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Abstract

We provide a three way theoretical comparison of dealer, limit order, and

hybrid markets and analyze the impact that the organizationof trading has

on volume, liquidity, and price e�ciency. We �nd, in particu lar, that trading

volume is highest in the limit order market and lowest in the dealer market.

Small order price impacts are lowest and large order price impacts are highest

in limit order markets. Prices are most e�cient in the hybrid market and

least e�cient in the dealer market, except when the level of informed trading

is very high. Post-trade market transparency in a hybrid market hampers

price e�ciency for thinly traded securities. We further identify that traders

behave as contrarians.
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Intra-day �nancial market trading is organized using two major mechanisms: order

driven and quote driven trading. Order driven markets typically employ a public limit

order book. In quote driven markets, all trades are arranged by designated institutions

that post quotes. The latter markets are commonly referred to as dealer markets. Many

real world markets are hybrids, combining both organizational forms.1

The coexistence of competitive limit order and dealer markets and the di�erences

in their trading outcomes have long been challenged by academic research. Madhavan

(1992) shows that, with competitive liquidity provision, a quote driven system and a

uniform price order driven system lead to identical outcomes. Glosten (1994) and Back

and Baruch (2007) argue that a quote driven system that competes with a discriminatory

limit order book in an anonymous market would mimic the limitorder book.

Our paper builds on this line of research but serves a di�erent purpose. We posit non-

anonymity, in the sense that repeat order submissions are identi�ed, and thus e�ectively

take the coexistence of the mechanisms as given. Our goal is to describe the relative

advantages and disadvantages of the three trading systems: a discriminatory limit order

book, a dealer market, and a hybrid market.

Our major contribution is twofold. First, we provide an integrated theoretical frame-

work that admits a three-way comparison. The di�erences in trading outcomes of the

three trading mechanisms in our setting highlight, in particular, the signi�cance of the

discriminatory order book and post-trade market transparency. Second, we employ our

framework to derive novel empirical predictions for the impact of the organization of

trading on volume, liquidity, and price e�ciency. In comparing competitive markets,

we complement the literature on markets where liquidity providers have market power

(e.g., Seppi (1997)), which we discuss below.

Limit order and dealer markets di�er in many aspects. One de�ning feature of the

systems is the level of market transparency enjoyed by the liquidity providers. Limit or-

ders are posted prior to the liquidity demand realization, whereas dealers' quotes account

for the order size. We show that this di�erence in the liquidityproviders information

both yields new empirical predictions and explains a large share of the previously noted

heterogeneity among the trading outcomes.

The liquidity providers in the dealer market are able to determine the information

1See Harris (2003) for a comprehensive list. For example, on the NYSE and the Toronto Stock
Exchange, traders can either send orders directly to the limit order book (the \downstairs" market)
or arrange trades via oor brokers (NYSE) or \upstairs" dealers (Toronto) ; on Nasdaq, trades can be
arranged on INET or through a dealer. Finally, a hybrid structure also arises when a limit order book
competes with a dealer market. An example is Paris Bourse (a limit order market) and London Stock
Exchange (a dealer market, until recently), which compete for the order ow in cross-listed stocks.
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content of a transaction most accurately. The high level of transparency on the side

of liquidity suppliers, however, lowers liquidity demanders'rents and causes them to

trade less aggressively. The e�ciency gain that stems from the dealers' informational

advantage is thus muted by the lowest trading volume. We �nd that the liquidity demand

reduction e�ect dominates, so that the lack of trading activity renders the dealer market

to be least informationally e�cient, except when the level ofinformed trading is very

high. The hybrid market combines the limit order market's aggressive order submission

with the dealer market's superior screening ability and yields the most e�cient prices.

We thus reject the commonly argued hypothesis that the presence of the upstairs dealer

who absorbs a large fraction of uninformed order ow (\skims the cream") necessarily

hurts the main (limit order book) exchange participants.

Our model has the following structure. Liquidity demanders trade either for reasons

outside the model (e.g., to rebalance their portfolio), or they have private information

about the security's fundamental value and optimally choose the size and direction of

their trade (or abstain from trading). Liquidity is supplied by competitive, uninformed,

and risk-neutral institutions, as in standard market microstructure models in the tradi-

tion of Kyle (1985) and Glosten and Milgrom (1985).2

In the dealer-market, the liquidity providers observe the order ow and then compete

for it in a Bertrand fashion. The equilibrium price aggregates the information contained

in the order ow. In the limit order market, liquidity provid ers post a schedule of buy and

sell limit orders, each for the purchase or sale of a speci�c numberof units. We assume

a \discriminating" order book design, as in Glosten (1994), andthe prices incorporate

the information revealed when the respective limit order is \hit" by a market order of

the same or larger size. The bid- and ask-prices in this setting are the \lower-tail" and

\upper-tail" conditional expectations of the security value. One additional contribution

of our paper is thus in formulating a model that tractably integrates both a limit order

book and a dealer market in a multi-unit Glosten and Milgrom sequential trading setup.

Our setup builds on Easley and O'Hara (1987) who study a dealer market where an

imperfectly informed trader, equipped with a signal of either high or low quality, submits

a large or a small order and usually chooses a mixed strategy.3 Our methodological

innovation is that we employ private signals of acontinuum of qualities. We are then able

to focus on pure strategies and concisely characterize the equilibrium by the marginal

buyers and sellers. These marginal traders, and hence a trader'schoice of the order size,

2We further discuss the institutional features of dealer markets at the end of Section II.
3The setting is also related to Ozsoylev and Takayama (2008) who characterizean equilibrium of a

dealer market where perfectly informed traders can choose among multiple size orders.
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are endogenous to the market organization. This endogeneity and the fact that traders

with more precise information prefer to submit larger orders are the key to our results.

Liquidity providers in dealer markets know the order size andare thus intrinsically

better at pin-pointing the information content of a trade. Asa result, when markets are

operated in isolation, small trades receive better executionprices in the dealer market

(that is, the bid-ask spread is smaller)4 and large trades are cheaper in the limit order

book. In a hybrid market, traders are additionally allowed to choose the segment to trade

in. Consequently, in equilibrium, trading costs in a hybrid market for each order size

must be the same across the two mechanisms. We show that to equalize the equilibrium

trading costs, the dealer segment of a hybrid market must absorb most large trades,

whereas the limit order segment will absorb most small trades. Thetotal number of

transactions in the limit order segment is larger than that in the dealer market segment.

Further, large orders in the dealer market segment will have lower information content.

The results on the information content of trades are closely related to Seppi (1990)

and Grossman (1992). Seppi studies the behavior of a single, possibly informed, large

institution and �nds, in particular, that repeated interacti ons among the exchange par-

ticipants lead to routing of the uninformed trades to the o�-exchange dealers. In Seppi,

both the on exchange specialists and the o� exchange dealers setprices according to a

Kyle (1985)-style dealer market pricing rule. Grossman studiesthe relation of upstairs

and downstairs markets, both of which employ uniform pricing rules. In his model some

traders may leave a non-binding indication to trade with theupstairs dealers, which

increases the e�ective liquidity in the upstairs segment. We complement this line of

research by studying traders' self-selection into dealer and limit order segments, where

the latter employs a discriminatory pricing rule.

Our analysis further shows that the behavior of traders in the dealer and hybrid

markets is not stationary. For instance, as prices drop, unfavorably informed traders

submit sell-orders less aggressively and favorably informed traders submit buy orders

more aggressively, thus acting ascontrarians. This result is supported by recent empirical

�ndings (see Chordia, Roll, and Subrahmanyam (2002)) and we thus contribute to the

literature by providing theoretical underpinnings for rational contrarian behavior.

In the second part of our paper, we compare market widths, priceimpacts, price

e�ciency, and trading volume in the three trading mechanisms:pure dealer markets,

pure limit order books, and hybrid markets. In addition to the aforementioned results

on e�ciency and execution costs, we �nd that trading volume is the highest in the

4This property is known as the \small trade spread" and was previously shown, e.g., in Glosten
(1994).
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limit order market and the lowest in the dealer market. Finally, price impacts of small

orders are stronger in dealer markets and those of large ordersare stronger in limit order

markets.

Our results on the price impacts of small trades may seem surprising at �rst: despite

the smaller spreads, price impacts are larger in the dealer markets. To understand this,

recall that small order prices in the limit order book accountfor the fact that the order

might be large. Consequently, when a small order executes in a limit order book, the

transaction price overshoots. The market participants will correct their expectations

of the security once they know the order size, and the permanentprice impact of the

transaction will be smaller.

In the hybrid market this correction only occurs if there is post trade transparency in

that market participants observe the segment that the order cleared in. The �nal result

of our paper describes how a lack of post-trade transparency a�ects price e�ciency. We

�nd that noisier learning in an opaque market reduces market e�ciency in frequently

traded stocks. Interestingly, when trading activity is low, the e�ect of noisier learning is

outweighed by that of larger price adjustments, and the opaquemarket is more e�cient.

Other aspects of transparency have been studied in the literature. Pagano and Roell

(1996) compare transparency of a uniform price auction with adealer market system.

Brown and Zhang (1997) combine a Kyle (1985)-style and a rational expectations style

setup to study dealers' decisions to participate in a market, andto describe how deal-

ers' decisions to supply liquidity a�ect the informational e�c iency of prices. Boulatov

and George (2008) analyze the e�ects of transparency in a uniform price market with

informed and strategic liquidity provision.

Finally, market structures have also been compared in the literature that studies

the strategic provision of liquidity.5 Seppi (1997) studies a hybrid market, in which a

monopolistic specialist competes with a pure limit order book,as is the case on the

NYSE. He �nds, in particular, that small orders receive better executions in the hybrid

market whereas medium orders receive better executions in the pure limit order market.

Parlour and Seppi (2003) extend Seppi (1997) by studying competition between these two

exchanges. Buti (2007) builds on Seppi (1997) and adds relationship trading and price-

quantity based screening by the specialist. We complement these studies by analyzing

hybrid markets wherecompetitive dealers compete with the limit order book, as is the

case on many major equity markets.6

5Most papers on the strategic provision of liquidity are based on either Parlour (1998) or Foucault
(1999); for an extensive up-to-date survey of the literature on limit order markets see Parlour and Seppi
(2008).

6Examples are Nasdaq (dealer vs. INET), Toronto Stock Exchange (upstairsvs. downstairs), LSE
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The remainder of this paper is organized as follows. Section Iintroduces the model.

Section II derives the equilibria for the three trading mechanisms. Section III develops

testable predictions for the hybrid market. Section IV compares the three mechanisms

with respect to execution costs, volume, and price e�ciency. Section V analyzes the

impact of post-trade transparency in the hybrid market. Section VI discusses the results

and possible policy implications. Appendix A derives properties of traders' information

structures, Appendix B outlines the simulation procedures, and Appendix C contains all

proofs. Most �gures and tables are at the end of the manuscript, in particular, Tables III

and IV, which summarize our �ndings and existent empirical support for our predictions.

I The Basic Setup

A General Market Organization

We consider a stylized model of security trading, in which informed and uninformed

traders trade a single security by submitting market orders. At each discrete point in

time there is exactly one trader who arrives at the market according to some random

process. These individuals trade upon their arrival and only then. Short positions are

�lled at the true fundamental value.

Liquidity is supplied by uninformed, risk-neutral institutions that compete for order

ow and earn zero expected pro�ts. In the limit order market, the liquidity providers

post a series of limit buy- and sell-orders. The former constitutes a series of ask-prices,

the latter a series of bid-prices. Each price is for a single unit(i.e. a round lot). Traders

post market orders after observing these prices.7 In the dealer market, the trader posts

his market order �rst and the liquidity providing dealers then compete in a Bertrand

fashion for this order.8 In a hybrid market, both systems coexist.

B Model Details

Security: There is a single risky security with a liquidation valueV from a set of two

potential values,V 2 f 0; 1g, with Pr(V =1) = 1=2:

Traders: There is an in�nitely large pool of traders out of which one isdrawn at

each point in time at random. Each trader is equipped with private information with

vs. Paris Bourse (for cross listed stocks), or Deutsche B•orse (makler vs. XETRA).
7When referring to a liquidity provider in singular, we will use the female form and for liquidity

demanders we will use the male form.
8At the end of Section II we will formally argue that our model can accommodate public dealer

quotes.
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probability � > 0; if not informed, a trader becomes a noise trader (probability 1 � � ).

The informed traders are risk neutral and rational.

Noise traders have no information and trade randomly. These traders are not neces-

sarily irrational, but they trade for reasons outside of this model, for example to obtain

cash by liquidating a position.9 To simplify the exposition, we assume that noise traders

make trades of either direction and size with equal probability.

Trade Size: All trades are market orders for round lots. The order at timet is

denoted byot whereot < 0 indicates a sell-order andot > 0 is a buy-order. Traders can

submit a large order,jot j = 2, a small order, jot j = 1, or abstain from trading, ot = 0.

C Information

Public Information: The structure of the model and the prior distribution of fun-

damentals is common knowledge among all market participants. The identity of a

trader and his signal are private information. The public information H t at date t > 1

is the sequence of ordersot and realized transaction prices at all dates prior tot:

H t = (( o1; p1); : : : ; (ot � 1; pt � 1)). H1 refers to the initial history before trades occur.

Liquidity Providers' Information: In the dealer market, the liquidity providers

know the public history H t and the orderot . In the limit order market, liquidity providers

do not know which order will be posted at timet, and their information is only H t .

Informed Traders' Information: We follow the sequential trading literature in

the tradition of Glosten and Milgrom (1985) (henceforth: GM)and assume that traders

receive a binary signal about the true liquidation valueV. These signals are private, and

they are independently distributed, conditional on the value V. Speci�cally, informed

trader i is told \with chance qi , the liquidation value is High/Low (h/ l)" where

Pr(signaljtrue value) V = 0 V = 1

signal = l qi 1 � qi

signal = h 1 � qi qi

This qi is the signal quality. In contrast to most of the GM literature, we assume

that these signals come in acontinuum of qualities and that qi is trader i 's private

information. The distribution of qualities is independent of the security's true value

and can be understood as reecting, for instance, the distribution of traders' talents to

analyze securities. Figure 2 illustrates the distribution of noise and informed traders

9Assuming the presence of noise traders is common practice in the literature on micro-structure with
asymmetric information to prevent \no-trade" outcomes �a la Milgrom and Sto key (1982).
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Figure 1: Illustration of signals and noise. This �gure illustrates the mechanics of our signal
distribution: �rst, it is determined whether a trader is informed (probability � ) or noise (probability
1 � � ). If informed, the trader obtains a signal quality. Next, he receives the \correct" signal (h when
V = 1 and l when V = 0) with probability qi and the \wrong" signal with probability 1 � qi . (The
draw of V is identical for all agents.) If the trader is noise, he will be a large and small buyer and seller
with equal probabilities.

and the information structure.

In what follows, we will combine the binary signal (h or l) and its quality on [1=2; 1] in a

single variable on [0,1], namely, the trader'sprivate belief that the security's liquidation

value is high (V = 1). This belief is the trader's posterior onV = 1 after he learns his

quality and sees his private signal butbeforehe observes the public history. A trader's

behavior given his private signal and its quality can then be equivalently described in

terms of the trader's private belief. This approach allows us to characterize the equilibria

in terms of a continuous scalar variable (as opposed to a vector) and thus simpli�es the

exposition.

The private belief is obtained by Bayes Rule and coincides with the signal quality

if the signal is h, � i = Pr(V = 1jh) = qi =(qi + (1 � qi )) = qi . Likewise, � i = 1 � qi if

the signal is l . In what follows, we will denote the density of private beliefsby f 1(� )

when the fundamental isV = 1 and by f 0(� ) when V = 0. Appendix A eshes out how

these densities are obtained from the underlying distributionof qualities and it provides

a numerical example.
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II Dealer, Limit Order and Hybrid Markets

In what follows, we will focus on the buy side of the market; analogous results apply to

the sell side. We will useL for the limit order market, D for the dealer market, andH

for the hybrid market. When discussing �ndings for the hybrid market, we write HL for

the limit order segment andHD for the dealer market segment.

The Trader's Decision. An informed trader receives his private signal, observes

all past trades, and can trade upon arrival and only then. In thelimit order market, he

observes the posted prices, in the dealer market, he forms expectations about the price

that he would be quoted, conditional on each order size. The trader chooses the order

size to maximize his expected pro�ts or abstains from trading if he expects to make

negative trading pro�ts.

Denote the total execution cost of a sizeot order by Ct (ot ). To compress notation,

we write the expectation of a trader with belief� after history H t asE[V jH t ; � ] =: Et � .

Then the payo� to submitting a buy order of sizeot for this trader is ot � Et � � Ct (ot ).

A trader's expectation is increasing in the private belief. We thus focus on monotone

decision rules, i.e. the higher the trader's belief is, the morehe wants to buy. Speci�cally,

we assume that traders use a \threshold" rule: they buy two units if their private belief �

is at or above the time-t buy threshold � 2
t , � � � 2

t , they buy one unit if their belief is at

or above� 1
t but below � 2

t , � 2 [� 1
t ; � 2

t ), and they do not buy otherwise. To simplify the

exposition, we will henceforth omit subscriptt.

The marginal buyer of two units, � 2, is indi�erent between buying one and two

units. The marginal buyer of one unit,� 1, is indi�erent between buying one unit and

abstaining. Consequently,� 1 and � 2 solve respectively

1 � E� 1 = C(1); 2 � E� 2 � C(2) = 1 � E� 2 � C(1): (1)

Price Setting: Limit Order Book. The liquidity providers anticipate the traders'

behavior given the marginal buyers� 1
L; � 2

L. The limit orders account for the information

content of the market orders that they would be executed against. The limit order prices

are the ask prices. The priceask1L is the price for the �rst unit sold by liquidity providers,

and it accounts for the fact that this unit is purchased by demanders of order sizeo � 1.

The priceask2L is the price for the second unit, and it accounts for the fact that the trade
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size iso = 2. As liquidity providers earn zero expected pro�ts, it must hold that 10

ask1L = E[V j trader buys o � 1 units at f ask1L; ask2Lg; H t ];

ask2L = E[V j trader buys o = 2 units at f ask1L; ask2Lg; H t ]:

Price Setting: Dealer Market. Since the liquidity demanders submit their orders

before prices are posted, the information available to a dealer includes the size of the

order. This implies that traders pay a uniform price for eachunit that they buy. 11

Although traders do not know the price of their transaction before posting a market

order, given the marginal buyers� 1
D; � 2

D, they can perfectly anticipate the quote. In

light of this, we will henceforth refer to prices for buy orders as ask-prices. Then

ask1D = E[V j trader buys o = 1 unit at f ask1Dg; H t ];

ask2D = E[V j trader buys o = 2 units at f ask2Dg; H t ]:

Finding the Equilibrium. In the limit order market, we have CL(1) = ask1L and

CL(2) = ask1L + ask2L. Then the marginal buyers' indi�erence conditions (1) can then be

rewritten as

ask1L = E� 1
L; and ask2L = E� 2

L: (2)

In the dealer market, we haveCD(1) = ask1D and CD(2) = 2 ask2D, and conditions (1) can

be rewritten as

ask1D = E� 1
D; and ask2D =

1
2

(E� 2
D + ask1D): (3)

In the limit order market, the �rst unit is bought by traders wh o demand one or two

units. In the dealer market, the single unit is purchased only bytraders who demand

just one unit. Let � o
v;m denote the probability that there is a buy ofo 2 f 1; 2g units

when the value of the security isv 2 f 0; 1g in market m 2 f L; Dg,

� 1
v;L = 2� + � (1 � Fv(� 1

L)) ; � 2
v;L = � + � (1 � Fv(� 2

L)) ;

� 1
v;D = � + � (Fv(� 2

D) � Fv(� 1
D)) ; � 2

v;D = � + � (1 � Fv(� 2
D)) :

The probability that a given trader is informed is independent of other traders' identities

and the security's liquidation value. As private beliefs are independent conditional on

the security's value, so are traders' actions. Suppressing indices L and D, the ask prices

for unit o 2 f 1; 2g and the expectation of the marginal trader� o can be written explicitly

10This pricing rule is analogous to the one in Glosten (1994).
11This pricing rule is identical to the one used in Easley and O'Hara (1987); a more recent contribution

is Ozsoylev and Takayama (2008).
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as

asko =
� o

1p
� o

1p + � o
0(1 � p)

; E� o =
� op

� op + (1 � � o)(1 � p)
: (4)

Hybrid Markets. Most real world equity markets operate with a hybrid structure

where traders have the choice of either arranging their trade with a dealer or posting it

to the limit order book.12 We now consider a trader's choice of order size and trading

venue. We focus on the arguably most realistic scenario where both small and large

quantities are traded in both market segments.13

In the isolated markets, the equilibrium description contained, loosely, information

about who traded how manyunits. In hybrid markets, the equilibrium description must

additionally include information about where someone trades. Suppose now that all

order sizes are traded in each segment. Then the execution costsfor orders of the same

size must coincide across the two market segments because otherwise traders would

switch to the cheaper segment. Put di�erently, in equilibriumtraders must now self-

select into market segments in such a way that trading costs coincide.

This cost equalization implies, in particular, that the marginal informed traders

coincide in both market segments. Prices will then depend on the proportion of informed

to noise traders. In equilibrium, loosely, the proportion must be such that it ensures

equal costs across market segments. There are several ways to model the implied self-

selection. We approach it by assuming that informed traders trade in each segment

with equal chance, and we then study the self-selection of noise traders that yields the

equilibrium.14

Speci�cally, let � o
m denote the mass of noise traders that submit buy orders of sizeo 2

f 1; 2g to market segmentm 2 f HL; HDg. We then express� o
v;m , the probability of a buy

for fundamental v 2 f 0; 1g, as

� 1
v;HL = � 1

HL + � 2
HL + � (1 � Fv(� 1

H))=2; � 2
v;HL = � 2

HL + � (1 � Fv(� 2
H))=2;

� 1
v;HD = � 1

HD + � (Fv(� 2
H) � Fv(� 1

H))=2; � 2
v;HD = � 2

HD + � (1 � Fv(� 2
H))=2:

12For instance, on the Toronto Stock Exchange traders can approach an upstairs dealer or they can
send their order directly to the consolidated limit order book. Some systems are more complex: for
instance, on NYSE, a market order that arrives at the specialist's desk could be �lled with the current
book, with the specialist or with oor brokers who opt to participate, or the specialist can auction the
order to oorbrokers. On Nasdaq, small orders are routed to dealers according to aset of rules. We
abstract from these institutional subtleties, and focus on the main distinction between the two general
systems.

13In Grossman (1992) there are corner solutions in whichall order ow gravitates towards a speci�c
trading mechanism while the other disappears. Our model also admits corner solutionsbut they have
a di�erent avour: each mechanism attracts a unique order size and both remain in operation. The
existence result for corner solutions has been omitted to save space.

14In Section VI we discuss extensions of our model.
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Ask prices and traders' expectations are expressed in the same way as in (4). We main-

tain the assumption that liquidity traders demand each quantity with equal probability,

thus � o
HD = � � � o

HL and we will use only� o = � o
HL. We then �nd the equilibrium by de-

termining (a) the marginal buyers who are indi�erent between trading oneand two units

(� 2
H) and one and no units (� 1

H) and (b) the noise masses� 1; � 2 that ensure equal costs.

This gives rise to the following four equations that� 1
H; � 2

H; � 1; � 2 solve in equilibrium

CHL(1) = CHD(1); CHL(2) = CHD(2); E� 1 = C(1); 2 � E� 2 � C(2) = 1 � E� 2 � C(1): (5)

CostsCHL(1); CHD(1) are the ask-prices,CHD(2) = 2 � ask2HD , and CHL(2) = ask1HL + ask2HL.

Theorem 1 (Existence in Limit Order, Dealer, and Hybrid Mark ets)

For any prior p 2 (0; 1)
(a) [Limit Order Market] there exists a unique symmetric equilibrium with marginal

beliefs1=2 < � 1
L < � 2

L < 1 that solve the equations in (2);

(b) [Dealer Market] there exists a unique symmetric equilibrium with marginal

beliefs1=2 < � 1
D < � 2

D < 1 that solve the equations in (3);

(c) [Hybrid Market] there exists a unique symmetric equilibrium with marginal

beliefs1=2 < � 1
H < � 2

H < 1 and noise levels� 1; � 2 that solve the equations in (5).

(d) [Monotonicity] The decision rules in(a) � (c) are monotone: traders with private

beliefs� < � 1 do not buy, traders with private beliefs� 2 [� 1; � 2) buy one unit, and

traders with private beliefs� 2 [� 2; 1] buy two units.

Public Dealer Market Quotes. Our treatment of price formation in the dealer

market is stylized: people submit their market orders withoutknowing the price and

there are no standing quotes from dealers. In real markets dealers do publicly quote bid

and o�er prices. Moreover, in many markets, dealers are required to trade a guaranteed

minimum number of units at these quotes (for instance, for most stocks a Nasdaq dealer's

quote \must be good" for 1,000 shares). On some exchanges, e.g. theTSX, the upstairs

dealers are required to trade at the best bid or o�er (BBO) thatare currently on the

book, unless the size of the trade is very large. Exchanges thatuse small-order routing

systems (i.e. small orders are given to dealers according to a pre-determined set of rules)

require dealers to \improve prices" to at least match the BBO.

These institutional details are compatible with our setup. First, in the equilibrium

of our model traders can perfectly anticipate the price thatthey will be quoted if they

approach a dealer. Second, our model can be rewritten to accommodate (a) public

quotes in the dealer market and (b) minimum �ll sizes for these quotes. In this rewritten

version of the model, the quoted ask price would beask2D, the price for a large order.
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When facing a small order, the dealer would then improve the price to ask1D. This

alternative setup would also satisfy the BBO rule for hybrid markets. We chose our

current formulation to simplify the exposition.

III Testable Predictions for the Hybrid Market

The hybrid market equilibrium is determined by the marginaltraders and by the frac-

tions of noise traders in each market segment, which in turn a�ect the informativeness

of trades.

Suppose a small trade arrives in the dealer market segment. Thenthe dealer knows

that the trade stems from an informed trader with belief� 2 [� 1
H; � 2

H) or from a noise

trader. The �rst unit in the limit order segment, on the other hand, is hit by orders

from informed traders with beliefs� 2 [� 1
H; 1]. Ceteris paribus, this should make the

single unit trade in the limit order segment more informative and thus more expensive.

To have equal costs, intuitively, there must be more noise in the limit order segment.

The reverse applies to large orders. The following result con�rms this intuition.

Proposition 1 (Trade Informativeness in the Hybrid Market E quilibrium) The

ratio of noise to informed traders of small size orders is largerin the limit order seg-

ment, and the ratio of noise to informed traders of large size orders is larger in the dealer

segment.

Proposition 1 provides a theoretical basis for the empirical �nding that upstairs markets

|which loosely correspond to the dealer market segment| are better at identifying

uninformed trades. Our result shows that the co-existence of thetwo major trading

mechanismsnecessarilyimplies that more uninformed traders seek to trade large quan-

tities with dealers.

The information content of trades implied by Proposition 1 issimilar to that in

Seppi (1990), where a large, possibly informed trader has the choice between trading

anonymously on the exchange or non-anonymously o� the exchange. If he chooses the

latter option, he may be punished, due to repeated interactions, for \bagging the street".

This threat drives traders' self selection. Notably, the pricing mechanisms on and o�

the exchange in Seppi (1990) follow a Kyle (1985)-style dealer market pricing rule. We

thus complement Seppi (1990) by studying traders' self-selection into dealer and limit

order segments.

Since the mass of informed traders in either market segment is the same, Proposition 1

implies that there are more small noise trades in the limit order segment and more large
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noise trades in the dealer segment. We can further show that there are in total more

noise traders that trade either quantity in the limit order segment.

Proposition 2 (Transactions by Market Segment)
(a) There are more large transactions in the dealer segment thanin the limit order

segment; the reverse holds for small transactions.

(b) The limit order segment attracts more transactions than thedealer segment.

IV Comparison of the Three Trading Mechanisms

We will now analyze how the di�erent market mechanisms a�ect spreads, execution

costs, and volume and how e�cient the systems are relative to eachother. Our goal is

to generate testable predictions for these major observable variables.

A Spreads, Market Width, and Price Impacts.

We will �rst compare the trading mechanisms with respect to market liquidity, namely

market width and price impacts.

Market width (sometimes also referred to as market breadth) is the cost of doing

a trade of a given size. It is the dual of marketdepth, which measures the size of a

trade that can be arranged at a given cost.15 For small trades, the width is associated

with the bid-ask-spread. When people trade for informationalreasons, a larger width

indicates higher adverse selection costs and thus a lower willingness to provide liquidity.

We measure width for order sizeo by the dollar cost of a buy transaction,C(o).

The price impact reects how the market assesses the information content of a trade.

If the current transaction price and the public expectation coincide, then the price impact

is the di�erence between the current and the past transaction price. If they di�er, then

the price impact reects the permanent e�ect of a trade on prices.16 We quantify the

price impact by � pi = E[V jH t ; transaction of sizei at time t] � E[V jH t ].

15See Harris (2003), pp. 398-399, for the de�nitions of depth and width and for an extensive discussion.
16Loosely, permanent e�ects are associated with information transmission, temporary e�ects are

associated with uninformative inventory re-balancing. Empirically the price impact is measured as
the di�erence between the e�ective spread and the realized spread, where thee�ective spread is the
transaction price at time t minus the midpoint of the bid-ask-spread at t and the realized spread is
the transaction price at t minus the midpoint of the bid-ask-spread x minutes later at t + x (see, for
instance, Bessembinder (2003)).
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Proposition 3 (Liquidity Measures)
(a) Market width for small trades is ordered as follows:CD(1) < C H(1) < C L(1).

Market width for large trades is ordered as follows:CL(2) < C H(2) < C D(2).

(b) Price impacts of small trades are ordered as follows� p1
L; � p1

HL < � p1
D < � p1

HD .

Price impacts of large trades are ordered as follows� p2
HD < � p2

D < � p2
L < � p2

HL.

The intuition underlying these results is that liquidity providers in dealer markets are

intrinsically better at pin-pointing the information content of a transaction because they

know the order size before setting the price. While this lowerstraders' information rents,

those with lower quality information are better o� being identi�ed, as is demonstrated

by the lower spreads in the dealer market. For in the limit order market, very well

informed traders hide among the less well informed ones and thus earn a rent at their

expense.17

In GM models with single unit trades, the price impact is the change in the transac-

tion price. In our model, this remains true in the dealer market and the dealer segment

of the hybrid market. In the limit order market and the limit o rder segment of the

hybrid market, however, the public expectation of the security value coincides with the

transaction price only after large orders, but not after small orders.

To understand this point, observe that in limit order markets, the ask price for the

single unit trade accounts for the fact that all informed traders with belief � 2 [� 1; 1]

buy this unit. Yet after it is revealed that an arriving trader bought only one unit, it

is known that this trade was performed by an informed trader with belief � 2 [� 1; � 2]

(or by a noise trader). As a consequence, the price impact of smallorders in the limit

order segment is intuitively smaller than that implied by the transaction price. Hence

the displayed order of price impacts. Finally, numerical simulations reveal that � p1
HL

and � p1
L cannot be ordered.

B Dynamic Behavior

In the limit order market, the history of trades does not a�ecta trader's decision to buy

or sell. In the dealer market and hybrid market, the behavior is history dependent.

Proposition 4 (Behavioral Dynamics and Contrarianism)

As p traverses from 0 to 1,
(a) trading behavior does not change in the limit order market,

(b) all trading thresholds increase in the dealer market, and

(c) all trading thresholds increase in the hybrid market.

17The result that small trades are cheaper on dealer markets has been previously noted by, for
instance, Glosten (1994) or Seppi (1997).
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Part (a) is implied by expressions (2) and (4). In the dealer and hybridmarkets, however,

the marginal types change with the priorp. If the prior favours a trader's opinion, two

e�ects occur. First, the trader feels more encouraged by the public opinion. Second,

the marginal value of his information declines. Traders \herd" when the �rst e�ect

dominates so that they need lower quality signals to trade. Traders \act as contrarians"

when the second e�ects dominates so that they need higher quality signals. Proposition

4 shows the latter for the dealer and hybrid markets, in line with empirical observations

(see Chordia, Roll, and Subrahmanyam (2002)).

C Volume

The results in the remainder of this section are based on simulations of the trading

process for the case of a uniformly distributed quality (see the example in Appendix A).

Although our model describes single trader arrivals for each period, we can proxy

volume in market m 2 f L; D; Hg at prior p = Pr(V = 1) by the expected number of

units that will be traded upon the arrival of a trader,

volm =
X

v=0 ;1

X

o= � 2;� 1;1;2

joj � Pr(ojV = v; m; p) � Pr(V = v):

We computevol numerically on a �ne grid for the feasible parameters (the prior p and

the amount of informed trading� ) and �nd the following.

Numerical Observation 1 (Volume) For any prior p and any level of informed trad-

ing � , volume is ordered as follows:volL > volH > volD:

Figure 3 illustrates this numerical observation. The intuition for the �nding stems from

the behavior of the traders who submit large orders. In the dealer market, large order

traders are identi�ed, whereas in the limit order market they hide among the small

order traders. As a consequence, the marginal buyer of the largequantity has the

highest belief in the dealer market and the lowest belief in thelimit order market (we

show this formally in the proof of the existence theorem). Traders thus submit large

orders least aggressively in the dealer market and most aggressively in the limit order

market, which leads to the lowest and highest volumes respectively.

D Price E�ciency

Price e�ciency measures the closeness of a price to the fundamental value of a security.

We analyze it in two ways. First, we compute the expected price impact for each trading
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mechanism. Second, we simulate sequences of trades that mimic the arrival of traders

during a speci�c trading day. The �nal price after a sequence can be interpreted as

the closing price. We then base our analysis of price e�ciency onthe properties of the

expected price impacts and of the closing prices.

We perform our analysis of closeness for the fundamental valueV = 1.18 Then the

higher the public expectation, the closer it is to the true value. Thus higher price impacts

and closing prices are associated with a more e�cient market mechanism.

We measure the price impact by the change in the public expectation. We thus

compute numerically for all priorsp 2 (0; 1), levels of informed trading� 2 (0; 1) and

market mechanismsm 2 f L; D; Hg, using E[V jp] = p,

E[� pm jV = 1; p] =
X

o2f� 2;� 1;0;1;2g

Pr(ojV = 1; m; p) � E[V jo; m; p] � p: (6)

To simplify the exposition, we useE� pm for the expected price impact.

We obtain the simulated closing prices as follows. For each level of informed trading

� 2 f :1; : : : ; :9g we simulated 500,000 trading days with entry rates� 2 f 10; : : : ; 50g. For

each day, we generated random realizations for the number oftraders (a Poisson arrival;

parameter � ) and their entry order, traders' identities (noise vs. informed; parameter

� ), trading decisions for noise traders, and beliefs for informed traders (�xing the fun-

damental value toV = 1). The public expectation that obtains after these tradershave

acted is the closing price for that day.19 The signal quality distribution is assumed to

be uniform.

We assess closeness of closing prices to the fundamental value in two ways. First,

we compare the average closing prices. Second, we compare the empirical distribu-

tions of closing prices to see if one mechanism systematically yields higher and thus

more e�cient prices. \Systematically higher" in a distributio nal sense obtains if the

empirical distributions of prices can be ranked in the sense of �rst order stochastic dom-

inance. By de�nition, distribution Fx �rst order stochastically dominates distribution Fy

if Fx (p) � Fy(p) for all closing pricesp: We will thus compare the di�erences of empirical

distributions.

To ensure that the distribution of closing prices is reasonably smooth, we focus on the

18To measure closeness to the true fundamental, we need to �x this value. The analysis for the case
of V = 0 is symmetric.

19As we discussed after Proposition 3 this public expectation may di�er from the last transaction
price. To simplify the exposition, we will refer to the last value of the public expectation as a \closing
price".
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case� = 50 when analyzing properties of the empirical distributions of prices.20 Further

parametric and procedural details of the simulation process are outlined in Appendix B.

We write Fm ; �pm ; and � m for the empirical distribution, average, and standard deviation

of closing prices in marketm 2 f L; D; Hg.

In presenting our results we are loose in listing them for \low", \middle" and

\high" � . These regions of� di�er slightly for di�erent � .21 Table I displays the signs of

the di�erences in averages and illustrates the observation; Figure 5 plots the di�erences

of expected price impacts. Note that an ordering in the sense of �rst order stochastic

dominance implies the same ordering for the average prices; wereport both measures

for completeness.

Numerical Observation 2 (Price E�ciency)

(a) For low � : E� pD < E� pL < E� pH and �pD < �pL < �pH.

(b) For medium � : E� pD < E� pL < E� pH, �pD < �pL < �pH, and FH fosd FL fosd FD.

(c) For high � : E� pL < E� pH < E� pD, �pL < �pH < �pD, and FD fosd FH fosd FL.

The results on expected price impacts and price distributionsare consistent: the hybrid

market dominates the limit order market, which dominates the dealer market, except

when� is very large. We do not have conclusive results concerning theprice distributions

for low levels of� , where prices are driven largely by noise.

An e�ciency measure based on the average price alone could be criticized if higher

average prices go along with higher price volatility. Indeed, this is what we observe for

low � where � H > � L > � D. For medium and high levels of� , however, this criticism

does not apply. The �rst order stochastic dominance ordering implies the same ordering

in the sense of second order stochastic dominance, and thus more e�cient prices are also

less dispersed.

Numerical Observation 2 argues, in particular, that the hybridmarket is more e�-

cient than the pure limit order market. The dealer segment thus serves an important

role in enhancing market e�ciency. To see the intuition for this, observe, �rst, that

in the hybrid market most noise traders of large size orders submit them in the dealer

market segment (Proposition 1). Second, relative to informedtraders, noise traders are

more likely to trade in the \wrong" direction. Finally, the p rice impact of a large order

in the pure limit order book is smaller than that in the limit order segment and larger

than that in the dealer market segment (Proposition 3). In other words, the limit order

20For � = 50 there are on average 50 traders per day, yielding decisions for about 25,000,000 traders.
21For instance, for � = 50, the \middle" � is between .3 and .7. The general observation is that the

region of \middle" � increases in the average number of traders,� .
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segment of the hybrid market attracts most of the \right" direction large trades and

these have the highest price impact; the converse obtains for the dealer market segment.

Together these e�ects imply the relation between hybrid and limit order markets.

V Transparency vs. Opacity in the Hybrid Market

Transparency is usually separated into pre-trade and post-trade transparency. The for-

mer reects the information that trading parties possess before they either demand or

supply liquidity, the latter reects their information abou t past transactions.

Our model assumes that liquidity demanders have full pre-trade transparency, i.e.

they can either see all available quotes (for the limit order book) or they can infer the

prices that they will be quoted in equilibrium (for the dealer market). Liquidity suppliers

face higher pre-trade transparency in the dealer market thanin the limit order market,

because they know the order size for which they supply liquidity.

Post-trade transparency obtains in the limit order market because anyone can ob-

serve when and how far an order \walks the book". We also assume full post-trade

transparency for the dealer market in that all transactions are disclosed.

Our analysis of the hybrid market thus far has assumed the same level of post-

trade transparency. In particular, we have assumed that after every transaction all

market participants learn the size of a tradeand the segment it cleared in. We will now

investigate the impact of the information about the trading venue. In what follows we

refer to the market where the venue is revealed as thetransparent market and we refer

to the market where the venue is not revealed as theopaquemarket.

In the opaque market, the price impact of any small trade is driven purely by the

transaction price. In the transparent market, on the other hand, small trades in the limit

order segment have smaller price impacts than those implied by the transaction prices.

We analyze the e�ect of these di�erent price impacts on price e�ciency, using the mea-

sures described in the last section. Table II and Figure 6 illustrate the following results.

Numerical Observation 3 (Transparency vs. Opacity)

(a) For a large enough entry rate� , the transparent market is more e�cient in the

sense that average closing prices there are higher and thus more e�cient; for small

entry rates it is the reverse.

(b) Prices in the transparent market are less volatile than those in the opaque market

in the sense of the second order stochastic dominance.
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The expected price impacts, or changes in the public expectation, as de�ned in (6),

are not ordered, but the displayed patterns (see Figure 7) are consistent with the above

�ndings and provide an intuition for them. Recall that, �xin g the fundamental toV = 1,

larger price impacts are associated with higher e�ciency. We observe that for low and

medium levels of the priorp, the expected price impact in the opaque market is larger

than that in the transparent market; the reverse holds for highlevels ofp. This switch

explains why the opaque market is more e�cient for low entry rates� (or, \thinly" traded

stocks). For small numbers of trades (low� ), the public expectation moves little so that

the prior p remains close to1=2 where the opaque markets yields stronger movements of

prices in the direction of the fundamental. Since on average, traders are more likely to

be \right" than \wrong", when there are many trades (high entry rate � ), the public

expectation will be close to the fundamental, 1, most of the time. In this region, the

transparent market yields larger price impacts and thus higher price e�ciency.

The larger dispersion in the opaque market is explained by the fact that small trades

there move prices more strongly in either direction.

VI Conclusion

This paper provides a three way theoretical comparison of dealer, limit order and hybrid

markets. We analyze the impact of these trading mechanisms on price e�ciency, volume,

liquidity, and trade execution costs and generate several newempirical predictions.

The organization of trading, the regulations and the rules can di�er dramatically

among di�erent exchanges. Yet almost all trading arrangements can be classi�ed as

one of the three mechanisms that this paper studies. Our model provides the bench-

mark di�erences that these mechanisms would display empirically, controlling for other

institutional details.

In addition to generating empirical predictions, our paper has implications for empir-

ical methodology. First, we identify that trading behavior in hybrid and dealer markets

changes throughout the trading day. Estimations that use aggregate numbers of trades,

as is common practice when estimating the probability of informed trading, must thus

account for this possibility. Second, our results indicate that the price impacts of small

trades in limit order markets are smaller than the changes in transaction prices. The

di�erence between these two measures reects the informationconveyed by the total

order size. Attributing this di�erence to inventory risk would overestimate such costs.

Finally, our �ndings have policy implications for professional market design. Histor-

ically, many equity markets have developed from pure dealermarkets to hybrid markets
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where a dealer segment coexists with a limit order book. Our analysis highlights the

advantages of such developments, such as increased price e�ciency and trading volume.

We further argue that a hybrid market has advantages over a pure limit order market

in that prices are more e�cient and costs for small orders are lower. The e�ciency gain

stems from the stronger price impact of large trades in the limit order segment of the

hybrid market. Extending our model to allow exogenous variations in relative trading

volume in the market segments, we can show that this result requires su�cient volume

in the limit order book. If traders were to exogenously gravitate towards the dealer

segment so that there are only few transactions in the limit order segment, then the

informational advantage of the hybrid market would be lost. Thus market designers

and regulators may �nd it bene�cial to guarantee that a su�cie nt order ow reaches

the limit order book. Indeed, some exchanges, e.g. the TorontoStock Exchange, require

small orders to be routed to the limit order book.

A Appendix: Quality and Belief Distributions

Financial market microstructure models with binary signals and states typically employ

a constant common signal qualityq 2 [1=2; 1], with Pr(signal = hjV = 1) = Pr(signal =

l jV = 0) = q. This parameterization is easy to interpret, as a trader who receives a high

signal h will update his prior in favor of the high liquidation value, V = 1, and a trader

who receives a low signall will update his prior in favor of V = 0. We thus use the

conventional description of traders' information, with qualities q 2 [1=2; 1], in the main

text.

As discussed in the main text, to facilitate the analysis, we map a vector of a trader's

signal and its quality into a scalar continuous variable on [0; 1], namely, the trader's

private belief. To derive the distributions of traders' private beliefs, it is mathematically

convenient to normalize the signal quality so that its domain coincides with that of

the private belief. We will denote the distribution function of this normalized quality

on [0; 1] by G and its density by g, whereas the distribution and density functions of

original qualities on [1=2; 1] will be denoted by ~G and ~g respectively.

The normalization proceeds as follows. Without loss of generality, we employ the

density function g that is symmetric around 1=2. For q 2 [0; 1=2], we then haveg(q) =

~g(1 � q)=2 and for q 2 [1=2; 1], we haveg(q) = ~g(q)=2.

Under this speci�cation, signal qualitiesq and 1� q are equally useful for the indi-

vidual: if someone receives signalh and has quality1=4, then this signal has \the opposite

meaning", i.e. it has the same meaning as receiving signall with quality 3=4. Signal qual-
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ities are assumed to be independent across agents and independent of the fundamental

value V.

Beliefs are derived by Bayes Rule, given signals and signal qualities. Speci�cally, if

a trader is told that his signal quality is q and receives a high signalh then his belief

is q=[q + (1 � q)] = q (respectively 1� q if he receives a low signall), because the

prior is 1=2. The belief � is thus held by people who receive signalh and quality q = �

and by those who receive signall and quality q = 1 � � . Consequently, the density

of individuals with belief � is given by f 1(� ) = � [g(� ) + g(1 � � )] when V = 1 and

analogously byf 0(� ) = (1 � � )[g(� )+ g(1� � )] when V = 0. Smith and Sorensen (2008)

prove the following property of private beliefs (Lemma 2 in their paper):

Lemma 1 (Symmetric beliefs, Smith and Sorensen (2008)) With the above the

signal quality structure, private belief distributions satisfy F1(� ) = 1 � F0(1 � � ) for

all � 2 (0; 1).

Proof: Since f 1(� ) = � [g(� ) + g(1 � � )] and f 0(� ) = (1 � � )[g(� ) + g(1 � � )], we

have f 1(� ) = f 0(1 � � ). Then F1(� ) =
R�

0 f 1(x)dx =
R�

0 f 0(1 � x)dx =
R1

1� � f 0(x)dx =

1 � F0(1 � � ): � Belief densities obey the monotone likelihood ratio property as the

following increases in�

f 1(� )
f 0(� )

=
� [g(� ) + g(1 � � )]

(1 � � )[g(� ) + g(1 � � )]
=

�
1 � �

: (7)

One can recover the distribution of qualities on [1=2; 1], denoted by ~G, from G by

combining qualities that yield the same beliefs for opposing signals (e.gq = 1=4 and

signal h is combined withq = 3=4 and signall). With symmetric g, G(1=2) = 1=2, and

~G(q) =
Z q

1
2

g(s)ds+
Z 1

2

1� q
g(s)ds = 2

Z q

1
2

g(s)ds = 2G(q) � 2G(1=2) = 2 G(q) � 1:

An Example of private beliefs. Figure 2 depicts an example where the signal

quality q is uniformly distributed. The uniform distribution implies t hat the density

of individuals with signals of quality q 2 [1=2; 1] is ~g(q) = 2 q. When V = 1, private

beliefs� � 1=2 are held by traders who receive signalh of quality q = � , private beliefs

� � 1=2 are held by traders who receive signall of quality q = 1 � � . Thus, whenV = 1,

the density of private beliefs� for � 2 [1=2; 1] is given byf 1(� ) = Pr(hjV = 1; q = � )~g(q =

� ) = 2 � and for � 2 [0;1=2] it is given by f 1(� ) = Pr(l jV = 1; q = 1 � � )~g(q = 1 � � ) = 2 � .

Similarly, the density conditional on V = 0 is f 0(� ) = 2(1 � � ). The distributions of

private beliefs are thenF1(� ) = � 2 and F0(� ) = 2 � � � 2. Figure 2 also illustrates that

21



2

1

f 1

f 0

1

1

F 1

F 0

Figure 2: Plots of belief densities and distributions. Left Panel: The densities of beliefs for
an example with uniformly distributed qualities. The densities for beliefs conditional on the true
fundamental being 1 and 0 respectively aref 1(� ) = 2 � and f 0(� ) = 2(1 � � ); Right Panel: The
corresponding conditional distribution functions: F1(� ) = � 2 and F0(� ) = 2 � � � 2.

signals are informative: recipients in favor ofV = 0 are more likely to occur whenV = 0

than when V = 1.

B Appendix: Simulation Procedure for Price E�-

ciency

We employed the following data generation procedure. We obtained 500,000 observations

of trading days for each of the Poisson arrival rates� 2 f 10; 15; 20; 25; 30; 35; 40; 45; 50g

and levels of informed trading� 2 f :1; :2; :3; :4; :5; :6; :7; :8; :9g. The Poisson arrival

rate � implies that, on average,� traders arrive on any given day (some may choose

not to trade). Fixing the fundamental to V = 1, higher prices are closer to the true

fundamental and thus more e�cient. To capture the e�ect of the entry rate � for

transparent vs. opaque hybrid markets, we also ran these simulations for low entry rates

� 2 f 2; 3; : : : ; 15g for � 2 f :2; :5; :8g.

For each series, we �rst drew the number of traders for the session and performed the

random allocation of traders into noise and informed and their entry order. Signals for

informed traders and trading roles for noise traders were assigned as depicted in Figure 1,

conditional on the fundamental beingV = 1. These traders then acted in sequence, and

we determined the informed traders' optimal decisions and (for the hybrid market) the

noise traders' choice of the trading venue, based on the preceding history, as described

in Section II. We let the same sequence of traders act for each ofthe four trading rules

(limit order market, dealer marker, hybrid market, and opaque hybrid market); note

that the same informed trader may take di�erent decisions in di�erent markets. We
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then recorded the public expectation at the end of each sequence of traders for each of

the four trading rules.

Our random number generation employs the Mersenne Twister algorithm (Mat-

sumoto and Nishimura (1998)). This algorithm greatly reduces the correlation of suc-

cessive values that arises with most other pseudo-random number generators.

C Appendix: Omitted Proofs

C.1 Some General Results and Notation

We will �rst introduce some notation and establish basic results that facilitate the anal-

ysis and proofs of our main results.

C.1.1 General notation for all proofs

In what follows, we will use functionat (� ; � ; � ) to denote the time-t liquidity provider's

expectation of the security value conditional on a buy order that stems from either a

noise trader drawn from a mass of size �, or from an informed trader drawn from a mass

of size� and equipped with a private belief between� and � . Conditional on the true

value beingV = v, the probability of such an order is� v(� ; � ; � ) = �+ � (Fv(� ) � Fv(� )).

Then, using Bayes Rule and rearranging,

at (� ; � ; � ) =
�
1 +

1 � pt

pt

� 0(� ; � ; � )
� 1(� ; � ; � )

� � 1

(8)

This speci�cation allows us to compactly express all equilibrium ask prices. For instance,

the equilibrium ask price for the small size order in the pure limit order market can be

written as ask1L = at (2�; � 1
L; 1). In the hybrid market, the mass of informed traders

in each segment is�= 2, and the probability of, say, a small buy order in a limit order

segment is� 1+ � 2+( �= 2)�(Fv(� 2
H)� Fv(� 1

H)). Renormalizing, we can write the equilibrium

ask price for this order asask1HL = at (2� 1 + 2� 2; � 1
H; 1). All other prices are similar.

Further, we will use function � �
t (� ; � ) to denote � that solves

Et � = at (� ; �; � ): (9)

Function � �
t (� ; � ) will be useful in compactly expressing the equilibrium thresholds, and

we study its properties in more detail in the next subsection. Inwhat follows, we will

omit the subscript t whenever the usage is clear from the context.
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C.1.2 Preliminary Properties

In what follows, it will often be mathematically convenient to express the private belief

distributions F1; F0 in terms of the underlying quality distribution function G:

F1(� ) = 2
Z �

0
s�g(s) ds; F0(� ) = 2

Z �

0
(1� s) �g(s) ds ) F1(� )+ F0(� ) = 2 G(� ); (10)

and by partial integration,

F1(� ) = 2 �G (� ) � 2
Z �

0
G(s) ds: (11)

Lemma 2 (Properties of the equilibrium thresholds)

(a) For every (� ; � ) such that0 < � < 1 and 1=2 < � < 1, there exists a unique� 2 (:5; � )

that solves equation (9). This solution is independent ofH t : � �
t (� ; � ) = � � (� ; � ).

(b) � � (� ; � ) decreases in� and increases in� : @�� =@� < 0 and @�� =@� > 0.

(c) For �xed (� ; � ), � = � � (� ; � ) maximizesat (� ; �; � ). Further, at (� ; �; � ) increases

in � for � < � � (� ; � ) and it decreases in� for � > � � (� ; � ).

Proof of (a): Equation (9) can be rewritten as

�
1 � �

=
� + � (F1(� ) � F1(� ))
� + � (F0(� ) � F0(� ))

; (12)

thus the solution does not depend on the historyH t . Using (10) and (11), we rewrite (12) as

2�G (� )( � � � ) � 2�
Z �

�
G(s) ds � �(2 � � 1) = 0: (13)

Denote the left hand side of the above equation by� (� ; �; � ). Then

(i ) � (� ; �; � ) strictly decreases in� for � � � : @�=@�= � 2� � 2� (G(� ) � G(� )) < 0;

(ii ) at � = 1=2, � (� ; 1=2; � ) = 2 �G (� )( � � 1=2) � 2�
R�

1=2
G(s) ds > 0;

(iii ) at � = � , � (� ; �; � ) = � �(2 � � 1) < 0.

Steps (i ) � (iii ) imply existence and uniqueness of� � (� ; � ).

Proof of (b): Applying the Implicit Function Theorem and di�erentiating b oth sides

of equation (13) with respect to � for a �xed � , we obtain

@��

@�
= �

2� � (� ; � ) � 1
2� (G(� ) � G(� � (� ; � ))) + 2�

< 0;
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since � � (� ; � ) 2 ( 1=2; � ) and G is increasing. Likewise, di�erentiating both sides of

equation (13) with respect to� for a �xed � and using g to denote the density function

of qualities, we obtain

@��

@�
=

2�g (� )( � � � � (� ; � ))
2� (G(� ) � G(� � (� ; � ))) + 2�

> 0:

Proof of (c): The �rst order condition for maximizing at (� ; �; � ) in � can be written as

� 1(� ; �; � )
� 0(� ; �; � )

=
@�1(� ; �; � )=@�
@�0(� ; �; � )=@�

,
� 1(� ; �; � )
� 0(� ; �; � )

=
�

1 � �
; (14)

where the last equality follows from equation (7). Observe that this last equality

coincides with equation (12). Consequently, there exists a unique � that maximizes

at (� ; �; � ) and this � = � � (� ; � ).

By (8), at (� ; �; � ) increases in� when � 1(� ; �; � )=� 0(� ; �; � ) increases in� . Using

(7), (10), and (11), it can be shown that (@=@�)( � 1(� ; �; � )=� 0(� ; �; � )) > 0 when

� (� ; �; � ) > 0. The desired slopes then follow from part (a).

C.2 Existence in the Limit Order Market: Proof of Theorem 1 (a)

Applying Lemma 2, the equilibrium thresholds are� 1
L = � � (2�; 1) and � 2

L = � � (�; 1).

C.3 Existence in the Dealer Market: Proof of Theorem 1 (b)

By Lemma 2, we know that for every marginal trader of 2 units� 2 2 (1=2; 1), there exists

a unique marginal trader� 1 = � � (�; � 2) who is indi�erent between buying 1 unit and

abstaining. Further, � 1 is increasing in� 2. What remains to be shown is that there

exists a marginal trader� 2 who is indi�erent between purchasing 2 units and 1 unit, so

that � 2 solves

2a(�; � 2; 1) � E� 2 � E� � (�; � 2) = 0 (15)

Denote the left hand side of (15) by� D(�; � 2; p). Recall that � 2
L = � � (�; 1) is the

equilibrium threshold for the large quantity in the limit order market. Then

(i ) � D(�; � 2; p) strictly decreases in� 2 for � 2 2 (� 2
L; 1);

(ii ) at � 2 = � 2
L, � D(�; � 2; p) = ( E� 2

L � E� � (�; � 2
L))=2 > 0;

(iii ) at � 2 = 1, � D(�; � 2; p) = � (1 � E� � (�; 1))=2 < 0,

where step (i ) follows from Lemma 2 and the fact thatE� strictly increases in � for

p 2 (0; 1). Steps (i ) � (iii ) imply existence and uniqueness of� 2 2 (� 2
L; 1) that solves (15).
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This � 2 is the equilibrium marginal buyer of large order,� 2
D, and the equilibrium marginal

buyer of a small order is� 1
D = � � (�; � 2

D).

The proof of part (b) of Theorem 1 implies, in particular, the following lemma:

Lemma 3 (Relation of the equilibrium thresholds) Equilibrium thresholds for large

orders in the limit and the dealer markets,� 2
L and � 2

D respectively, satisfy� 2
L < � 2

D.

C.4 Hybrid Market: Proof of Theorem 1 (c) and Proposition 1

As discussed in the main text, we construct the equilibrium in the hybrid market by

adjusting the distribution of noise trading in such a manner that(a) marginal buyers� 1
H

and � 2
H satisfy the indi�erence conditions, and (b) execution costs in the two segments

coincide.

As in the main text, � o
m denotes the equilibrium marginal buyer ofo = 1; 2 units in

markets m = L; D; H; similarly for askom . We continue to use� o to denote the mass of

noise traders that buyo units in the limit order segment of the hybrid market and� to

denote the mass of noise traders that buy either quantity in theisolated markets. The

mass of noise traders that buyo units in the dealer market segment is then� � � o.

We �rst assume that the marginal buyer � 2
H of a large order in a hybrid market

satis�es � 2
H � � 2

L, construct the unique equilibrium in three steps and show that� 2
H 2

(� 2
L; � 2

D). The fourth step shows that there does not exist an interior hybrid market

equilibrium with � 2
H < � 2

L. As before, we omit the time subscripts to simplify the

exposition.

Step 1: 8� 2 2 [� 2
L; 1] we �nd � 2(� 2) such that � 2 satis�es the equilibrium condition for

the marginal buyer of a larger order in the limit order segment,22

E� 2 = a(2� 2(� 2); � 2; 1): (16)

We show that a unique such� 2(� 2) exists, that � 2(� 2) 2 [0; �
2 ], and d

d� 2 � 2(� 2) < 0:

Proof: By Lemma 2, for every �2 2 [0; �
2 ], there exists a unique� � (2� 2; 1) 2 [� 2

L; 1] that

solvesE� = a(2� 2; �; 1) in � . Further, @�� =@� 2 < 0, � � (0; 1) = 1, and � � (�; 1) = � 2
L.

With such a 1:1 mapping, we then know that for every� 2 2 [� 2
L; 1] there exists a

corresponding �2 2 [0; �
2 ] that solvesE� 2 = a(2� 2; � 2; 1), and that it strictly decreases

in � 2. Further, � 2 2 (0; �
2 ) when � 2 2 (� L; 1). We then de�ne � 2(� 2) = � 2.

22Recall that the de�nition of a(� ; � ; � ) assumes that noise traders are drawn from mass � and
informed traders are drawn from mass� . Each hybrid market segment attracts mass�= 2 of informed
traders. Expressing the ask prices in terms of functiona thus yields a renormalizing factor 2 in front of
the mass of noise traders. The same applies to� � (� ; � ).
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Step 2: 8� 2 2 [� 2
L; 1] and given � 2(� 2) we construct � 1(� 2) and � 1(� 2) so that they

satisfy, �rst, the equilibrium conditions for the marginal buyer of small size orders

in each segment and, second, the cost equalization condition for small orders when

the marginal buyer of a large order is assumed to be� 2:

E� 1(� 2) = a(2� 1(� 2) + 2 � 2(� 2); � 1(� 2); 1) = a(2� � 2� 1(� 2); � 1(� 2); � 2): (17)

We show that unique such� 1(� 2); � 1(� 2) exist, � 1(� 2) 2 ( �
2 ; � ), and d

d� 2 � 1 > 0.

Proof: By Lemma 2, for every� 2 2 [� 2
L; 1] and � 1 2 [ �

2 ; � ], there exist unique� � (2� 1 +

2� 2(� 2); 1) and � � (2� � 2� 1; � 2) that satisfy the equilibrium conditions for the marginal

buyer of a small order in limit and dealer market segments respectively. What remains

to be shown is that for every� 2 2 [� 2
L; 1] there exists a unique �1 that equalizes these

marginal buyers (and, consequently, the costs for small orders):

� � (2� 1 + 2� 2(� 2); 1) � � � (2� � 2� 1; � 2) = 0 : (18)

Denoting the left-hand side of (18) by� H(� 1; � 2),

(i ) for � 1 2 [ �
2 ; � ], we have @

@� 1
� H < 0;

(ii ) at � 1 = �
2 , we have� H(� 1; � 2) > 0 since� � (�; � 2) < � � (� + 2� 2(� 2); 1);

(iii ) at � 1 = � , we have� H(� 1; � 2) < 0 since� � (2� + 2� 2(� 2); 1) < � 2 = � � (0; � 2):

Parts (i ) and (iii ) follow by Lemma 2 and the de�nition of � 2(� 2). Part ( ii ) is implied

by E� � (�; � 2) < a (� + 2� 2(� 2); � � (�; � 2); 1), since� � (� + 2� 2(� 2); 1) maximizesa(� +

2� 2(� 2); �; 1) in � . Using E� � (�; � 2) = a(�; � � (�; � 2); � 2) and the de�nition of � 2(� 2),

after some algebraic simpli�cation we can rewrite the latter inequality as� � (�; � 2) < � 2,

which holds by Lemma 2.

Together (i ) � (iii ) imply that there exists a unique � 1 2 ( �
2 ; � ) that solves (18). We

will henceforth denote this � 1 by � 1(� 2) and the corresponding threshold by� 1(� 2).

To show that d
d� 2 � 1 > 0, we proceed by contradiction. Suppose that there exist

� 2; ~� 2 with � 2 < ~� 2, such that � 1(~� 2) � � 1(� 2). By Step 1, � 2(~� 2) < � 2(� 2). Then we

must have� 1(~� 2) > � 1(� 2) in order for the marginal buyer of a small order in the limit

order market segment to satisfy� � (2� 1( ~� 2) + 2 � 2(~� 2); 1) � � � (2� 1(� 2) + 2 � 2(� 2); 1).

But � 1(~� 2) > � 1(� 2), together with � 2(~� 2) > � 2(� 2), implies the reverse inequality for

this marginal buyer in the dealer market segment,� � (2� � 2� 1(~� 2); � 2(~� 2)) > � � (2� �

2� 1(� 2); � 2(� 2)) ; a contradiction.
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Step 3: We show that there exists a unique� 2 2 (� 2
L; � 2

D) that satis�es the equilibrium

condition for the marginal buyer of a large size order in the dealer market segment,

given functions� 1(� 2); � 1(� 2) and � 2(� 2) de�ned above:

2a(2� � 2� 2(� 2); � 2; 1) � E� 1(� 2) � E� 2 = 0: (19)

Proof: Denote the left hand side of equation (19) by� D(� 2). Then

(i ) at � 2 = � 2
L, we have� D(� 2

L) > 0, because� 2(� 2
L) = �

2 , and

2a(�; � 2
L; 1) � E� 1(� 2

L) � E� 2
L = 2ask2L � E� 1(� 2

L) � E� 2
L = ask2L � E� 1(� 2

L) > 0;

where the last equality is due to the equilibrium condition inthe limit order market, and

the inequality is due to � 1(� 2
L) = � � (2� � 2� 1(� 2

L); � 2
L) < � 2

L by Lemma 2 as� 1(� 2
L) < � ;

(ii ) at � 2 = � 2
D, we have� D(� 2

D) < 0, because

2a(2� � 2� 2(� 2
D); � 2

D; 1)� E� 1(� 2
D)� E� 2

D < 2ask2D � E� 1(� 2
D)� E� 2

D < 2ask2D � E� 1
D � E� 2

D = 0;

where the �rst inequality follows since� 2(� 2
D) < �

2 and function a(� ; � ; � ) is decreasing

in �. The second inequality is a consequence of Step 2, which showed, in particular,

that � 1(� 2
D) > �

2 and thus � 1(� 2
D) = � � (2� � 2� 1(� 2

D); � 2(� 2
D)) > � � (�; � 2

D) = � 1
D.

(iii ) To complete the proof of Step 3, we will now show that for� 2 2 (� 2
L; � 2

D), d
d� 2 � D < 0.

By Step 2, it su�ces to show that d
d� 2 a(2� � 2� 2(� 2); � 2; 1) < 0, which is equivalent to

� d� 2

d� 2 2� [F1(� 2) � F0(� 2)] � [f 1(� 2)(2� � 2� 2(� 2) + � (1 � F0(� 2)))

� f 0(� 2)(2� � 2� 2(� 2) + � (1 � F1(� 2)))] < 0:

Since� d
d� 2 � 2(� 2) > 0 and F1(� 2) � F0(� 2) < 0, it su�ces to show that the last term in

brackets is positive. Employingf 1(� 2)=f0(� 2) = � 2=(1 � � 2) and rearranging, we �nd

that this term is positive if and only if E� 2 > a (2� � 2� 2(� 2); � 2; 1): The inequality

holds becauseE� 2 = a(2� 2(� 2); � 2; 1) by de�nition of � 2(� 2), � 2(� 2) < � by Step 1, and

function a(� ; � 2; 1) is decreasing in �.

Step 4: We show that � 2
H cannot be smaller than� 2

L.

Proof: Suppose that � 2
H < � 2

L. Since � 2
H = � � (2� 2; 1) and � 2

L = � � (�; 1), Lemma 2

implies that � 2 > �
2 , and consequentlyE� 2

H = a(2� 2; � 2
H; 1) < a (2� � 2� 2; � 2

H; 1). Buyer

� 2
H then earns negative pro�ts in the dealer market segment and will not trade there, a

contradiction.

Steps 2 and 3 show that� 1 > �
2 > � 2 and thus yield Proposition 1.
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C.5 Hybrid Market Transactions: Proof of Proposition 2

The number of transactions in each segment is proportional to the total mass of traders.

Since the mass of informed traders is the same in either segment,the number of transac-

tions in the limit order segment is higher when the mass of noise traders there is larger,

� 1 + � 2 > 2� � � 1 � � 2. By Step 2 of the proof of Proposition 3,� � (2� 1 + 2� 2; 1) = � 1
H <

� 1
L = � � (2�; 1). Lemma 2 then implies� 1 + � 2 > � , which yields the desired inequality.

C.6 Execution Costs: Proof of Proposition 3

The market maker is competitive and expects to break even. Thus it must hold that

(E[V jo = 1] � C(1))Pr(o = 1) + (2 E[V jo = 2] � C(2))Pr(o = 2) = 0

Using the Law of Iterated Expectations and the indi�erence conditions for the marginal

buyers,E� 1 = C(1) and 2E� 2 � C(2) = E� 2 � C(1), we can rewrite the above equation as

(E[V jo � 1] � E� 1)Pr(o � 1) + ( E[V jo = 2] � E� 2)Pr(o = 2) = 0 : (20)

In all three markets, equation (20) implies the following relation

0 = p� 1(2�; � 1; 1) � E� 1 � [p� 1(2�; � 1; 1) + (1 � p)� 0(2�; � 1; 1)]

+ p� 1(�; � 2; 1) � E� 2 � [p� 1(�; � 2; 1) + (1 � p)� 0(�; � 2; 1)];
(21)

where, as de�ned in Section C.1.1,� v(� ; � ; � ) = � + � (Fv(� ) � Fv(� )). In the pure

limit and dealer markets equation (21) is equivalent to (20). To see that (21) also

holds in the hybrid market, observe �rst that (20) is satis�ed in each segment of the

hybrid market. Multiplying the segment-speci�c equations with the respective execution

probabilities and applying the Law of Iterated Expectations yields (21).23 De�ne dn(� ) =

�p + (1 � � )(1 � p). Equation (21) can then be rewritten as

� (2�; � 1; 1)
dn(� 1)

+
� (�; � 2; 1)

dn(� 2)
= 0; (22)

where � (� ; � ; � ) is as de�ned in the proof of Lemma 2 and, in particular,� (� ; �; 1) =

� (2� � 1)(� + � ) + 2 �
R�

0 G(s)ds. G is the distribution function of qualities. In the

23Equation (21) can also be obtained by directly rearranging the equilibrium equations for each of
the three markets. Here we provide the more intuitive derivation.
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remainder, we will need the following derivative

d
d�

� (� ; �; 1)
dn(� )

= �
(1 � p)� 0(� ; �; 1) + p� 1(� ; �; 1)

dn(� )2
< 0; (23)

Step 1: We show that for every� 2 2 [� 2
L; � 2

D] there exists a unique� 1(� 2) 2 [� 1
D; � 2)

that solves (22).

The uniqueness of� 1(� 2) implies that � 1
D = � 1(� 2

D), � 1
L = � 1(� 2

L), and � 1
H = � 1(� 2

H).

Proof: Denote the left hand side of (22) by� (� 1; � 2). Then

(i ) by (23), @�=@�1 < 0;

(ii ) at � 1 = � 1
D, we have� (� 1

D; � 2) � 0 for � 2 � � 2
D, as � (� 1

D; � 2
D) = 0 and @�=@�2 < 0;

(iii ) at � 1 = � 2, we have� (� 2; � 2) = � (2� 2 � 1)�= dn(� 2) < 0.

Together (i ) � (iii ) imply existence and uniqueness of the desired� 1 2 [� 1
D; � 2).

Step 2: Part (a): Market Width for Small Trades. We show that the execution

costs are ordered as followsCD(1) < C H(1) < C L(1).

Proof: By the proof of Theorem (existence),� 2
L < � 2

H < � 2
D. Since in equilibrium,

C(1) = ask1 = E� 1 in all 3 markets, it su�ces to show that � 1(� 2) de�ned in Step 1

strictly decreases in� 2. Applying the Implicit Function Theorem to (22) and using (23),

d� 1

d� 2
= �

d
d� 2

� (�; � 2; 1)
dn(� 2)

�
�

d
d� 1

� (2�; � 1; 1)
dn(� 1)

� � 1

< 0: (24)

Step 3: Part (a): Execution Costs for Large Trades. We show that the execution

costs are ordered as followsCL(2) < C H(2) < C D(2).

Proof: The equilibrium conditions for marginal buyers imply that the cost for a large

order coincides with the sum of the marginal buyers expectations,C(2) = E� 1 + E� 2. It

thus su�ces to show that the latter sum increases in� 2,

d
d� 2

[E� 1 + E� 2] = p(1 � p)
�

1
dn(� 1)2

d� 1

d� 2
+

1
dn(� 2)2

�
> 0:

Using (23) and (24), the above inequality is true if and only if

(1 � p)� 0(�; � 2; 1) + p� 1(�; � 2; 1)
(1 � p)� 0(2�; � 1; 1) + p� 1(2�; � 1; 1)

< 1:

Rearranging, the latter is equivalent to (1� p)� 0(�; � 1; � 2) + p� 1(�; � 1; � 2) > 0; which

holds for all � 1 � � 2.
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Step 4: Part (b): Price Impacts of Small Trades. Price impacts in the dealer

market and the dealer market segment of the hybrid market are determined by the

respective transaction prices; the relation �p1
D < � p1

H;D thus follows from Step 2.

Here we show �p1
L;H < � p1

D and � p1
L < � p1

D.

Proof: Price impacts in the limit order market reect the change in the public expec-

tation after the order size is revealed. The relation �p1
L;H < � p1

D is thus equivalent to

a(2� 1; � 1
H; � 2

H) < a (�; � 1
D; � 2

D). The latter holds by Lemma 2 since� 2
H < � 2

D and � 1 > �
2 :

a(2� 1; � 1
H; � 2

H) � E� � (2� 1; � 2
H) < E� � (�; � 2

H) < E� � (�; � 2
D) = a(�; � 1

D; � 2
D):

Likewise, � p1
L < � p1

D holds sincea(�; � 1
L; � 2

L) = E� � (�; � 2
L) < E� � (�; � 2

D) = a(�; � 1
D; � 2

D):

Step 5: Part (b): Price Impacts of Large Trades. To describe the price impacts

of large trades, we show thatask2D;H < ask2D < ask2L < ask2L;H.

Proof: The �rst inequality follows from Step 3, since 2ask2D;H = CH(2) < C D(2) = 2 ask2D:

The remaining inequalities follow by Lemma 2, since� 2 < �
2 :

ask2D = a(�; � 2
D; 1) < a (�; � 2

L; 1) = ask2L = E� � (�; 1) < E� � (2� 2; 1) = ask2L;H:

C.7 Behavioral Dynamics: Proof of Proposition 4

We show only the proof for the buy-thresholds; the sell-thresholds are analogous.

Lemma 2 implies the result for the limit order market.

Next, trading thresholds in all markets must satisfy the market maker's zero expected

pro�t condition, which can be rewritten as equation (22). Inthe proof of Proposition 3,

we �xed p and viewed equation (22) as the relation between equilibrium thresholds� 1

and � 2 across di�erent markets. Here, we use the same equation but view itas the

relation between pricep and equilibrium thresholds� 1; � 2 within a �xed market.

In dealer and hybrid markets, given the equilibrium marginalbuyer of a large or-

der, � 2, the equilibrium threshold for a marginal buyer of a small order, � 1, only depends

on prior p through � 2. Further, � 1 is increasing in� 2 (this follows from the existence

proofs, C.3 and C.4, Step 2). It thus su�ces to show that� 2 is increasing inp.

In light of the above discussion, for a �xed market, the left-hand side of equation (22)

can be viewed as a function of� 2 and p. Denoting this function by  (� 2; p), we have
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 (� 2
p; p) = 0 and (using (23) and d� 1=d� 2 > 0)24

@ 
@�2

=
�

d
d� 1

� (2�; � 1; 1)
dn(� 1)

�
d� 1

d� 2
+

d
d� 2

� (�; � 2; 1)
dn(� 2)

< 0;

where we use� 2
p to denote the equilibrium threshold� 2 for prior p. It thus su�ces to

show that @ =@pj � 2= � 2
p

> 0. For, we then have (� 2
p; p + � ) >  (� 2

p; p) = 0 for � > 0,

and thus � 2
p+ � that solves (� 2

p+ � ; p + � ) = 0 must be strictly above � 2
p.

To complete the proof we thus show that@ =@pj � 2= � 2
p

> 0. Denoting the equilibrium

threshold � 1 for prior p by � 1
p, we have

@ 
@�2

j � 2= � 2
p

=
�
�

� (2�; � 1; 1)
dn(� 1)2

(2� 1 � 1) �
� (�; � 2; 1)
dn(� 2)2

(2� 2 � 1)
�

j � 2= � 2
p

=
� (�; � 2

p; 1)

dn(� 2
p)

�
2� 1

p � 1

dn(� 1
p)

�
2� 2

p � 1

dn(� 2
p)

�
=

� (�; � 2
p; 1)

dn(� 2
p)

� 1
p � � 2

p

dn(� 1
p) � dn(� 2

p)
> 0;

where the second equality follows from (22), and the inequality follows as� (�; � 2
p; 1) < 0.

To see the latter, observe �rst, that � (�; � 2; 1)j � 2= � 2
L

= 0 and @�(�;� 2 ;1)
@�2 < 0 by the proof

of Lemma 2, and, second, that form 2 f D; Hg, � 2
m > � 2

L for any p.

References
Alevy, Jonathan E., Michael S. Haigh, and John A. List, 2007,Information cascades: Evidence

from a �eld experiment with �nancial market professionals, Journal of Finance LXII, 151{
180.

Back, Kerry, and Shmuel Baruch, 2007, Working orders in limit order markets and oor ex-
changes,Journal of Finance 62, 1589{1621.

Bessembinder, Hendrik, 2003, Issues in assessing trade execution costs, Journal of Financial
Markets 6, 233 { 257 Execution costs.

, and Kumar Venkataraman, 2004, Does an electronic stock exchange need an upstairs
market?, Journal of Financial Economics 73, 3{36.

Booth, G. Geo�rey, Ji-Chai Lin, Teppo Martikainen, and Yiuma n Tse, 2002, Trading and
pricing in upstairs and downstairs stock markets,The Review of Financial Studies15, 1111{
1135.

Boulatov, Alex, and Thomas J. George, 2008, Securities Trading when Liquidity Providers are
Informed, SSRN eLibrary.

Brown, David P., and Zhi Ming Zhang, 1997, Market orders and market e�ciency, The Journal
of Finance 52, 277{308.

24In the proof of Proposition 3, we used� 1(� 2) to denote � 1 that solved (22) and studied the behavior
of � 1 in � 2 as we changed markets. Here� 1(� 2) denotes the equilibrium threshold within a market.

32



Buti, Sabrina, 2007, A challenger to the limit order book: The nyse specialist, Working paper
University of Toronto.

Chordia, Tarun, Richard Roll, and Avanidhar Subrahmanyam, 2002, Order imbalance, liquid-
ity, and market returns, Journal of Financial Economics 65, 111{130.

de Jong, Frank, Theo Nijman, and Ailsa Roell, 1995, A comparison of the cost of trading
french shares on the paris bourse and on seaq international,European Economic Review39,
1277{1301.

Domowitz, Ian, 2002, Liquidity, transaction costs, and reintermediation in electronic markets,
Journal of Financial Services Research22, 141{157.

Easley, David, and Maureen O'Hara, 1987, Price, trade size,and information in securities
markets, Journal of Financial Economics 19, 69{90.

Foucault, Thierry, 1999, Order ow composition and trading costs in a dynamic limit order
market, Journal of Financial Markets 2, 99{134.

Glosten, Lawrence R., 1994, Is the electronic open limit order book inevitable?, The Journal
of Finance 49, 1127{1161.

, and Paul R. Milgrom, 1985, Bid, ask and transaction prices in a specialist market
with heterogenously informed traders,Journal of Financial Economics 14, 71{100.

Grossman, Sanford J., 1992, The informational role of upstairs and downstairs trading, The
Journal of Business 65, 509{528.

Harris, Larry, 2003, Trading and Exchanges: Market Microstructure for Practiti oners (Oxford
University Press: New York) 1 edn.

Kyle, Albert S., 1985, Continuous auctions and insider trading, Econometrica 53, 1315{1336.

Madhavan, Ananth, 1992, Trading mechanisms in securities markets, The Journal of Finance
47, 607{641.

, and Minder Cheng, 1997, In search of liquidity: Block trades in the upstairs and and
downstairs markets, The Review of Financial Studies10, 175{203.

Matsumoto, Makoto, and Takuji Nishimura, 1998, Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator,ACM Trans. Model. Comput.
Simul. 8, 3{30.

Milgrom, Paul, and Nancy Stokey, 1982, Information, trade and common knowledge,Journal
of Economic Theory 26, 17{27.

Naik, Narayan Y., and Pradeep K. Yadav, 2004, Trading costs of public investors with obliga-
tory and voluntary market-making: Evidence from market reforms, working paper London
Business School.

Nimalendran, M., and G. Petrella, 2003, Do 'thinly-traded' stocks bene�t from specialist in-
tervention?, Journal of Banking and Finance 27, 1823{54.

33



Ozsoylev, Han N., and Shino Takayama, 2008, Price, trade size, and information revelation in
multi-period securities markets, Journal of Financial Markets forthcoming.

Pagano, Marco, and Ailsa Roell, 1996, Transparency and liquidity: A comparison of auction
and dealer markets with informed trading, The Journal of Finance 51, 579{611.

Parlour, Christine A., 1998, Price dynamics in limit order markets, Review of Financial Studies
11, 789{816.

, and Duane J. Seppi, 2003, Liquidity-based competition for order ow, The Review of
Financial Studies 16, 301{343.

, 2008, Limit order markets: A survey, Handbook of Financial Intermediation forth-
coming.

Seppi, Duane J., 1990, Equilibrium block trading and asymmetric information, Journal of
Finance XLV, 73{94.

, 1997, Liquidity provision with limit orders and strategic specialist, The Review of
Financial Studies 10, 103{150.

Smith, Brian F., D. Alasdair S. Turnbull, and Robert W. White , 2001, Upstairs market for
principal and agency trades: Analysis of adverse information and price e�ects, The Journal
of Finance 56, 1723{1746.

Smith, Lones, and Peter Sorensen, 2008, Rational social learning with random sampling, mimeo
University of Michigan.

Viswanathan, S., and James J. D. Wang, 2002, Market architecture: limit-order books versus
dealership markets,Journal of Financial Markets 5, 127{167.

34



Limit order Book minus Dealer Market Limit order Book minus Hybrid Market Hybrid Market minus Dealer Market
10 15 20 25 30 35 40 45 50 10 15 20 25 30 35 40 45 50 10 15 20 25 30 35 40 45 50

0.1 + + + + + + + + + - - - - - - - - - + + + + + + + + +
0.2 + + + + + + + + + - - - - - - - - - + + + + + + + + +
0.3 + + + + + + + + + - - - - - - - - - + + + + + + + + +
0.4 + + + + + + + + + - - - - - - - - - + + + + + + + + +
0.5 + + + + + + + + + - - - - - - - - - + + + + + + + + +
0.6 + + + + + + + + + - - - - - - - - - + + + + + + + + +
0.7 + + + + + + + + + - - - - - - - - - + + + + + + + + +

0.75 + + + + + + + + + - - - - - - - - - + + + + + + + + +
0.8 + + + + - + - - + - - - - - - - - - + + + + + + + + +

0.85 - - - - - - - - - - - - - - - - - - + + + + + + + + +
0.9 - - - - - - - - - - - - - - - - - - - - - - - - - - -

0.95 - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.1 + + + + + + + + + - - - - - - - - - + + + + + + + + +
0.2 + + + + + + + + + - - - - - - - - - + + + + + + + + +
0.3 + + + + - - - - - - - - + + + + + + + + + + - - - - -
0.4 + + - - - - - - - - + + + + + + + + + + - - - - - - -
0.5 + - - - - - - - - - + + + + + + + + + - - - - - - - -
0.6 - - - - - - - - - + + + + + + + + + - - - - - - - - -
0.7 - - - - - - - - - + + + + + + + + + - - - - - - - - -

0.75 - - - - - - - - - + + + + + + + + + - - - - - - - - -
0.8 - - - - + - - + - + + + + + + + + + - - - - - - - - -

0.85 + + + + + + + + + + + + + + + + + + - - - - - - - - -
0.9 + + + + + + + + + + + + + + + + + + + + + + + + + + +

0.95 + + + + + + + + + + + + + + + + + + + + + + + + + + +

Table I: Di�erences of Averages and Standard Deviations for Price Di stributions. This table is based on the
simulations of the closing prices. Rows denote the level of informed trading � , columns denote the entry rate� . The top half
of the table reports the sign of the di�erence of the average closing prices for a speci�c (�; � )-combination between two markets
that are named at the top of the table. The bottom half of the table reports the sign of the di�erence of the standard deviations
of closing prices. As the underlying true value isV = 1, the higher a price is, the closer it is to the true value and the more
e�cient it is. Thus a positive di�erence of the average closing prices indicates that prices in the �rst named market are more
e�cient. A positive di�erence of the standard deviations of closing prices indicates that prices in the �rst named market are
more dispersed.
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entry rate �
2 3 4 5 6 7 8

� = 0:2 - - - + + + +
0.5 - - - - + + +
0.8 - - - - - - -

9 10 11 12 13 14 15
0.2 + + + + + + +
0.5 + + + + + + +
0.8 - - - + + + +

level of informed trading�
.1 .2 .3 .4 .5 .6 .7 .8 .9

p = :1 - - - - - - - - -
.2 - - - - - - - - -
.3 - - - - - - - - -
.4 - - - - - - - - -
.5 - - - - - - - - -
.6 + + + + - - - - -
.7 + + + + + + + + -
.8 + + + + + + + + +
.9 + + + + + + + + +

Table II: Di�erences of Average Closing Prices and Price Impacts: Tra nspar-
ent vs. Opaque Hybrid Market. The left table displays the sign of the di�erence
of the average closing prices between the transparent and opaque markets as Table I.
The right table displays the sign of the di�erence of expected price impacts between the
transparent and opaque markets. A positive sign indicates that the transparent market
is more e�cient.
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Figure 3: Volume in Limit Order, Dealer and Hybrid Markets. Each panel
plots the di�erence of volumes that arise under the two named market mechanisms.
Volume here is a function of the prior,p, and the level of informed trading,� , as de�ned
in Subsection IV.C. The graph projects the volume di�erence such that � is on the
horizontal axis. Positive values indicate that the volume in the �rst named market
exceeds that in the second.
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Figure 4: First Order Stochastic Dominance of Closing Prices for � = :5.
The panels plot di�erences of empirical distributionsFD � FL, FD � FH and FL � FH.
A graph that has only positive values indicates �rst order stochastic dominance. As
FD � FL > 0 for all prices, the distribution of closing prices in the limitorder market
�rst order stochastically dominates that in the dealer market. Thus prices in the limit
order market are systematically higher and more e�cient. Similarly for FD � FH and
FL � FH.
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Figure 5: The Di�erence of Price Impacts. The three panels plot the di�erence of
expected price impacts as de�ned in Subsection IV.D. This di�erence is a function of
the probability of informed trading � and the prior p. We display it here as a projection
such that � is on the horizontal axis. If for a given� the graph is entirely above the
horizontal axis, then for that � , price movements in the �rst named market are stronger
in the direction of the fundamental and this market is thus more e�cient.
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Figure 6: Second Order Stochastic Dominance of Closing Prices for Tra nspar-
ent vs. Opaque Hybrid Markets. The panels plot di�erences of cumulations of the
empirical distributions,

Rp
0 [Fopaque(s) � Ftransparent(s)]ds, for � = 0:2; 0:5; 0:8. Since the

values are always positive, the distribution of closing pricesfor the transparent mecha-
nism second order stochastically dominates that for the opaque one. Prices under the
transparent mechanism are therefore less dispersed.
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Figure 7: The Di�erence of Price Impacts Transparent vs. Opaque Hybri d
Market. The panels are analogous to Figure 5 and plot the di�erence ofthe expected
price impacts between the transparent and the opaque hybrid markets. The left panel
plots a projection such that the probability of informed trading � is on the horizontal
axis. The right panel plots a projection such that the priorp is on the horizontal axis.
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Result Economic Variable Order of Markets Existing empirical evidence

Proposition 3 (a) market width, small trades dealer < hybrid < LOB

Nimalendran and Petrella (2003)
(LOB vs. hybrid)
lower execution costs (support for
small trade part of our results)

Proposition 3 (a) market width, large trades LOB < hybrid < dealer
Domowitz (2002) (dealer vs. hybrid)
Naik and Yadav (2004) spreads for large
trades decrease dealer vs. hybrid

Proposition 3 (b)

price impact small trades

price impact large trades

LOB & hybrid LOB <
< dealer < hybrid dealer

hybrid dealer < dealer <
< LOB < hybrid LOB

Domowitz (2002) (dealer vs. hybrid)
Smith, Turnbull, and White (2001)
(hybrid only: Toronto)
Booth, Lin, Martikainen, and Tse (2002)
(hybrid only: Helsinki)
Bessembinder and Venkataraman (2004)
(hybrid only: Paris):
upstairs (dealer) trades have lower price
impact than downstairs (LOB) trades
Madhavan and Cheng (1997) (NYSE): upstairs
price impact lower for large trades

Proposition 4

behavior not time-invariant
in dealer and hybrid markets,
dealer and hybrid markets
have contrarian tendency

contrarianism:
Chordia, Roll, and Subrahmanyam (2002)
Alevy, Haigh, and List (2007) (experimental)

Numerical
Observation 1

volume dealer < hybrid < LOB

Numerical
Observation 2

price informativeness
(average closing prices)

small & medium � :
dealer� LOB� hybrid

large � :
LOB� hybrid � dealer

Table III: Testable Implications from the Three-way Comparison. This table summarizes the main results and testable
predictions that this paper generates.
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Result Description Existing empirical evidence

Proposition 1

self selection of traders in hybrid markets:
relatively more uninformed traders
trade large quantities in the dealer market,
relatively more uninformed traders trade
small quantities in the LOB

Smith, Turnbull, and White (2001) (Toronto)
Booth, Lin, Martikainen, and Tse (2002) (Helsinki)
Bessembinder and Venkataraman (2004) (Paris):
upstairs (dealer) trades have lower information
content than downstairs (LOB) trades

Proposition 2

hybrid market: more small transactions
in the LOB segment; more large
transactions in the dealer segment;
more transactions total in LOB segment

de Jong, Nijman, and Roell (1995): more small trades on
Paris Bourse (LOB) more large trades on LSE (dealer)
Viswanathan and Wang (2002) (NYSE): large orders
�lled by dealers, small orders �lled in the LOB
Booth, Lin, Martikainen, and Tse (2002) (Helsinki):
upstairs trades are larger

Numerical
Observation 3 (a)

hybrid market transparency vs. opaqueness:
with many traders, prices are more e�cient in
the transparent market; with few traders, prices
are more e�cient in the opaque market

Numerical
Observation 3 (b)

hybrid market transparency vs. opaqueness:
prices in the transparent market second order
stochastically dominate those in the opaque one

Table IV: Testable Implications for the Hybrid Market. This table summarizes the results and testable predications of
our model that pertain to the hybrid market only.
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