Sharpe ratio on a derivative exposed solely to the unspanned

variance factor is given by

SRUSV = λN+1

√
v(t) (36)

with unconditional values of -0.41, -0.42, and -0.46 in the three model specifications.
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4 Optimal portfolio choice with interest rate derivatives

I now investigate the benefits of including interest rate derivatives in fixed income portfolios.

I assume that investment opportunities are driven by the term structure model derived and

estimated in the previous section. Based on this model, I derive the optimal portfolio strategy

for a long-term investor, with and without access to interest rate derivatives, and compute two

measures for the utility gains from optimally adding interest rate derivatives to fixed income

portfolios.

4.1 Optimal dynamic portfolios

I assume that the investor is endowed with initial wealth, W (t), and invests to maximize

expected power utility at time T of the form

Et [U(W (T ))] , U(W ) =

{
1

1−η
W 1−η, η > 1

logW, η = 1,
(37)

where η is the parameter of relative risk aversion.24

Suppose that the investor invests in M securities that span the first M risk factors. To

use a compact notation, let P (t) = (P1(t), ..., PM (t))′ denote the vector of asset prices. The

dynamics of P (t) is assumed to be given by

dP (t) = diag(P (t))[(r(t)1 + Σλv(t))dt + Σ
√
v(t)dW (t)], (38)

where λ = (λ1, ..., λM )′, W (t) = (W1(t), ...,WM (t))′ and Σ is an M ×M invertible matrix of

factor exposures.25

The investor chooses a portfolio process π = (π(s))s∈[t,T ], where π(t) is an M -dimensional

vector denoting the fractions of wealth allocated to the M risky assets. The remaining fraction

1 − π(t)′1 is allocated to the money market account. Throughout, I assume that the investor

is unconstrained; hence, π(t) can take any value. For a given π-process, the wealth W (t) of

the investor then evolves according to

dW (t) = W (t)[(r(t) + π(t)′Σλv(t))dt + π(t)′Σ
√
v(t)dW (t)]. (39)

24Papers that work with power utility often assume η > 0. However, as discussed by Korn and Kraft (2004),

in the case of stochastic investment opportunities and 0 < η < 1, one may encounter problems with infinite

expected utility. Therefore, I assume η ≥ 1.

25diag(P (t)) denotes an M × M matrix with the vector P (t) along the diagonal and zeros off the diagonal.
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An investor without access to interest rate derivatives can obtain any desired exposure to

the first N risk factors by trading in N bonds of different maturities. In this case, M = N . An

investor with access to interest rate derivatives can obtain any desired exposure to all N + 1

risk factors by trading in N + 1 securities, at least one of with is an interest rate derivatives.

In this case, M = N + 1.

I solve the portfolio choice problem by dynamic programming. The indirect utility function

is given by

J(t) = max
(πs)s∈[t,T ]

Et[U(W (T ))] (40)

subject to (39). The optimal portfolio strategy for the investor, with and without access to

interest rate derivatives, is given in the following Proposition:

Proposition 1 Consider the dynamic optimization problem of an investor with power utility

over terminal wealth who faces investment opportunities that evolve according to the model

described in Section 3.

i) When the investor can trade interest rate derivatives, the optimal portfolio strategy and

the indirect utility function is given by

π(t) =
1

η
(Σ′)−1(λ1, ..., λN+1)

′ +

(
1 − 1

η

)(
(Σ′)−1 (Bx1(T − t), ..., BxN

(T − t), 0)′ −

(Σ′)−1

(
ρ1, ..., ρN ,

√√√√1 −
N∑

i=1

ρ2
i

)
′

σDv(T − t)

)
(41)

and

J(W (t), P (t, T ), v(t), t) =

{
1

1−η

(
W (t)

P (t,T )e
Cv(T−t)+Dv(T−t)v(t)

)1−η

, η > 1

logW (t) − logP (t, T ) +Cv(T − t) +Dv(T − t)v(t), η = 1,

(42)

where Dv(τ) solves the following ODE

dDv(τ)

dτ
=

1

2η

N+1∑

i=1

λ2
i −

N∑

i=1

(
λiBxi

(τ) +Bφ2,i
(τ) +Bφ3,i

(τ)
)
− κDv(τ) +

1 − η

η

(
−

N∑

i=1

λiBxi
(τ) + σ




N∑

i=1

λiρi + λN+1

√√√√1 −
N∑

i=1

ρ2
i


Dv(τ)

)
+

1 − η

2η

(
N∑

i=1

(
Bxi

(τ)2 − 2ρiσBxi
(τ)Dv(τ)

)
+ σ2Dv(τ)

2

)
, (43)

20



subject to the boundary conditions Dv(0) = 0, and Cv(τ) is given by

Cv(τ) = κθ

∫ τ

0
Dv(u)du. (44)

ii) When the investor can only trade bonds the optimal portfolio strategy is given by

π(t) =
1

η
(Σ′)−1(λ1, ..., λN )′ +

(
1 − 1

η

)(
(Σ′)−1 (Bx1(T − t), ..., BxN

(T − t))′ −

(Σ′)−1 (ρ1, ..., ρN )′ σDv(T − t)
)

(45)

while the indirect utility function still has the form (42). In this case, Dv(τ) solves the following

ODE

dDv(τ)

dτ
=

1

2η

N∑

i=1

λ2
i −

N∑

i=1

(
λiBxi

(τ) +Bφ2,i
(τ) +Bφ3,i

(τ)
)
− κDv(τ) +

1 − η

η

(
−

N∑

i=1

λiBxi
(τ) + σ

(
N∑

i=1

λiρi

)
Dv(τ)

)
+

1 − η

2η

(
N∑

i=1

(
Bxi

(τ)2 − 2ρiσBxi
(τ)Dv(τ)

)
+ σ2Dv(τ)

2 −

(1 − η)

(
1 −

N∑

i=1

ρ2
i

)
σ2Dv(τ)

2

)
(46)

subject to the boundary conditions Dv(0) = 0, and Cv(τ) is given by (44).

Proof: See Appendix D.

The optimal portfolio strategy has a number of intuitive properties. First, it is a weighted

average of the mean-variance tangency portfolio and a hedge portfolio, with the weights de-

pending on the risk aversion parameter η. As usual, the hedge term disappears for log-utility

investors and myopic investors (since Bx1(0) = ... = BxN
(0) = Dv(0) = 0).

Second, the Sharpe ratio of the tangency portfolio – in other words, the slope of the Capital

Market Line – is given by

SRtan
bonds =

√√√√
N∑

i=1

λ2
i v(t), (47)

when the investment universe only consists of bonds, and

SRtan
deriv =

√√√√
N+1∑

i=1

λ2
i v(t), (48)
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when the investment universe is expanded to include interest rate derivatives.26 Therefore, to

the extent that the unspanned variance factor is priced, i.e. λN+1 6= 0, interest rate derivatives

improves the investment opportunity set.

Third, the hedge portfolio consists of two components, the first component hedging vari-

ations in r(t) and the second component hedging variations in v(t). This is quite natural.

As shown by Nielsen and Vassalou (2002) under general conditions, long-term investors that

are more risk averse than log-utility investors will hedge variations in the state variables to

the extent that these affect investment opportunities. Since investment opportunities can be

summarized by the short term interest rate and Sharpe ratio of the tangency portfolio, which

is a function of v(t) regardless of whether the investor can trade derivatives, the investor wants

to hedge r(t) and v(t). Note that the investor hedges v(t) not because it drives the volatility

of the tangency portfolio but because it drives its Sharpe ratio.

Fourth, if variance contains a component that is spanned by the term structure, i.e. if

ρ1, ..., ρN are not all zero, an investor, who can only trade bonds, is able to partially hedge

variations in v(t) and the second component in (45) is non-zero. If variance is completely

unspanned by the term structure, the second component in (45) is zero. In contrast, an

investor who can trade interest rate derivatives is able to hedge variations in v(t) regardless

of the extent to which it is spanned by the term structure.27

In summary, an investor finds interest rate derivatives attractive for two reasons; they

improve investment opportunities by increasing the Sharpe ratio of the tangency portfolio

and they improve the ability of the investor to hedge adverse changes in the Sharpe ratio.

26To see this, let πtan(t) denote the tangency portfolio. The expected excess return of the tangency portfolio

is given by

πtan(t)′Σλv(t) = λ′λv(t), (49)

while its volatility is given by p
Σ′πtan(t)πtan(t)′Σv(t) =

p
λ′λv(t), (50)

and, therefore, the Sharpe ratio is given by
p

λ′λv(t).

27I note in passing that, in the limit, as η → ∞, Dv(τ ) = 0, τ ≥ 0 (to see this, note that 1
2
Bxi

(τ )2+Bφ2,i
(τ )+

Bφ3,i
(τ ) = 0). Hence, the optimal portfolio for an infinitely risk averse investor is simply the first component

of the hedge portfolio. Moreover, it is straightforward to show that if the investment universe includes a zero-

coupon bond maturing at the end of the investment horizon, the infinitely risk averse investor will allocate his

entire wealth to this bond. This result is quite intuitive and has been obtained in various settings by Sørensen

(1999), Brennan and Xia (2000), Wachter (2003), and Munk and Sørensen (2004), among others.
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The second effect only applies to long-term investors that are more risk averse than log-utility

investors. Consequently, even if the market price of the unspanned variance factor were zero, in

which case investment opportunities would not improve with the introduction of derivatives, a

long term investor with η > 1 would still find it optimal to hold a non-zero derivative position.

4.2 Portfolio improvements

Certainty equivalent wealth (CEW) is defined as the amount of wealth at time T which leaves

the investor indifferent between receiving it and investing current wealth optimally according

to either (41) or (45), depending on the ability to trade interest rate derivatives. That is, the

CEW solves U(CEW ) = J(W (t), P (t, T ), v(t), t), which implies that

CEW =
W (t)

P (t, T )
eCv(T−t)+Dv(T−t)v(t). (51)

I consider two measures of the utility gains from participating in the interest rate derivatives

market. The first measure is the gain in CEW in terms of continuously compounded annualized

returns. I denote this measure RCEW and it is given by

RCEW =
1

T
log

(
CEW deriv

CEW bonds

)

=
1

T

(
Cderiv

v (T − t) − Cbond
v (T − t) +

(
Dderiv

v (T − t) −Dbond
v (T − t)

)
v(t)

)
.(52)

The same measure is used by Liu and Pan (2003) to determine the value of participating in

the equity derivatives market, making a direct comparison with their results possible.

The second measure is the fraction of wealth that an investor restricted to trading bonds

would be willing to give up to be allowed to trade interest rate derivatives. I denote this

measure XW and it solves J(W (t), P (t, T ), v(t), t)bonds = J((1−XW )W (t), P (t, T ), v(t), t)deriv .

Straightforward calculations show that

XW = 1 − CEW bonds

CEW deriv
= 1 − eC

bond
v (T−t)−Cderiv

v (T−t)+(Dbond
v (T−t)−Dderiv

v (T−t))v(t). (53)

4.3 Results

I first compute, for each of the three model specifications, the unconditional instantaneous

Sharpe ratio of the tangency portfolio, with and without investments in interest rate deriva-

tives. These are displayed in Table 6. When the investment universe only consists of bonds,
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the Sharpe ratio lies between 0.13 and 0.17, whereas when the investment universe also in-

cludes interest rate derivatives, the Sharpe ratio lies between 0.43 and 0.48. Hence, interest

rate derivatives provide a substantial improvement in investment opportunities.

Figure 4 shows, for each of the three model specifications, the two measures of the utility

gain from participating in the interest rate derivatives market. I consider investors with

investment horizons from 1 day to 10 years and relative risk aversion coefficients of 1, 3, 5,

and 10, and assume that v(t) and the term structure equal their unconditional means. For

a given investment horizon, RCEW decreases with the risk aversion since more risk averse

investors will exploit the improved risk-return tradeoff to a lesser extent. This also means

that more risk averse investors will give up a smaller fraction of wealth to obtain access to

the interest rate derivatives market. For a given risk aversion level, RCEW increases with the

investment horizon since longer term investors will exploit the hedging ability of interest rate

derivatives to a greater extent.28 The utility gains are substantial and fairly similar across

model specifications. For instance, assuming an investment horizon of five years and η = 3,

RCEW equals 0.036, 0.038, and 0.043, for N = 1, 2, and 3, respectively. That is, the utility

gain from participating in the interest rate derivatives market corresponds to an additional

return of about four percent per annum on certainty equivalent wealth. The fraction of wealth

that this investor would be willing to give up to be able to trade interest rate derivatives is

0.166, 0.171, and 0.194, for N = 1, 2, and 3, respectively.

Liu and Pan (2003) compute the utility gain for equity investors from participating in the

equity derivatives market. For the same investment horizon and risk aversion, they report an

RCEW of 0.142.29 Hence, it appears that the utility gains from participating in the equity

derivatives market are larger than from participating in the interest rate derivatives market.

This is consistent with the finding in Section 2 that the Sharpe ratio on S&P 500 index variance

swaps are larger than the Sharpe ratio on Treasury futures variance swaps, both in absolute

terms and relative to the Sharpe ratios of the underlying assets.

Figure 5 shows the time series of RCEW for the N = 3 specification, based on the Kalman

filtered state variables and assuming η = 3 and investment horizons of 1 day, 2 years, and 5

28For a log-utility investor, RCEW is constant across investment horizons since this investor does not to hedge

variations in investment opportunities.

29This is for their specification, where investment opportunities are driven by the Heston (1993) model, which

is most comparable to my setup.
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years.30 The utility gain from participating in the interest rate derivatives market increases

with variance, since all market prices of risk, including the one on the unspanned variance

factor, increase with variance (in absolute terms). However, due to the mean reversion in

variance, and hence mean reversion in the Sharpe ratio of the tangency portfolio, the volatility

of RCEW is lower for longer investment horizons.

4.4 Robustness checks

So far, the results are based on the parameter estimates from Section 3. To investigate the

robustness of my conclusions, I analyze the sensitivity of RCEW to variations in the key

parameters κ, σ, and λN+1, in case of the N = 3 specification. I vary each of these parameters

individually, holding all other P -parameters and market price of risk parameters constant.

Figure 6 displays the results, assuming η = 3 and investment horizons of 1 day, 2 years and 5

years.

When κ increases, shocks to variance, and hence shocks to the Sharpe ratio of the tangency

portfolio, are less persistent. For long-term investors, the incentive to hedge variations in the

Sharpe ratio is lower and, consequently, the benefits of including derivatives in the hedge

component of the optimal portfolio strategy decrease and RCEW approaches that of short-

term investors.

When σ increases, variance is more volatile making the Sharpe ratio of the tangency port-

folio more volatile. For long-term investors, the benefits of including derivatives in the hedge

component of the optimal portfolio strategy increase and RCEW increases relative to that of

short-term investors.

When λN+1 becomes less negative, for a given v(t), the Sharpe ratio of the tangency

portfolio in the presence of derivatives approaches the Sharpe ratio in the absence of derivatives,

which reduces the benefits of including derivatives in the tangency portfolio. Furthermore, the

Sharpe ratio of the tangency portfolio is less volatile, which reduces the benefits of including

derivatives in the hedge component of the optimal portfolio strategy for long-term investors.

Therefore, as λN+1 becomes less negative, RCEW decreases for both short-term and long-term

investors and the difference between the two decreases as well. When λN+1 = 0, there are no

benefits of including derivatives in the tangency portfolio and RCEW = 0 for myopic investors.

For long-term investors, RCEW is positive, but close to zero, as the benefits of including

30The time series of v(t) is displayed in Figure 3, Panel C.
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derivatives in the hedge component of the optimal portfolio strategy is small.

I conclude that the qualitative results are robust to large variations in the parameter

estimates. The quantitative results, however, do display some sensitivity to the λN+1-estimate,

in particular.

5 Conclusions

In this paper, I first estimate the variance risk premium in the Treasury futures market using

a model independent approach. I find that the Treasury futures variance risk premium is

significantly negative, shorting variance swaps generate Sharpe ratios that are about two to

three times larger than the Sharpe ratios of the underlying Treasury futures, the variance risk

premium is not a compensation for exposure to bond or equity market risks, suggesting that

there is an unspanned variance factor with a significant risk premium, and the variance risk

premium becomes more negative when variance increases.

I then estimate the variance risk premium in the interest rate swap market using a dynamic

term structure model and an extensive panel data set of swap rates and swaptions. I find that

variance risk is predominantly unspanned, and the estimated market price of risk on the

unspanned variance factor is strongly negative – much more negative than the prices of risk

on the term structure factors – and statistically significant. These findings hold true across

different model specifications. The model-implied Sharpe ratio on a derivative exposed solely

to variance is about three times larger in absolute value than the model-implied Sharpe ratios

on bonds or short-term bond futures consistent with the model independent analysis.

Finally, assuming that investment opportunities evolve according to the estimated term

structure model, I derive the optimal portfolio strategy for a long-term fixed income investor

with CRRA utility over terminal wealth, who either does or does not participate in the interest

rate derivatives market. Interest rate derivatives play a unique role in dynamic portfolio

strategies. They expand the investment opportunity set and provide ways of hedging variations

in investment opportunities, and I find substantial utility gains from participating in the

interest rate derivatives market.

The analysis may be extended in a number of directions. First, the dynamic term structure

model used in this paper is fairly parsimonious, since it only has one unspanned variance factor.

In reality, there are multiple unspanned variance factors, see e.g. Trolle and Schwartz (2008a),

and to the extent that all of these carry a risk premium, the benefits of adding interest rate
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derivatives to fixed income portfolios will likely be higher than what is reported here.

Second, one could analyze the benefits of interest rate derivatives in a more general setting

where the investor can invest also in equities and equity derivatives. However, since bonds

and equities exhibit low correlation and since interest rate volatility and equity volatility is

only moderately correlated,31 I expect that there will still be substantial utility gains from

participating in the interest rate derivatives market.

Third, it might be relevant to incorporate transaction costs since these are typically higher

in the derivatives market. It is not clear, however, that transaction cost would markedly reduce

the attractiveness of interest rate derivatives, since, in the over-the-counter market, one could

presumably design products that minimize the need for frequent portfolio rebalancing.

Perhaps more important is to analyze the sources of unspanned stochastic variance and

why the unspanned component carries a large negative market price of risk. I leave these issues

for future research.

31Over long sample periods, bonds and equities have a small positive correlation of about 0.20. However,

the correlations between daily returns on the Treasury futures and the S&P 500 index for the sample period in

Section 2 are actually negative in the range -0.14 to -0.08. As I report in Section 2, the correlations between

the different Treasury futures variance swap rates and the S&P 500 index variance swap rate is between 0.35

and 0.44.
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Appendix A. Computing synthetic variance swap rates

This appendix contains details on the implementation of (3). The first issue is that the CBOT

options are American-style while the synthetic variance swap formula utilizes European-style

options. Therefore, it is necessary to convert the American option prices into European option

prices by subtracting an estimate of the early exercise premium. This is done using the

same approach as in Trolle and Schwartz (2008b) (see also Broadie, Chernov, and Johannes

(2007)).32 The estimated early exercise premium is always very small, since I only use short-

maturity, OTM options.

The second issue is how to compute the integrals in (3) given that only a finite number of

option prices are available. Suppose at time t we have a range of options expiring at time T

on a futures contract maturing at time T1, and let σ denote the Black (1976) implied volatility

of the option that is closest to at the money (ATM). In a Black (1976) log-normal setting, for

an option with strike X, moneyness defined as

d =
log(X/F (t, T1))

σ
√

(T − t)
(54)

approximately gives the number of standard deviations that the log strike is away from the log

futures price. I truncate the first integral in (3) at Xmin = F (t, T1)e
−10σ

√
(T−t), corresponding

to d = −10, and the second integral in (3) at Xmax = F (t, T1)e
10σ

√
(T−t), corresponding to

d = 10. The integrals are evaluated with “Simpson’s rule” using 999 integration points for

each integral. On a given day, options prices corresponding to the required strikes in the

integration rule are obtained by first linearly interpolating between the available Black (1976)

implied volatilities and then converting from implied volatilities to prices. For strikes below

the lowest available strike, I use the implied volatility at the lowest strike. Similarly, for strikes

above the highest available strike, I use the implied volatility at the highest strike. This is

basically the same interpolation/extrapolation approach as that used by Carr and Wu (2008).

The approximation error caused by the extrapolation of implied volatilities is small, since

option prices are very low in the regions of strikes where extrapolation is necessary, see Jiang

and Tian (2005) for an extensive discussion.

32The idea is, for each option, to assume that the price of the underlying futures contract follows a geometric

Brownian motion. With this assumption, American options can be priced using the Barone-Adesi and Whaley

(1987) formula. Inverting this formula for a given American option price yields an implied volatility, from which

the associated European option can be priced with the Black (1976) formula.
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Appendix B. Quasi-analytical swaption prices

Forward swap rate dynamics

Consider a discrete tenor structure

0 = T0 < T1 < · · · < TK < TK+1 (55)

and let

τk = Tk+1 − Tk, k = 0, 1, ...,K (56)

denote the lengths between tenor dates. Let S(t, Tm, Tn) denote the time-t forward swap rate

for the period Tm to Tn with fixed-leg payments at Tm+1, ..., Tn. S(t, Tm, Tn) is given by

S(t, Tm, Tn) =
P (t, Tm) − P (t, Tn)

A(t, Tm, Tn)
, (57)

where

A(t, Tm, Tn) =

n∑

j=m+1

τj−1P (t, Tj). (58)

When pricing swaptions, it is convenient to work under the “forward swap measure” which

is the measure associated with using A(t, Tm, Tn) as numeraire, see Jamshidian (1997). This

measure is denoted QTm,Tn . I can express QTm,Tn in terms of Q through

ξ(t) =
dQTm,Tn

dQ
=
A(t, Tm, Tn)

M(t)

1

A(0, Tm, Tn)
, (59)

where M(t) = exp
(∫ t

0 r(u)du
)

denotes the time-t value of the money market account. Since

dξ(t)

ξ(t)
=

n∑

j=m+1

τj−1P (t, Tj)

A(t, Tm, Tn)

N∑

i=1

Bxi
(Tj − t)

√
v(t)dWQ

i (t), ξ(0) = 1, (60)

it follows from Girsanov’s Theorem that

dWQTm,Tn

i (t) = dWQ
i (t) −

n∑

j=m+1

τj−1P (t, Tj)

A(t, Tm, Tn)
Bxi

(Tj − t)
√
v(t)dt, (61)

i = 1, ..., N , are Wiener processes under QTm,Tn .

The dynamics of S(t, Tm, Tn) under QTm,Tn (by construction, S(t, Tm, Tn) is a martingale

under QTm,Tn so I am only concerned with the diffusion term) is given by

dS(t, Tm, Tn) =
N∑

i=1

σS,i(t, Tm, Tn)
√
v(t)dWQTm,Tn

i (t), (62)
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where

σS,i(t, Tm, Tn) =

n∑

j=m

ζj(t)Bxi
(Tj − t) (63)

and ζm(t) = P (t,Tm)
A(t,Tm,Tn) , ζj(t) = −τj−1S(t, Tm, Tn)

P (t,Tj)
A(t,Tm,Tn) for j = m + 1, ..., n − 1, and

ζn(t) = −(1 + τn−1S(t, Tm, Tn)) P (t,Tn)
A(t,Tm,Tn) . Furthermore, the dynamics of v(t) under QTm,Tn is

given by

dv(t) = (κθ − κ̃v(t))dt + σ
√
v(t)dWQ

N+1(t), (64)

where

κ̃ = κ− σ
N∑

i=1

ρi

n∑

j=m+1

ξj(t)Bxi
(Tj − t) (65)

and ξj(t) =
τj−1P (t,Tj)
A(t,Tm,Tn) .

The joint dynamics of S(t, Tm, Tn) and v(t) under QTm,Tn is non-affine, since the ζj(t)

terms in (63) and the ξj(t) terms in (65) are stochastic. However, by “freezing” these terms

at their initial expected values, I obtain an affine expression, which makes it possible to derive

quasi-analytical prices of swaptions.33

The pricing of swaptions

A payer swaption is an option to enter into a payer swap at a given fixed rate. Let P(t, Tm, Tn,K)

denote the time-t value of a European payer swaption expiring at Tm with strike K on a swap

for the period Tm to Tn. This is also denoted a (Tm − t)–into–(Tn − Tm) payer swaption. At

expiration, the swaption has a payoff of

V (Tm, Tm, Tn)+ = (1 − P (Tm, Tn) −KA(Tm, Tm, Tn))+

= A(Tm, Tm, Tn) (S(Tm, Tm, Tn) −K)+ . (66)

At t < Tm, its price is given by

P(t, Tm, Tn,K) = EQ
t

[
e−

R Tm
t

r(s)dsA(Tm, Tm, Tn) (S(Tm, Tm, Tn) −K)+
]

= A(t, Tm, Tn)EQTm,Tn

t

[
(S(Tm, Tm, Tn) −K)+

]
. (67)

33The time-t expected values of ζj(u) and ξj(u) are simply their time-t values since these terms are martingales

under QTm,Tn . A similar approach is followed by Schrager and Pelsser (2006) in a general affine model. They

argue that the approximation is very accurate since ζj(u) and ξj(u) typically have low variances.
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Given the (approximately) affine model for the dynamics of the forward swap rate, swap-

tions can be priced quasi-analytically. First, I find the characteristic function of S(Tm, Tm, Tn)

given by

ψ(u, t, Tm, Tn) = EQTm,Tn

t

[
eiuS(Tm,Tm,Tn)

]
, (68)

where i =
√
−1. This has an exponentially affine solution as demonstrated in the following

proposition.

Proposition 2 (68) is given by

ψ(u, t, Tm, Tn) = eM(Tm−t)+N(Tm−t)v(t)+iuS(t,Tm ,Tn), (69)

where M(τ) and N(τ) solve the following system of ODEs

dM(τ)

dτ
= N(τ)κθ (70)

dN(τ)

dτ
= N(τ)

(
−κ̃+ iuσ

N∑

i=1

ρiσS,i(t, Tm, Tn)

)
+

1

2
N(τ)2σ2 − 1

2
u2

N∑

i=1

σS,i(t, Tm, Tn)2,(71)

subject to the boundary conditions M(0) = 0 and N(0) = 0.

Proof: Available upon request.

Next, I follow the general approach of Carr and Madan (1999) and Lee (2004) to price

swaptions. The idea is that the Fourier transform of the modified swaption price

P̂(t, Tm, Tn,K) = eαKP(t, Tm, Tn,K) (72)

can be expressed in terms of the characteristic function of S(Tm, Tm, Tn).34 The swaption

price is then obtained by applying the Fourier inversion theorem. The result is given in the

following proposition.

Proposition 3 The time-t price of a European payer swaption expiring at Tm with strike K

on a swap for the period Tm to Tn, P(t, Tm, Tn,K), is given by

P(t, Tm, Tn,K) = A(t, Tm, Tn)
e−αK

π

∫
∞

0
Re

[
e−iuKψ(u− iα, t, Tm, Tn)

(α+ iu)2

]
du. (73)

34The control parameter α must be chosen to ensure that the modified swaption price is L2 integrable, which

is a sufficient condition for its Fourier transform to exist.
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Proof: Available upon request.

Simulations show that for pricing OTM swaptions, this pricing formula is more accurate

than the stochastic duration approach of Munk (1999), which is used by Trolle and Schwartz

(2008a) for estimating term structure models on ATM swaptions.
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Appendix C. Pricing futures contracts on zero-coupon bonds

Let F (t, T, T1) denote the time-t price of a futures contract expiring at time T on a zero-

coupon bond maturing at time T1. In the absence of arbitrage opportunities, the (continuously

compounded) futures contract is a martingale under the risk-neutral measure, see e.g. Duffie

(2001). Furthermore, at expiration

F (T, T, T1) = P (T, T1). (74)

I conjecture that F (t, T, T1) takes the form

F (t, T, T1) = exp



B̃0(T − t) +

N∑

i=1

B̃xi
(T − t)xi(t) +

N∑

i=1

6∑

j=1

B̃φj,i
(T − t)φj,i(t) + B̃v(T − t)v(t)



 .(75)

It is straightforward to show that (75) is indeed a martingale and satisfies (74) provided that

B̃xi
(τ), B̃φj,i

(τ), B̃v(τ), and B̃0(τ) solve the following system of ODEs

dB̃xi
(τ)

dτ
= −γB̃xi

(τ) + B̃φ1,i
(τ)

dB̃φ1,i
(τ)

dτ
= −γB̃φ1,i

(τ)

dB̃φ2,i
(τ)

dτ
= −γB̃φ2,i

(τ) + B̃φ4,i
(τ)

dB̃φ3,i
(τ)

dτ
= −2γB̃φ3,i

(τ) + B̃φ5,i
(τ)

dB̃φ4,i
(τ)

dτ
= −γB̃φ4,i

(τ)

dB̃φ5,i
(τ)

dτ
= −2γB̃φ5,i

(τ) + 2B̃φ6,i
(τ)

dB̃φ6,i
(τ)

dτ
= −2γB̃φ6,i

(τ)

dB̃v(τ)

dτ
= −κB̃v(τ) +

N∑

i=1

(
B̃φ2,i

(τ) + B̃φ3,i
(τ)
)

+
1

2

(
N∑

i=1

(
B̃xi

(τ)2 + 2ρiσB̃xi
(τ)B̃v(τ)

)
+ σ2B̃v(τ)

2

)

dB̃0(τ)

dτ
= κθB̃v(τ), (76)

subject to the boundary conditions B̃xi
(0) = Bxi

(T1 −T ), B̃φj,i
(0) = Bφj,i

(T1 −T ), B̃v(0) = 0,

and B̃0(0) = log(P (0, T1)) − log(P (0, T )).
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Appendix D. Proof of Proposition 1

Let X(t) denote the vector of the 7N + 1 state variables

X(t) = (x1(t), ..., xN (t), φ1,1(t), ..., φ6,N (t), v(t))′, (77)

which evolves according to

dX(t) = m(X(t))dt +
√
v(t)(ΣXdW (t) + Σ̂XdŴ (t)), (78)

where W (t) = (W1(t), ...,WM (t))′, Ŵ (t) = (WM+1(t), ...,WN+1(t))
′, and ΣX and Σ̂X have

dimensions (7N + 1) ×M and (7N + 1) × (N + 1 −M), respectively.

The Hamilton-Jacobi-Bellman equation is given by

0 = max
πt

[
dJ

dt
+ JWWt(r(Xt) + π′Σλvt) +

1

2
JWWW 2

t π
′ΣΣ′πvt +

J ′

Xm(Xt) +
1

2
tr
(
JXX

(
ΣX(ΣX)′ + Σ̂X(Σ̂X)′

)
vt

)
+Wtπ

′Σ(ΣX)′JWXvt], (79)

where subscripts on J denote partial derivatives (the exception is the partial derivative of J

w.r.t. t, which is denoted dJ/dt). Maximization w.r.t. πt gives the first order condition

πt = − JW

WtJWW
(Σ′)−1λ− (Σ′)−1(ΣX)′

JWX

WtJWW
. (80)

Substituting back into (79) gives the second-order PDE

0 =
dJ

dt
+ r(Xt)WtJW − 1

2

J2
W

JWW
λ′λvt + J ′

Xm(Xt) +
1

2
tr(JXX(ΣX(ΣX)′ +

Σ̂X(Σ̂X)′))vt −
1

2JWW
J ′

WXΣX(ΣX)′JWXvt − λ′(ΣX)′
JWJWX

JWW
vt. (81)

If we can find a J that solves (81) subject to the boundary condition J(W,X,T ) = U(W ),

then we know from the Verification Theorem (see e.g. Fleming and Soner (1993) or Oksendal

(1998)) that the portfolio strategy (80) is optimal. To this end, I conjecture that J has the

form

J(Wt,Xt, t) =

{
1

1−η

(
eC(T−t)+D(T−t)′XtWt

)1−η

, η > 1

logWt + C(T − t) +D(T − t)′Xt, η = 1,
(82)

in which case (81) reduces to

0 = −dC(τ)

dτ
− dD(τ)′

dτ
Xt + r(Xt) +

1

2η
λ′λvt +D(τ)′m(Xt) +

(1 − η)

2η
D(τ)′ΣX(ΣX)′D(τ)vt +

(1 − η)

2
D(τ)′Σ̂X(Σ̂X)′D(τ)vt +

(1 − η)

η
D(τ)′ΣXλvt.(83)
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In the complete market case, where the investor can trade both bonds and derivatives, (83)

becomes

0 =
N∑

i=1

([
−dDxi

(τ)

dτ
+Axi

− γiDxi
(τ) +Dφ1,i

(τ)

]
xi(t) +

[
−
dDφ1,i

(τ)

dτ
+Aφ1,i

− γiDφ1,i
(τ)

]
φ1,i(t) +

[
−
dDφ2,i

(τ)

dτ
+Aφ2,i

− γiDφ2,i
(τ) +Dφ4,i

(τ)

]
φ2,i(t) +

[
−
dDφ3,i

(τ)

dτ
+Aφ3,i

− 2γiDφ3,i
(τ) +Dφ5,i

(τ)

]
φ3,i(t) +

[
−
dDφ4,i

(τ)

dτ
+Aφ4,i

− γiDφ4,i
(τ)

]
φ4,i(t) +

[
−
dDφ5,i

(τ)

dτ
+Aφ5,i

− 2γiDφ5,i
(τ) + 2Dφ6,i

(τ)

]
φ5,i(t) +

[
−
dDφ6,i

(τ)

dτ
+Aφ6,i

− 2γiDφ6,i
(τ)

]
φ6,i(t)

)
+

[
− dDv(τ)

dτ
+

1

2η

N+1∑

i=1

λ2
i +

N∑

i=1

(
λiDxi

(τ) +Dφ2,i
(τ) +Dφ3,i

(τ)
)
− κDv(τ) +

1 − η

η

(
N∑

i=1

λiDxi
(τ) + σ




N∑

i=1

λiρi + λN+1

√√√√1 −
N∑

i=1

ρ2
i


Dv(τ)

)
+

1 − η

2η

(
N∑

i=1

(
Dxi

(τ)2 + 2ρiσDxi
(τ)Dv(τ)

)
+ σ2Dv(τ)

2

)]
v(t) +

[
− dC(τ)

dτ
+ f(0, T − τ) + κθDv(τ)

]
. (84)

Therefore, (82) is indeed a solution to the PDE, provided that C(τ), Dxi
(τ), Dφj,i

(τ), and

Dv(τ) solve the system of ODEs given in brackets subject to the boundary conditions C(0) =

Dxi
(0) = Dφj,i

(0) = Dv(0) = 0. One can show that Dxi
(τ) = −Bxi

(τ) and Dφj,i
(τ) =

−Bφj,i
(τ), and using that exp

(
−
∫ τ

0 f(0, T − u)du
)

= P (0,T )
P (0,t) , I obtain the result stated in the

first part of Proposition 1.
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In the incomplete market case, where the investor can trade only bonds, (83) becomes

0 =

N∑

i=1

([
−dDxi

(τ)

dτ
+Axi

− γiDxi
(τ) +Dφ1,i

(τ)

]
xi(t) +

[
−
dDφ1,i

(τ)

dτ
+Aφ1,i

− γiDφ1,i
(τ)

]
φ1,i(t) +

[
−
dDφ2,i

(τ)

dτ
+Aφ2,i

− γiDφ2,i
(τ) +Dφ4,i

(τ)

]
φ2,i(t) +

[
−
dDφ3,i

(τ)

dτ
+Aφ3,i

− 2γiDφ3,i
(τ) +Dφ5,i

(τ)

]
φ3,i(t) +

[
−
dDφ4,i

(τ)

dτ
+Aφ4,i

− γiDφ4,i
(τ)

]
φ4,i(t) +

[
−
dDφ5,i

(τ)

dτ
+Aφ5,i

− 2γiDφ5,i
(τ) + 2Dφ6,i

(τ)

]
φ5,i(t) +

[
−
dDφ6,i

(τ)

dτ
+Aφ6,i

− 2γiDφ6,i
(τ)

]
φ6,i(t)

)
+

[
− dDv(τ)

dτ
+

1

2η

N∑

i=1

λ2
i +

N∑

i=1

(
λiDxi

(τ) +Dφ2,i
(τ) +Dφ3,i

(τ)
)
− κDv(τ) +

1 − η

η

(
N∑

i=1

λiDxi
(τ) + σ

(
N∑

i=1

λiρi

)
Dv(τ)

)
+

1 − η

2η

(
N∑

i=1

(
Dxi

(τ)2 + 2ρiσDxi
(τ)Dv(τ)

)
+ σ2Dv(τ)

2 − (1 − η)

(
1 −

N∑

i=1

ρ2
i

)
σ2Dv(τ)

2

)]
v(t) +

[
− dC(τ)

dτ
+ f(0, T − τ) + κθDv(τ)

]
. (85)

Again, (82) is indeed a solution to the PDE, provided that C(τ), Dxi
(τ), Dφj,i

(τ), and Dv(τ)

solve the system of ODEs given in brackets subject to the boundary conditions C(0) =

Dxi
(0) = Dφj,i

(0) = Dv(0) = 0. Note that only the ODE associated with v(t) changes relative

to the complete market case and I obtain the result stated in the second part of Proposition

1.
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5 year 10 year 30 year SPX

K(t, T ) V (t, T ) K(t, T ) V (t, T ) K(t, T ) V (t, T ) K(t, T ) V (t, T )

Mean 0.202 0.164 0.424 0.347 0.872 0.813 4.419 2.850

Median 0.177 0.129 0.371 0.274 0.761 0.683 3.791 1.976

Minimum 0.044 0.016 0.100 0.029 0.240 0.107 0.978 0.215

Maximum 0.655 1.158 1.629 1.680 3.033 3.263 20.921 20.452

Std. dev. 0.112 0.120 0.231 0.248 0.424 0.517 3.067 2.865

Skewness 1.010 1.968 1.180 1.737 1.415 1.667 1.656 2.565

Kurtosis 3.649 9.251 4.626 6.525 5.238 6.476 6.691 11.492

Number of obs. 3131 3131 3147 3147 3146 3146 3318 3318

Notes: Summary statistics of the variance swap rates, K(t, T ), and realized variances, V (t, T ), both multiplied by 100, for the 5, 10, and 30 year Treasury

futures and the S&P 500 equity index (SPX).

Table 1: Summary statistics of K(t, T ) and V (t, T )
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(V (t, T ) −K(t, T )) × 100 log(V (t, T )/K(t, T ))

5 year 10 year 30 year SPX 5 year 10 year 30 year SPX

Mean -0.038 -0.077 -0.069 -1.569 -0.292 -0.280 -0.150 -0.604

T -statistics -5.765 -5.844 -2.609 -10.017 -9.041 -9.019 -5.404 -17.057

Median -0.039 -0.076 -0.103 -1.383 -0.305 -0.295 -0.166 -0.626

Minimum -0.414 -0.995 -1.225 -16.411 -1.980 -2.162 -1.820 -2.144

Maximum 0.867 1.102 2.201 11.134 1.410 1.316 1.187 1.175

Standard deviation 0.104 0.203 0.395 2.416 0.504 0.479 0.425 0.531

Skewness 1.404 0.574 1.216 -0.090 0.073 -0.046 0.068 0.394

Kurtosis 11.314 6.475 7.559 8.982 3.512 3.202 3.177 3.240

SR — — — — 0.561 0.558 0.336 1.016

SR, ref. — — — — 0.187 0.187 0.149 0.142

Notes: Summary statistics of (V (t, T ) − K(t, T )) × 100, the payoff to a long position in a variance swap with a notional amount of 100 USD and

log(V (t, T )/K(t, T )), the log excess return on a long position in a variance swap for the 5, 10, and 30 year Treasury futures and the S&P 500 equity

index (SPX). “SR” refers to the annualized Sharpe ratios of a short position in the variance swaps. “SR, ref.” refers to the annualized Sharpe ratios of

a long position in the reference assets, i.e. the Treasury futures or the S&P 500 equity index. T -statistics and Sharpe ratios are computed from standard

deviations estimated with the approach of Newey and West (1987) using a lag-length of 21 business days, which is the mean variance swap maturity for all

the assets.

Table 2: Summary statistics of payoffs and excess returns of variance swaps

38



α βSPX βbond,1 βbond,2 βbond,3 R2

5 year −0.299
(−9.518)

−0.024
(−0.478)

2.588
(1.483)

0.122
(0.111)

−0.715
(−1.974)

0.093

10 year −0.283
(−9.546)

−0.000
(−0.003)

2.517
(1.435)

−0.079
(−0.071)

−0.633
(−1.832)

0.092

30 year −0.148
(−5.583)

−0.004
(−0.105)

3.679
(2.607)

−1.294
(−1.542)

−0.184
(−0.704)

0.094

SPX −0.597
(−19.780)

−0.417
(−7.002)

−2.292
(−1.214)

2.724
(2.519)

−0.975
(−2.883)

0.234

Notes: Estimates of the regressions

rV S
t,T = α + βSPXrSPX

t,T +

3X
i=1

βbond,irbond,i
t,T + ǫ,

where rV S
t,T denotes the log excess return on a variance swap, rSPX

t,T denotes the log excess return on the S&P

500 index, and rbond,i
t,T , i = 1, 2, 3 denote the log excess returns on portfolios of Treasury bonds with maturities

1–3 years, 5–7 years, and greater than 10 years, respectively. Results are displayed for variance swaps on the

5, 10, and 30 year Treasury futures and the S&P 500 equity index (SPX). Regressions are estimated by OLS.

The T -statistics are reported in parentheses. These are computed using the Newey and West (1987) estimator

with a lag-length of 21 business days, which is the mean variance swap maturity for all the assets.

Table 3: Explaining the variance risk premium with bond and equity market risk factors
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V (t, T ) = a+ bK(t, T ) + ǫ logV (t, T ) = a+ blogK(t, T ) + ǫ

a b R2 a b R2

5 year 0.000
(3.971)

0.648
(−7.747)

0.363 −1.194
(−3.981)

0.858
(−2.997)

0.473

10 year 0.001
(2.733)

0.688
(−5.335)

0.410 −0.968
(−3.467)

0.877
(−2.478)

0.493

30 year 0.001
(3.031)

0.769
(−3.892)

0.422 −0.635
(−2.497)

0.900
(−1.923)

0.478

SPX 0.001
(0.334)

0.626
(−4.951)

0.449 −0.467
(−2.484)

1.041
(0.746)

0.627

Notes: K(t, T ) is the variance swap rate, and V (t, T ) is the realized variance. Results are displayed for the 5,

10, and 30 year Treasury futures and the S&P 500 equity index (SPX). Regressions are estimated by OLS.

The T -statistics under the null hypotheses of a = 0 and b = 1 are reported in parentheses. These are computed

using the Newey and West (1987) estimator with a lag-length of 21 business days, which is the mean variance

swap maturity for all the assets.

Table 4: Time-variation in the variance risk premium
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N = 1 N = 2 N = 3

α0,1 0.0143
(0.0132)

0.0086
(0.0018)

0.0048
(0.0001)

α1,1 0.0026
(0.0024)

0.0037
(0.0008)

0.0021
(0.0001)

γ1 0.1033
(0.0011)

0.1347
(0.0008)

0.0844
(0.0005)

ρ1 −0.0200
(0.0033)

−0.1339
(0.0205)

−0.1251
(0.0086)

λ1 −0.1933
(0.0778)

−0.1731
(0.0876)

−0.1252
(0.0791)

α0,2 — 0.0058
(0.0013)

−0.0113
(0.0003)

α1,2 — 0.0048
(0.0011)

0.0307
(0.0009)

γ2 — 0.7406
(0.0042)

0.6611
(0.0012)

ρ2 — 0.3539
(0.0492)

0.3155
(0.0044)

λ2 — −0.0916
(0.0653)

−0.0674
(0.0872)

α0,3 — — 0.0013
(0.0001)

α1,3 — — 0.0213
(0.0006)

γ3 — — 1.5394
(0.0051)

ρ3 — — 0.0800
(0.0200)

λ3 — — −0.0194
(0.1054)

ϕ 0.0344
(0.0023)

0.0573
(0.0002)

0.0336
(0.0012)

κ 1.0980
(0.2467)

0.8320
(0.1444)

0.8346
(0.1344)

θ 0.7153
(0.1242)

1.1842
(0.2477)

1.4516
(0.1925)

λN+1 −0.6105
(0.1283)

−0.4825
(0.1276)

−0.4687
(0.1032)

σrates 0.0050
(0.0000)

0.0010
(0.0000)

0.0003
(0.0000)

σswaptions 0.0239
(0.0000)

0.0208
(0.0000)

0.0171
(0.0000)

Log-likelihood -77701.4 -37459.7 -9442.3

κ 1.7045 1.2878 1.2810

θ 0.4608 0.7650 0.9458

Notes: Maximum-likelihood estimates of the model specifications with N = 1, 2, and 3. The estimation period

is from January 23, 1997 to April 30, 2008 (2836 daily observations). Outer-product standard errors are in

parentheses. σrates denotes the standard deviation of errors in LIBOR and swap rates and σswaptions denotes

the standard deviation of errors in swaption prices scaled by their Black (1976) “vegas” (which approximately

corresponds to errors in swaption log-normal implied volatilities). For the specifications to be identified, I set

σ = 1.

Table 5: Parameter estimates



N = 1 N = 2 N = 3

SRZCB 2yr 0.1312 0.1711 0.1268

5yr 0.1312 0.1664 0.1321

10yr 0.1312 0.1605 0.1394

30yr 0.1312 0.1564 0.1330

SRFUT 2yr 0.1312 0.1710 0.1252

5yr 0.1312 0.1661 0.1317

10yr 0.1312 0.1603 0.1394

30yr 0.1312 0.1563 0.1331

SRV AR — -0.4117 -0.3987 -0.4341

SRUSV — -0.4144 -0.4220 -0.4558

SRtan
bonds — 0.1312 0.1713 0.1396

SRtan
deriv — 0.4347 0.4554 0.4767

Notes: Model implied unconditional instantaneous Sharpe ratios. SRZCB denotes the Sharpe ratios on zero-

coupon bonds with maturities 2, 5, 10, and 30 years. SRF UT denotes the Sharpe ratios on 1 month futures

contracts on zero-coupon bonds with maturities 2, 5, 10, and 30 years. SRV AR denotes the Sharpe ratios on a

derivative exposed solely to variance. SRUSV denotes the Sharpe ratios on a derivative exposed solely to the

unspanned variance factor. SRbonds
MV denotes the Sharpe ratio of the tangency portfolio when the investment

universe only consists of bonds. SRderiv
MV denotes the Sharpe ratio of the tangency portfolio when the investment

universe also includes interest rate derivatives.

Table 6: Model implied Sharpe ratios
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Panel A: 5yr Panel B: 10yr

Panel C: 30yr Panel D: S&P 500
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Figure 1: Time series of variance swap rates and payoffs

The black lines display the time-series of the variance swap rates, K(t, T ). The grey lines display the time-series

of the payoff on long positions in variance swaps, V (t, T )−K(t, T ). The vertical dotted lines mark the onset of

the LTCM crisis in early August 1998, the September 11, 2001 terrorist attacks, the sharp increase in interest

rates in late July, 2003, which caused massive convexity hedging of MBS portfolios, the escalation of the credit

crisis on August 9, 2007, the 75bp Fed inter-meeting rate cut on January 22, 2008, and the collapse of Bear

Stearns on March 18, 2008, respectively. Each time series consists of a maximum of 3334 daily observations

from January 3, 1995 to March 28, 2008.
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Panel A: 2yr, 5yr, 10yr, and 30yr swap rates
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Jan97 Jan99 Jan01 Jan03 Jan05 Jan07 Jan09

Jan97 Jan99 Jan01 Jan03 Jan05 Jan07 Jan09

0

0.2

0.4

0.6

0.8

1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Figure 2: Time series of swap rates and ATM swaption volatilities

Panel A shows time series of 2, 5, 10, and 30 year swap rates (the estimations also includes 6 and 12 month

LIBOR rates and 3, 7, and 15 year swap rates). Panel B shows time series of the corresponding 1 month ATM

log-normal implied swaption volatilities. The vertical dotted lines mark the onset of the LTCM crisis in early

August 1998, the September 11, 2001 terrorist attacks, the sharp increase in interest rates in late July, 2003,

which caused massive convexity hedging of MBS portfolios, the escalation of the credit crisis on August 9, 2007,

the 75bp Fed inter-meeting rate cut on January 22, 2008, and the collapse of Bear Stearns on March 18, 2008,

respectively. Each time series consists of a maximum of 2836 daily observations from January 23, 1997 to April

30, 2008.
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Panel A: RMSEs of LIBOR and swap rates
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Panel B: RMSEs of log-normal implied swaption volatilities
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Figure 3: Time series of RMSEs and the variance state variable for the N = 3 specification

Panel A shows the time series of root-mean-squared-errors (RMSEs) of the differences between fitted and actual

LIBOR and swap rates. Panel B shows the time series of RMSEs of the differences between fitted and actual

log-normal implied swaption volatilities. Panel C shows the time-series of the variance state variable, v(t). The

vertical dotted lines mark the onset of the LTCM crisis in early August 1998, the September 11, 2001 terrorist

attacks, the sharp increase in interest rates in late July, 2003, which caused massive convexity hedging of MBS

portfolios, the escalation of the credit crisis on August 9, 2007, the 75bp Fed inter-meeting rate cut on January

22, 2008, and the collapse of Bear Stearns on March 18, 2008, respectively. Each time series consists of 2836

daily observations from January 23, 1997 to April 30, 2008.
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Panel A: RCEW , N = 1

Investment horizon

Panel C: RCEW , N = 2
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Figure 4: Utility gains from participating in the interest rate derivatives market

Panels A, C, and E show RCEW , the gain in CEW in terms of continuously compounded annualized returns

(see (52)), for each of the three model specifications. Panels B, D, and F show XW , the fraction of wealth that

a bond investor would be willing to give up to gain access to the interest rate derivatives market (see (53)), for

each of the three model specifications. The solid, dashed-dotted, dashed, and dotted lines correspond to η = 1,

3, 5, and 10, respectively. v(t) and the term structure equal their unconditional means.
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Figure 5: Time variation in utility gains from participating in the interest rate derivatives

market

The figure shows the time series of RCEW , the gain in CEW in terms of continuously compounded annualized

returns (see (52)), for the N = 3 specification with η = 3. The dotted, dashed-dotted, and solid lines correspond

to investment horizons of 1 day, 2 years, and 5 years, respectively. The vertical dotted lines mark the onset of

the LTCM crisis in early August 1998, the September 11, 2001 terrorist attacks, the sharp increase in interest

rates in late July, 2003, which caused massive convexity hedging of MBS portfolios, the escalation of the credit

crisis on August 9, 2007, the 75bp Fed inter-meeting rate cut on January 22, 2008, and the collapse of Bear

Stearns on March 18, 2008, respectively. Each time series consists of 2836 daily observations from January 23,

1997 to April 30, 2008.
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Panel A: Sensitivity of RCEW to κ Panel B: Sensitivity of RCEW to σ

Panel C: Sensitivity of RCEW to λN+1
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Figure 6: Sensitivity of utility gains to key parameters

The figure shows the sensitivity of RCEW , the gain in CEW in terms of continuously compounded annualized

returns (see (52)), to κ (Panel A), σ (Panel B), and λN+1 (Panel C) for the N = 3 specification with η = 3.

The dotted, dashed-dotted, and solid lines correspond to investment horizons of 1 day, 2 years, and 5 years,

respectively. v(t) and the term structure equal their unconditional means.
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