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Abstract

We revisit a test for conditional independence in intensity models of default
proposed by Das, Duffie, Kapadia, and Saita (2007) (DDKS). Based on a sample
of US corporate defaults, they reject the conditional independence assumption but
also observe that the test is a joint test of the specification of the default intensity
of individual firms and the assumption of conditional independence. We show that
using a different specification of the default intensity, and using the same test as
DDKS, we cannot reject the assumption of conditional independence for default
histories recorded by Moody’s in the period from 1982 to 2006. We also show,
that the test proposed by DDKS is not able to detect all violations of conditional
independence. Specifically, the tests will not capture contagion effects which are
spread through the explanatory variables (’covariates’) used as conditioning variables
in the Cox regression and which determine the default intensities of individual
firms. We therefore perform different tests to see if firm-specific variables, i.e quick
ratios and distance-to-default, are affected by defaults. We find no influence from
defaults on Quick ratios, but some influence on distance-to-default. This suggests,
that violations of conditional independence do indeed arise from balance sheet effects.
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1 Introduction
There is ample evidence that corporate defaults are correlated. Direct evidence can be found
in several empirical studies which document a large time variation in default frequencies and
link this variation to, among other variables, business cycle indicators. Examples of this include
Nickell, Perraudin, and Varotto (2000), Shumway (2001), Duffie, Saita, and Wang (2007), and
many others. Since such indicators simultaneously affect the default probabilities of many firms,
their variation induces correlation between default events just as variation of common factors in
asset return models induce correlation between returns.

We can also find indirect evidence that defaults are correlated by looking at market prices of
traded securities. For example, credit default swap premia have significant common movements
and prices of tranches of Collateralized Debt Obligations can only be reasonably explained if one
assumes a significant amount of default clustering. Of course, market prices of these securities
reflect not only the physical probabilities of defaults but also contain an adjustment for risk. Still,
it is fair to assume that the price patterns we observe for CDO tranches can at least partially be
attributed to correlated default risk.

How to best model the correlation effects is less clear. The most tractable way from
an analytical standpoint is to work under a conditional independence assumption, in which
a common factor structure induces covariation between the default times of different firms.
Conditionally on the evolution of the common factors, defaults are independent. This is a setting
in which default dependence is captured by business cycle related variables. The conditional
independence structure is analyzed among other places in Jarrow, Lando, and Yu (2005), and it
is applied to CDO modeling for example in Duffie and Gârleanu (2001).

A more direct way of inducing dependence between default times is to assume that there
is contagion, i.e. that the actual default event of one firm either directly triggers the default of
other firms or causes their default probabilities to increase1. Some examples of contagion models
include Davis and Lo (2001), Jarrow and Yu (2001), Azipour and Giesecke (2008a) and Azipour
and Giesecke (2008b). This type of contagion is clearly relevant when firms belong to the same
corporate family, for example through parent/subsidiary relationships, see for example Emery
and Cantor (2005). The question is whether this type of contagion is present even for firms
which do not belong to the same corporate family. Note that our focus in this paper is not on
’informational’ contagion in prices on equity, corporate bonds or credit default swap premia as
studied for example by Collin-Dufresne, Goldstein, and Helwege (2003) and Jorion and Zhang
(2008). Rather, we focus on methods for testing for conditional independence in actual defaults.

In a recent paper Das, Duffie, Kapadia, and Saita (2007) (DDKS) test whether default events
in an intensity-based setting can reasonably be modeled as conditionally independent. The basic
ingredient of their approach is to transform the time scale using the sum of the default intensities
estimated for individual firms and then test whether defaults on this transformed time scale

1It is also conceivable that defaults could cause the default probabilities of competing firms to decrease
which can also be captured by the model specifications we consider .
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behave as a standard Poisson process. Based on a time series of U.S. corporate defaults, most of
which are obtained from Moody’s default database, and ranging from 1979 to 2004 they strongly
reject that defaults are conditionally independent. However, as pointed out by the authors, this
test is really a joint test of the specification of the default intensities of the individual firms
and the assumption of conditional independence. There are at least two reasons why the second
possible source of rejection - the specification of the intensities - deserves closer scrutiny.

First, when looking through the default histories in Moody’s default database, it is almost
impossible to locate any examples where the brief description of what caused a firm to default
mentions other firms outside the corporate family. The vast majority of cases list reasons such
as too much leverage, failing sales in declining markets, and lawsuits - effects that are typically
captured through either firm specific explanatory variables or market wide conditions. Indeed
looking at the points in time where the defaults seem to cluster more than what can be explained
by the aggregate intensity in the DDKS specification, we find that none of the default stories
contains any instances of contagion from other firms in the sample. This rules out at least the
direct ’domino effect’ explanation for clustering of defaults and also raises doubts that earlier
defaults in the sample have any effect.

Second, as argued by DDKS, ‘default intensity correlation accounts for a large fraction, but
not all, of the default correlation´ [page 98]. The fact that a large fraction is explained in their
specification makes it likely that the inclusion of extra explanatory variables can indeed explain
the full dependence structure. DDKS do investigate whether inclusion of additional explanatory
variables affects their conclusion but find no evidence among the variables they consider.

The first contribution of our paper is to show that a different specification of the intensity
will indeed make us unable to reject the conditional independence assumption. That is, using our
specification of the intensity there is no excess default clustering. Using the sample of firms listed
in Moody’s default database, we show that specifying the explanatory variables as in DDKS,
we reject the assumption of conditional independence but using our specification, we are not
able to reject using a large variety of tests. In essence, our change in specification consists in
replacing a measure of the short rate with a measure of steepness of the term structure, adding
industrial production (a variable also examined in DDKS) and adding the following three firm
specific variables: quick ratio, short-to-long debt and the book value of assets. We will discuss
this choice of the explanatory variables below.

The fact that we are unable to reject the conditional independence assumption when following
the procedure of DDKS and using an appropriate set of covariates could lead us to conclude,
that there are no detectable contagion effects in the data. This conclusion is premature, however.
Our second contribution is to show that when contagion takes place through firm covariates (as
opposed to contagion by domino effects), this will not be detected by the test procedure followed
in DDKS (and in the first part of our paper). If it is the case that the default of one firm causes,
say, the book value of assets of another firm to fall, and this increases the intensity of default
of the other firm, then as long as the book asset value is an explanatory variable in the Cox
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regressions, we will not detect this as a contagion effect. While it is possible to state and prove
a rigorous theorem explaining this, we consider it much more illustrative to set up a very simple
example which clearly illustrates the idea. In fact, we set up the simplest structure rich enough to
illustrate a contagion effect which occurs through explanatory variables but which is not detected
by the test procedure based on a time transformation.

Our final contribution is to analyze contagion effects, both direct and through explanatory
variables, and using both likelihood tests based on Hawkes processes and regression analysis.
Hawkes processes, or self-exciting processes, are a class of counting processes which allow
intensities to depend on the timing of previous events. For a recent application to corporate
defaults and risk premia in CDO markets, see Azipour and Giesecke (2008a) and Azipour
and Giesecke (2008b). When we use firm specific variables in the Cox regressions, the Hawkes
specification does not add any explanatory power. If, however, we believe that contagion is
channeled through firm specific covariates, then we should not condition on these variables in
the Cox regression before testing for contagion. If we only condition on macro-economic variables
and look for contagion by checking through a Hawkes specification whether downgrade intensities
increase following a default, then we do detect a contagion effect. Since this effect may be due
to rating agency behavior, we also perform regression tests to check for contagion through the
firm-specific variables distance-to-default and the quick ratio to be defined below.

The outline of the paper is as follows: We start in Section 2 by briefly recalling the method of
DDKS and define conditional independence. In section 3 we describe the data that we are using,
and we give examples of the kind of default histories that we have access to in the Moody’s data.
In section 4 we set up the Cox regressions for estimating the default intensities of the individual
firms and in section 5 we perform various tests for conditional independence using aggregate
intensities. In particular, we show that with our specification we cannot reject the assumption
of conditional independence but using the DDKS specification, this is not the case. We also
consider a method for testing for contagion using a Hawkes process alternative. In section 6,
we set up the simplest possible example of a specification in which there is contagion through
explanatory variables. In this example, there is clearly not conditional independence but we will
not be able to reject the tests for conditional independence if we use the time transformation
based on the aggregate intensity. This example motivates our extended testing for conditional
independence in which we first look for contagion effects through ratings which are used as a
one-dimensional proxy for the firm-specific explanatory variables. We then perform regression
tests to see if defaults affect levels of distance-to-default and the quick ratio. Section 7 concludes.

2 The conditional independence assumption
The conditional independence assumption is meant to capture a setup in which probabilities
of default of individual firms are affected by exogenous ’background variables’. The variables
are exogenous in the sense that they are not affected by actual defaults of firms. A helpful
illustration from medical science could be pollution in a city and onsets of asthma attacks among
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its citizens. When the level of pollution is high, there are more asthma attacks and hence onsets
of these attacks are correlated. However, conditioning on the level of pollution the onsets are
independent (assuming that asthma is non-contagious). Also, asthma attacks do not affect the
level of pollution. For an example with more relevance to default modeling, it is possible that
increasing oil prices will cause more firms who use oil as an input in their production to default,
but that the defaults will have no effect on oil prices, and conditionally on the level of oil prices
defaults are uncorrelated. In models of stock returns, conditional independence is often assumed
in factor models where the residual returns, i.e. the part that is not explained by the factors, are
independent across firms.

Unfortunately, the fairly intuitive notion of conditional independence of defaults is somewhat
technical to describe rigorously. In the appendix, we give a definition which is equivalent to but
perhaps a bit more intuitive than the one used in DDKS. However, to understand the test
procedure of DDKS, we do not need to actually go into this technical analysis. Instead, we
proceed to repeat the idea behind the test procedure used in DDKS. The test procedure proposed
in DDKS runs as follows: First, estimate individual firm intensities using Cox regressions. Then
compute the sum of these intensities which under the assumption of conditional independence is
equal to the aggregate default intensity. Now, transform time using the aggregate intensity and
check whether aggregate defaults in the new time scale are a unit rate Poisson process. The tests
then consist of checking this property using different procedures.

Formally, the default of a single debt-issuing firm i is described by the default time τi, and
we assume that the default time can be modeled through its stochastic intensity λi. If the firm
is alive at time t, then the intensity at time t for firm i satisfies

λi(t) = lim
∆t→0

P (t < τi ≤ t + ∆t | τi ≥ t)
∆t

,

i.e. the probability of default within a small time period ∆t after t is close to λi(t)∆t. In the
intensity setting, modeling the probability of default for firm i reduces to modeling its default
intensity λit. We will specify later how the intensity depends on explanatory variables, but we
suppress this dependence for now. Note that specifying the individual intensities of the firms
when they are alive does not describe the simultaneous distribution of the default times. If, for
example, two firms always default at the same time, and this time has an exponential distribution
with mean 1

α , then firm i would have a default intensity equal to α1(τi>t). At the other extreme,
the firms would have the same intensity if they default at independent times with the same
exponential distribution. In this case, the probability of a simultaneous default is zero. This is
also true under much weaker conditions than independence and we need to refer to this property
in what follows. Thus, default times are said to be orthogonal if P (τi = τj) = 0 whenever i 6= j.
The cumulative number of defaults among n firms is defined as

N(t) =
n∑

i=1

1(τi≤t) t ≥ 0
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and if the default times are orthogonal, this cumulative default process has intensity

λ(t) =
n∑

i=1

λi(t)1(τi≥t) t ≥ 0

and the compensator of the cumulative default process is then the integral of the intensity

Λ(t) =
∫ t

0
λ(s)ds t ≥ 0.

If we time-change the cumulative default process by the compensator, it follows from Meyer
(1971)2 that the cumulative default process becomes a unit rate Poisson process, i.e. the time-
scaled process

J(t) = N
(
Λ−1(t)

)
t ≥ 0

is then a unit Poisson process with jump times Vi = Λ(τ(i)), where 0 ≤ τ(1) ≤ τ(2) ≤ . . .

denotes the ordered default times. A consequence of this is that V1,V2 − V1, . . . are independent
exponentially distributed variables and for any c > 0, the binned jump times

Zj =
n∑

i=1

1]c(j−1),cj](Vi)

will be independent Poisson(c)−distributed variables. In summary, if default times are
orthogonal, we can transform the time scale of the cumulative default process to obtain a
unit rate Poisson process and we can then use standard properties of this process (exponential
waiting times between jumps, number of jumps in a given interval is Poisson distributed with
mean equal to the length of the interval) for testing. But note, however, that the conditional
independence assumption is not needed to have orthogonality of the default times. If defaults
of firms cause intensities of other firms to rise (but never cause an immediate default) then we
have orthogonality but not conditional independence. This means that the Poisson property of
the transformed process can hold even in cases where there is not conditional independence. In
section 6, we provide the simplest possible example in which there is contagion in the model
but the transformation test will not capture this. Had we been able to reject the DDKS tests
for all specifications of default intensities, then this insight would not have changed much, since
a rejection is certainly enough to rule out conditional independence. But since we are able to
specify intensity processes which make us unable to reject the tests for conditional independence
proposed in DDKS, the insight becomes very important. Before specifying the default intensities,
we describe the data and consider some representative default stories.

2The result is usually ascribed to Meyer (1971) with a multitude of successive variations and extensions in
e.g. Papangelou (1972), Brémaud (1972), Aalen and Hoem (1978), Cocozza and Yor (1980), Brown and
Nair (1988) and Kallenberg (1990). See also Aalen and Hoem (1978) for a brief historical review.
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3 Data and the default explanations
Our empirical analysis is based on corporate default data from Moody’s Default Risk Service
Database (DRSD), which essentially covers the period since 1970. However, the material is sparse
until 1982, which we therefore choose as the beginning of our sample period. Other default studies
have used the same data supplemented with additional defaults from other sources, see e.g. Li
and Zhao (2006), DDKS, Davydenko (2007), and Le (2007).3 We have chosen to rely only on the
data in the Moody’s database since these all have explanatory notes associated with each default
allowing us to both screen the default histories for traces of contagion and for parent/subsidiary
relationships. It also has the advantage of giving us an unambiguous definition of what constitutes
a default event4.

Thus our estimation will comprise all U.S. industrial firms with a debt issue registered in
Moody’s DRSD, and for which we are able to obtain accompanying stock market data from
CRSP and accounting information from CompuStat. This leaves us for the period January 1982
to December 2005 with a total of 2,557 firms comprising 370 defaults, with an average of 1,142
and a minimum of 1,007 firms in the model at any time throughout the sample period, all of
which have at least 6 months of available data.

The suspicion that default contagion is not obviously present in the data came from an
inspection of all default explanations in the DRSD database. It is illustrative to consider an
example of a typical explanation of a default event (our emphasis added).

Heartland Wireless Communications, Inc., based in Plano, Texas, develops,
owns and operates wireless cable television systems and channel rights in small to
mid-size markets in the central United States. Although the company has experienced
strong revenue growth since its inception, posting $78.8 million in revenues for 1997
compared to $2.2 million in its first full operating year (1994), substantial start-
up capital costs and an aggressive expansion strategy pursued by management
resulted in consecutive operating losses and built up significant amounts of debt.
Heartland Wireless incurred a net loss of $134.6 million for 1997, compared to a net

3Le (2007) includes defaults registered in the CompuStat database, which he notes in some instances
implies that a registered default does not correspond to an actual default, but merely reflects the timing
of a stock delisting event. To resolve a similar difficulty, in the case where the actual default date is known
but delisting occurs prior to default, Davydenko (2007) applies an extrapolation technique to infer values
for the necessary stock market variables at the actual default date, although inspection of the default
data in Moody’s DRSD reveals that this occasionally leads to extended periods of time, where inference
can only be based on imputed data.

4We consider as a default any of the following events classified in Moody’s DRSD: “Chapter 7”, “Chapter
11”, “Distressed exchange”, “Grace period default”, “Missed interest payment”, “Missed principal payment”,
“Missed principal and interest payments”, “Prepackaged Chapter 11”, and “Suspension of payments”. In
particular, we do not correct the timing of a “Distressed exchange”, which in the DRSD is registered as
the time of completion of the exchange, although as suggested by Davydenko (2007), it would probably
be more appropriate to instead collect separate information on the announcement date of the exchange.
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loss of $61.1 million a year earlier. The technological limitations of Heartland’s major
product (MMDS - multichannel multipoint distribution service - has a limited number
of channels it can disseminate), an inability to achieve sufficient subscriber
levels, and intense competition from traditional hard-wire cable television firms
have applied additional pressure to the company’s financial position. Mounting
debt service costs and the need for additional capital induced the company to hire
Wasserstein Perella & Co., an investment banking firm, to analyze all available
options to finance the company’s business plan and service its existing debt. In
consultation with its financial advisor, Heartland Wireless announced that it would
not be making interest payment due April 15, 1998 on its 13% senior notes due
4/15/2003.

It is clear in this explanation that there is no trace of contagion. What might a contagion
story have looked like in the data? We have two examples. The first concerns the famous Penn
Central default - often mentioned as a contagious default event.

On June 21, 1970, the Penn Central declared bankruptcy and sought bankruptcy
protection. As a result, the PC was relieved of its obligation to pay fees to
various Northeastern railroads—the Lehigh Valley included—for the use of
their railcars and other operations. Conversely, the other railroads’ obligations
to pay those fees to the Penn Central were not waived. This imbalance in
payments would prove fatal to the financially frail Lehigh Valley, and it declared
bankruptcy three days after the Penn Central, on June 24, 1970.

The source of this default history is Wikipedia and if we look in Moody’s database, we
learn that Penn Central was in fact a majority shareholder in Lehigh Valley, and hence they
belonged to same corporate family by Moody’s definition. Since we exclude defaults within the
same corporate family which occur less than a month apart, this event would not have been in
our data, even if we had extended back to 1970.

As an example of a default event description that does include contagion, consider the
following description.

Town & Country, a manufacturer of fine jewelry, suffered in the early 1990s from
deteriorating results and a large debt load pursuant to two debt-financed acquisitions
in 1988. The default of large jewelry retailer and major Town & Country customer
Zale Corp. in late 1991 seriously worsened the already difficult financial situation,
which eventually led Town & Country to omit an interest payment on its debt in
June 1992.

While this does contain traces of contagion, Zale Corp is not part of our data set, and
hence this story can not have contributed to a default clustering in the data. In general, we
could not find any verbal accounts of contagion in the default explanations given by Moody’s in
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the database but we were still able to reject the hypothesis of conditional independence using
the DDKS specification (see below). This led us to suspect that a different specification of the
intensity could lead to a non-rejection. We now discuss this alternative specification.

4 Model specification
Since testing for conditional independence involves transforming the time by a cumulative
intensity, which is the sum of default intensities estimated for each firm separately, we first
need to specify a model for each firm’s default intensity. The critical exercise here is to determine
the firm specific and macro variables which are significant explanatory variables in the Cox
regressions used to specify the intensity. In the specification of individual default intensities we
employ a selection of four macro economic variables collected from CRSP and the U.S. Federal
Reserve Board:

• 1-year return on the S&P500 index

• 3-month U.S. treasury rate

• 1-year percentage change in U.S. industrial production, calculated from monthly data on
the gross value of final products and nonindustrial supplies (seasonally adjusted)

• Spread between the 10-year and 1-year treasury rate

and five firm-specific variables collected from CRSP and CompuStat:

• 1-year equity return

• 1-year “Distance to Default”

• Quick ratio, calculated as the sum of cash, short-term investments and total receivables
divided by current liabilities

• Percentage short term debt, calculated as debt in current liabilities divided by the sum of
debt in current liabilities and long-term debt

• Book asset value (log).

Table 1 shows descriptive statistics for the variables to guide the interpretation of the regression
coefficients obtained below. We also show average levels of the covariates for defaulting vs. non-
defaulting firms.

For all balance sheet variables we substitute, if quarterly data are missing, with the latest
yearly observation, and for the calculation of the “Distance to Default” measure we follow the
iterative approach described in Duffie, Saita, and Wang (2007). Moreover, to comply with the
mathematical foundations of our model, we require that the value of λi(t) is known prior to time
t, a phenomenon referred to as “predictability” in the technical literature, such that e.g. as a
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proxy for the book value of assets on, say January 1st, we use the number reported for December
of the previous year5. Finally, in order to correct for observations of multiple defaults caused
by parent-subsidiary relations, we disregard all consecutive default events that occur within a
1-month horizon of any previously registered default ascribed to the same parent company6.

The doubly stochastic assumption now implies that the log (partial) likelihood function takes
the form (see Andersen, Ørnulf Borgan, Gill, and Keiding (1992))7

log L(β) =
n∑

i=1

∫ T

0

(
β′W Wt + β′XXit

)
dNi(t)−

n∑
i=1

∫ T

0
Rite

β′W Wt+β′XXit1(τi≥t)dt (1)

where T is the terminal time point of the estimation and n the total number of firms. Wt is
a vector containing the covariates that are common to all firms whereas Xit contains firm-
specific variables. Rit is an indicator which is 1 if firm i is at risk of defaulting at time t

and zero otherwise and Ni(t) is the one-jump process which jumps to 1 if firm i defaults at
time t. We can then apply standard maximum likelihood techniques to draw inference about
β = (βW ,βX). Table 2 reports estimates and asymptotic standard errors from two different
intensity specifications: Model I which is the model analyzed in DDKS, and Model II which is an
extension that incorporates a wider selection of variables. The signs of the various β−coefficients
are largely as expected and consistent with the findings of DDKS (see Duffie, Saita, and Wang
(2007) for parameter estimates) except that we find the role of the short-term default-free interest
rate to be insignificant. Table 2 also reveals how both model I and II, somewhat surprisingly but
consistent with for example Figlewski, Frydman, and Liang (2006) and Duffie, Saita, and Wang
(2007), show a positive dependence of default intensities on the yearly return on the S&P500
stock index. 8

[Table 2 about here]
5The issue of delayed public disclosure leads Carling, Jacobson, Lindé, and Roszbach (2007) to argue that
it is more appropriate to use lagged values for both macro economic and accounting variables, although it
is not clear exactly how to choose an appropriate lag length. Similarly, Koopman and Lucas (2005) suggest
that macro economic variables could be lagged in order to improve causality of the model, arguing that
to the extent that default events are consequences of (and thus lagged wrt.) macroeconomic fluctuations,
they will appear with a certain time lag which should be corrected for. However, they also demonstrate
how estimation results may be highly vulnerable to the choice of lag length.

6Davydenko (2007) similarly chooses to disregard all subsequent defaults within a 2-year period, which may
be a more appropriate horizon. However, our shorter horizon should make it harder to specify intensities
consistent with an assumption of conditional independence.

7We work under the usual assumption of independent filtering by assuming that the various filtering
mechanisms we employ: left truncation for all firms operating on January 1st 1982 (beginning of the
estimation period), (temporary) withdrawal of firms in case of lacking covariates, and right censoring
of all firms operating on December 31st 2005 (end of the estimation period) do not alter the likelihood
function. For thorough discussions of these issues see Andersen, Borgan, Gill and Keiding (1992) and
Martinussen and Scheike (2006).

8Duffie, Saita, and Wang (2007) suggest that this may in part reflect business cycle effects as well as be a
consequence of correlation with the idiosyncratic stock returns, and perhaps also with other variables.
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Figure 1 shows monthly defaults along with the estimated cumulative default intensities for
both models. Clearly, the estimated default intensities are different, but the graph also shows
that it is difficult from visual inspection to tell which model gives the better fit.

We have examined the influence of additional economy-wide factors besides those appearing
in Model I and II through proxies for the U.S. unemployment rate, the wages of U.S. production
workers, the U.S. consumer price index, the U.S. gross domestic product in both real and nominal
terms, the price of crude oil, and the spread between Moody’s Aaa- and Baa-rated corporate
bonds, but without finding any significant effects. In a similar fashion, we have looked at a
variety of alternative indicators of financial soundness at the firm-specific level including some of
the empirical default predictors proposed by Altman (1968) and Zmijewski (1984), but likewise
without finding support for further expansion of the set of explanatory variables.

Ideally, we should also take specific account of debt issue characteristics such as the time
of issuance, maturity, face value, coupon payments including possible step up-clauses etc. given
the empirical evidence presented in Davydenko (2007) who demonstrates the influence of this
type of information on the probability of default, and it could also be of importance to allow for
specific industry effects given the variation in default rates across industries documented by Li
and Zhao (2006). However, the lack of available debt issue information and the limited number
of defaults unfortunately prevents us from performing either type of analysis on the current data
set. Working with larger data sets and performing out-of-sample tests would naturally lead us
to include more variables but as we will see in the next section our specification is rich enough
to capture the correlation in the data.

5 Testing for conditional independence and contagion
Having estimated the default intensities of each firm, we now use the time-change technique to
test whether the default arrivals of firms can be thought of as conditionally independent given
the cumulative intensity. We follow DDKS by transforming the time scale using the cumulative
intensity and test whether on the new time scale the default arrivals are a unit rate Poisson
process. We also propose and test an extended version of the default intensity which explicitly
models the possibility of contagion through a Hawkes process specification.

5.1 The time change test

To test whether the default arrivals on the transformed time scale are a unit rate Poisson process,
we use the properties of a (unit rate) Poisson process that the number of arrivals in a time interval
is Poisson distributed with a mean equal to the length of the time interval and that arrivals in
disjoint time intervals are independent. Thus, if we split up the entire time period into intervals
in each of which the cumulative intensity increases by an integer c, then the number of arrivals
in each of these intervals are independent and Poisson distributed with mean c. We follow DDKS
and refer to c as the bin size, since it reflects the expected number of defaults in each time
interval. The larger c is, the smaller is the total number k of time intervals (and hence Poisson
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variables) that we get, thereby weakening the power of our statistical tests. On the other hand,
by increasing c we can hope to get a clearer picture of the presence of heavy tails representing
excess clustering of defaults. We use the same test statistics as those of DDKS, i.e. the Fisher
Dispersion (FD) and the upper tail statistics (UT1, UT2)9, and supplement with further tests
detailed in Karlis and Xekalaki (2000). Since we only have a limited number of observations and
some of the asymptotic distributions of the test statistics require a much larger amount of data
(see Karlis and Xekalaki (2000)), we calculate instead for each statistic the p−value under the
null hypothesis from a history of 100.000 simulated test statistics to improve accuracy.

The tests of the Poisson distribution listed above tend to concentrate on whether the
univariate distribution of recorded defaults for a given bin size is Poisson. They therefore ignore
the time series aspects. If default contagion takes place with a time lag, it is conceivable that bins
with many defaults tend to be followed by bins with many defaults and vice versa. To account
for this possibility we use (as an alternative to the regression test in DDKS) the additional test
statistics SC1 and SC2.

The Fisher and upper tail tests are outlined in DDKS, so we only describe the remaining
statistics, which we define through the following acronyms:

BD =
1

Z
√

2(k − 1)

k∑
j=1

(
Zj − Z

)2 −√k − 1
2

CVM =
1
k

∞∑
i=0

V 2
i with Vi =

i∑
s=0

(|{j | Zj = s}| − Expecteds)

KK =
√

k
φk(t)− exp

(
Z(t− 1)

)
exp

(
Z(t2 − 1)

)
− exp

(
2Z(t− 1)

) (
1 + Z(t− 1)2

) with φk(t) =
1
k

k∑
j=1

tZj

NPA =
1

k3Z
1.45

 k∑
i,j,l,m=1

Zi(Zi − Zj − 1)Zl(Zl − Zm − 1)1(Zi+Zj=Zl+Zm)


SC1 =

1
k − 1

k−1∑
j=1

(
ZjZj+1 − c2

)2
SC2 =

1
k − 1

k−1∑
j=1

(
Zj − c

)(
Zj+1 − c)

All of these tests rely on descriptions of the Poisson distribution obtained from point
probabilities, moments and characteristic functions. The results of the tests are reported in
Table 3. Model I refers as before to the intensity specification used in DDKS and Model II
to our intensity specification. All except one test is rejected at the 5% level using the Model II
specification, whereas a number of tests are rejected for the Model I specification - predominantly

9We correct for the apparent misprint in DDKS in the description of the upper tail median statistic by
comparing the simulated median statistics to the sample median (instead of the sample mean). However,
this implies that the median statistic by construction only will be efficient for large bin sizes.
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for the large bin sizes. For bin size 8, for example, Figure 2 shows that the Model II specification
has a less pronounced heaviness in the right tail of the distribution and Figure 3 shows that it
also is better at eliminating serial dependence. Hence we conclude, that using our specification
of the firm default intensities, we are not able to reject that the time transformed process is
Poisson.

It is interesting to note that there is a deviation from the Poisson property which is not
detected by the test. In Figure 4 we have plotted the distribution of default events by calendar
day and we note that most defaults occur on calendar days 1 and 15. This is consistent with the
frequent use of these days for coupon payments on corporate bonds. It is not enough, however,
to affect our test results since the defaults are spread out over a 24-year period and thus we do
not see any large default clusters on any particular calendar day. Subsequent work by Kramer
and Löffler (2008) indicates that an improvement in fit can be obtained by explicitly modeling
this effect as through a baseline intensity.

5.2 A contagion alternative

All of the tests performed above rely on transforming the time using the estimated intensities. We
now perform a different, likelihood-based test which does not rely on the time-transformation. We
use an extended model which explicitly includes a contagion effect in the intensity specification.
To be specific, following Hawkes (1971b) and Hawkes (1971a), we use an intensity of the form10

λc
it = Rit

(
eβ′W Wt+β′XXit +

∫ t

0

(
α0 + α1Ys

)
e−α2(t−s)dNs + δ

)
t ≥ 0

where Ys denotes the log book asset value of the firm defaulting at time s. The idea behind the
specification is to allow the default of a firm to influence all other intensities. The immediate
effect is modeled as an affine function of Y thus allowing for larger firms to have a higher
impact on the individual default intensities. The exponential function makes the default impact
decay exponentially with time at a rate. The log (partial) likelihood function follows from this
expression by standard arguments (Rubin (1972), Ogata and Akaike (1982), Andersen, Ørnulf
Borgan, Gill, and Keiding (1992))

log L(α,β) =
n∑

i=1

∫ T

0
log
(

eβ′W Wt+β′XXit +
∫ t

0

(
α0 + α1Ys

)
e−α2(t−s)dNs + δ

)
dNit

−
n∑

i=1

∫ T

0
Rit

(
eβ′W Wt+β′XXit +

∫ t

0

(
α0 + α1Ys

)
e−α2(t−s)dNs + δ

)
1(τi≥t)dt

and we can apply maximum likelihood inference as before11. Note that α2 may be taken as a
measure of the horizon of influence of a default on the overall default proneness of remaining
firms (Hawkes (1971b)).

10See Kwiecinski and Szekli (1996) for alternative specifications.
11Ogata (1978) gives sufficient conditions to ensure consistency and asymptotic normality of the estimators

under an additional assumption of stationarity, and Ozaki (1979) presents simulation results that support
numerical feasibility of maximum likelihood estimation for self-exciting processes.
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Note that the Hawkes specification is used to supplement the Cox regression specifications
used in Models I and II. Since Model I caused a rejection of the Poisson property, it is possible
that this is caused by a contagion effect which the Hawkes specification might capture. However,
as shown in Table 4, there is no explanatory power added by this specification. Even if the Model
II specification did not reject the Poisson property of the time-transformed cumulative default
process, we use the Hawkes specification as a robustness check. As shown in Table 5, we find
no significance of this addition in the contagion related parameters. We do find a significant
effect of adding a constant term to the default intensities. There is a ’floor’ on all default
intensities of 3.5 basis points arising from the constant term δ. This term may be capturing
a small misspecification of the proportional hazard regression or of the functional form of the
hazard function. The functional form (using the exponential function of a linear function of the
covariates) forces intensities to be very small when default covariates are in very ’safe territory’
far from values held by risky firms. It is possible that even if true intensities are not as small for
safe firms as shown in the proportional hazard regression, this deviation is not penalized heavily
in the likelihood function and therefore does not affect our time-change test. However, if we allow
a constant term in the regression, it does show up as significant, but very small.

6 Contagion through covariates
We have shown that with a different specification of the explanatory variables in the hazard
regressions, we are not able to reject the hypothesis of conditional independence using this
specification but on the same sample we reject using the DDKS specification. It is thus tempting
to conclude that contagion effects are eliminated as long as we specify our covariates carefully.
There are, however, possibilities of contagion effects which are not captured by the tests
performed here and in DDKS. In essence, the time transformation of the intensity may not
capture contagion effects which occur through the covariates. That is, if the default of firm
A causes (say) the leverage of firm B to rise, and subsequently the increased leverage ratio
contributes to the default of firm B, then we will not see this as a contagious default effect since
the tests we are performing are conditioning on the evolution of the covariates. The increased
leverage will cause the default intensity of firm B to rise, and therefore this will not be seen as a
contagion effect violating conditional independence. A full test of contagion should address these
’weak’ contagion effects as well. In this section we first give a basic illustration of the problem
we are addressing using the simplest possible example which is rich enough to capture the effect.
We then set up tests for contagion using rating as a proxy for quality of covariates and looking
at covariates directly.

6.1 Contagion through covariates - an illustration

It is possible using the language of filtrations to give a rigorous definitions of what we are trying
to capture, but we believe that the example below is more useful as a reference for the discussion
and gives a much clearer illustration of the main point.
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Consider a collection of firms whose default risk is entirely determined by their rating which
can be either A or B. Firms with rating A have a default intensity of 0.001 and firms in rating
class B have a default intensity of 0.01. Assume that there is a ’basic’ migration intensity of 0.1
from A to B and the same intensity from B to A. In addition to this ’basic’ migration, there is a
contagion effect in ratings in the following sense: Every time a firm defaults from rating class B,
it implies that 1% of the A-rated firms are instantaneously downgraded into B. No A or B-rated
firm is thrown directly into default because of the default of another firm, but some downgrades
from A to B are due to a contagion effect from the defaults of B-rated firms. If we simulate
a sample of firms that follow these dynamics, we subsequently estimate the default intensities
of all firms as a function of rating and finally we transform the time of default arrivals by the
cumulative intensities of all firms, then we do not see a violation of the conditional independence
assumption. Yet it is clear that this setup has contagion through the (only) covariate, namely
the rating of the firms.

We performed a simulation study based on 1000 firms initially rated A and 1000 firms initially
rated B, and we ran the experiment for 24 years. The estimated default intensities from class A
and B were very close to the actual intensities (0.01 and 0.001). The estimated transition intensity
from A to B was 0.123, but this estimate is not used for computing the test statistics in the
procedure followed above and in DDKS. We then performed all of the Poisson distribution tests
for the same bin sizes that we did for our data set in the previous section. Not a single test rejects
the Poisson distribution assumption. In summary, conditioning on firm specific covariates and
testing for conditional independence using the cumulative intensities may not reveal contagion
through the covariates. We now address a way of testing for such a contagion effect.

6.2 Testing for contagion through covariates

As we have just learned from our simulation experiment, it is perfectly possible that there are
contagion effects in the data in the sense that observed defaults affect the firm specific variables
Xit. As explained above and in the appendix, the Cox regression conditioning on these variables
will not detect this source of contagion. We now wish to address this issue of “contagion through
covariates” more closely. It is difficult to test for each covariate whether it is affected by defaults
of other firms. We therefore choose to use rating changes as a proxy for changes in firm-specific
covariates. For our total sample of 2,557 firms over the period 1982 to 2005, we therefore consider
all changes in the rating of their publicly issued debt as recorded in Moody’s DRS database.
Specifically, we investigate whether defaults cause an increase in the aggregate number of rating
downgrades.

To ensure a reasonable comparison of ratings across firms, abstracting from differences caused
by special features of the individual debt contracts, we use the Estimated Senior Rating (ESR)
as a measure of the overall default risk of the firm. For firms without an ESR, we complement
the ESR data by instead using either an issuer rating if available, or alternatively a corporate
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family rating, in compliance with the guidelines set up by Moody’s for the calculation of ESR12.
This procedure reduces the total set of firms in our data set from 2,557 to 2,503 of which the
2,434 have an ESR and the remaining 69 firms a comparable, inferred rating.

We define the aggregate downgrade intensity for the firms as

ηt =
n∑

i=1

Rit1(τi≥t)

(
eβ̃′W Wt +

∫ t

0
(α̃0 + α̃1Ys)e−α̃2(t−s)dNs + δ̃

)
t ≥ 0

with Wt representing various macro variables to account for changes in rating intensities caused
by business cycle variations and with Rit, Yt and Nt as previously defined. We thus allow for
the same type of “contagion mechanism” from observed defaults to the intensity of (future)
rating transitions as we studied in section 5.2. Note, however, that we only allow for defaults to
affect the future downgrade intensity whereas non-default downgrades do not cause a Hawkes
effect. As shown in Table 6, we find a strongly significant effect in that defaults cause the
downgrade intensity to increase. We also find that defaults of larger firms have a larger effect
on the downgrade intensity. The decay rate is close to 2 which means that the effect tapers
off to roughly 1/8 after one year. In Figure 5 we show downgrade occurrences (scaled) and
the default events. However, the strong significance of these tests may be difficult to attribute
to contagion effects. The problem is that when we measure contagion through the ratings we
may really be capturing the reactions of rating agencies to corporate defaults. These reactions
could potentially reflect revisions of rating policies or extra scrutiny in light of a recent default.
This extra scrutiny could lead to updating of the rating agency’s measurement of critical firm
characteristics and this in turn cause downgrades. As such, the measurement of contagion would
be consistent with contagion taking place through updating of latent variables. However, our
main focus is on whether actual, measurable key ratios are affected by economy-wide defaults.
We therefore turn to conducting such tests.

6.3 Effects through quick ratios and distance-to-default

In this section we carry out simple regression tests to see if the average levels of distance-to-
default and quick ratios are affected by corporate defaults. Specifically, we test whether changes
in quick ratios and distance-to-default react to the number of defaults occurring in a preceding
time window of variable length. We control for economy-wide variables that were significant in
our Cox regressions.

As a representative example, we consider the following regression

∆(1-year “Distance to Default”)t = η0 + η1(1-year S&P500 return)t + η2(Industrial production)t

+ η3(Treasury term spread)t + η4(Defaults in k mths.)t

based on monthly observations. ∆(1-year “Distance to Default”)t is the change from t to t + 1

12Hamilton, David T. (2005). Moody’s Senior Ratings Algorithm and Estimated Senior Ratings, Moody’s
Investors Service.
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in the cross-sectional median across all firms at risk, and (Defaults in k mths.)t is the aggregate
number of observed defaults within the last k months prior to t.

We choose the k-month time windows to be of length 1, 3, 6, 12 and 24 months. We consider
both the quick ratio and distance-to-default. For these variables we consider both the median,
the 10% quantile and the 90% quantile of the variables. Note that since a low quick ratio and
a low distance-to-default both are indicators of high default risk, the 10% quantile represents
riskier firms. The median level tests for whether there is an effect of default on the level of the
variables overall whereas the quantiles are meant to capture effects that affect the tails - either
the more risky firms or the safer firms. Ideally, we would want to look in specific sectors as well,
but our data set is too thin for this purpose.

We are unable to find any effects from the number of defaults to quick ratios. As illustrated in
Tables 7-9 the quick ratio seems unaffected by any information related to the number of default
regardless of which quantile we consider and regardless of the width of the default window.
This is not true for the distance-to-default. As shown in tables 10-12, we find some significant
coefficients for some choices of the length of the default window. We find that the number of
defaults in the prior 6-month period and the prior 12-month default window affect the changes
in distance-to-default. There is no effect on the shorter horizons, and only for the 90% quantile
do we see an effect from 24-month default.

We are reluctant at this stage to interpret these results as an unambiguous sign of contagion.
We need to have better data on the specific financial interactions between firms and sectors to
explain why the 6-month and 12-month windows turn out to be significant. This is a topic for
future research.

7 Conclusion
In this paper we re-investigate the time-change method used by DDKS for testing whether
company defaults in the US can be viewed as conditionally independent. As noted by the authors,
their test is a joint test of the specification of the individual firms’ default intensities and the
assumption of conditional independence. While they reject this joint hypothesis, we show (on a
slightly smaller data set) that if we use a different specification of the firms’ default intensities
we cannot reject the assumption of conditional independence. To show that this is not due to a
lack of power, we show that we do reject in most tests using the specification used in DDKS.

The time-change test is based on testing a Poisson property of a time-transformed process
of aggregate defaults. Our second contribution is to show that the Poisson property may be
satisfied even if defaults are not conditionally independent. Thus, the fact that we cannot reject
the Poisson property need not be indicative of conditional independence. The reason for this is
that the test procedure proposed in DDKS may not capture contagion through covariates and
needs to be adjusted if one wants to rule out such contagion effects. That is, if the default of one
company leads to a change in covariates (i.e. the explanatory variables used in the Cox regression
specification of the default intensities) of other companies, then this is a contagion effect which
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is not captured by the time transformation. We provide an illustrative example which gives the
central idea and we point to a central result in point process theory that explains this fact.

To test for the possibility of contagion through covariates, we first use rating as a summary
statistic for the credit quality of the firms. The idea is that if a default of one firm significantly
affects another firm’s credit quality by changing explanatory variables, then this is reflected in
the ratings. We therefore test whether downgrade intensities are significantly affected by defaults.
We find a significant contagion effect. Since this may be an effect caused the behavior of rating
agencies rather than actual default intensity changes alone, we also perform regression tests
to see if quick ratios and distance-to-default are affected by the occurrence of defaults after
controlling for macroeconomic variables. We find no effects on quick ratios but possibly an effect
on distance-to-default. Our conclusion is that the focus on contagion should be put on balance
sheet effects.
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Appendix
This appendix contains a mathematical definition of conditional independence and recalls a
general result that explains the time-transformation method which turns a counting process
into a unit rate Poisson process. All relevant measure-theoretic concepts used can be found in
Brémaud (1981).

Consider a fixed probability space (Ω,F ,P ) and assume it is rich enough to support all
variables and processes defined below. A doubly stochastic process is defined as follows.

Definition A.1 Consider a simple, non-explosive, (Ft)t≥0−adapted point process N = (Nt)t≥0,
a non-negative stochastic process λ = (λt)t≥0, and a sub-σ−algebra G. If

(i) λt is G−measurable for all t ≥ 0

(ii)
∫ t

0
λsds < ∞ a.s. for all t ≥ 0

(iii) P
(
Nt −Ns = k

∣∣ Fs ∨ G
)

=
1
k!

(∫ t

s
λudu

)k

exp
(
−
∫ t

s
λudu

)
a.s.

for all k ∈ N0, 0 ≤ s ≤ t

then N is a
(
(Ft)t≥0,G

)
−doubly stochastic Poisson process with intensity λ.

This expresses the doubly stochastic assumption for a univariate point process with particular
emphasis on the information set G emanating from the intensity process13. The generalization
of this concept to a multivariate process involves a requirement of conditional independence
between the individual filtrations.

Definition A.2 Consider a finite collection of simple, non-explosive point processes N1, . . . ,Nn

and a sub-σ−algebra G. If

(i) Ni is a
(
(Fit)t≥0,G

)
−doubly stochastic Poisson process with intensity λi for i = 1, . . . ,n

(ii) N1, . . . ,Nn are conditionally independent given G in the sense that

P
( n⋂

i=1

Fi

∣∣∣G) =
n∏

i=1

P (Fi | G) a.s.

for all F1 ∈
∨

t≥0F1t, . . . ,Fn ∈
∨

t≥0Fnt

then the processes N1, . . . ,Nn are jointly
((

(Fit)t≥0

)
i=1,...,n

,G
)
−doubly stochastic.

13The contents of definition A.1 coincides with the standard definition in the literature albeit the formulation
differs slightly, since we wish to emphasize, more directly, the information that pertains to the intensity
λ. Thus, a

(
(Ft)t≥0,G

)
−doubly stochastic Poisson process N in terms of definition A.1 corresponds to a

(Ft ∨ G)t≥0−doubly stochastic Poisson process in Brémaud (1981).
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The important thing to note here is that the information set G containing all information about
the intensity λi for the i’th process Ni is the same for all i, i.e. there may be some “global”
information contained in the set G that can affect all processes Ni through covariations in the
intensities λi. But note also that any such “cross-sectional” information must necessarily be stored
in G, since conditionally on G the point processes are independent and hence cannot affect each
other. In particular, for our application, the default of firm i as represented by the first jump
of Ni cannot influence the default probabilities of any other firms. We think of G as containing
processes which are exogenous to the default events, i.e. they influence but are not influenced by
actual default events. G may contain macroeconomic factors, such as the gross domestic product,
the term structure etc. that affect all firms at once, and it may contain exogenous variables which
affect industries or even single firms. The important requirement is that there is no information
on actual default times of individual firms. With the above definitions in place, we can now
state the essential property for jointly doubly stochastic processes that connects the individual
intensities λi to an aggregate intensity.

Proposition A.3 Assume N1, . . . ,Nn are jointly
((

(Fit)t≥0

)
i=1,...,n

,G
)
−doubly stochastic and

let Ft =
∨n

i=1Fit, t ≥ 0. Then

(i) Ni is a
(
(Ft)t≥0,G

)
−doubly stochastic Poisson process with intensity λi, i = 1, . . . ,n

(ii)
∑n

i=1 Ni is a
(
(Ft)t≥0,G

)
−doubly stochastic Poisson process with intensity

∑n
i=1 λi.

Proof. Definition A.2 readily implies

P
(
Nit −Nis = k

∣∣ Fs ∨ G
)

= P
(
Nit −Nis = k

∣∣ Fis ∨ G
)

=
1
k!

(
−
∫ t

s
λiudu

)k

exp
(
−
∫ t

s
λiudu

)
a.s. k ∈ N0, 0 ≤ s ≤ t

for fixed i which proves (i). Moreover, an argument similar to Revuz and Yor (1999) proposition
12.1.5 shows that since the Ni are conditionally independent Poisson processes given G, they
have no simultaneous jumps. Hence the aggregate process Nt =

∑n
i=1 Nit is again a simple,

non-explosive point process, and the conditional independence assumption in definition A.2 (ii)
together with the convolution property of the Poisson distribution thus ensures that

P
(
Nt −Ns = k

∣∣ Fs ∨ G
)

=
1
k!

(∫ t

s

n∑
i=1

λiudu

)k

exp

(
−
∫ t

s

n∑
i=1

λiudu

)
a.s. k ∈ N0, 0 ≤ s ≤ t.

2

In the particular case, where we only consider the first jump

τi = inf{t ≥ 0 |Nit = 1}
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of every Ni process, the corresponding intensity reduces to
(
λit1(τi≥t)

)
t≥0

, and hence the
aggregate process Nt =

∑n
i=1 1(τi≤t) has intensity

∑n
i=1 λit1(τi≥t).

By standard arguments one may now show that our definition A.2, which leads to the result in
proposition A.3, is in fact equivalent to the slightly more abstract definition of doubly stochastic
processes given in DDKS, which essentially states that the processes N1, . . . ,Nn are jointly doubly
stochastic if

(N1,t+ξ)t≥0, . . . , (Nn,t+ξ)t≥0

are conditionally independent for every finite stopping time ξ. A proof of the mathematical
equivalence is available upon request.

It is important to note that the method of transforming into a Poisson process applies to a
much broader class of processes than those arising from addition of conditionally independent
point processes. The following general result is due to Meyer (1971) but see also Brown and Nair
(1988) for a simpler proof.

Theorem A.4 Consider a multivariate point process (N1, . . . ,Nn) and assume that every
coordinate process Ni has a continuous compensator Λi satisfying limt→∞ Λi(t) = ∞. Then∑

j∈N
1(Λ1(τ1,j)≤t)


t≥0

, . . . ,

∑
j∈N

1(Λn(τn,j)≤t)


t≥0

are independent unit Poisson processes where τi,j denotes the j’th jump of Ni.

Remark 1 The assumption that (N1, . . . ,Nn) be a multivariate point process merely amounts
to requiring that no two coordinate processes Ni and Nj have simultaneous jumps, which in
particular is satisfied if N1, . . . ,Nn are jointly doubly stochastic as follows from proposition
A.3.

If in particular all the coordinate point processes Ni have intensities, i.e.

Λi(t) =
∫ t

0
λi,sds

for some intensity process (λi,s)s≥0, then∑
j∈N

1(Λ1(τ1,j)≤t) = Ni,Λ−1
i (t)

which corresponds to the situation analyzed in this paper. But note that Meyer’s result applies
even in the case where compensators are affected by jumps in other processes, and hence the
time transformation result applies to this much broader class outside the class of conditionally
independent processes.
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Table 1. Descriptive statistics for covariates

The table reports empirical averages and standard deviations (in parenthesis) for the explanatory variables

used in the Cox regressions.

Macro variables:
1-year S&P500 return 0.110 (0.164)
3-month treasury rate 5.469 (2.671)
Industrial production 0.027 (0.029)
Treasury term spread 1.371 (0.955)

Firm specific variables:
Defaulting firms Non-def. firms All firms

1-year equity return 0.044 (0.497) 0.119 (0.526) 0.109 (0.523)
1-year “Distance to Default” 0.612 (1.356) 2.063 (2.854) 1.867 (2.746)
Quick ratio 0.507 (6.237) 0.682 (3.091) 0.658 (3.677)
Short-to-long term debt 0.057 (0.154) 0.094 (0.185) 0.089 (0.181)
Book asset value (log) 1.835 (2.882) 3.170 (3.582) 2.990 (3.526)

14Calculations are based on the likelihood ratio test statistic and its asymptotic distribution. However,
the (asymptotically equivalent) Wald and score test statistics yield similar conclusions thus indicating a
limited finite sample bias in the results.
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Table 2. Parameter estimates (doubly stochastic models)

The macro variables entering the models are the 1-year return on the S&P500 index, the level of the

3-month U.S. treasury yield, the 1-year percentage change in U.S. industrial production, and the spread

between the 10-year and 1-year U.S. treasury yields. The firm specific variables are the 1-year stock

return, the 1-year distance to default, the quick ratio, short-term debt as a percentage of total debt,

and (log) book value of assets. Asymptotic standard errors are reported in parenthesis and statistical

significance is indicated at 5% (*), 1% (**), and 0.1% (***) levels, respectively14.

Model I Model II

Macro variables:
Constant -3.735 *** -3.480 ***

(0.179) (0.299)
1-year S&P500 return 1.566 *** 1.886 ***

(0.318) (0.353)
3-month treasury rate -0.040

(0.024)
Industrial production -5.723 **

(1.956)
Treasury term spread 0.209 ***

(0.055)
Firm specific variables:

1-year equity return -3.131 *** -3.151 ***
(0.202) (0.213)

1-year “Distance to Default” -0.841 *** -0.794 ***
(0.039) (0.043)

Quick ratio -0.263 ***
(0.085)

Short-to-long term debt 0.651 ***
(0.177)

Book asset value (log) -0.095 **
(0.031)
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Aggregate default intensity 1982-2005
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Figure 1. Monthly number of U.S. industrial defaults recorded in Moody’s DRSD in the period
1982-2005 and estimated default intensities for the simple (Model I, dashed) and the expanded (Model
II, solid) model.
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Distribution of binned data Zj (c = 8)
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Figure 2. Empirical distribution for c = 8 of the binned data Zj (gray) for the simple (Model I, left)
and the expanded (Model II, right) model against their theoretical counterpart (black).

Sequence of binned data Zj (c = 8)
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Figure 3. The sequence of binned, centered data Zj − c for c = 8 for the simple (Model I, left) and the
expanded (Model II, right) model.
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Calender day effects
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Distribution of defaults on dates: 1982−2005

Figure 4. The distribution of U.S. industrial defaults 1982-2005 on calendar day.
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Rating downgrades vs. observed defaults
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Figure 5. Monthly number of registered U.S. industrial defaults and (scaled) number of rating
downgrades among Moody’s rated U.S. industrial firms (solid line) for the period 1982-2005.
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