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Abstract

We provide a three way theoretical comparison of dealer, litmbrder, and
hybrid markets and analyze the impact that the organizatiorof trading has
on volume, liquidity, and price e ciency. We nd, in particu lar, that trading
volume is highest in the limit order market and lowest in the ddar market.
Small order price impacts are lowest and large order price irapts are highest
in limit order markets. Prices are most e cient in the hybrid market and
least e cient in the dealer market, except when the level of iformed trading
is very high. Post-trade market transparency in a hybrid markehampers
price e ciency for thinly traded securities. We further identify that traders
behave as contrarians.
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Intra-day nancial market trading is organized using two mapr mechanisms: order
driven and quote driven trading. Order driven markets typially employ a public limit
order book. In quote driven markets, all trades are arrangedyldesignated institutions
that post quotes. The latter markets are commonly referred tosadealer markets. Many
real world markets are hybrids, combining both organizatical formsH

The coexistence of competitive limit order and dealer marketand the di erences
in their trading outcomes have long been challenged by acadie research. Madhavan
(1992) shows that, with competitive liquidity provision, a qwte driven system and a
uniform price order driven system lead to identical outcomes. IGsten (1994) and Back
and Baruch (2007) argue that a quote driven system that competevith a discriminatory
limit order book in an anonymous market would mimic the limitorder book.

Our paper builds on this line of research but serves a di erentyspose. We posit non-
anonymity, in the sense that repeat order submissions are identéid, and thus e ectively
take the coexistence of the mechanisms as given. Our goal is sdribe the relative
advantages and disadvantages of the three trading systems: a distgnatory limit order
book, a dealer market, and a hybrid market.

Our major contribution is twofold. First, we provide an integated theoretical frame-
work that admits a three-way comparison. The di erences in @ding outcomes of the
three trading mechanisms in our setting highlight, in particlar, the signi cance of the
discriminatory order book and post-trade market transparencySecond, we employ our
framework to derive novel empirical predictions for the imact of the organization of
trading on volume, liquidity, and price e ciency. In comparing competitive markets,
we complement the literature on markets where liquidity preiders have market power
(e.g., Seppi (1997)), which we discuss below.

Limit order and dealer markets di er in many aspects. One de mg feature of the
systems is the level of market transparency enjoyed by the ligiify providers. Limit or-
ders are posted prior to the liquidity demand realization, wareas dealers' quotes account
for the order size. We show that this di erence in the liquidity providers information
both yields new empirical predictions and explains a large afre of the previously noted
heterogeneity among the trading outcomes.

The liquidity providers in the dealer market are able to detemine the information

1See Harris (2003) for a comprehensive list. For example, on the NYSE and the Tonto Stock
Exchange, traders can either send orders directly to the limit order book (the \downstirs" market)
or arrange trades via oor brokers (NYSE) or \upstairs" dealers (Toronto) ; on Nasdag, trades can be
arranged on INET or through a dealer. Finally, a hybrid structure also arises when a limit order book
competes with a dealer market. An example is Paris Bourse (a limit order maket) and London Stock
Exchange (a dealer market, until recently), which compete for the order ow in cross-listed stocks.



content of a transaction most accurately. The high level of trsparency on the side
of liquidity suppliers, however, lowers liquidity demanderstents and causes them to
trade less aggressively. The e ciency gain that stems from the déers' informational
advantage is thus muted by the lowest trading volume. We nd that the liquidity demand
reduction e ect dominates, so that the lack of trading activiy renders the dealer market
to be least informationally e cient, except when the level ofinformed trading is very
high. The hybrid market combines the limit order market's agressive order submission
with the dealer market's superior screening ability and yiekl the most e cient prices.
We thus reject the commonly argued hypothesis that the presemof the upstairs dealer
who absorbs a large fraction of uninformed order ow (\skims te cream™) necessarily
hurts the main (limit order book) exchange participants.

Our model has the following structure. Liquidity demandersrade either for reasons
outside the model (e.g., to rebalance their portfolio), or thy have private information
about the security's fundamental value and optimally choosehe size and direction of
their trade (or abstain from trading). Liquidity is supplied by competitive, uninformed,
and risk-neutral institutions, as in standard market microstruture models in the tradi-
tion of Kyle (1985) and Glosten and Milgrom (1985@

In the dealer-market, the liquidity providers observe the ater ow and then compete
for it in a Bertrand fashion. The equilibrium price aggregats the information contained
in the order ow. In the limit order market, liquidity provid ers post a schedule of buy and
sell limit orders, each for the purchase or sale of a speci ¢ numbef units. We assume
a \discriminating" order book design, as in Glosten (1994), anthe prices incorporate
the information revealed when the respective limit order ishit" by a market order of
the same or larger size. The bid- and ask-prices in this settingeathe \lower-tail* and
\upper-tail" conditional expectations of the security value. One additional contribution
of our paper is thus in formulating a model that tractably integrates both a limit order
book and a dealer market in a multi-unit Glosten and Milgrom segential trading setup.

Our setup builds on Easley and O'Hara (1987) who study a dealer nkat where an
imperfectly informed trader, equipped with a signal of eithehigh or low quality, submits
a large or a small order and usually chooses a mixed strateégyOur methodological
innovation is that we employ private signals of @ontinuum of qualities. We are then able
to focus on pure strategies and concisely characterize the éduium by the marginal
buyers and sellers. These marginal traders, and hence a tradeatwice of the order size,

2We further discuss the institutional features of dealer markets at the end of Sectiofll
3The setting is also related to Ozsoylev and Takayama (2008) who characterizan equilibrium of a
dealer market where perfectly informed traders can choose among multiple size order



are endogenous to the market organization. This endogenednd the fact that traders
with more precise information prefer to submit larger ordersra the key to our results.

Liquidity providers in dealer markets know the order size anare thus intrinsically
better at pin-pointing the information content of a trade. Asa result, when markets are
operated in isolation, small trades receive better executigorices in the dealer market
(that is, the bid-ask spread is smalIeB and large trades are cheaper in the limit order
book. In a hybrid market, traders are additionally allowed b choose the segment to trade
in. Consequently, in equilibrium, trading costs in a hybrid meket for each order size
must be the same across the two mechanisms. We show that to equalize equilibrium
trading costs, the dealer segment of a hybrid market must absorb stolarge trades,
whereas the limit order segment will absorb most small trades. Thetal number of
transactions in the limit order segment is larger than that in he dealer market segment.
Further, large orders in the dealer market segment will haveer information content.

The results on the information content of trades are closely leed to Seppi (1990)
and Grossman (1992). Seppi studies the behavior of a single, polgsibformed, large
institution and nds, in particular, that repeated interacti ons among the exchange par-
ticipants lead to routing of the uninformed trades to the o -exchange dealers. In Seppi,
both the on exchange specialists and the o exchange dealers petes according to a
Kyle (1985)-style dealer market pricing rule. Grossman studigbe relation of upstairs
and downstairs markets, both of which employ uniform pricingules. In his model some
traders may leave a non-binding indication to trade with theupstairs dealers, which
increases the e ective liquidity in the upstairs segment. We coplement this line of
research by studying traders' self-selection into dealer and linorder segments, where
the latter employs a discriminatory pricing rule.

Our analysis further shows that the behavior of traders in the ealer and hybrid
markets is not stationary. For instance, as prices drop, unfavably informed traders
submit sell-orders less aggressively and favorably informed diexrs submit buy orders
more aggressively, thus acting aontrarians. This result is supported by recent empirical
ndings (see Chordia, Roll, and Subrahmanyam (2002)) and weéhtis contribute to the
literature by providing theoretical underpinnings for raional contrarian behavior.

In the second part of our paper, we compare market widths, pridenpacts, price
e ciency, and trading volume in the three trading mechanisms:pure dealer markets,
pure limit order books, and hybrid markets. In addition to the dorementioned results
on e ciency and execution costs, we nd that trading volume is te highest in the

4This property is known as the \small trade spread" and was previously shown, e.g in Glosten
(1994).



limit order market and the lowest in the dealer market. Final, price impacts of small
orders are stronger in dealer markets and those of large ordare stronger in limit order
markets.

Our results on the price impacts of small trades may seem surprigiat rst: despite
the smaller spreads, price impacts are larger in the dealer matk. To understand this,
recall that small order prices in the limit order book accounfor the fact that the order
might be large. Consequently, when a small order executes inimit order book, the
transaction price overshoots. The market participants will coect their expectations
of the security once they know the order size, and the permaneptice impact of the
transaction will be smaller.

In the hybrid market this correction only occurs if there is st trade transparency in
that market participants observe the segment that the order elared in. The nal result
of our paper describes how a lack of post-trade transparency ats price e ciency. We
nd that noisier learning in an opaque market reduces market eiency in frequently
traded stocks. Interestingly, when trading activity is low, the e ect of noisier learning is
outweighed by that of larger price adjustments, and the opaguaarket is more e cient.

Other aspects of transparency have been studied in the literatt Pagano and Roell
(1996) compare transparency of a uniform price auction with dealer market system.
Brown and Zhang (1997) combine a Kyle (1985)-style and a ratial expectations style
setup to study dealers' decisions to participate in a market, antb describe how deal-
ers' decisions to supply liquidity a ect the informational e c iency of prices. Boulatov
and George (2008) analyze the e ects of transparency in a uaim price market with
informed and strategic liquidity provision.

Finally, market structures have also been compared in the liteture that studies
the strategic provision of quuidityH Seppi (1997) studies a hybrid market, in which a
monopolistic specialist competes with a pure limit order bookas is the case on the
NYSE. He nds, in particular, that small orders receive better exeutions in the hybrid
market whereas medium orders receive better executions imetpure limit order market.
Parlour and Seppi (2003) extend Seppi (1997) by studying coretition between these two
exchanges. Buti (2007) builds on Seppi (1997) and adds retatship trading and price-
guantity based screening by the specialist. We complement thesaidies by analyzing
hybrid markets where competitive dealers compete with the limit order book, as is the

case on many major equity markets.

SMost papers on the strategic provision of liquidity are based on either Palour (1998) or Foucault

(1999); for an extensive up-to-date survey of the literature on limit order makets see Parlour and Seppi
(2008).

SExamples are Nasdaq (dealer vs. INET), Toronto Stock Exchange (upstairs/s. downstairs), LSE



The remainder of this paper is organized as follows. Sectidintroduces the model.
Section[Il derives the equilibria for the three trading mecanisms. Sectior Ill develops
testable predictions for the hybrid market. Section IV compees the three mechanisms
with respect to execution costs, volume, and price e ciency. Ston [V] analyzes the
impact of post-trade transparency in the hybrid market. Sectin[VIldiscusses the results
and possible policy implications. AppendiX_A derives propertgeof traders' information
structures, Appendix[B outlines the simulation procedures, and Apendix[Q contains all
proofs. Most gures and tables are at the end of the manuscriptiparticular, Tables(I]
and[lV] which summarize our ndings and existent empirical supgrt for our predictions.

| The Basic Setup

A General Market Organization

We consider a stylized model of security trading, in which infoned and uninformed
traders trade a single security by submitting market orders. At &ch discrete point in
time there is exactly one trader who arrives at the market aceding to some random
process. These individuals trade upon their arrival and only #n. Short positions are
lled at the true fundamental value.

Liquidity is supplied by uninformed, risk-neutral institutions that compete for order
ow and earn zero expected prots. In the limit order market, the liquidity providers
post a series of limit buy- and sell-orders. The former constitutea series of ask-prices,
the latter a series of bid-prices. Each price is for a single ur(ite. a round lot). Traders
post market orders after observing these pric@sln the dealer market, the trader posts
his market order rst and the liquidity providing dealers then compete in a Bertrand
fashion for this ordelH In a hybrid market, both systems coexist.

B Model Details

Security:  There is a single risky security with a liquidation valuev from a set of two
potential values,V 2 f 0; 1g, with Pr(V=1) = :

Traders:  There is an in nitely large pool of traders out of which one iglrawn at
each point in time at random. Each trader is equipped with priate information with

vs. Paris Bourse (for cross listed stocks), or Deutsche Barse (maér vs. XETRA).

"When referring to a liquidity provider in singular, we will use the female form and for liquidity
demanders we will use the male form.

8At the end of Section[Ill we will formally argue that our model can accommodate publc dealer
quotes.



probability > O; if not informed, a trader becomes a noise trader (probahyil ).
The informed traders are risk neutral and rational.

Noise traders have no information and trade randomly. These td&rs are not neces-
sarily irrational, but they trade for reasons outside of this mdel, for example to obtain
cash by liquidating a positior@ To simplify the exposition, we assume that noise traders
make trades of either direction and size with equal probahiji

Trade Size: All trades are market orders for round lots. The order at timet is
denoted byo, whereo, < 0 indicates a sell-order ana, > 0 is a buy-order. Traders can
submit a large order,joj = 2, a small order, joj = 1, or abstain from trading, o, = 0.

C Information

Public Information: The structure of the model and the prior distribution of fun-
damentals is common knowledge among all market participasit The identity of a
trader and his signal are private information. The public inbrmation H; at datet > 1
is the sequence of orders, and realized transaction prices at all dates prior ta:

Liquidity Providers' Information: In the dealer market, the liquidity providers
know the public history H; and the ordero;. In the limit order market, liquidity providers
do not know which order will be posted at timet, and their information is only H;.

Informed Traders' Information: We follow the sequential trading literature in
the tradition of Glosten and Milgrom (1985) (henceforth.: GM)and assume that traders
receive a binary signal about the true liquidation valu&/. These signals are private, and
they are independently distributed, conditional on the vale V. Speci cally, informed
trader i is told \with chance g, the liquidation value is High/Low (h/1)" where

Pr(signaljtrue value) ‘ V=0 V=1
signal = | G 1 g
signal=h |1 g G

This g is the signal quality In contrast to most of the GM literature, we assume
that these signals come in aontinuum of qualities and that g is trader i's private
information. The distribution of qualities is independent & the security's true value
and can be understood as re ecting, for instance, the distribign of traders' talents to
analyze securities. Figurél2 illustrates the distribution of nee and informed traders

9Assuming the presence of noise traders is common practice in the literature on miorstructure with
asymmetric information to prevent \no-trade" outcomesa la Milgrom and Sto key (1982).
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Figure 1: Illlustration of signals and noise. This gure illustrates the mechanics of our signal

distribution: rst, it is determined whether a trader is informed (probability ) or noise (probability
1 ). If informed, the trader obtains a signal quality. Next, he receives the \correct" signal (h when
V =1 and | whenV = 0) with probability ¢ and the \wrong" signal with probability 1 G. (The
draw of V is identical for all agents.) If the trader is noise, he will be a large and mall buyer and seller
with equal probabilities.

and the information structure.

In what follows, we will combine the binary signal i or I) and its quality on ['5; 1] in a
single variable on [0,1], namely, the trader'private belief that the security's liquidation
value is high v =1). This belief is the trader's posterior onV = 1 after he learns his
guality and sees his private signal bubefore he observes the public history. A trader's
behavior given his private signal and its quality can then beqeuivalently described in
terms of the trader's private belief. This approach allowssito characterize the equilibria
in terms of a continuous scalar variable (as opposed to a vect@nd thus simpli es the

exposition.
The private belief is obtained by Bayes Rule and coincides thithe signal quality
if the signal ish, ; = Pr(V =1jh) = g=q+(1 ¢q)) = qg. Likewise, i =1 q if

the signal isl. In what follows, we will denote the density of private beliefdy f,( )
when the fundamental isV = 1 and by fo( ) whenV = 0. Appendix Al eshes out how
these densities are obtained from the underlying distributioof qualities and it provides
a numerical example.



Il Dealer, Limit Order and Hybrid Markets

In what follows, we will focus on the buy side of the market; anagjous results apply to
the sell side. We will useL for the limit order market, D for the dealer market, andH
for the hybrid market. When discussing ndings for the hybrid maket, we write HL for
the limit order segment andHD for the dealer market segment.

The Trader's Decision. An informed trader receives his private signal, observes
all past trades, and can trade upon arrival and only then. In théimit order market, he
observes the posted prices, in the dealer market, he forms exja¢ions about the price
that he would be quoted, conditional on each order size. Theader chooses the order
size to maximize his expected prots or abstains from tradingfihe expects to make
negative trading pro ts.

Denote the total execution cost of a size, order by C;(0;). To compress notation,
we write the expectation of a trader with belief after history H; asE[VjH:; ]=: E .
Then the payo to submitting a buy order of sizeo, for this trader is o, E; Ci(a).

A trader's expectation is increasing in the private belief. \& thus focus on monotone
decision rules, i.e. the higher the trader's belief is, the mohee wants to buy. Speci cally,
we assume that traders use a \threshold" rule: they buy two unitsitheir private belief
is at or above the timet buy threshold 2, 2, they buy one unit if their belief is at
or above ! butbelow 2, 2[ ! 2), and they do not buy otherwise. To simplify the
exposition, we will henceforth omit subscript.

The marginal buyer of two units, 2, is indierent between buying one and two
units. The marginal buyer of one unit, 1, is indi erent between buying one unit and
abstaining. Consequently, * and 2 solve respectively

1 E'=C@); 2E? C@=1E? CQ): (1)

Price Setting: Limit Order Book. The liquidity providers anticipate the traders'
behavior given the marginal buyers }; 2. The limit orders account for the information
content of the market orders that they would be executed agast. The limit order prices
are the ask prices. The pricask is the price for the rst unit sold by liquidity providers,
and it accounts for the fact that this unit is purchased by demaders of order sizeo 1.
The price asK is the price for the second unit, and it accounts for the fact tht the trade



size iso = 2. As liquidity providers earn zero expected pro ts, it must hdd that

ask
ask

Price Setting: Dealer Market. Since the liquidity demanders submit their orders
before prices are posted, the information available to a dealincludes the size of the
order. This implies that traders pay a uniform price for eachunit that they buy.
Although traders do not know the price of their transaction befre posting a market
order, given the marginal buyers }; 3, they can perfectly anticipate the quote. In
light of this, we will henceforth refer to prices for buy ordes as ask-prices. Then

ask,
ask

Finding the Equilibrium. In the limit order market, we have C (1) = ask and
CL(2) = asK + ask. Then the marginal buyers' indi erence conditions[[lL) can tlen be
rewritten as

E[V]j trader buyso 1 units at fask; askg; H,];

E[V]j trader buys o = 2 units at fask;askg; H,]:

E[V]j trader buys o =1 unit at faskg; Hi];

E[V] trader buys o = 2 units at fasig; H,]:

ask = E l; and ask = E & (2)

In the dealer market, we haveCp(1) = ask;, and Cp(2) = 2ask, and conditions [1) can
be rewritten as 1
ask = E L; and ask = 5 (E 2+ ask): (3)

In the limit order market, the rst unit is bought by traders wh o demand one or two
units. In the dealer market, the single unit is purchased only byraders who demand
just one unit. Let (. denote the probability that there is a buy ofo 2 f 1;2g units
when the value of the security iss 2 f 0; 1g in market m 2 f L; Dg,

SP <R

L= 2+ @ R " + (1 Fu( D))
D + (R(B) FRB): do + (1 F(B):

The probability that a given trader is informed is independat of other traders' identities
and the security's liquidation value. As private beliefs arendependent conditional on
the security's value, so are traders' actions. Suppressing indéde and D, the ask prices
for unit 0 2 f 1; 2g and the expectation of the marginal trader ° can be written explicitly

10This pricing rule is analogous to the one in Glosten (1994).
1This pricing rule is identical to the one used in Easley and O'Hara (1987); a moe recent contribution
is Ozsoylev and Takayama (2008).
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Hybrid Markets.  Most real world equity markets operate with a hybrid structure

ask =

(4)

where traders have the choice of either arranging their tra&dwith a dealer or posting it
to the limit order book. We now consider a trader's choice of order size and trading
venue. We focus on the arguably most realistic scenario wherettb@emall and large
guantities are traded in both market segmen

In the isolated markets, the equilibrium description containé, loosely, information
about who traded how manyunits. In hybrid markets, the equilibrium description must
additionally include information about where someone trades. Suppose now that all
order sizes are traded in each segment. Then the execution cdsisorders of the same
size must coincide across the two market segments because othsewtraders would
switch to the cheaper segment. Put di erently, in equilibriumtraders must now self-
select into market segments in such a way that trading costs coide.

This cost equalization implies, in particular, that the margnal informed traders
coincide in both market segments. Prices will then depend onetproportion of informed
to noise traders. In equilibrium, loosely, the proportion must b such that it ensures
equal costs across market segments. There are several ways to rhtdeimplied self-
selection. We approach it by assuming that informed traders tde in each segment
with equal chance, and we then study the self-selection of noigaders that yields the
equilibrium.

Speci cally, let ¢, denote the mass of noise traders that submit buy orders of sia@

f 1,29 to market segmentm 2 f HL; HDg. We then express (., the probability of a buy
for fundamentalv 2 f 0; 1g, as

\};HL = Wt At @ R =2 5;HL = At @ R(AN=2
\};HD = ot (R(B F(i)=2 3;HD = &t @ R(A==2

2For instance, on the Toronto Stock Exchange traders can approach an upstairs déer or they can
send their order directly to the consolidated limit order book. Some systems are wre complex: for
instance, on NYSE, a market order that arrives at the specialist's desk could be led with the current
book, with the specialist or with oor brokers who opt to participate, or the specialist can auction the
order to oorbrokers. On Nasdag, small orders are routed to dealers according to &et of rules. We
abstract from these institutional subtleties, and focus on the main distinction between the two general
systems.

13In Grossman (1992) there are corner solutions in whictall order ow gravitates towards a speci ¢
trading mechanism while the other disappears. Our model also admits corner solutionbut they have
a dierent avour: each mechanism attracts a unique order size and both remain in @eration. The
existence result for corner solutions has been omitted to save space.

n Section[VIlwe discuss extensions of our model.

10



Ask prices and traders' expectations are expressed in the same wayira(4). We main-
tain the assumption that liquidity traders demand each quanty with equal probability,
thus Pp = b and we will use only °= 2, . We then nd the equilibrium by de-
termining (a) the marginal buyers who are indi erent between trading one@nd two units
( 2) and one and no units ({) and (b) the noise masses?!; 2 that ensure equal costs.
This gives rise to the following four equations that }; 3; *; 2 solve in equilibrium

Cu(1) = Cop(1); Ca@=Cwp(@; Et=C(); 2 E? C(2=1 E? C(1): (5

CostsCyy (1); Chp (1) are the ask-pricesCyp(2) =2 ask, and Cy (2) = ask, + ask, .

Theorem 1 (Existence in Limit Order, Dealer, and Hybrid Mark ets)
For any prior p2 (0;1)
(a) [Limit Order Market] there exists a unique symmetric equilibrium with marginal

beliefs1=2< ! < 2Z< 1 that solve the equations in[{2);

(b [Dealer Market] there exists a unique symmetric equilibrium with marginal
beliefs1=2< 1 < 3 < 1 that solve the equations in[{3);

(c) [Hybrid Market] there exists a unique symmetric equilibrium with marginal
beliefs1=2< L < 2 < 1and noise levels !; 2 that solve the equations in[{5).

(d) [Monotonicity] The decision rules in(a) (c) are monotone: traders with private
beliefs < ! do not buy, traders with private beliefs 2 [ *; 2) buy one unit, and
traders with private beliefs 2 [ ?;1] buy two units.

Public Dealer Market Quotes. Our treatment of price formation in the dealer
market is stylized: people submit their market orders withoutknowing the price and
there are no standing quotes from dealers. In real markets deed do publicly quote bid
and o er prices. Moreover, in many markets, dealers are regei to trade a guaranteed
minimum number of units at these quotes (for instance, for mostatks a Nasdaq dealer's
guote \must be good" for 1,000 shares). On some exchanges, e.g. TI$X, the upstairs
dealers are required to trade at the best bid or o er (BBO) thatare currently on the
book, unless the size of the trade is very large. Exchanges thete small-order routing
systems (i.e. small orders are given to dealers according to @tetermined set of rules)
require dealers to \improve prices" to at least match the BBO.

These institutional details are compatible with our setup. Fist, in the equilibrium
of our model traders can perfectly anticipate the price thathey will be quoted if they
approach a dealer. Second, our model can be rewritten to anomodate @) public
guotes in the dealer market andlf) minimum |l sizes for these quotes. In this rewritten
version of the model, the quoted ask price would bask, the price for a large order.

11



When facing a small order, the dealer would then improve the jme to ask. This
alternative setup would also satisfy the BBO rule for hybrid markts. We chose our
current formulation to simplify the exposition.

Il Testable Predictions for the Hybrid Market

The hybrid market equilibrium is determined by the marginaltraders and by the frac-
tions of noise traders in each market segment, which in turn aat the informativeness
of trades.

Suppose a small trade arrives in the dealer market segment. Thee dealer knows
that the trade stems from an informed trader with belief 2 [ %; 2) or from a noise
trader. The rst unit in the limit order segment, on the other hand, is hit by orders
from informed traders with beliefs 2 [ %;1]. Ceteris paribus, this should make the
single unit trade in the limit order segment more informative ad thus more expensive.
To have equal costs, intuitively, there must be more noise in themit order segment.
The reverse applies to large orders. The following result coms this intuition.

Proposition 1 (Trade Informativeness in the Hybrid Market E quilibrium)  The
ratio of noise to informed traders of small size orders is largen the limit order seg-
ment, and the ratio of noise to informed traders of large sizeders is larger in the dealer
segment.

Proposition[d provides a theoretical basis for the empiricalnding that upstairs markets
|[which loosely correspond to the dealer market segment| are better at identifying
uninformed trades. Our result shows that the co-existence of thevo major trading
mechanismaecessarilyimplies that more uninformed traders seek to trade large quan
tities with dealers.

The information content of trades implied by Proposition[]L issimilar to that in
Seppi (1990), where a large, possibly informed trader has thboice between trading
anonymously on the exchange or non-anonymously o the exchamglf he chooses the
latter option, he may be punished, due to repeated interactits, for \bagging the street".
This threat drives traders' self selection. Notably, the pricig mechanisms on and o
the exchange in Seppi (1990) follow a Kyle (1985)-style dealmarket pricing rule. We
thus complement Seppi (1990) by studying traders' self-seleati into dealer and limit
order segments.

Since the mass of informed traders in either market segment letsame, Proposition]l
implies that there are more small noise trades in the limit ordesegment and more large

12



noise trades in the dealer segment. We can further show that treeare in total more
noise traders that trade either quantity in the limit order segnent.

Proposition 2 (Transactions by Market Segment)
(a) There are more large transactions in the dealer segment thanthe limit order

segment; the reverse holds for small transactions.
(b) The limit order segment attracts more transactions than thdealer segment.

IV Comparison of the Three Trading Mechanisms

We will now analyze how the dierent market mechanisms a ect speads, execution
costs, and volume and how e cient the systems are relative to eaabther. Our goal is
to generate testable predictions for these major observableriables.

A Spreads, Market Width, and Price Impacts.

We will rst compare the trading mechanisms with respect to markt liquidity, namely
market width and price impacts.

Market width (sometimes also referred to as market breadth) is the cost of dgi
a trade of a given size. It is the dual of marketlepth which measures the size of a
trade that can be arranged at a given cost] For small trades, the width is associated
with the bid-ask-spread. When people trade for informationateasons, a larger width
indicates higher adverse selection costs and thus a lower wigjness to provide liquidity.
We measure width for order size by the dollar cost of a buy transaction,C(0).

The price impact re ects how the market assesses the information content of a trad
If the current transaction price and the public expectation oincide, then the price impact
is the di erence between the current and the past transactionnxe. If they di er, then
the price impact re ects the permanent e ect of a trade on pre We quantify the
price impact by p' = E[VjH;transaction of sizei at time t] E[VjH.].

15See Harris (2003), pp. 398-399, for the de nitions of depth and width and for an exénsive discussion.

18| oosely, permanent e ects are associated with information transmissio, temporary e ects are
associated with uninformative inventory re-balancing. Empirically the price impact is measured as
the di erence between the e ective spread and the realized spread, where the ective spread is the
transaction price at time t minus the midpoint of the bid-ask-spread att and the realized spread is
the transaction price at t minus the midpoint of the bid-ask-spread x minutes later at t + x (see, for
instance, Bessembinder (2003)).
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Proposition 3 (Liquidity Measures)
(a) Market width for small trades is ordered as followsCp(1) < CH(1) < C(2).

Market width for large trades is ordered as followsC, (2) < C{(2) < Cp(2).

(b) Price impacts of small trades are ordered as followsp!; pi, < pL< pip-
Price impacts of large trades are ordered as followspi, < p3< p?< p3.-
The intuition underlying these results is that liquidity providers in dealer markets are
intrinsically better at pin-pointing the information content of a transaction because they
know the order size before setting the price. While this lowetsaders' information rents,
those with lower quality information are better o being iderti ed, as is demonstrated
by the lower spreads in the dealer market. For in the limit orde market, very well
informed traders hide among the less well informed ones anduthearn a rent at their

expens

In GM models with single unit trades, the price impact is the chage in the transac-
tion price. In our model, this remains true in the dealer marét and the dealer segment
of the hybrid market. In the limit order market and the limit order segment of the
hybrid market, however, the public expectation of the secus value coincides with the
transaction price only after large orders, but not after small @lers.

To understand this point, observe that in limit order markets, te ask price for the
single unit trade accounts for the fact that all informed tragrs with belief 2 [ 1;1]
buy this unit. Yet after it is revealed that an arriving trader bought only one unit, t
is known that this trade was performed by an informed trader ith belief 2 [ %; ?]
(or by a noise trader). As a consequence, the price impact of smatders in the limit
order segment is intuitively smaller than that implied by the ransaction price. Hence
the displayed order of price impacts. Finally, numerical simakions reveal that pf,
and p! cannot be ordered.

B Dynamic Behavior

In the limit order market, the history of trades does not a ecta trader's decision to buy
or sell. In the dealer market and hybrid market, the behaviors history dependent.

Proposition 4 (Behavioral Dynamics and Contrarianism)

As p traverses from 0 to 1,
(a) trading behavior does not change in the limit order market,

(b) all trading thresholds increase in the dealer market, and
(¢) all trading thresholds increase in the hybrid market.

"The result that small trades are cheaper on dealer markets has been previously notedy,bfor
instance, Glosten (1994) or Seppi (1997).
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Part (a) is implied by expressions[(2) and (4). In the dealer and hybricharkets, however,
the marginal types change with the priom. If the prior favours a trader's opinion, two
e ects occur. First, the trader feels more encouraged by theuplic opinion. Second,
the marginal value of his information declines. Traders \het* when the rst e ect
dominates so that they need lower quality signals to trade. Tigers \act as contrarians"
when the second e ects dominates so that they need higher quglsignals. Proposition
4 shows the latter for the dealer and hybrid markets, in line wit empirical observations
(see Chordia, Roll, and Subrahmanyam (2002)).

C Volume

The results in the remainder of this section are based on simulatis of the trading
process for the case of a uniformly distributed quality (see thexemple in Appendix[A).

Although our model describes single trader arrivals for each ped, we can proxy
volume in marketm 2 f L;D;Hg at prior p = Pr(V = 1) by the expected number of
units that will be traded upon the arrival of a trader,

X X
vol, = jo Pr(gV =v;m;p) Pr(V = v):
v=0;1o0= 2; 1;1;2

We computevol numerically on a ne grid for the feasible parameters (the par p and
the amount of informed trading ) and nd the following.

Numerical Observation 1 (Volume) For any prior p and any level of informed trad-
ing , volume is ordered as followsvol. > vol, > vob:

Figure[3 illustrates this numerical observation. The intuiton for the nding stems from
the behavior of the traders who submit large orders. In the deal market, large order
traders are identi ed, whereas in the limit order market thg hide among the small
order traders. As a consequence, the marginal buyer of the largeantity has the
highest belief in the dealer market and the lowest belief in thimit order market (we

show this formally in the proof of the existence theorem). Tragls thus submit large
orders least aggressively in the dealer market and most aggreslsivia the limit order

market, which leads to the lowest and highest volumes respedly.

D Price E ciency

Price e ciency measures the closeness of a price to the fundant@nvalue of a security.
We analyze it in two ways. First, we compute the expected pricenpact for each trading
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mechanism. Second, we simulate sequences of trades that mintie arrival of traders
during a specic trading day. The nal price after a sequence aabe interpreted as
the closing price. We then base our analysis of price e ciency aime properties of the
expected price impacts and of the closing prices.

We perform our analysis of closeness for the fundamental val\Me= 1. Then the
higher the public expectation, the closer it is to the true vale. Thus higher price impacts
and closing prices are associated with a more e cient market mbeanism.

We measure the price impact by the change in the public expetian. We thus
compute numerically for all priorsp 2 (0;1), levels of informed trading 2 (0;1) and
market mechanisman 2 f L; D; Hg, using E[Vjp] = p,

X

E[ pmjV =1;p]= Pr(oV =1;m;p) EVjom;p p: (6)
o2f 2; 1,0;1;29

To simplify the exposition, we useE pp, for the expected price impact.
We obtain the simulated closing prices as follows. For each léw# informed trading

2f:1;:::;:99 we simulated 500,000 trading days with entry rates 2 f 10;:::;50g9. For
each day, we generated random realizations for the numbertodders (a Poisson arrival,
parameter ) and their entry order, traders' identities (noise vs. informd; parameter

), trading decisions for noise traders, and beliefs for inforrddraders ( xing the fun-
damental value toV =1). The public expectation that obtains after these tradershave
acted is the closing price for that dayd The signal quality distribution is assumed to
be uniform.

We assess closeness of closing prices to the fundamental value io Wways. First,
we compare the average closing prices. Second, we compare tmpiecal distribu-
tions of closing prices to see if one mechanism systematically lgige higher and thus
more e cient prices. \Systematically higher" in a distributio nal sense obtains if the
empirical distributions of prices can be ranked in the sense ofst order stochastic dom-
inance. By de nition, distribution F, rst order stochastically dominates distribution F,
if Fx(p)  Fy(p) for all closing pricesp: We will thus compare the di erences of empirical
distributions.

To ensure that the distribution of closing prices is reasonably soth, we focus on the

18To measure closeness to the true fundamental, we need to x this value. The analysis fdahe case
of V =0 is symmetric.

¥As we discussed after Propositiori 3 this public expectation may di er from the last transaction
price. To simplify the exposition, we will refer to the last value of the public expectation as a \closing
price".

16



case =50 when analyzing properties of the empirical distributios of prices@ Further
parametric and procedural details of the simulation processeoutlined in Appendix[B.
We write Fr,,; pm; and |, for the empirical distribution, average, and standard deviabn
of closing prices in marketm 2 f L; D; Hg.

In presenting our results we are loose in listing them for \low", middle" and
\high" . These regions of di er slightly for di erent Table[l displays the signs of
the di erences in averages and illustrates the observation;igure[3 plots the di erences
of expected price impacts. Note that an ordering in the sense ofst order stochastic
dominance implies the same ordering for the average prices; weport both measures
for completeness.

Numerical Observation 2 (Price E ciency)

(@) Forlow : E pp<E p.<E pyandpp < p.< pu.

(b) For medium : E pp<E p.<E pu, Po < p.< pn, and Fy fosdF, fosd Fp.
() Forhigh : E pp<E pu<E pp, p. < py < pp, and Fp fosdFy fosdF,.

The results on expected price impacts and price distributiorasre consistent: the hybrid
market dominates the limit order market, which dominates tle dealer market, except
when is very large. We do not have conclusive results concerning thece distributions
for low levels of , where prices are driven largely by noise.

An e ciency measure based on the average price alone could beticized if higher
average prices go along with higher price volatility. Indek this is what we observe for
low where > | > p. For medium and high levels of , however, this criticism
does not apply. The rst order stochastic dominance ordering iplies the same ordering
in the sense of second order stochastic dominance, and thus moreient prices are also
less dispersed.

Numerical Observation[2 argues, in particular, that the hybridmarket is more e -
cient than the pure limit order market. The dealer segment ths serves an important
role in enhancing market e ciency. To see the intuition for ths, observe, rst, that
in the hybrid market most noise traders of large size orders subimthem in the dealer
market segment (Propositior{1l). Second, relative to informetladers, noise traders are
more likely to trade in the \wrong" direction. Finally, the price impact of a large order
in the pure limit order book is smaller than that in the limit order segment and larger
than that in the dealer market segment (Propositiori13). In othewords, the limit order

20For =50 there are on average 50 traders per day, yielding decisions for about 25,000 traders.
2LFor instance, for =50, the \middle" is between .3 and .7. The general observation is that the
region of \middle" increases in the average number of traders,.
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segment of the hybrid market attracts most of the \right" diredion large trades and
these have the highest price impact; the converse obtains foretldealer market segment.
Together these e ects imply the relation between hybrid andiinit order markets.

V  Transparency vs. Opacity in the Hybrid Market

Transparency is usually separated into pre-trade and post-tradtransparency. The for-
mer re ects the information that trading parties possess beferthey either demand or
supply liquidity, the latter re ects their information about past transactions.

Our model assumes that liquidity demanders have full pre-tragtransparency, i.e.
they can either see all available quotes (for the limit orderdok) or they can infer the
prices that they will be quoted in equilibrium (for the deale market). Liquidity suppliers
face higher pre-trade transparency in the dealer market thaim the limit order market,
because they know the order size for which they supply liquidity

Post-trade transparency obtains in the limit order market beause anyone can ob-
serve when and how far an order \walks the book". We also assumelfpbst-trade
transparency for the dealer market in that all transactions a disclosed.

Our analysis of the hybrid market thus far has assumed the same &wof post-
trade transparency. In particular, we have assumed that aftervery transaction all
market participants learn the size of a tradeand the segment it cleared in. We will now
investigate the impact of the information about the trading \enue. In what follows we
refer to the market where the venue is revealed as tliensparent market and we refer
to the market where the venue is not revealed as thepaquemarket.

In the opaque market, the price impact of any small trade is dven purely by the
transaction price. In the transparent market, on the other had, small trades in the limit
order segment have smaller price impacts than those implied bige transaction prices.
We analyze the e ect of these di erent price impacts on price eiency, using the mea-
sures described in the last section. Tablelll and Figufé 6 illustta the following results.

Numerical Observation 3 (Transparency vs. Opacity)

(a) For a large enough entry rate , the transparent market is more e cient in the
sense that average closing prices there are higher and thugem®cient; for small
entry rates it is the reverse.

(b) Prices in the transparent market are less volatile than thosa the opaque market
in the sense of the second order stochastic dominance.
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The expected price impacts, or changes in the public expedian, as de ned in (8),
are not ordered, but the displayed patterns (see Figuie 7) ar@wmsistent with the above
ndings and provide an intuition for them. Recall that, xin g the fundamental toV =1,
larger price impacts are associated with higher e ciency. Weluserve that for low and
medium levels of the priorp, the expected price impact in the opaque market is larger
than that in the transparent market; the reverse holds for higHevels ofp. This switch
explains why the opaque market is more e cient for low entry ates (or, \thinly" traded
stocks). For small numbers of trades (low), the public expectation moves little so that
the prior p remains close tos where the opaque markets yields stronger movements of
prices in the direction of the fundamental. Since on averag&gaders are more likely to
be \right" than \wrong", when there are many trades (high entry rate ), the public
expectation will be close to the fundamental, 1, most of the tien In this region, the
transparent market yields larger price impacts and thus higér price e ciency.

The larger dispersion in the opaque market is explained by thadt that small trades
there move prices more strongly in either direction.

VI Conclusion

This paper provides a three way theoretical comparison of deag, limit order and hybrid
markets. We analyze the impact of these trading mechanisms onige e ciency, volume,
liquidity, and trade execution costs and generate several neampirical predictions.

The organization of trading, the regulations and the rulesan di er dramatically
among di erent exchanges. Yet almost all trading arrangemestcan be classi ed as
one of the three mechanisms that this paper studies. Our modelgsides the bench-
mark di erences that these mechanisms would display empiridgl controlling for other
institutional details.

In addition to generating empirical predictions, our paper as implications for empir-
ical methodology. First, we identify that trading behavior n hybrid and dealer markets
changes throughout the trading day. Estimations that use agggate numbers of trades,
as is common practice when estimating the probability of infsmed trading, must thus
account for this possibility. Second, our results indicate thahe price impacts of small
trades in limit order markets are smaller than the changes inrédnsaction prices. The
di erence between these two measures re ects the informatioconveyed by the total
order size. Attributing this di erence to inventory risk would overestimate such costs.

Finally, our ndings have policy implications for professiomal market design. Histor-
ically, many equity markets have developed from pure dealenarkets to hybrid markets
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where a dealer segment coexists with a limit order book. Our agais highlights the
advantages of such developments, such as increased price e cgmand trading volume.

We further argue that a hybrid market has advantages over a pa limit order market
in that prices are more e cient and costs for small orders are l@er. The e ciency gain
stems from the stronger price impact of large trades in the limiorder segment of the
hybrid market. Extending our model to allow exogenous vartons in relative trading
volume in the market segments, we can show that this result reqes su cient volume
in the limit order book. If traders were to exogenously gravéte towards the dealer
segment so that there are only few transactions in the limit ordesegment, then the
informational advantage of the hybrid market would be lost. Thus market designers
and regulators may nd it bene cial to guarantee that a su cient order ow reaches
the limit order book. Indeed, some exchanges, e.g. the Tororsdock Exchange, require
small orders to be routed to the limit order book.

A Appendix: Quality and Belief Distributions

Financial market microstructure models with binary signals ad states typically employ
a constant common signal qualityg 2 [*s; 1], with Pr(signal = hjV = 1) = Pr(signal =
ljV = 0) = g. This parameterization is easy to interpret, as a trader whoeceives a high
signal h will update his prior in favor of the high liquidation value,V =1, and a trader
who receives a low signdl will update his prior in favor of V = 0. We thus use the
conventional description of traders' information, with quaities q 2 [%; 1], in the main
text.

As discussed in the main text, to facilitate the analysis, we map a e®r of a trader's
signal and its quality into a scalar continuous variable on [@], namely, the trader's
private belief. To derive the distributions of traders' privae beliefs, it is mathematically
convenient to normalize the signal quality so that its domain aincides with that of
the private belief. We will denote the distribution function of this normalized quality
on [0, 1] by G and its density by g, whereas the distribution and density functions of
original qualities on [=; 1] will be denoted byG and g respectively.

The normalization proceeds as follows. Without loss of genditg, we employ the
density function g that is symmetric around 5. For g 2 [0; 5], we then haveg(q) =
81 =2 and forg2 [%;1], we haveg(q) = g(g)=2.

Under this speci cation, signal qualitiesqand 1 ¢ are equally useful for the indi-
vidual: if someone receives signaland has quality’s;, then this signal has \the opposite
meaning", i.e. it has the same meaning as receiving sighakith quality ;. Signal qual-
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ities are assumed to be independent across agents and indepahdé the fundamental
value V.

Beliefs are derived by Bayes Rule, given signals and signal {jies. Speci cally, if
a trader is told that his signal quality is g and receives a high signah then his belief
isgdg+ (1 qg)J] = g (respectively 1 g if he receives a low signal), because the
prior is 5. The belief is thus held by people who receive signal and quality g =
and by those who receive signdl and quality g = 1 . Consequently, the density
of individuals with belief is given byf,;( ) = [g( )+ 9(1 )] whenV =1 and
analogously byfo( ) =(1 )Na( )+ g(1 )]whenV =0. Smith and Sorensen (2008)
prove the following property of private beliefs (Lemma 2 intieir paper):

Lemma 1 (Symmetric beliefs, Smith and Sorensen (2008)) With the above the
signal quality structure, private belief distributions satfy F;( ) =1 Fo(1 ) for
all 2 (0;2).

Proof: Sincefy() = [g( )+ o Jlandfo( )= (@ gl )+gl )] we
havef,( ) = fo(l )- Then Fi( )= , fi(x)dx =, fo(l x)dx= 11 fo(x)dx =
1 Fo(l ) Belief densities obey the monotone likelihood ratio propertas the
following increases in

fa() [oC )+ 9@ )]

f()- @ Je)+e@ N 1 (7)

One can recover the distribution of qualities on%; 1], denoted by G, from G by
combining qualities that yield the same beliefs for opposinggsials (e.gq = = and
signal h is combined withg = %, and signall). With symmetric g, G(*5) = 5, and

Z Z 1 Z
q 5 q
G(g) = g(s)ds+ i g(s)ds=2 g(s)ds=2G(g) 2G(s)=2G(9 L
: 1aq 2
An Example of private beliefs. Figure [2 depicts an example where the signal

quality q is uniformly distributed. The uniform distribution implies t hat the density
of individuals with signals of quality q 2 [*=;1] isg(g) = 2g. When V = 1, private
beliefs 5 are held by traders who receive signdl of quality q= , private beliefs
5 are held by traders who receive signalof quality q= 1 . Thus, whenV =1,

the density of private beliefs for 2 [i3;1]is given byf,( )= Pr(hjV =1;9= )g(q=
)=2 andfor 2[0;55]itisgivenbyf,( )= Pr(ljVv=1;9=1 )gq=1 )=2 .
Similarly, the density conditional onV =0 is fo( ) = 2(1 ). The distributions of
private beliefs are thenF;( )= 2 and Fo( ) =2 2, Figure[2 also illustrates that
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Figure 2: Plots of belief densities and distributions. Left Panel: The densities of beliefs for
an example with uniformly distributed qualities. The densities for beliefs conditional on the true
fundamental being 1 and O respectively aref,;( ) = 2 and fo( ) = 2(1 ); Right Panel: The
corresponding conditional distribution functions: F1( )= 2 and Fo( ) =2 2,

signals are informative: recipients in favor oV = 0 are more likely to occur whenV =0
than whenV = 1.

B Appendix: Simulation Procedure for Price E -
ciency

We employed the following data generation procedure. We abhed 500,000 observations
of trading days for each of the Poisson arrival rates 2 f 10; 15, 20; 25; 30; 35; 40; 45, 50y
and levels of informed trading 2 f:1;:2;:3;:4;:5;:6; :7;:8;:99. The Poisson arrival
rate implies that, on average, traders arrive on any given day (some may choose
not to trade). Fixing the fundamental to V = 1, higher prices are closer to the true
fundamental and thus more e cient. To capture the e ect of the entry rate for
transparent vs. opaque hybrid markets, we also ran these simulati®for low entry rates
212;3;:::;159 for 2f:2;:5;:89.

For each series, we rst drew the number of traders for the sessiondaperformed the
random allocation of traders into noise and informed and theentry order. Signals for
informed traders and trading roles for noise traders were ass@p as depicted in Figuréll,
conditional on the fundamental beingv = 1. These traders then acted in sequence, and
we determined the informed traders' optimal decisions and (fdhe hybrid market) the
noise traders' choice of the trading venue, based on the preaaglihistory, as described
in Section[Il. We let the same sequence of traders act for eachtloé four trading rules
(limit order market, dealer marker, hybrid market, and opage hybrid market); note
that the same informed trader may take di erent decisions in derent markets. We
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then recorded the public expectation at the end of each sequenof traders for each of
the four trading rules.

Our random number generation employs the Mersenne Twister algthm (Mat-
sumoto and Nishimura (1998)). This algorithm greatly reduceshe correlation of suc-
cessive values that arises with most other pseudo-random numb&ngrators.

C Appendix: Omitted Proofs

C.1 Some General Results and Notation

We will rst introduce some notation and establish basic results tht facilitate the anal-
ysis and proofs of our main results.

C.1.1 General notation for all proofs

In what follows, we will use functiona;( ;_; ™) to denote the time+ liquidity provider's

expectation of the security value conditional on a buy orderhat stems from either a
noise trader drawn from a mass of size , or from an informed tradedrawn from a mass
of size and equipped with a private belief between and —. Conditional on the true
value beingV = v, the probability of such anorderis ,( ;_;7)=+ (F.(7) F.()).

Then, using Bayes Rule and rearranging,

peool ;7)) t
Pt 1(5.57)

a( ;57)= 14+ 1 (8)
This speci cation allows us to compactly express all equililmm ask prices. For instance,
the equilibrium ask price for the small size order in the pure lihorder market can be
written as ask = a(2; % 1). In the hybrid market, the mass of informed traders
in each segment is= 2, and the probability of, say, a small buy order in a limit order
segmentis 1+ ,+( =2) (Fy( 3) Fv( })). Renormalizing, we can write the equilibrium
ask price for this order asask, = a(2 *+2 2; %;1). All other prices are similar.
Further, we will use function ,( ;™) to denote that solves

E =a( ;") 9)

Function ( ;™) will be useful in compactly expressing the equilibrium threshds, and
we study its properties in more detail in the next subsection. Invhat follows, we will
omit the subscriptt whenever the usage is clear from the context.
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C.1.2 Preliminary Properties

In what follows, it will often be mathematically convenient b express the private belief
distributions Fi; Fq in terms of the underlying quality distribution function G:
z Z
Fi()=2 sg(s)ds; Fo( )=2 (1 s)g(s)ds) Fai( )+ Fo( )=2G(); (10)
0 0
and by partial integration,

Z

Fi()=2G() 2 G(s) ds: (11)
0

Lemma 2 (Properties of the equilibrium thresholds)

(a) For every( ;7) suchthatO< < lands < < 1, there exists a unique_ 2 (:5;7)

that solves equation[{9). This solution is independent &f;: ( ;)= ( ;7).
() ( ;7) decreases in and increasesin . @ =@ < O0Oand @ =@> 0.

(o0 For xed ( ;7), = ( ;7) maximizesa/( ; ; —). Further, a/( ; ; 7) increases
in for < ( ;7) anditdecreasesin for > ( ;7).

Proof of (a): Equation (9) can be rewritten as

_+ (F() Fi( ).
I~ % (Fo() Fol ) (12)

thus the solution does not depend on the historid;. Using (I0) and [I1), we rewrite[(IR) as

Z_
26 () ) 2 G(s)ds (2 1)=0: (13)
Denote the left hand side of the above equation by( ; ; 7). Then
(1) ( ;; 7) strictly decreases in for . @R:@: 2 2 (G(T) G() <0
(i)at =%, (;%7)=2G6()( ) 2 . G(s)ds>0;
(iyat =—, (;77)= (2~ 1<0O0.

Steps () (iii ) imply existence and uniqueness of ( ;7).
Proof of (b): Applying the Implicit Function Theorem and di erentiating b oth sides
of equation [13) with respect to for a xed —, we obtain

@ 2 (;7) 1

@ 2@0) o (2 ~°
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since ( ;7) 2 (;7) and G is increasing. Likewise, dierentiating both sides of
equation (I3) with respect to— for a xed and using g to denote the density function
of qualities, we obtain

@ _ 29(O)C (7))

= > 0
@ 2(G() G( (;7M+2
Proof of (c¢): The rst order condition for maximizing a( ; ; 7)in can be written as
(55 7)) _ @i ;5 )=@ (55 7) _
(i) @)@ | o) 1 4

where the last equality follows from equation[{7). Observe thathis last equality
coincides with equation [IR). Consequently, there exists a igue that maximizes
a( ;; )andthis = ( ;7).

By B), a;( ; ; 7)increases in when {( ;; 7)= o ;; ) increases in . Using
(@), (@A), and (I1), it can be shown that @=@( 1( ;; )=o ;; 7)) > 0 when
( ;; 7) > 0. The desired slopes then follow from parta).

C.2 Existence in the Limit Order Market: Proof of Theorem 1 1 (a)

Applying Lemmal2, the equilibrium thresholds are l = (2; 1)and 2= (; 1).

C.3 Existence in the Dealer Market: Proof of Theorem 1 [ (b)

By Lemmal2, we know that for every marginal trader of 2 units 2 2 (‘s; 1), there exists
a unique marginal trader * = (; ?) who is indi erent between buying 1 unit and
abstaining. Further, 1! is increasing in 2. What remains to be shown is that there
exists a marginal trader 2 who is indi erent between purchasing 2 units and 1 unit, so
that 2 solves

2a(; %1 E? E (5 =0 (15)

Denote the left hand side of [I5) by p(; 2% p). Recall that 2 = (; 1) is the
equilibrium threshold for the large quantity in the limit order market. Then

(i) b(; 2 p) strictly decreases in 2 for 22 ( 21);

(i) at 2= ¢ o(; ZP=(Ef E (5 =2>0;

(ii)at 2=1, o(; %p= (1 E (;1)=2<0,

where step () follows from Lemmal2 and the fact thatE strictly increases in for
p2 (0;1). Steps {) (iii ) imply existence and uniqueness of? 2 ( ;1) that solves [15).
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This 2is the equilibrium marginal buyer of large order, 3, and the equilibrium marginal
buyer of a small orderis = (; 3).
The proof of part (b) of Theorem[1 implies, in particular, the following lemma:

Lemma 3 (Relation of the equilibrium thresholds) Equilibrium thresholds for large
orders in the limit and the dealer markets, 2 and 3 respectively, satisfy 2 < 3.

C.4  Hybrid Market: Proof of Theorem 1 [J(c) and Proposition 1[]

As discussed in the main text, we construct the equilibrium in the ybrid market by
adjusting the distribution of noise trading in such a manner tha(a) marginal buyers },
and 2 satisfy the indi erence conditions, and b) execution costs in the two segments
coincide.

As in the main text, 2 denotes the equilibrium marginal buyer ob = 1;2 units in
markets m = L;D; H; similarly for ask,. We continue to use ° to denote the mass of
noise traders that buyo units in the limit order segment of the hybrid market and to
denote the mass of noise traders that buy either quantity in thésolated markets. The
mass of noise traders that buy units in the dealer market segment is then °,

We rst assume that the marginal buyer 2 of a large order in a hybrid market
satises 3 2, construct the unique equilibrium in three steps and show that 2 2
( % 23). The fourth step shows that there does not exist an interior hytid market
equilibrium with 2 < 2. As before, we omit the time subscripts to simplify the
exposition.

Step 1: 8 22 [ 21]we nd 2( ?) suchthat 2 satis es the equilibrium condition for
the marginal buyer of a larger order in the limit order segme

E2=a(2 % ?; %1): (16)

We show that a unique such ?( 2) exists, that ?( 2) 2 [0;5], and % ?( ?) < O:

Proof: By Lemmal2, for every 22 [0; 5], there exists a unique (2 2;1)2 [ 2 1] that
solvesE = a(2 ?;; 1)in . Further, @ =@°< 0, (0;1)=1,and (;1)= 2
With such a 1:1 mapping, we then know that for every 2 2 [ 2;1] there exists a
corresponding # 2 [0; 5] that solvesE 2 = a(2 ?; 2;1), and that it strictly decreases
in 2. Further, 22 (0;5) when 22 ( (;1). Wethendene ?( %)= 2

22Recall that the de nition of a( ;_;~) assumes that noise traders are drawn from mass and
informed traders are drawn from mass . Each hybrid market segment attracts mass = 2 of informed
traders. Expressing the ask prices in terms of functiora thus yields a renormalizing factor 2 in front of

the mass of noise traders. The same appliesto ( ;7)
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Step 2: 8 22 [ 1] and given ?( 2) we construct ( ?) and I( 2) so that they
satisfy, rst, the equilibrium conditions for the marginal buyer of small size orders
in each segment and, second, the cost equalization conditiom $mnall orders when
the marginal buyer of a large order is assumed to be:

EXH=aR (H+2 () N xD=a2 2% Y (Y @D

We show that unique such *( 2); *( ?)exist, *( 32 (5; ), and ;% > 0.

Proof: By Lemmal2, for every 22 [ 2;1]and !2 [; 1, there exist unique (2 '+
22?(?;1)and (2 2 1; 2?)that satisfy the equilibrium conditions for the marginal
buyer of a small order in limit and dealer market segments resgaely. What remains
to be shown is that for every 2 2 [ 2 1] there exists a unique ! that equalizes these
marginal buyers (and, consequently, the costs for small orders)

2 1+2 2( ?:1) 2 2%t 3=o0: (18)
Denoting the left-hand side of [IB) by w( 1; ?),

(i) for 2[5 ], we have 2 < 0;

@1
(i) at *= 5, wehave 4( 1; > 0since (; < ( +2 2 ?);1);
(ii)at = ,wehave 4y( 1; ?)<O0since (2 +2 2( ?);1)< 2= (0; ?):

Parts (i) and (iii ) follow by Lemmal2 and the de nition of 2( 2). Part (ii) is implied
byE (; 2 <a( +2 2(?; (; ?;1),since ( +2 ?( ?);1) maximizesa( +
22(2;:;1)in . UsingE (; 3=a(; (; ?; ? and the denition of 2( 2),
after some algebraic simpli cation we can rewrite the latternequalityas (; 2)< 2,
which holds by Lemma®.

Together (i) (iii ) imply that there exists a unique ! 2 (5 ) that solves (18). We
will henceforth denote this * by *( 2?) and the corresponding threshold by ( 2).

To show that diz 1> 0, we proceed by contradiction. Suppose that there exist

2. ~2 with 2 < ~?, such that (~?) (). By Step 1, %(~?) < 2( ?). Then we

must have (~?) > 1( ?)in order for the marginal buyer of a small order in the limit
order market segment to satisfy (2 (2)+2 ?(~?);1) 2 »)+2 2 2;1).
But (~?) > 1( ?), together with 2(~?) > 2( ?), implies the reverse inequality for
this marginal buyer in the dealer market segment, (2 2 *(~?); %(~?) > (2
2 1( 2); 2( ?)); a contradiction.
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Step 3: We show that there exists a unique 2 2 ( 2; 3) that satis es the equilibrium
condition for the marginal buyer of a large size order in the @éer market segment,
given functions ( 2); ( ?)and 2( ?) de ned above:

2a2 2% ?; %1 EY? EZ?=0: (19)

Proof: Denote the left hand side of equation[{19) byp( 2). Then
(iat 2= 2, we have p( ?) > 0, because ( ?) = 3, and

2a(; 1) EN Y Ef=2ask EY{) Ef=ask EXD>0

where the last equality is due to the equilibrium condition irthe limit order market, and
the inequality isdue to ( )= (2 21 ?); )< ZbyLemmalas ( ?)< ;
(i)at 2= 3, we have p( 3) < 0, because

2a(2 22 3); 3;1) EXN 3 E2<z2ask¥ E( 3 EZ<2ask EL E 2=0;

where the rst inequality follows since ?( 3) < 5 and functiona( ;_;7) is decreasing
in . The second inequality is a consequence of Step 2, which shegy in particular,
that ( 3)> yandthus *( 2)= (2 23 2(3)> ( 3)= &

(ii ) To complete the proof of Step 3, we will now show that for? 2 ( 2; 3), diz p < 0.
By Step 2, it su ces to show that ;%;a(2 2 ?( ?); 2;1)< 0, which is equivalent to

922 [Fi(3) Fo( 3] [f( DR 223+ (1 Fo( ?))
fo 2 223+ 1 F() <0

Since % ?( ?)>0andFy( %) Fo( 2 < 0, it suces to show that the last term in

brackets is positive. Employingfi( 2)=fo( 2) = 2=(1  ?2) and rearranging, we nd

that this term is positive if and only if E 2 > a(2 2 ?( ?); 2;1): The inequality

holds becausd& 2= a(2 ?( 2); ?;1) by de nition of 2( ?), ?( ?)< by Step 1, and

function a( ; 2;1) is decreasing in .

Step 4: We show that 3 cannot be smaller than 2.

Proof: Suppose that 3 < 2. Since 3 = (2 %1)and 2= (; 1), Lemmal2

implies that 2> 5, and consequentlyE 3 = a2 ?; 3;1)<a(2 2 % §;1). Buyer
4 then earns negative pro ts in the dealer market segment and Wiot trade there, a

contradiction.
Steps 2 and 3 show that * > 5 > 2 and thus yield Proposition[].
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C.5 Hybrid Market Transactions: Proof of Proposition 2 [l

The number of transactions in each segment is proportional tdé total mass of traders.

Since the mass of informed traders is the same in either segméht number of transac-

tions in the limit order segment is higher when the mass of noiseatlers there is larger,
1+ 252 12 By Step 2 of the proof of PropositioniB, (2 '+2 2;1)= l<
t=(2; 1). Lemmal2 then implies 1+ 2> , which yields the desired inequality.

C.6  Execution Costs: Proof of Proposition 3 []

The market maker is competitive and expects to break even. TB it must hold that
(E[Vjo=1] C(@))Pr(o=1)+(2EVjo=2] C(2)Pr(o=2)=0

Using the Law of Iterated Expectations and the indi erence coditions for the marginal
buyers,E 1= C(1)and 2E > C(2)= E 2 C(1), we can rewrite the above equation as

(ElVjo 1] E YPr(o 1)+ (EVjo=2] E ?Pr(0=2)=0: (20)
In all three markets, equation [ZD) implies the following reltion

0 = pu«2; 11) E*[piu2; ZD+@ p o2; 41

21
+pai(; 51 EZ? [pa(; ZD+@Q p oofl; 5D )

where, as de ned in Section C1I1,,( ;_;7) = + (F,(7) Fy())- In the pure
limit and dealer markets equation [(2Il) is equivalent to[{20) To see that (21) also
holds in the hybrid market, observe rst that (20) is satis ed in each segment of the
hybrid market. Multiplying the segment-speci ¢ equations wih the respective execution
probabilities and applying the Law of Iterated Expectatiors yields [Z1)23 De ne dn( ) =
p+(1 )(1 p). Equation (Z1) can then be rewritten as

@ %), G 31

dn( 1) dn( ?)
where ( ;_;7)is as d%ned in the proof of Lemm&R and, in particular, ( ; ; 1) =
(2 N(+ )+2 ,G(s)ds. G is the distribution function of qualities. In the

=0; (22)

23Equation (ZI) can also be obtained by directly rearranging the equilibrium equatons for each of
the three markets. Here we provide the more intuitive derivation.
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remainder, we will need the following derivative

d (D) @ pol:iD+pal;id)

d dan() dn( )2 <0 (23)

Step 1: We show that for every 2 2 [ 2; 2] there exists a unique 1( 2) 2 [ &; ?)
that solves [22).

The uniqueness of 1( 2)impliesthat = ( 3), t= ( ?,and L= 1( 3).

Proof: Denote the left hand side of[{22) by ( *; 2). Then

(i) by (3), @ =@ < 0;

(iat '= L, wehave (%; 2 Ofor 2 3,as (%; 3)=0and @ =@ < O;
ii)at '= 2 wehave (% 2= (22 1)=dn( 2 <O.

Together (i) (iii ) imply existence and uniqueness of the desired 2 [ %; 2).

Step 2: Part (a): Market Width for Small Trades. We show that the execution
costs are ordered as followSp (1) < CH(1) < C (D).

Proof: By the proof of Theorem (existence), 2 < 2 < 3. Since in equilibrium,

C(1) = ask = E ! in all 3 markets, it su ces to show that *( 2) de ned in Step 1

strictly decreases in 2. Applying the Implicit Function Theorem to (22) and using (Z3)
toood oAy d o2 4yt

dt_ .
d2° d2 d(? di dn D) <O (24)

Step 3: Part (a): Execution Costs for Large Trades. We show that the execution
costs are ordered as follow§, (2) < C(2) < Cp(2).

Proof: The equilibrium conditions for marginal buyers imply that the cost for a large
order coincides with the sum of the marginal buyers expectatis,C(2) = E '+ E 2. It
thus su ces to show that the latter sum increases in 2,

1 dt 1
P P dn( 1)2d 2t dn( 2)2

d
g2lE "+E’I=

Using (23) and [Z4), the above inequality is true if and only if

1 po(; 5D+pa(; %1)
1 p o@; LD+pa2; 11)

<1

Rearranging, the latter is equivalentto (1 p) o(; % 2+ p 1(; % ?) > 0; which
holds forall * 2.
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Step 4: Part (b): Price Impacts of Small Trades. Price impacts in the dealer
market and the dealer market segment of the hybrid market areeiermined by the
respective transaction prices; the relation pj < pf.; thus follows from Step 2.
Here we show p{, < ppand pl< pp.

Proof: Price impacts in the limit order market re ect the change in he public expec-
tation after the order size is revealed. The relation p{.,; < pp is thus equivalent to
a2 *; L d)<a(; B; 3). The latter holds by Lemmal2 since 3 < 3 and *> :
a2 % & ) E @Y% A<E G A<E (G p=at 5 op)

Likewise, pt < p§ holdssincea(; & 2)=E (; )<E (; 3)=a(; 3 3):

Step 5: Part (b): Price Impacts of Large Trades. To describe the price impacts
of large trades, we show thaask., < ask < asK < ask.,,.

Proof: The rst inequality follows from Step 3, since 2sK ., = Cn(2) < Cp(2) = 2ask:
The remaining inequalities follow by Lemma]2, since? < 5
ask =a(; 3;l)<a(; Zl=ask=E (;1)<E (2%1)=ask:

C.7 Behavioral Dynamics: Proof of Proposition 4 []

We show only the proof for the buy-thresholds; the sell-threshadare analogous.

Lemmal2 implies the result for the limit order market.

Next, trading thresholds in all markets must satisfy the market mker's zero expected
pro t condition, which can be rewritten as equation [22). Inthe proof of Proposition[3,
we xed p and viewed equation [ZR2) as the relation between equilibmu thresholds *
and 2 across di erent markets. Here, we use the same equation but view as the
relation between pricep and equilibrium thresholds *; 2 within a xed market.

In dealer and hybrid markets, given the equilibrium marginabuyer of a large or-
der, 2, the equilibrium threshold for a marginal buyer of a small orde *, only depends
on prior p through 2. Further, 1! is increasing in 2 (this follows from the existence
proofs,[C.3 and_C.#4, Step 2). It thus su ces to show that 2 is increasing inp.

In light of the above discussion, for a xed market, the left-had side of equation[[2R)
can be viewed as a function of 2 and p. Denoting this function by ( 2;p), we have
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5;p) =0 and (using (23) andd '=d * > O

@ _ d @ “ydr d (G 31
@2 d! dn(1) d2 d2 dn(?

<0

where we use g to denote the equilibrium threshold 2 for prior p. It thus su ces to
show that @ =@p:- ; > 0. For, we then have ( ;ip+ ) > 5p)=0for > 0,

and thus 7, thatsolves ( ;. ;p+ )=0 must be strictly above 7.

p
To complete the proof we thus show that® =@)p.- ;> 0. Denoting the equilibrium

threshold * for prior p by J, we have
@ . _ 2; 1J1)21 1 (; 2;1)22 1) i
@ZJ =5 - dn( 1)2 ( ) dn( 2)2 ( ) = 5

gl 2, 125 1 Ggh) 5 §
dn( 2) dn( ) dn( 2  dn( 2 dn( }) dn( 2

where the second equality follows fromi_(22), and the inequigiifollows as ( ; g; 1)< 0.

To see the latter, observe rst, that (; 21)j .- > =0 and @(é—;?” < 0 by the proof

of Lemmal2, and, second, that fom 2 f D;Hg, 2 > 2 for any p.
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Limit order Book minus Dealer Market Limit order Book minus Hybrid Market Hybrid Market minus Dealer Market
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03|+ + + + + + + + + - - - - - - - - - + + + 4+ + + + + 4+
04+ + + + + + + + + - - - - - - - - - + + + 4+ + + + + 4+
o5+ + + + + + + + + - - - - - - - - - + + + 4+ + + + + 4+
06|+ + + + + + + + + T T S R S R S S
07+ + + + + + + + + T N S S S S R S S
075+ + + + + + + + + - - - - - - - - - + + + 4+ + + + + o+
08|+ + + + - + - - + - - - - - - - - - + + + 4+ + + + + 4+
0.85]| - - - - - - - - - - - - - - - - - - + + + + + + + + 4+
01|+ + + + + + + + + - - - - - - - - - + + + 4+ + + + + 4+
02|+ + + + + + + + + - - - - - - - - - + + + 4+ + + + + 4+
03|+ + + + - - - - - - - -+ o+ o+ o+ o+ o+ + o+ o+ o+ - - - -
04| + + - - - - - - - -+ + o+ + + 4+ o+ o+ + + - - - - - - -
05| + - - - - - - - - - + + + + o+ o+ o+ o+ + - - - - - - - -
06| - - - - - - - - - + + + + + + + + o+ - - - - - - - - -
0.7 - - - - - - - - - + + 4+ + + + + + o+ - - - - - - - - -
075 - - - - - - - o+ o+ o+ o+ o+ o+ o+ o+ o+ - - - e e e e e
08| - - - - + - - + - + + + 4+ + + o+ o+ 4+ - - - e e e e e
08|+ + + + + + + + 4+ + + + 4+ + + + + o+ - - - - - - - - -
09|+ + + + + + + + + + + + 4+ + + + + o+ + + + 4+ + + + + o+
095 |+ + + + + + + + + + + + 4+ + + + + o+ + + + 4+ + + + + 4+
Table I: Dierences of Averages and Standard Deviations for Price Di stributions.  This table is based on the

simulations of the closing prices. Rows denote the level of infeed trading , columns denote the entry rate . The top half
of the table reports the sign of the di erence of the averageading prices for a specic ( )-combination between two markets
that are named at the top of the table. The bottom half of the tdle reports the sign of the di erence of the standard deviation
of closing prices. As the underlying true value i¥ = 1, the higher a price is, the closer it is to the true value and tA more
e cient it is. Thus a positive di erence of the average closing pices indicates that prices in the rst named market are more
e cient. A positive di erence of the standard deviations of closing prices indicates that prices in the rst named market are
more dispersed.



entry rate level of informed trading
2 3 4 5 6 7 8 1l 2 3 4 5 6 7 8 .9
=02\ - - - + + + + p=:1]- - - - - - - - -
0.5 - - - -+ o+ o+ 2 - - - 4o
0.8 - - - - - - 3 - - .o
9 10 11 12 13 14 15 4 S
0.2 + + + + + + + 5 e T T T S
0.5 + + + + + o+ o+ .6 + + + + - - - - -
0.8 - - -+ o+ o+ 4+ g + + 4+ + 4+ + 4+ + -
8 + + 4+ + + + + + o+
9 + + 4+ + + + + + o+
Table II: Di erences of Average Closing Prices and Price Impacts: Tra nspar-

ent vs. Opaque Hybrid Market. The left table displays the sign of the di erence
of the average closing prices between the transparent and opagmarkets as Tabld]l.
The right table displays the sign of the di erence of expected price impacts tvesen the
transparent and opaque markets. A positive sign indicates thahe transparent market
iS more e cient.
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E g '
: £ |
§ 0.00506 4 % /
> 0.01- l
»
0.00251 ¢ (]
s : |
m m
Limit Order minus Hybrid Market Hybrid minus Dealer Market
Figure 3: Volume in Limit Order, Dealer and Hybrid Markets. Each panel

plots the dierence of volumes that arise under the two named arket mechanisms.
Volume here is a function of the priorp, and the level of informed trading, , as de ned
in Subsection[IMLG. The graph projects the volume di erence s that is on the
horizontal axis. Positive values indicate that the volume in lhe rst named market
exceeds that in the second.
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Figure 4: First Order Stochastic Dominance of Closing Prices for = 5.

The panels plot di erences of empirical distributionsFp F_, Fp Fy and F.  Fy.

A graph that has only positive values indicates rst order stochstic dominance. As
Fo F_L > 0 for all prices, the distribution of closing prices in the limitorder market
rst order stochastically dominates that in the dealer market. Thus prices in the limit

order market are systematically higher and more e cient. Sinmarly for F, Fy and

F. Fu.
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Limit Order minus Dealer Limit Order minus Hybrid Hybrid minus Dealer

Figure 5: The Di erence of Price Impacts. The three panels plot the di erence of
expected price impacts as de ned in Subsectidn JVID. This dince is a function of
the probability of informed trading and the prior p. We display it here as a projection
such that is on the horizontal axis. If for a given the graph is entirely above the
horizontal axis, then for that , price movements in the rst named market are stronger
in the direction of the fundamental and this market is thus moee e cient.

37



SOSD Hybrid opaque vs transparent SOSD Hybrid opaque vs transparent SOSD Hybrid opaque vs transparent

80
40
25

cedf(LOB)-ccdf(hybrid)
40 60
1 15 2

20
ccdf(LOB)-cedf(hybrid)

5

0
0
0

K 4 6 4 4 E
price price price

=2 =5 =8
Figure 6: Second Order Stochastic Dominance of Closing Prices for Tra nspar-
ent vs. Opaque HybridgMarkets. The panels plot di erences of cumulations of the

empirical distributions, Op[Fopaque(s) Ftransparen{s)]ds, for =0:2;0:5;0:8. Since the
values are always positive, the distribution of closing priceer the transparent mecha-
nism second order stochastically dominates that for the opaqueae Prices under the
transparent mechanism are therefore less dispersed.

E(price hybrid transparent)-E(price hyrbid opaqt
E(price hybrid transparent)-E(price hyrbid opaqt

Figure 7. The Dierence of Price Impacts Transparent vs. Opaque Hybri d
Market. The panels are analogous to Figurig 5 and plot the di erence tlie expected
price impacts between the transparent and the opaque hybrid arkets. The left panel
plots a projection such that the probability of informed tradng is on the horizontal
axis. Theright panel plots a projection such that the priorp is on the horizontal axis.
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6€

Result | Economic Variable

| Order of Markets

Existing empirical evidence

Proposition B (a) market width, small trades

dealer< hybrid < LOB

Nimalendran and Petrella (2003)
(LOB vs. hybrid)

lower execution costs (support for
small trade part of our results)

Proposition B (a) market width, large trades

LOB < hybrid < dealer

Domowitz (2002) (dealer vs. hybrid)
Naik and Yadav (2004) spreads for large
trades decrease dealer vs. hybrid

price impact small trades
Proposition 3 (b)

price impact large trades

LOB & hybrid LOB <
< dealer< hybrid dealer

hybrid dealer < dealer<
< LOB < hybrid LOB

Domowitz (2002) (dealer vs. hybrid)
Smith, Turnbull, and White (2001)
(hybrid only: Toronto)

Booth, Lin, Martikainen, and Tse (2002)
(hybrid only: Helsinki)

Bessembinder and Venkataraman (2004)
(hybrid only: Paris):

upstairs (dealer) trades have lower price
impact than downstairs (LOB) trades
Madhavan and Cheng (1997) (NYSE): upstairs
price impact lower for large trades

behavior not time-invariant

Proposition & dealer and hybrid markets

have contrarian tendency

in dealer and hybrid markets,

contrarianism:
Chordia, Roll, and Subrahmanyam (2002)
Alevy, Haigh, and List (2007) (experimental)

('\)lLt;rsneerC;::)n[]] volume dealer< hybrid < LOB
small & medium

Numerical price informativeness dealer LOB hybrid

Observation[2 (average closing prices) large

LOB hybrid dealer

Table Ill: Testable Implications from the Three-way Comparison.

predictions that this paper generates.

This table summarizes the main results and testable



ov

Result

Description

Existing empirical evidence

Proposition [

self selection of traders in hybrid markets:
relatively more uninformed traders

trade large quantities in the dealer market,
relatively more uninformed traders trade
small quantities in the LOB

Smith, Turnbull, and White (2001) (Toronto)
Booth, Lin, Martikainen, and Tse (2002) (Helsinki)
Bessembinder and Venkataraman (2004) (Paris):
upstairs (dealer) trades have lower information
content than downstairs (LOB) trades

Proposition

hybrid market: more small transactions
in the LOB segment; more large
transactions in the dealer segment;
more transactions total in LOB segment

de Jong, Nijman, and Roell (1995): more small trades on
Paris Bourse (LOB) more large trades on LSE (dealer)
Viswanathan and Wang (2002) (NYSE): large orders

lled by dealers, small orders lled in the LOB

Booth, Lin, Martikainen, and Tse (2002) (Helsinki):
upstairs trades are larger

Numerical
Observation[3 (a)

hybrid market transparency vs. opaqueness:
with many traders, prices are more e cient in
the transparent market; with few traders, prices
are more e cient in the opaque market

Numerical
Observation[3 (b)

hybrid market transparency vs. opaqueness:
prices in the transparent market second order
stochastically dominate those in the opaque one

Table IV: Testable Implications for the Hybrid Market.
our model that pertain to the hybrid market only.

This table summarizes the results and testable predications of
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