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Abstract

We embed the notion of banks as monitors who reduce risk into a “two-trees” frame-
work, and consider an economy in which capital can be moved between the trees. We
characterize how resources are optimally allocated between the intermediated banking
sector and a risky sector as a function of the relative size of the banking sector — the
bank share — and the speed at which capital can move in and out of that sector —
financial flexibility. The model has three main implications: First, the bank share and
financial flexibility affect asset prices; for example, price-dividend ratios are lower the
higher the financial flexibility, and shocks to the economy affect the slope of the term
structure in a predictable way. Second, the relationship between financial flexibility and
real growth rates is ambiguous; high financial flexibility may lead to either higher or
lower growth rates. Third, the speed at which capital moves into and out of the banking
sector is a highly nonlinear function of the bank share; an implication is that the bank
share may remain perpetually low after a shock to the banking sector. Methodologi-
cally, our paper contributes to the two-trees literature by allowing for reallocation of
resources between trees in a tractable framework. This flexible-tree approach allows for
stationary share distributions.
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1 Introduction

The banking literature has long argued that the actions of banks and financial interme-
diaries transform risk in the economy; for example, by screening potential projects or by
monitoring projects that are in place. However, the asset pricing literature has not explored
the economy-wide effect of such intermediaries on aggregate risk. We embed a simple bank-
ing model in a dynamic general equilibrium asset pricing framework, which allows us to
answer questions about the aggregate effect of monitoring expertise in an economy with
risk-averse agents, including: What is the optimal size of the banking sector? How does
financial flexibility (the speed with which resources flow into or out of the banking sector)
affect welfare and growth? If there is a shock to the banking sector, what effect will it have
on asset prices and agents’ propensities to absorb risk? Do shocks to the banking sector and
to unintermediated production affect the economy in the same way? What are the effects
of increased financial flexibility?

We model banks as experts who can take actions to reduce project risk. Changing
the size of the banking sector requires either training for new experts or training in how
to shut down a project; however an expert involved in training is not monitoring ongoing
projects. These may therefore fall precipitously in value. We embed this model in a general
equilibrium framework with two trees, in which resources can be reallocated between the
trees. We describe this as “financial flexibility.” Our paper makes four contributions. First,
we show how financial flexibility affects the economy. Specifically, we consider a social
planner who changes the relative size of the banking sector while taking into account the
possibility of a crash. We show that the optimal speed of capital reallocation may be “hump-
shaped” as a function of the bank share. This implies that the bank share may remain
perpetually low after a shock to the banking sector. Second, we analyze how both the size of
the banking sector and financial flexibility determine asset prices. We find that the market’s
price-dividend ratio is lower the higher the financial flexibility, and is globally minimized at
the point that the economy strives towards. Also, shocks to the economy affect the slope
of the term structure in that negative shocks to the stock market in expansion periods
decreases the spread between long and short rates. Third, we analyze the relationship
between financial flexibility and real growth rates in the economy. We characterize the
conditions under which financial flexibility leads to either higher or lower growth rates;
this depends on the risk aversion in the economy and the growth and volatility of the
unintermediated sector. Fourth, we make a methodological contribution by generalizing
the two-trees framework to allow for resource reallocation between trees in a tractable
way. As we discuss below, our flexible-trees model differs in several important ways from
a production economy, in which a representative agent chooses between consuming and
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investing.
Our model of the banking sector follows both Diamond and Rajan (2000) and Holm-

strom and Tirole (1997). Projects are subject to systematic risk and industry-specific jump
risk. In one industry, cash constrained owner-managers can hire an expert to affect the risk
reward profile of his project. Specifically, after a training period, the expert can eliminate
both sources of risk. Funds flow into the bank-controlled sector slowly because experts
must be trained in the expertise required to monitor the owner entrepreneur; they are sub-
sequently illiquid because the financiers must close down a project to release capital. Thus,
in aggregate, our economy is characterized by two types of sector, those that are monitored
and those that are not. Because of the fundamental nature of financial intermediaries,
capital cannot flow instantaneously between sectors. Further, because of the scarcity of
financial intermediaries, when capital flows into or out of their sector, the jump risk in their
industry increases.

The central planner implements a competitive equilibrium in our economy by optimally
allocating capital between the entrepreneurial sector and the banking sector, given financial
frictions. The entrepreneurial sector grows at a random rate; by contrast, the banking sector
grows deterministically. This captures the idea that banks add value because, through
lending and monitoring, they reduce the risk associated with entrepreneurial activity. We
consider how a representative agent would value the consumption stream from each sector
and therefore price assets. This is the simplest general equilibrium production economy
within which we can study the effect of a banking sector on asset prices, welfare and growth.

2 Related Literature

For simplicity, much of the banking literature focuses on risk-neutral agents. While deep-
ening our understanding of the frictions that lead banks to add value, these models are not
designed to examine how the existence of financial intermediaries affects aggregate risk, and
thus the prices of financial assets and growth rates, in the economy.

We motivate the friction that prevents capital from flowing directly between the two
sectors by appealing to the intuition of Diamond and Rajan (2000, 2001). Briefly, they
present a parsimonious model which motivates the existence of intermediaries, and use the
friction to explore bank funding. A cash-constrained entrepreneur with specialized project
knowledge can generate more revenue from a project than anyone else. However, he cannot
commit to work at the project indefinitely. Outside capital is only willing to lend up to
the amount for which it can seize the project, which is less than the entrepreneur could
generate. In this way, projects are not fully financed. However, an outside financier may
train with the entrepreneur and acquire knowledge that enables him, if he were to seize the
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project, to run it at a small discount to the entrepreneur. This improves the funding of
projects in the real economy. However, this outside financier in turn cannot commit to run
the project, and so his financial claim is also illiquid.

A somewhat different view is taken by Holmstrom and Tirole (1997), who posit that
intermediaries add value by reducing the propensities of owner-managers to take risks.
Specifically, if banks are properly motivated (i.e., if they hold an incentive-compatible stake
in the projects’ payoff), they can exert costly effort and prevent the manager from “shirk-
ing.” If the manager shirks then he consumes private perquisites and the project fails.
Thus, banks increase the success probability of the underlying project. We combine both
of these views of how banks add value by considering bank capital that is illiquid yet, when
deployed, can affect the risk-return trade-off of a project. In this way we can consider the
optimal size of the banking sector and its effect on welfare and growth.

There is a large literature that posits that intermediated lending and bonds are not
perfect substitutes, and that banks cannot instantaneously raise new capital. A clear and
precise description of how a credit channel links monetary policy actions to the real economy
appears in Kashyap and Stein (1993), and also in Bernanke and Gertler (1995). In this
framework, financial frictions affect the real economy because they affect banks’ propensity
to lend; banks’ capital being special, the growth rate of the economy is affected.1 If, through
this channel, the asset mix is also changed, then the aggregate risk in the economy must
change. Our model can be viewed as an examination of the real effects of the credit channel.

In terms of the risk and return of the banking sector, our framework is compatible with
any model in which banks reduce the riskiness of firms’ output. For example, Bolton and
Freixas (2006) present a static general-equilibrium model in which banks with profitability
“types” face an endogenous cost of issuing equity in addition to capital adequacy require-
ments. Bonds and bank loans are imperfect substitutes because banks, by refinancing,
change the variability of projects’ cash flows. Therefore, firms with high default proba-
bilities choose costly bank financing over bonds. Monetary policy affects the real economy
because it affects the spread between bonds and bank loans, and changes the average default
probability (risk) of the undertaken projects. Specifically, a monetary contraction decreases
lending to riskier firms. Further, Holmstrom and Tirole (1997) illustrate a general equilib-
rium in which intermediaries, who are themselves subject to a moral hazard problem, exert
costly effort and increase the probability of success of each entrepreneur’s project.

Recently, a literature has developed tying financial frictions to the macro economy.
For example, Jermann and Quadrini (2007) demonstrate that financial flexibility in firm
financing can lead both to lower macro volatility and to higher volatility at the firm level.

1Of course, banks play many roles. In addition to lending and monitoring they provide clearing and
settlement services. Our model does not capture these institutional aspects of banking.
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Further, Dow, Gorton, and Krishnamurthy (2005) incorporate a conflict of interest between
shareholders and managers into a CIR production economy. Auditors are essentially a
proportional transaction cost levied on next period’s consumption. They provide predictions
on the cyclical behavior of interest rates, term spreads, aggregate investment and free cash
flow.

Our work is conceptually related to that of Lagos and Wright (2005), who generate
a monetary model from microfundamentals. Their model of the effect of money supply
on households is much more sophisticated than ours; however, our focus is on the role of
financial intermediaries.

Technically, our paper is related to the small literature on capital investments under
frictions and multiple-production technologies. Eberly and Wang (2009) considers a pro-
duction economy with two sectors and convex adjustment costs between them, and use
a representative investor with logarithmic utility. The main focus of their analysis is on
investment capital ratios and Tobin’s q. We depart from the capital investment literature
by excluding agents’ trade-offs between instantaneous consumption and investments. In
our model, the instantaneous consumption is known — it is the fruits delivered by the two
trees. Our approach allows us to focus the analysis on the effect of shocks whose first-order
effect is to bring the economy away from its optimal risk structure. This also allows us to
derive several implications that do not hold in a model with investments.

Mechanically, our model is closely related to the “two-trees” model, presented by Cochrane,
Longstaff, and Santa-Clara (2008) and further extended by Martin (2007). The fundamental
difference between our approach and theirs is that the sizes of our trees are not exogenous,
because they are the result of resource allocation decisions by a central planner. One con-
sequence of such a flexible-tree approach is that the distribution of sector sizes may be
stationary in our model. Also, we allow for general CRRA utility functions, which will be
important for some of our results.

Santos and Veronesi (2006) also present a multiple sector asset pricing economy with
stationary share distributions. In their model, stationarity follows from their assumptions
about the stochastic processes in the economy, whereas in our model it arises endogenously.
Our model therefore provides a micro foundation for such stationary distributions.

We also deviate from the literature that assumes completely irreversible capital. Vergara-
Alert (2007) considers an economy with two technologies with a duration mismatch, one of
which is completely irreversible. Johnson (2007) develops a two-sector equilibrium model,
but there are no flows into or out of the risky sector in his model, so investments into that
sector are completely irreversible. These papers exogenously specify the restrictions on cap-
ital movements. In contrast, in the most general case of our model, reallocation of capital
to and from each sector is always possible, at a cost that is derived from first principles.
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Our work is also related to the literature on liquidity, and especially to Longstaff (2001),
who studies portfolio choice with liquidity constraints in a model with one risky and one
risk-free asset. The constraints that Longstaff (2001) imposes are similar to our sluggish
capital constraints. However, there are several differences between the two papers. Whereas
Longstaff (2001) takes a partial equilibrium approach, with exogenously specified return
processes for the risky and risk-free assets, these processes are endogenously defined for us.
Moreover, Longstaff (2001) allows for stochastic volatility, which we do not, but has to rely
on simulation techniques for the numerical solution, since he has four state variables. This
is nontrivial, since optimal control problems are not well suited for simulation (similarly to
American option pricing problems). We need only one state variable, and we can therefore
use dynamic programming methods to solve our model efficiently, as well as derive strong
theoretical results on the existence and properties of a solution.

3 The Economy

Consider an economy that evolves between times 0 and T . For clarity, we specify the model
in discrete time, and then characterize equilibrium in the continuous-time limit. At any
point in time, the industrial base comprises a very large pool of potential projects, P, run
by owner managers in one of a countable number, M , of different industries each indexed by
m. All projects, once initiated, generate cash flows through a stochastic, constant-returns-
to-scale technology. In addition, projects in one industry may be assisted by “experts,” who
change the risk-reward trade-off of the technology.

In the absence of any intervention, the technology common to all projects is such that,
at discrete points in time, 0,∆t, 2 ∆t, . . . , capital Dm pays dividends of Dm × ∆t. The
dividends represent the total instantaneous value paid to shareholders and encompass all
payout channels including stock repurchases.

The law of motion for the capital of a project in industry m is

Dm
t+∆t = Dm

t ×
(

1 + (µ̂+ p)∆t+ ξtσ
√

∆t− dJmt
)
.

Two types of shocks govern a project’s capital: ξt is an i.i.d. random variable with equal
chances of being ±1. These shocks are systematic, and affect the whole economy; dJmt
are independent, industry-specific shocks and are thus diversifiable. Every period, with
probability 1 − p∆t, dJmt = 0, and with probability p∆t, dJmt = 1. Thus, if an industry-
specific shock is realized, the capital stock in that industry is reduced to zero.

With no expert intervention, there is no explicit cost to starting or closing down a
project; it is therefore both optimal and feasible for a risk averse central planner to diversify
away all of the industry risk by allocating capital across the M industries. Given such
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diversification, for small ∆t, aggregate capital follows the process

Dt+∆t = Dt × (1 + µ̂∆t+ ξtσ
√

∆t). (1)

In one sector (we assume it is the first sector), agents can affect the risk/return profile
of any project by consulting an expert and expending the consumption good. Our experts
can affect the entrepreneur’s propensity to take on risk, as in Holmstrom and Tirole (1997).
An expert is project-specific and, as in Diamond and Rajan (2000, 2001), needs both time
(∆t) and training to understand a project. There is a large pool of potential experts, but at
each point in time only a certain number has experience in the existing projects. We assume
that an existing expert can train λ new ones each period. To shut down a project also takes
time: an expert is required to remove monitoring equipment, which he can do in 1

λ units
of time. After an expert has dismantled the equipment, he becomes obsolete and must be
retrained if he is to work on another project. If λ is large, then expertise is very easy to
communicate, whereas if it is small then it is very difficult to change the structure of the
economy. The ease with which expertise can be communicated is an important exogenous
variable that we will analyze extensively.

Once trained, an expert can do two things. First, he can provide “passive advice” that
eliminates (ξ) risk from a project. Second, if he has studied the project, he can provide
ongoing “active” advice that insulates the project from the industry level Jm shock.

For an expert adapting a project to ξ risk, and so passively monitoring, one can think of
him learning about a project and then installing a management process. When in operation,
at a cost of (µ̂ + p)∆t + σ

√
∆t, the installed technology ensures that ξt = 1.2 There is

therefore a trade-off between the expected return and the variability of output.
In addition, a trained expert who is a specialist in a project can continuously provide

“active” monitoring, which can prevent his project from losing value even if the fall in value,
dJ1

t = 1. In this case, the expert’s advice mitigates industry level risk. However, if an active
monitor is either training experts or closing down a project, through inattention, he misses
a fraction 0 ≤ x ≤ 1 of the industry level shocks.

We denote the aggregate capital of the industry in which experts work (the intermediated
sector) by B. Suppose that all the projects in the industry are monitored both passively
and actively; then they pay dividends B∆t and are constant and risk-free. By contrast,
suppose that only a fraction 1− α of the current experts are providing active advice, then

2This cost structure is consistent with a simple moral hazard problem in which a project’s manager
consumes private perquisites if he does not exert effort to control the ξ process, but if monitored is induced
to do so and eschew such benefits. As we will be discussing welfare, we prefer the main interpretation.
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αBt of the projects are exposed to dJ1 risk and the overall industry dynamics are

Bt+∆t = Bt − αBt × x× dJ1. (2)

In this case, the proportion α of existing experts are either training new experts or shutting
down projects. Thus, if the size of the cash flows under expert control either increases or
shrinks, dJ1 risk must increase. We interpret dJ1 as systemic risk, in the sense that it is
rare, and affects the whole system with an endogenously determined effect (i.e., it is avoided
if α = 0 is chosen).

Let ∆t go to zero, and suppose that aB units of capital flows into the monitored sector;
where if a < 0, monitored projects are closed down and the freed up capital is invested in
the unmonitored sector. Then, the fraction of experts not monitoring projects is α = |a|

λ ,
and the total dynamics of the unmonitored capital (D) and monitored capital (B) become:

dB = B

(
adt− |a|

λ
x dJ1

)
, (3)

dD = −aB dt+D (µ̂ dt+ σ dω) . (4)

Here, |a| ≤ λ, since a = ±λ corresponds to a situation when no projects are actively
monitored, and all human capital is used to initiate or close down projects. A topical
example of such a situation is the furious initiation of new real-estate capital, with a cost
in quality, experienced over the last several years.

As we will be considering how society allocates capital between the two sectors, we
define the monitored share,

z(s) =
B(s)

B(s) +D(s)
. (5)

Notice that if z is constrained to be zero, then all resources are in the entrepreneurial sector,
and the economy collapses to a one-tree economy (see Lucas (1978)).3 In what follows, we
frequently describe the monitored sector of the economy as “the bank,” the two sectors as
“trees,” and the monitored share as the “bank share.”

The consumption flow generated by the banking sector per unit time is B dt. This could
be measured by the flows accruing to all stake-holders including depositors and the owners
of the banks. Similarly, the consumption flow generated by the unintermediated sector is
given by Ddt, and is measured by dividends, earnings or free cash flows. The bank share
is then the fraction of the total flows generated by banks.

The representative investor in the economy has CRRA expected utility with risk aversion
3The Fisherian consumption model presented in Lucas (1978) follows earlier equilibrium models such as

Rubinstein (1976).
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coefficient γ ≥ 1. In the main paper, we focus on the case γ > 1. The derivations for the
log-utility case, γ = 1, are left to the appendix. The representative investor consumes the
output of both trees, enjoying expected utility of

U(t) = Et

[∫ T

t
e−ρ(s−t) (B(s) +D(s))1−γ

1− γ
ds

]
.

If the trees are interpreted as “capital,” (i.e., the capital needed to generate the con-
sumption flows), then B and D are equivalent to the invested “capital” in the two sectors.
However, the consumption value of the “capital” is completely indirect, since it is not pos-
sible to consume trees in our economy, only fruits. The “trees” can therefore equivalently
be defined as claims to the flow of fruits, without introducing the notion of capital.

Claims to these flows are not the same as the values (prices) of the two sectors, PB and
PD, where PB is the value of the banks to share holders plus the value of all deposits, and
PD is the value (debt plus equity) of the risky firms. We elaborate on this when we value
the option to move capital in Section 5 below.

To ensure that the banking sector is never dominated by, and never dominates, the
unintermediated sector, we restrict its growth rate. Specifically,

Condition 1 0 < µ̂ < γσ2.

This ensures that the growth rate is sufficiently low that there is a role for the banking
sector, and yet sufficiently high that it is not dominated in turn. Let µ = µ̂− σ2

2 , then we
will focus mainly on a stricter lower bound, 0 < µ, so that σ2

2 < µ̂. This ensures that the
risky tree does not vanish for large T .

4 Equilibrium

In the presence of a risk-free short term bond in zero net supply, the market is dynamically
complete, and the solution to the central planner’s problem will be a competitive equilib-
rium. She maximizes the discounted presented value of the representative agent’s utility by
moving capital between the two sectors.

The central planner hopes to achieve:

V (B,D, t) ≡ sup
a∈A

Et

[∫ T

t
e−ρ(s−t) (B(s) +D(s))1−γ

1− γ
ds

]
. (6)

The class of permissible controls is denoted by Aλ,t,T , or simply by A when there is no
confusion.
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We study equilibrium when 0 < λ < ∞ and characterize two types of solutions. First,
economies in which there are no systemic shocks (x = 0) and second, economies in which
such shocks are present (x > 0). Many aspects of the two solutions are similar (in particular
our asset pricing results apply to both regimes); however the optimal reallocation strategy
between the sectors, and the size of the banking sector differs across the two regimes.
Characterizing these differences is useful step towards a policy benchmark that takes into
account how the banking sector affects aggregate risk and risk appetite in the economy.

As benchmarks, we study the cases in which capital is either infinitely flexible (λ =∞);
or perfectly inflexible (λ = 0) To present these benchmarks succinctly, we focus on the
infinite horizon case, T =∞, and we fix B(0) +D(0) = 1; this is without loss of generality.
Further, we let x = 0 (it is easy to show that this is also without loss of generality, since in
either case, the social planner will never introduce systemic risk).

If capital can be moved instantaneously, then the central planner can move the economy
from z = B(0)/(B(0)+D(0)) to any z∗ at t = 0+ arbitrarily quickly. She can choose capital
reallocation strategies with unbounded variation, and specifically choose dB = a0 dt+ b0 dω

for arbitrary bounded functions a0 and b0. For any fixed z, the central planner can, for
example, choose

dB = B(1− z) (µ̂ dt+ σ dω) , (7)

which implies that dz = 0 (this follows immediately from (3,4,5)).4 In other words, she can
maintain a constant bank share in the economy.

The planner simply chooses the share of the bank and unmonitored sectors (z) that
maximizes the representative agent’s expected utility. The solution in this case exactly
mirrors the Merton (1969) solution for the portfolio choice problem of an investor allocating
wealth between a risky and a risk free asset. He shows that the portfolio share of the risky
asset is µ̂

γσ2 . In this case, the risk-free asset (our banking sector), has a portfolio weight of
z∗ = 1− µ̂

γσ2 .5

If capital is perfectly inflexible, on the other hand, then λ = 0. This corresponds to
the two-tree model of Cochrane, Longstaff, and Santa-Clara (2008). The expected utility
in this case can be calculated in closed form, as shown in Parlour, Stanton, and Walden
(2009) and reproduced in Appendix A for convenience.

4The restriction imposed by (11) leads to a qualitatively quite different situation for the central planner,
compared with unconstrained optimization. As noted in Longstaff (2001), for any bounded λ, any control
in Aλ,t,T will a.s. have bounded variation, as opposed to the optimal control in standard portfolio problems,
which a.s. has unbounded variation over any time period.

5The problems are not completely identical, since the investor in Merton (1969) controls consumption.
However, the optimal portfolio is the same in both settings, so with full flexibility, choosing a constant
z∗ = 1− µ/σ2 is indeed optimal.
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4.1 Equilibrium Without Systemic Risk

Suppose that irrespective of their other activities, experts never miss industry shocks, so
that there are no jumps in the monitored sector (x = 0). The central planner’s reallocation
between the two sectors (Equation 3, and Equation 4) reduces to

dB = aB dt, (8)

dD = −aB dt+D (µ̂ dt+ σ dω) , (9)

and the dynamics for the bank share is

dz = az dt− z(1− z) (µ̂ dt+ σ dω) + z(1− z)2σ2 dt. (10)

Cochrane, Longstaff, and Santa-Clara (2008) characterize the “two trees” economy in terms
of the relative share of each asset, and also express dynamics for the share. The difference
between the drift term for z in our formulation and in theirs is that we allow a central
planner to potentially move resources between the two sectors (our a term).

If expertise is industry-specific, as we presented in our model section, then the maximum
speed of capital reallocation λ as a fraction of the bank sector is constant. In other words,
−λz ≤ az ≤ λz. We provide an existence proof for the general case with an arbitrary
continuous, positive function λ : [0, 1]→ R+ and the constraint

−λ(z) ≤ az ≤ λ(z), (11)

although in this paper we focus on the case with industry-specific expertise.6

The solution to the central planner’s problem (6) and the corresponding control a is
completely characterized by the following proposition:

Proposition 1 If Condition 1 is satisfied, then the value function for a central planner,
who optimally reallocates capital between the banking and unintermediated sectors and is
constrained by scarce expertise, is

V (B,D, t) =

 −
(B+D)1−γ

1−γ w
(

B
B+D , t

)
, γ > 1

log(B+D)(1−e−ρ(T−t))
ρ + w

(
B

B+D , t
)
, γ = 1,

6For example, under the alternative assumption that human capital is not industry specific, the bound
becomes dB = a(B +D), which leads to a different functional form for λ(z). Using Proposition 1, we have
also solved the model under this alternative assumption. The results are similar, although the properties of
the solution close to B = 0 are more extreme in the current setting.
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where w : [0, 1]× [0, T ]→ R is the solution to

0 = wt +
1
2
σ2z2(1− z)2wzz +

(
−µ̂z(1− z) + σ2γz(1− z)2

)
wz

−
[
ρ− µ̂(1− γ)(1− z) +

1
2
σ2γ(1− γ)(1− z)2

]
w + Fγ(t, z) + λ(z)|wz|. (12)

0 = w(z, T ). (13)

Here,

Fγ(t, z) =

{
−1, γ > 1,
1−e−ρ(T−t)

ρ

(
µ̂(1− z)− σ2(1−z)2

2

)
, γ = 1.

(14)

The optimal reallocation between the two sectors is

az = λ(z)sign(wz), (15)

where wz is the normalized marginal social benefit of moving capital to the banking sector.

No boundary conditions are needed at z = 0 and z = 1 to obtain the solution. The
reason, which we elaborate on in the proof in Appendix C, is that the p.d.e. is degenerate
at the boundaries. It is hyperbolic, and the characteristic lines imply so-called “outflow”
at both boundaries, so no boundary conditions are needed.

From (15), az always takes on its maximum value, λ, or the minimum value, −λ; it is a
bang-bang control.7 So if z is “too low,” the central planner will allocate resources to the
banking sector at the fastest possible rate, while if z is “too high,” resources will flow out
of the banking sector and into the unintermediated sector. Of course, “too high” and “too
low” depend on how an infinitesimal change in the allocation between the sectors affects
the central planner’s continuation value (wz in our notation).

The optimal bank share, z∗, is the point at which the central planner switches from
moving capital into, to moving capital out of the bank sector. This is therefore, the point
that the central planner tries to reach. From (15) it is clear that this is the point at which
wz switches sign, i.e., wz(z∗) = 0. In general, z∗ will depend on t.

We also note that w(z, t) = V (B, 1−B, t), for γ = 1 and w(z, t) = (γ− 1)V (B, 1−B, t)
i.e., w is proportional to the value function, when B+D is normalized to unity. We therefore
call w(z, t) the normalized value function.

Proposition 1, because it is the solution to the central planner’s problem, provides a full
(if somewhat opaque) description of what the social planner does after shocks, and therefore

7At points where wz = 0, any az ∈ [−λ, λ] is optimal, so az = λ is an optimal strategy at such points.
However, we adopt the convention that a = 0 when λ = 0. Also, the discontinuities of a pose no issue, since
it follows from Zvonkin (1974) that (8–10) have unique strong solutions even though a is discontinuous.
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the overall equilibrium characteristics of the economy.

4.2 Welfare and the Optimal Bank Share with no Systemic Risk

What is the optimal size of the banking sector, and how it is affected by the speed at which
capital can be reallocated? First, consider the effect on welfare of different rates of capital
reallocation. As one expects, social welfare is highest when there are no frictions to capital
flows. Figure 1 is a plot of the normalized value function as a function of the size of the
banking sector (z).8 If capital can be instantaneously reallocated then shocks, such as a
catastrophic loss in the real economy that change the relative size of the two sectors, have
no effect on normalized social welfare. For this reason, the line labeled λ = ∞ is flat.
After any untoward change in the relative sizes of the two sectors, the central planner can
instantaneously move the economy back to the optimal sector mix, and there is no loss in
welfare. Such is not the case when the reallocation rate is bounded.

The two lines labeled λ = 3 and λ = 0.5 are strictly below the welfare when there is
complete flexibility. The difference in social welfare between the fully flexible case and the
inflexible case represents the social loss incurred because of sluggish reallocation of capital.
Not surprisingly, the welfare loss is most severe the further the sectors are from the optimum
allocation. The effect is more severe for low z, since that is when the banking sector is small,
so the constraint on how fast capital can be moved is more severe.

Although welfare is strictly ranked, the optimal size of the banking sector does not
change monotonically with differences in the speed with which capital can be reallocated.
In fact, the optimal size of the banking sector, z∗, increases in λ if the growth rate in the
risky sector is sufficiently high and decreases in the λ if the growth rate is sufficiently low.
To see this, consider Figure 2, which illustrates the relationship between z∗ and λ. Consider
the case where µ̂ = 0.5. If this is the growth rate of the risky sector, then the central planner
optimally keeps half of the economy in the intermediated sector and half in the risky sector,
irrespective of the speed at which capital moves between the sectors.

If the growth rate in the risky sector is high (say µ̂ = 0.7), then increasing the rate at
which capital moves increases the optimal size of the banking sector. In this case the social
cost of having an inordinately large banking sector (and therefore forgone growth) is very
high. Therefore, as insurance against this state, the central planner decreases the size of
the banking sector to maintain a “buffer,” compared with the fully flexible case, λ = ∞.
Because of this, for very low λ, the size of the banking sector is smaller. As λ increases,

8For all numerical solutions, we have used the centralized second order finite difference stencil in space,
and the first-order Euler method for the time marching. All figures can be constructed in a matter of seconds
using nonoptimized Matlab code. In Hart and Weiss (2005), a slightly different finite difference scheme is
proposed to handle the nonlinearity in the |wz| term. We have calculated the solutions with these schemes,
with similar results.
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Figure 1: Value function as a function of λ. Limiting cases are λ = 0+, when
there is no flexibility for capital reallocation, and λ −→ ∞, which converges to
full flexibility case. Parameters: µ = 2, σ2 = 10/3, ρ = 1, γ = 3, T = 0.875.

the central planner is willing to increase the size of the banking sector (alternatively, to
decrease the size of the buffer) because the chance of the economy spending a long time in
the state in which there is low growth is small. Thus, when the growth rate in the risky
sector is high, the optimal size of the banking sector is increasing in the flexibility of capital
(λ).

The situation is reversed when the growth rate of capital is quite low (say µ̂ = 0.3). In
this case, the cost to the central planner of ending up with too much capital in the risky
sector is high because the return is low relative to the risk. Therefore, he hedges against this
possibility by maintaining a somewhat larger banking sector. As the flexibility of capital
increases, he is willing to reduce the size of the banking sector as he no longer needs a buffer
against the possibility that the risky sector will become too large.

4.3 Long-Term Distribution of the Bank Share

In contrast to the two-trees model with inflexible capital (the λ = 0 case), when capital is
flexible, the long-term share distribution may be stationary. This is an appealing property
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Figure 2: The optimal size of the banking sector, z∗, as a function of λ for different
values of µ̂. Parameters: σ = 1, ρ = 1, γ = 1, T = 10.

of the model, since it avoids the transitory interpretation that always must be associated
with a nonstationary solution. Economically, the flexibility allows for a business-cycle inter-
pretation of the economic dynamics, where shocks to individual sectors bring the economy
away from the optimal bank share, but the shocks are mitigated over time by Pareto efficient
inter-sector capital reallocation.

It is straightforward to show that λ > µ is the key property that needs to be satisfied to
avoid the situation where the risky tree overtakes the bank tree for large T . This condition
is intuitive, as it suggests that if a society can redeploy capital to and from the banking
sector faster than the expected change in the risky sector then both sectors will be viable in
the long run. On the other hand, if it takes a long time to train new experts, then growth
in the risky sector may outpace any changes in the banking sector. We have

Proposition 2

a) If λ > µ, then z does not tend to zero for large t, i.e, P (limt→∞ z(t) = 0) = 0.

b) If λ < µ, then z tends to zero for large t, i.e, P (limt→∞ z(t) = 0) = 1.
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We note that the bank tree will never overtake the risky tree in the long run, i.e., P (limt→∞ z(t) = 1) =
0, when µ > 0. Therefore, the growth rate of the economy and its volatility may have sta-
tionary distributions.

We derive the dynamics of the probability distribution of z from the optimal control,
a ∈ A, and the Kolmogorov forward equation (see Björk (2004)). We have

Proposition 3 Given the optimal control, a ∈ A, to the central planner’s problem that
satisfies Condition 1, let π(t, z) denote the probability distribution of the bank share, z, at
time t, with initial distribution π0(z) at t = 0. Then π : [0, 1]× [0,∞) is the solution to the
p.d.e.

πt = A∗π,

π(z, 0) = π0(z),

π(0, t) = 0,

π(1, t) = 0.

Here, A∗ is the adjoint to the infinitesimal operator,

(A∗p)(z, t) def= − ∂

∂z

[
(az − µ̂z(1− z) + σ2z(1− z)2)p

]
+
σ2

2
∂2

∂z2

[
z2(1− z)2p

]
.

Figure 3 presents the stationary distribution for the example that we have used so far.

4.4 Equilibrium with Systemic Risk

Suppose now that training new experts is all-engrossing, so that x = 1 — an expert involved
in training fails to mitigate any industry level shocks. In this case, the central planner
trades off flexibility in reallocation against the increased crash size, α, if a crash occurs in
the monitoring sector. The maximum speed at which capital can be reallocated is at α = λ.
For simplicity, we focus on the case in which λ = 1; while for brevity, we only state the
proposition for the γ > 1 case. In the appendix we also establish a solution for the γ = 1
case.

Proposition 4 Suppose that Condition 1 is satisfied, a solution to the social planner’s
problem : V (B,D, t) ∈ C2

(
R2

+ × [0, T ]
)
, with control a : [0, 1]× [0, T ]→ [−1, 1] if γ > 1 is:

V (B,D, t) = −(B +D)1−γ

1− γ
w

(
B

B +D
, t

)
,
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Figure 3: Stationary distribution of z Parameters: µ = 2, σ2 = 10/3, ρ = 1, γ = 3,
λ = 4. Since λ > µ, the distribution does not converge to z ≡ 0 for large T .

where w : [0, 1]× [0, T ]→ R− solves the following PDE

0 = wt +
1
2
σ2z2(1− z)2wzz +

(
az − µ̂z(1− z) + σ2γz(1− z)2

)
wz

−
[
ρ+ p− µ̂(1− γ)(1− z) +

1
2
σ2γ(1− γ)(1− z)2

]
w

−1 + p

[
1− (1− |a|z)1−γ + w

(
(1− |a|)z
1− |a|z

, t

)]
, (16)

where, a(z, t) = α(z, t) sign(wz) and, for each z and t,

α(z, t) = arg max
α∈[0,1]

α|wz|+ p

[
(1− αz)1−γ + w

(
(1− α)z
1− αz

, t

)]
. (17)

For all γ ≥ 1, the terminal condition is

w(z, T ) = 0.

Equation (17) has a very natural interpretation. Recall that α is the proportion of
experts that participate in the banking sector. Also, αz is the speed with which capital
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flows into or out of the banking sector. This is determined by a trade-off between the benefits
of changing the size of the banking sector, αwz, and the cost of a crash, which occurs with
probability p. The cost is made up of the instantaneous loss of consumption from a collapse
of the banking tree (the first term) and the utility cost of being away from the optimal risk
structure in the economy (the second term). Capital will not flow instantaneously as there
is an endogenous cost to changing the size of the banking sector: the solution is no longer
“bang-bang.”

We solve the equation in Proposition 4 using the parameters from Section 4.1. The
resulting signed control function, az, is shown in Figure 4. The control (α) has different

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 4: Signed optimal control, λ = az as a function of z. Parameters: µ = 2,
σ2 = 10/3, ρ = 1, γ = 3, p = 5%.

values depending on the relative size of the banking sector. Broadly, this suggests that
government intervention or policy responses should optimally vary with this variable.

Consider a share z close to 0.8, which is the optimal bank share in the λ = ∞ case.
This is a “laissez faire” region. No resources should flow into or out of the banking sector.
Actively changing the size of the sector might generate crash risk, and for small deviations
the utility costs for a crash is sufficiently high that it outweighs the benefits of getting closer
to the optimum.

For z further away from 0.8, it becomes optimal for the social planner to move capital.
However, the bank share changes very slowly for low z. This may happen because of two
reasons. First, even if all the experts are screening new projects, for low z the bank sector
is small so that z changes very slowly anyway. Second, in that region, it is very costly if
an industry shock occurs which brings the economy even further away from the optimal
bank share. The central planner may therefore choose to limit the speed even further.
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In numerical calculations, we get both effects. The result is that the control function is
hump-shaped.

The implication of such a hump-shaped control is that the bank share distribution is
typically bimodal, and there may be a non-zero probability that the bank share becomes
negligible (z → 0) as the horizon of the economy, T , tends to infinity. In Figure 5, we see
that the bank share distribution is bimodal; with high probability it is close to 0.8, but
there is also a nontrivial chance that it is close to 0.
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Figure 5: Bank share distribution with endogenous λ. Parameters: µ = 2, σ2 =
10/3, ρ = 1, γ = 3, p = 5%, T = 10.

The two peaks of the distribution are reminiscent of models with high- and low-growth
equilibria. However, in this case, the high- and low-growth states are both hit with positive
probability. Indeed, the economy can become “stuck” in an equilibrium in which the banking
sector is small. In some cases, there is not enough bank expertise to bring the economy
back to the preferred bank share. This implies that after severe shocks, there is no natural
equilibrating market mechanism that will return the economy to the optimum banking
sector size.

The problem solved in Proposition 4 provides us with additional insights about the
trade-offs in the economy and possible outcomes, compared with the case when expertise is
the only constraint (solved in Proposition 1). The existence and properties of the solution
to this problem are generally harder to analyze. Numerically, the additional optimization
of (49,17) slows down the computations. For several applications, the answers given by the
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two methods are similar, and in the remainder of the paper we will therefore often study
the problem in which the expertise constraint binds.

5 Asset Pricing

The representative agent’s Euler equation implies that the price at date t of an asset
that pays a terminal payoff GT ≡ G(B(T ), D(T ), t), and interim dividends at rate δτ ≡
δ(B(τ), D(τ), τ), where t ≤ τ ≤ T , is given by

P = (B(t) +D(t))γEt

[∫ T

t
e−ρ(s−t) δs

(B(s) +D(s))γ
ds+ e−ρ(T−t)

(
GT

(B(T ) +D(T ))γ

)]
.

(18)
In what follows, we present our characterizations for T =∞.

5.1 Price-Dividend Ratios

One of the most studied objects in finance is the price dividend ratio. It is well known that
for γ = 1, the price dividend ratio is always 1

ρ . For γ > 1, the price-dividend ratio depends
on the bank share. In fact, it has a simple expression.

Proposition 5 Given γ > 1 and prices of the bank and risky sectors of PB and PD respec-
tively, then the price-dividend ratio of the market is

PB + PD
B +D

= −w
(

B

B +D
, t

)
,

where w is defined in Proposition 4.

The price dividend ratio of the market is simply minus the normalized value function (recall
that for CRRA preferences, utility is negative), shown in Figure 1. This property arises
because of the homogeneity of the value function and the fact that the agent consumes
all dividends produced by both trees. We note that for the special case when x = 0 and
the expertise constraint, λ, is operative then the definition of w reduces to the one in
Proposition 1.

This proposition has several immediate implications. For example, it is clear that the
solution to the central planner’s problem minimizes the price-dividend ratios in the economy.

Corollary 1 Suppose that γ > 1 then
(i) The central planner always strives to bring the economy to the globally minimal (over
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all z) price-dividend ratio.
(ii) For each z, the minimal price-dividend ratio is realized by the solution to the central
planner’s problem.

It also follows that increased financial flexibility (a higher λ) always decreases the price-
dividend ratio in any state of the world, since it allows the central planner to implement a
higher w, i.e., a lower −w.9

Corollary 2 All else equal, price-dividend ratios are lower the higher the flexibility (λ).

We also note that, as discussed in the proof of Proposition 5, the minimization properties
hold under general conditions in our framework, but the results will not hold in a model
with investments. Therefore, this property could be used empirically to distinguish between
the two types of models.

Are Corollaries 1 and 2 empirically supported? Stock price-dividend ratios are known to
be low in recessions, which seems to go against the Corollary 1:(i). We stress, however, that
the minimization property only holds with respect to the whole market. For the individual
trees, the results of changes in z and financial flexibility are ambiguous. Indeed, the ratios
PD
D and PB

B will in general not always decrease with λ and the ratios are typically not
minimized at z∗ for either tree. In practice, the total dividends in the economy include
payouts from the banking tree, i.e., interest payments on bank deposits. If interest rates
are low in recessions, then PB

B will be high, which offsets the low ratio of PD
D . Our model

therefore suggests that price-dividend ratios in an economy can only be understood by also
taking into account interest on bank deposits.

Our model has little to say about price-dividend ratios in individual trees. To see this,
observe that because capital can be reallocated to the benefit of society, any installed capital
includes a valuable option; however the model provides no guidance as to who captures this
benefit. First, we observe that the value of the cash-flows generated by the two trees is
straightforward to calculate, by using δs = B(s) and δs = D(s) in (18) respectively. In fact,
any asset that pays instantaneous dividends of the form g(z)(B + D)dt can be priced by
solving a p.d.e. similar to that in Proposition 1 (see the analysis in Appendix B).

The solution to these p.d.e.s however are, in general, not the values of the two trees,
since capital will be reallocated between the trees. For example, if the size of the bank tree
is negligible and capital moves in, the bank dividends will grow, but we would expect the

9For γ < 1, since w is positive, the results are reversed. We have PB+PD
B+D

= +w
“

B
B+D

, t
”

, and the central

planner’s problem is to maximize the price dividend ratio. We focus on the economically more interesting
case, γ > 1.
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owners of the risky tree to capture part of this growth, since they are providing the capital
and moving capital from the risky to the bank tree has an option value. Similarly, when
the bank tree is a large fraction of the economy, reallocating capital to the risky tree has
option value. From our discussion so far, it is unclear who will capture this value. It could
be share-holders in the bank tree, in the risky tree, or even the owners of the human capital,
or some combination of the three. It is straightforward to measure the total option value,
however — it is the difference between the value of the whole economy and the value of
dividends generated by two trees that do not allow reallocation. In Appendix B, we derive
formulas for calculating these values (see equations (27) and (29)).

In Figure 6, we show these values for a specific example. The example is chosen so that
z∗ = 0.3. The worst bad states of the world are therefore close to z = 1, when there is too
little risky capital. These are the states of the world in which the value of the option to
reallocate is high. An implication is that the price to dividend ratio of an individual tree,
e.g., PD

D , is ambiguous. It depends on how much of the value of the option to reallocate,
VOption, is captured by the shareholders in the risky tree. If the whole value is captured,
then PD

D = VD+VOption
D . If nothing is captured, then PD

D = VD
D . The discrepancy is especially

high when the option value is high. In Figure 7, we show the two different price-dividend
ratios. In practice, we may expect the ratio to be somewhere in between.10

Taking future reallocation of capital into account when defining the price-dividend ratio
is reminiscent of that which was done by Bansal, Fang, and Yaron (2007) when defining the
payout yield. Bansal, Fang, and Yaron (2007) argue that dividends do not provide a full
picture of the cash flows to investors, since they do not take other sources of payouts like
stock repurchases and new investments into account. Their argument is for the aggregate
market, whereas our argument is similar, but for inter-sector flows. More broadly, this
discussion suggests that any empirical specification based on a model with inflexible capital,
or in which the option to move capital is not carefully assigned, should fail.

5.2 Market Expected Returns

It follows from a standard argument that the short-term risk-free rate is rs = ρ + γµ̂(1 −
z)− γ(γ + 1)σ

2

2 . We can also characterize risky returns. We have:

Proposition 6
10Note that Voption represents the value added of the option to reallocate in an economy with flexibility,

λ > 0. This is not the same as the difference between the value of the trees in two economies, one with, and
one without flexibility, wλ(z)− w0(z), as seen in Figure 1.
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a) The expected return of the market portfolio is

η dt = E

[
d(PB + PD) + (B +D)dt

PB + PD

]
=

(
ρ+ γµ̂(1− z)− 1

2
γ(γ − 1)(1− z)2 − γσ2z(1− z)2wz

w

)
dt.

b) The market risk-premium, η − rs, is γσ2(1− z)2
(
1− zwz

w

)
.

The first part of the expected return, ρ+γµ̂(1−z)− 1
2γ(γ−1)(1−z)2, is the same as in

a one-tree economy in which the bank share, z, is fixed. The last term, −γσ2z(1− z)2wz
w , is

the correction due to the varying z. It depends on wz
w , which denotes the relative change in

value resulting from a change in z. In regions where wz is close to 0, the expected returns
are similar to that of the one-tree economy. In regions where wz > 0 (i.e., for low bank
shares), the expected return is higher than in the one-tree economy (since w is negative),
and in regions where wz < 0 (i.e., for high bank shares), it is lower. Similar results hold for
the market risk premium.

For our empirical predictions, we also define the instantaneous variance of total dividends
paid in the economy, σ̂2 = (1− z)2σ2, and the variance-normalized risk-premium,

s
def=

η − rs

σ̂2
,

which is similar to the Sharpe ratio but normalized with variance instead of with standard
deviation. Proposition 6 then immediately implies that

s = γ

(
1 +

zwz
(−w)

)
. (19)

In this economy, the variance normalized risk premium depends on risk aversion (γ) and
also on the sensitivity of welfare to changes in the size of the banking sector. To see this,
observe that the second term in the brackets, zwz

−w is simply the percentage change in social
welfare per percentage change in the proportion of the bank sector in the economy. This
is akin to an elasticity, but measures the changes in proportional change in social benefit
for each proportional change in the size of the banking sector. If changing the size of the
banking sector has no effect on social welfare, then the variance normalized risk premium
depends only on risk aversion. By contrast, if a small proportional increase in the size of
the banking sector increases social welfare, then the variance normalized risk premium is
lower than than the level of risk aversion because the size of the banking sector is too small
and risk is “undervalued.” If increasing the banking sector decreases the social welfare then
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the normalized risk premium is higher than the level of risk aversion because the size of the
banking sector is too large and risk is more desired than feared.

5.3 Term Structure

In addition to risky securities, we can also characterize the term structure and consider
zero coupon bonds. For simplicity, we consider the case in which the expertise constraint,
λ is operative and the economy does not face systemic risk. However, we note that similar
results obtained when systemic was also included.

Proposition 7 The price at t0 of a τ maturity zero coupon bond, where t0 + τ ≤ T , is
pτ = p(t0, z), where p is the solution to the following p.d.e.

pt +
1
2
σ2z2(1− z)2pzz +

[
a− µ̂z(1− z) + σ2(1 + γ)z(1− z)2

]
pz

−
[
ρ+ µ̂γ(1− z)− 1

2
σ2γ(1 + γ)(1− z)2

]
p = 0. (20)

p(t0 + τ, z) ≡ 1, (21)

t0 ≤ t ≤ τ,

0 ≤ z ≤ 1.

The τ -period spot rate is defined as

rτ = − log(pτ )
τ

,

while the short rate is

rs = lim
τ↘0

rτ = ρ+ γµ̂(1− z)− γ(γ + 1)
σ2

2
,

and the long rate is defined as
rl = lim

τ→∞
rτ .

Unlike the flat term structure in the one-tree model, the yield curve in our economy is not
flat. In fact, it is often upward sloping. That is, real rates display a “liquidity” or “risk”
premium for longer horizons. This is due to changes in the representative agent’s marginal
utility and is inherent in the two trees structure, rather than being a consequence of the
central planner’s reallocation of capital (although reallocation heightens the effects). We
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use the closed form solutions derived in Parlour, Stanton, and Walden (2009) to calculate
the term structure in the case that λ ≡ 0.
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Figure 8: Zero-coupon yield curve 0-12 years, for different choices of z. µ = 1/3,
σ2 = 1, ρ = 0, γ = 1, λ(z) ≡ 0+, z∗ = 0.08.

The presence of a hump-shaped term structure for some values of z is interesting, since
it is one of the stylized properties of the real world term structure (see Nelson and Siegel
(1987)). The curvature, however, is quite small, and is even smaller for lower values of σ2.

When λ > 0, however, a stronger hump occurs. For example, compare Figure 8, in
which λ(z) ≡ 0+, with Figure 9, in which λ(z) ≡ 1. In the latter case, the yield curve
is steeper. Intuitively, with flexible capital, the economy will move back to the optimal
relative size quickly, and so marginal utilities will rise rapidly to the steady state value;
the term structure will thus be steep at short maturities, and then relatively flat. In the
extreme case of λ = ∞, then from the socially optimal level of z, the term structure will
be flat, and the pure expectations hypothesis holds. However, for λ < ∞, there are two
different effects: First, a higher λ will lead to a more steeply sloped yield curve (upward
or downward) when z is far from z∗. Second, the higher flexibility also implies that, on
average, z will be closer to z∗, so such events are rarer in a flexible economy. Finally, we
can connect the term structure analysis with shocks to the economy. We have

Proposition 8 Suppose that µ > 0 and λ is small. Then,

a) in periods of high growth (low z), a positive shock to the risky sector (dω > 0) increases
the spread (rl − rs ⇑).
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Figure 9: Zero-coupon yield curve 0-12 years, for different choices of z. µ = 1/3,
σ2 = 1, ρ = 0, γ = 1, λ(z) ≡ 1, z∗ = 0.2.

b) in periods of low growth (high z), a positive shock to the risky sector (dω > 0) decreases
the spread, rl − rs ⇓.

6 Empirical Implications

Our framework generates quite a few testable predictions. The implications are unique
in that they neither follow from an exchange economy without flexibility (for which z∗

is undefined), nor from a model with capital investments (since our results are based on
inflexible instantaneous consumption).

Recall, that z∗ is the optimal proportion of the banking sector. We saw in Section 4.2
that depending on real production parameters and aggregate risk aversion, the optimal
size of the banking sector may either be increasing or decreasing in the degree of financial
flexibility. That is, there will be some economies in which high financial flexibility leads to
small banking sectors, and some economies in which high financial flexibility leads to large
banking sectors.

The relationship between the size of the banking sector and the flexibility of capital is
nontrivial. Specifically, financial innovation or government policy that increases the speed
with which funds can be reallocated between sectors may, in equilibrium, either decrease the
size of the banking sector or increase it. Also, increasing financial flexibility may decrease
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the growth rate of the economy.
These results can be formalized. Specifically, the key variable is κ = µ̂

γσ2 . If κ < 1/2,
then an increase in λ leads to a lower z∗, whereas if κ > 1/2, an increase in λ leads to
a higher z∗. Since κ increasing in µ̂ and decreasing in σ, this immediately leads to the
following hypotheses regarding growth and growth volatility across economies:

Prediction 1 All else equal

a) In low-growth economies, the growth rate decreases with financial flexibility.

b) In high-growth economies, the growth rate increases with financial flexibility.

c) In high-volatility economies, the growth rate decreases with financial flexibility.

d) In low-volatility economies, the growth rate increases with financial flexibility.

Thus, in low growth economies, increasing λ, e.g., through financial innovation, will actu-
ally decrease the growth rate of the economy. This suggests that cross-country regressions
of economic performance (including growth rates) on proxies for financial innovation or
variables that measure the speed with which capital flows between the banking and en-
trepreneurial sectors are complex to interpret. For example, the work of Levine (1998),
drawing on that of La Porta, de Silanes, Shleifer, and Vishny (1998), considers the effect of
legal protections on the development of banks and subsequent growth rates. Our analysis
suggest that unambiguous causal links are difficult to find because increasing the efficiency
of the banking sector may lead to an overall larger or smaller sector, depending on the
fundamentals of the economy.

More broadly, this observation fits into the long-running debate about the relationship
between economic growth rates and financial innovation. Rather than viewing financial
flexibility as a cause (Schumpeter (1911)) or a consequence (Robinson (1952)) of economic
growth, we focus on economic growth as the natural consequence of the equilibrium risk
appetite of a representative consumer. Specifically, the existence of high financial flexibility
may induce the central planner to maintain a large banking sector and, consequently, a low
stationary growth rate.

Another set of empirical predictions relate to the market price-dividend ratios. We recall
here that the ratio should be defined with respect to the total “dividends” in the economy,
including interest payments to depositors: The results may not hold for the risky tree. We
have

Prediction 2
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a) All else equal, market price-dividend ratios are lower in economies with higher finan-
cial flexibility.

b) Within an economy, market price-dividend ratios are minimized at the optimal bank
share, z∗. They are higher after a stock run-up, after a stock crash, and after a bank
crash.

Finally, the model has direct implications for the variance normalized equity premium,
defined in (19). We define s∗ = γ

(
1 + z∗wz(z∗)

−w(z∗)

)
= γ. Since wz > 0 for z < z∗ and wz < 0

for z > z∗, we have

Prediction 3

a) The variance normalized equity premium is low after a run-up in the equity sector and
after a crash in the bank sector, i.e., s > s∗ when z < z∗.

b) The variance normalized equity premium is high after a stock crash, i.e., s < z∗ when
z > z∗.

Thus, asset prices differ, depending on the type of shock to the bank share, z, and how
easy it is to return to the optimal share , z∗.

7 Concluding remarks

We have developed a simple, but rich, framework that incorporates a banking sector, in
which we characterize asset prices and macro-economic characteristics such as growth rates.
This is therefore a first step towards an economic integration of standard asset pricing and
intermediated finance. More broadly, it suggests that standard finance asset pricing models
can be used to address questions in macro-economics.

Our model is built on a unique characteristic of banks: the expertise to transform risk
in the economy. In particular, it provides a framework to evaluate the welfare cost of a
drop in the size of the bank sector as well as a way to determine the effects of such changes
on asset prices. Recent policy appears to have been motivated by the idea that banks are
“special.” Our model investigates how society can value banks’ ability to transform risk,
and what effect this has on aggregate risk appetites as evinced by risk premia.

The overall implication of our model is that the share of intermediated capital in the
economy should be closely related to asset prices as well as to fundamental characteristics
of the macro economy such as growth rates. It also suggests that the value of financial
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flexibility can be extremely high in some states of the world, since it mitigates the risk of a
perpetually small bank sector.

Empirically, our model suggests that this aspect of banks is crucial in understanding
asset pricing. For example, price-dividend ratios in a market can only be understood by
taking into account all payouts, including interest payments on bank deposits. The model
has specific empirical implications, relating real growth rates and volatility of an economy
to its financial flexibility, and also total price-dividend ratios and risk-premia to the business
cycle. These predictions are unique, in that will typically not hold in an exchange economy
without flexibility, or in a production economy.
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A Value for extreme cases, λ = 0 and λ =∞
Lemma 1 Suppose that capital is fully flexible, λ ≡ ∞, and that the central planner chooses a constant
bank share, z. Then the expected utility of the representative agent is

U∞(z) =

8<:
1

1−γ ×
1

ρ+(1−γ)((1−z)µ̂−γ(1−z)2σ2/2)
γ > 1

1
ρ2

“
(1− z)µ̂− (1− z)2 σ

2

2

”
γ = 1,

which takes on its maximal value, 1
1−γ×

1

ρ+ γ−1
γ
× µ̂

σ2
for γ > 1 and µ̂2

2ρ2σ2 for γ = 1 respectively, at z∗ = 1− µ̂
γσ2 .

Proof of Lemma 1: The optimal solution follows immediately from the unconstrained portfolio problem,
see., e.g., Merton (1969).

Lemma 2 In the infinite horizon economy, T =∞, define q =
p
µ2 + 2ρσ2. Suppose that

(i) γ = 1. Then, if the initial bank share is 0 < z < 1, the expected utility of the representative agent is

w(z) =
1

2ρ

“ `
2µ2 + σ2(2ρ+ q) + µ(σ2 + 2q)

´
2F1

„
1,
q − µ
σ2

,
q − µ
σ2

+ 1,
z

z − 1

«
+ 2

z − 1

z

`
µ2 + ρσ2 − µq

´
2F1

„
1,
q + µ

σ2
+ 1,

q + µ

σ2
+ 2,

z − 1

z

«”
/

“
µ2 − µq + 2ρ(σ2 + q)

”
,

where 2F1 is the hypergeometric function. Also, w(1) = 0 and w(0) = µ
ρ2

.

(ii) If γ > 1: then if the initial bank share is 0 < z < 1, the expected utility of the representative agent is

w(z) =
z1−γ

q(1− γ)

×
h„ z

1− z

«µ−q
σ2
„
V

„
z

1− z , γ +
q − µ
σ2

, 1− γ
«

+ V

„
z

1− z , γ +
q − µ
σ2

− 1, 1− γ
««

+

„
1− z
z

«− q+µ
σ2
„
V

„
1− z
z

,
q + µ

σ2
, 1− γ

«
+ V

„
1− z
z

,
q + µ

σ2
+ 1, 1− γ

««i
.

Here, V (y, a, b)
def
=
R y
0
ta−1(1 + t)b−1dt is defined for a > 0. Also, w(1) = 1

ρ(1−γ) . Moreover, define

x
def
= ρ+ (γ − 1)µ− (γ − 1)2 σ

2

2
. Then, if x > 0, w(0) = − 1

x
. If, on the other hand, x ≤ 0, then w(0) = −∞.

We note that the definition of z in Parlour, Stanton, and Walden (2009) is as the risky share, which
corresponds to 1− z in our notation.

Proof of Lemma 1: See Parlour, Stanton, and Walden (2009).

B Asset Pricing

Define

Q(B,D, t) ≡ Et
»

GT
(BT +DT )γ

˛̨̨
Bt = B,Dt = D

–
. (22)
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From Equation (18), we have:

Q(B,D, t) =
eρ(T−t)P (B,D, t)

(B +D)γ
− Et

»Z T

t

eρ(T−s)
δs

(Bs +Ds)γ
ds

–
. (23)

By iterated expectations,
E(dQ) = 0. (24)

Also,

Et

»
d

„
E

»Z T

t

eρ(T−s)
δs

(Bs +Ds)γ
ds

–«–
= − eρ(T−t)δt

(Bt +Dt)γ
dt,

so

Et

»
d

„
eρ(T−t)P (B,D, t)

(B +D)γ

«–
+

eρ(T−t)δt
(Bt +Dt)γ

dt = 0. (25)

Now,

Et

»
d

„
eρ(T−t)P (B,D, t)

(B +D)γ

«–
= eρ(T−t)

“
− ρ P

(B +D)γ
dt+

Pt
(B +D)γ

dt+
PB

(B +D)γ
dB

− γP

(B +D)γ+1
dB +

PD
(B +D)γ

E[dD]− γP

(B +D)γ+1
E[dD]

+
1

2

„
PDD

(B +D)γ
− 2γ

PD
(B +D)γ+1

+ γ(1 + γ)
P

(B +D)γ+2

«
(dD)2

”
Substituting this into (25), using (8,9), and multiplying with e−ρ(T−t)(B +D)γ leads to the following p.d.e.
that must be satisfied by P , subject to the terminal boundary condition P (B,D, T ) = G(B,D, T ):

Pt +
1

2
σ2D2PDD +

»bµD − aB − γ σ2D2

B +D

–
PD + aBPB

−
„
ρ+ γbµ D

B +D
− 1

2
γ(γ + 1)σ2 D2

(B +D)2

«
P + δ(B,D, t) = 0. (26)

For the special case, when δ is on the form δ(B,D, t) = g(z, t)(B +D) and G(B,D) = 0, we can write

P (B,D, t) = P

„
z

1− z , 1, t
«

(B +D)

≡ p(z, t)(B +D);

Pt = pt(B +D);

PB = pz
∂z

∂B
(B +D) + p = pz

D

B +D
+ p;

PD = pz
∂z

∂D
(B +D) + p = pz

−B
B +D

+ p;

PDD = pzz
B2

(B +D)3
.

Plugging this into (26) yields

pt +
1

2
σ2z2(1− z)2wzz +

ˆ
az − bµz(1− z) + σ2γz(1− z)2

˜
pz

−
»
ρ− bµ(1− γ)(1− z) +

1

2
σ2γ(1− γ)(1− z)2

–
p+ g(z) = 0.
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We can use this to calculate the value of the dividends paid by the bank tree, using g(z) = z and by the
risky tree, using g(z) = 1− z.

For assets that pay dividends δ(z, t), with G(B,D, T ) = Ĝ(z), we can do a similar argument. This is

an interesting special case: For example, a zero coupon bond is obtained when δ ≡ 0, with Ĝ(z) ≡ 1. By
homogeneity, we can write

P (B,D, t) = P

„
z

1− z , 1, t
«

≡ p(z, t);
Pt = pt;

PB = pz
∂z

∂B
= pz

D

(B +D)2
;

PD = pz
∂z

∂D
= pz

−B
(B +D)2

;

PDD = pzz

„
∂z

∂D

«2

+ pz
∂2z

∂D2
= pzz

B2

(B +D)4
+ pz

2B

(B +D)3
.

Substituting these into Equation (26), and simplifying, we obtain

pt +
1

2
σ2z2(1− z)2pzz +

ˆ
a− bµz(1− z) + σ2(1 + γ)z(1− z)2

˜
pz

−
»
ρ+ bµγ(1− z)− 1

2
σ2γ(1 + γ)(1− z)2

–
p+ δ(z, t) = 0. (27)

As an application, the value of the bank tree without the option value of reallocation can be calculated by

using δ(z, t) = B(0), and Ĝ(z) = 0 in (27).
Similarly, we would like to calculate the value of the risky tree without the option value of reallocation.

Such a tree grows as

dD̂ = D̂(µ̂dt+ σdω),

and the value of such a tree is, from (18),

P (Bt, Dt, D̂t, t) = (Bt +Dt)
γEt

"Z T

t

e−ρ(s−t)
D̂t

(Bs +Ds)γ
ds

#
. (28)

A similar argument as leading to (25) shows that

Et

"
d

 
eρ(T−t)P (B,D, D̂, t)

(B +D)γ

!#
+

eρ(T−t)D̂

(Bt +Dt)γ
dt = 0.
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We can then expand

Et

"
d

 
eρ(T−t)P (B,D, D̂, t)

(B +D)γ

!#
= eρ(T−t)

h
− ρ P

(B +D)γ
dt+

Pt
(B +D)γ

dt+
PB

(B +D)γ
dB

+
PD̂

(B +D)γ
E[dD̂]− γP

(B +D)γ+1
dB +

PD
(B +D)γ

E[dD]

− γP

(B +D)γ+1
E[dD] +

1

2

PD̂D̂
(B +D)γ

(dD̂)2

+ 2
1

2

„
PDD̂

(B +D)γ
− γ

PD̂
(B +D)γ+1

«
(dD̂)(dD)

+
1

2

„
PDD

(B +D)γ
− 2γ

PD
(B +D)γ+1

+ γ(1 + γ)
P

(B +D)γ+2

«
(dD)2

i
From (28) and homogeneity, it follows that P (Bt, Dt, D̂t, t) = p(z)D̂, for some function p : [0, 1] → R,

implying that

Pt = ptD̂;

PB = pz
D

(B +D)2
D̂;

PD = pz
−B

(B +D)2
D̂;

PD̂ = p;

PD̂D̂ = 0;

PDD̂ = pz
−B

(B +D)2
;

PDD =
“
pzz

B2

(B +D)4
+ pz

2B

(B +D)3

”
D̂,

and substituting yields

pt +
1

2
σ2z2(1− z)2pzz +

ˆ
a− bµz(1− z) + σ2(1 + γ)z(1− z)2

˜
pz

−
»
ρ+ bµγ(1− z)− 1

2
σ2γ(1 + γ)(1− z)2

–
p+ (µ̂− γ(1− z)σ2)p− z(1− z)σ2pz + 1 = 0. (29)

C Proofs

Proof of Proposition 1:
We proceed by characterizing the central planner’s problem for a finite T by finding a locally optimal

control or reallocation (a) that will also be globally optimal. The infinite horizon case follows immediately.
Given the central planner’s objective, for γ > 1, the Bellman equation for optimality is

sup
a∈A

»
Vt +

1

2
σ2D2VDD + [bµD − aB]VD + aBVB − ρV +

(B +D)1−γ

1− γ

–
= 0. (30)

Equation (30) can be simplified by observing that, by homogeneity, we can write

V (B,D, t) = − (B +D)1−γ

1− γ w(z, t), (31)
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where the normalized value function, w(z, t) ≡ V (z, 1− z, t). The derivatives of V in terms of derivatives
of w are given by,

Vt = − (B +D)1−γ

1− γ wt, (32)

VB = − (B +D)1−γ

1− γ

„
w

1− γ
B +D

+ wz
D

(B +D)2

«
, (33)

VD = − (B +D)1−γ

1− γ

„
w

1− γ
B +D

− wz
B

(B +D)2

«
, (34)

VDD = − (B +D)1−γ

1− γ

„
−w γ(1− γ)

(B +D)2
+ wz

2γB

(B +D)3
+ wzz

B2

(B +D)4

«
(35)

This step allows us to write derivatives of V in terms of derivatives of w. Substituting these into Equa-
tion (30), we obtain

sup
a∈A

wt +
1

2
σ2z2(1− z)2wzz +

ˆ
az − bµz(1− z) + σ2γz(1− z)2

˜
wz

−
»
ρ− bµ(1− γ)(1− z) +

1

2
σ2γ(1− γ)(1− z)2

–
w + 1 = 0. (36)

The derivation for γ = 1 is slightly different. Define

V (B,D, t) ≡ sup
a∈A

Et

»Z T

t

e−ρ(s−t) log(B +D) ds

–
.

The Bellman equation for optimality is

sup
a∈A

»
Vt +

1

2
σ2D2VDD + [bµD − aB]VD + aBVB − ρV + log(B +D)

–
= 0. (37)

By homogeneity, we can write V and its derivatives in terms of D and z:

V (B,D, t) =
log(B +D)

“
1− e−ρ(T−t)

”
ρ

+ V (z, 1− z, t)

≡
log(B +D)

“
1− e−ρ(T−t)

”
ρ

+ w(z, t).

Vt = −e−ρ(T−t) log(B +D) + wt; (38)

VB =
1− e−ρ(T−t)

ρ(B +D)
+ wz

D

(B +D)2
; (39)

VD =
1− e−ρ(T−t)

ρ(B +D)
− wz

B

(B +D)2
; (40)

VDD = −1− e−ρ(T−t)

ρ(B +D)2
+ wz

2B

(B +D)3
+ wzz

B2

(B +D)4
. (41)
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Substituting these into Equation (37), we obtain

wt +
1

2
σ2z2(1− z)2wzz +

ˆ
az − bµz(1− z) + σ2z(1− z)2

˜
wz − ρw

+
1− e−ρ(T−t)

ρ

»bµ(1− z)− σ2(1− z)2

2

–
= 0.

In total, we therefore have

sup
a∈A

wt +
1

2
σ2z2(1− z)2wzz +

ˆ
az − bµz(1− z) + σ2γz(1− z)2

˜
wz

−
»
ρ− bµ(1− γ)(1− z) +

1

2
σ2γ(1− γ)(1− z)2

–
w + Fγ(t, z) = 0, (42)

where

Fγ(t, z) =

(
−1, γ > 1,
1−e−ρ(T−t)

ρ

“
µ̂(1− z)− σ2(1−z)2

2

”
, γ = 1.

(43)

We study the case γ = 1. The case γ > 1 can be treated in an identical way. We first note that
azwz = λ(z) sign(wz)wz = λ(z)|wz|, so (12) is the same as (42). We define a solution to the central
planner’s optimization to be interior if a(t, 0) > 0 and a(t, 1) < 0 in a neighborhood of the boundaries for all
t < T , where the radiuses of the neighborhoods do not depend on t. A solution is thus interior if it is always
optimal for the central planner to stay away from the boundaries, z = 0 and z = 1. From our previous
argument, we know that any smooth interior solution must satisfy (12). What remains to be shown is that
the solution to the central planner’s problem is indeed interior, and that, given that the solution is interior,
equations (12) and (13) have a unique, smooth, solution, i.e., that (12) and (13) provide a well posed p.d.e.
(Egorov and Shubin (1992)).11

We begin with the second part, i.e., the well posedness of the equation, given that the solution is interior.
As is usual, we first study the Cauchy problem, i.e., the problem without boundaries, on the entire real line
z ∈ R (or, equivalently, with periodic boundary conditions). We then extend the analysis to the bounded
case, z ∈ [0, 1]. Equation (12) has the structure of a generalized KPZ equation, which has been extensively
studied in recent years, see Kardar, Parisi, and Zhang (1986), Gilding, Guedda, and Kersner (2003), Ben-
Artzi, Goodman, and Levy (1999), Hart and Weiss (2005), Laurencot and Souplet (2005) and references
therein. The Cauchy problem is well-posed, i.e., given bounded, regular, initial conditions, there exists
a unique, smooth, solution. Specifically, given continuous, bounded, initial conditions, there is a unique
solution that is bounded, twice continuously differentiable in space and once continuously differentiable in
time, i.e., w ∈ C2,1[0, T ]× R (see, e.g., Ben-Artzi, Goodman, and Levy (1999)).

Given that the Cauchy problem is well-posed and that the solution is smooth, it is clear that az =
λ(z) sign(wz) will have a finite number of discontinuities on any bounded interval at any point in time.
Moreover, given that the solution is interior, a is continuous in a neighborhood of z = 0 and also in a
neighborhood of z = 1. The p.d.e.

0 = wt − ρw + (az − z(1− z)µ̂+ z(1− z)2σ2)wz +
σ2

2
z2(1− z)2wzz + q(t, z),

is parabolic in the interior, but hyperbolic at the boundaries, since the σ2

2
z2(1 − z)2wzz-term vanishes at

boundaries. For example, at the boundary, z = 1, using the transformation τ = T − t, the equation reduces
to

wτ = −ρw − λ(1)wz.

11The concept of well-posedness additionally requires the solution to depend continuously on initial and
boundary conditions. This requirement is natural, since we can not hope to numerically approximate the
solution if it fails.
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Similarly, at z = 0, the equation reduces to

wτ = −ρw + λ(0)wz + q(t, 0).

Both these equations are hyperbolic and, moreover, they both correspond to outflow boundaries. Specifically,
the characteristic lines at z = 0 are τ + z/λ(0) = const, and at z = 1 they are τ − z/λ(1) = const. For
outflow boundaries to hyperbolic equations, no boundary conditions are needed, i.e., if the Cauchy problem
is well posed, then the initial-boundary value with an outflow boundary is well-posed without a boundary
condition (Kreiss and Lorenz (1989)). This suggests that no boundary conditions are needed.

To show that this is indeed the case, we use the energy method to show that the operator Pw
def
=

ρw + (a − z(1 − z)µ̂ + z(1 − z)2σ2)wz + σ2

2
z2(1 − z)2wzz is maximally semi-bounded, i.e., we use the

L2 inner product 〈f, g〉 =
R 1

0
f(x)g(x)dx, and the norm ‖w‖2 = 〈w,w〉, and show that for any smooth

function, w, 〈w,Pw〉 ≤ α‖w‖2, for some α > 0.12 This allows us to bound the growth of d
dτ
‖w(t, ·)‖2

by d
dτ
‖w(t, ·)‖2 ≤ α‖w‖2, since 1

2
× d

dτ
‖w(t, ·)‖2 = 〈w,Pw〉. Such a growth bound, in turn, ensures well-

posedness (see Kreiss and Lorenz (1989) and Gustafsson, Kreiss, and Oliger (1995)).
We define I = [ε, 1 − ε]. Here, ε > 0 is chosen such that wz is nonzero outside of I for all τ > 0. By

integration by parts, we have

〈w,Pw〉 = −ρ‖w‖2 + 〈w, cwz〉+ 〈w, dwzz〉

= −ρ‖w‖2 +
1

2

`
〈w, cwz〉 − 〈wz, cw〉 − 〈w, czw〉+ [w2c]10

´
− 〈wz, dwz〉 − 〈w, dzwz〉+ [wdwz]

1
0

= −ρ‖w‖2 − 〈w, czw〉 − λ(1)w(t, 1)2 − λ(0)w(0, t)2 − 〈wz, dwz〉 − 〈w, dzwz〉
≤ (r − ρ)‖w‖2 + γmax

z∈I
w(z)2 − 〈wz, dwz〉 − 〈w, dzwz〉

≤
`
r + σ2 − ρ

´
‖w‖2 + γmax

z∈I
w(z)2 − σ2

2

Z 1

0

z2(1− z)2w2
zdz,

where c(t, z) = az − µ̂z(1 − z) + σ2z(1 − z)2 and d(z) = σ2z2(1 − z)2/2. Also, γ = 2 maxz∈I λ(z), and
r = max0≤z≤1 |µ̂z(1− z)− σ2z(1− z)2|. Here, the last inequality follows from

−〈wz, dwz〉 − 〈w, dzwz〉 =
σ2

2

Z 1

0

z(1− z)
`
−z(1− z)w2

z − (2− 4z)wwz
´
dz

≤ σ2

2

Z 1

0

z(1− z)
`
−z(1− z)w2

z + 2|w||wz|
´
dz

≤ σ2

2

Z 1

0

z(1− z)
„
−z(1− z)w2

z +
z(1− z)

2
w2
z +

2

z(1− z)w
2

«
dz

= σ2‖w‖2 − σ2

2

Z 1

0

z2(1− z)2w2
zdz,

where we used the relation |u||v| ≤ 1
2
(δ|u| + |v|/δ) for all u, v for all δ > 0. Finally, a standard Sobolev

inequality implies that

γmax
z∈I

w(z)2 ≤ γ
„
ξ

Z
I

wz(z)
2dz +

„
1

ξ
+ 1

«Z
I

w(z)2dz

«
,

for arbitrary ξ > 0. Specifically, we can choose ξ = ε2(1− ε)2/(2γ) to bound

γmax
z∈I

w(z)2 − σ2

2

Z 1

0

z2(1− z)2w2
zdz ≤ γ

„
1

ξ
+ 1

«
‖w‖2,

12Since we impose no boundary conditions, it immediately follows that P is maximally semi-bounded if
it is semi-bounded.
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and the final estimate is then

d

dτ
‖w‖2 ≤

„
r + σ2 − ρ+

γ

ξ
+ γ

«
‖w‖2.

We have thus derived an energy estimate, for the growth of ‖w‖2, and well-posedness follows from the
theory in Kreiss and Lorenz (1989) and Gustafsson, Kreiss, and Oliger (1995). Notice that we also used
that a(0, ·) > 0 and a(1, ·) < 0 in the first equation, to ensure the negative sign in front of the λ(0) and λ(1)
terms.

What remains is to show that if condition 1 is satisfied, then indeed the solution is an interior one. We
first note that an identical argument as the one behind Proposition 1 in Longstaff (2001) implies that the
central planner will never choose to be in the region z < 0 or z > 1, since the non-zero probability of ruin in
these regions always make such strategies inferior. Since any solution will be smooth, the only way in which
the solution can fail to be interior is thus if a = 0 for some t, either at z = 0, or at z = 1.

We note that close to time T , the solution to (42) will always be an interior one, since µ̂(1−z)− σ2

2
(1−z)2

is strictly concave, with an optimum in the interior of [0, 1] and

wz(T − τ, z) =

Z τ

0

qz(T − s, z)ds+O(τ3) =
τ2

2

`
−µ̂+ σ2(1− z)

´
+O(τ3),

so the solution to wz = 0 lies at z∗ = 1 − µ̂
σ2 + O(τ), which from Condition 1 lies strictly inside the unit

interval for small τ . Thus, if a solution degenerates into a noninterior one, it must happen after some time.
We next note that for the benchmark case in which λ(z) ≡ 0, i.e., for the case with no flexibility, the

solution is increasing in z at z = 0 and decreasing in z at z = 1 for all t. For example, at z = 0, by
differentiating (12) with respect to z, and once again using the transformation τ = T − t, it is clear that wz
satisfies the o.d.e.

(wz)τ = −(ρ+ µ̂− σ2)wz + qz(T − τ, 0), (44)

and since qz(T − τ, 0) > 0 and (wz)(0, 0) = 0, it is clear that (wz) > 0 for all τ > 0. In fact, the solution to
(44) is

e−(µ̂+ρ)τ
“
−e−τσ

2
ρ+ eτµ̂(µ̂+ ρ− σ2) + eτ(µ̂+ρ)(−µ̂+ σ2)

”
ρ(µ̂+ ρ− σ2)

which is strictly increasing in τ , as long as Condition 1 is satisfied. An identical argument can be made at
the boundary z = 1, showing that wz(τ, 1) < 0, for all τ > 0. Now, standard theory of p.d.e.s implies that,
for any finite τ , w depends continuously on parameters, for the lower order terms, so wz 6= 0 at boundaries
for small, but positive, λ(z).

For large τ , we know that w converges to the steady-state benchmark case, which has wz 6= 0 in a
neighborhood of the boundaries. Moreover, for small τ it is clear that wz 6= 0 in a neighborhood of the
boundaries according to the previous argument. Since the solution is smooth in [0, T ] × [0, 1], and wz 6= 0
at the boundaries for all τ > 0, it is therefore clear that there is an ε > 0, such that wz(t, z) > 0 for all
τ > 0, for all z < ε, and wz(t, z) < 0 for all z > 1− ε. Thus, for λ ≡ 0, and for λ close to 0 by argument of
continuity, the solution is interior.

Next, it is easy to show that for any λ, the central planner will not choose to stay at the boundary for
a very long time. To show this, we will use the obvious ranking of value functions implied by their control
functions: λ1(z) ≤ λ2(z) for all z ∈ [0, 1] ⇒ w1(τ, z) ≤ w2(τ, z) for all τ ≥ 0, z ∈ [0, 1], where w1 is the
solution to the central planner’s problem with control constraint λ1, and similarly for w2.

Specifically, let’s assume that λ1 ≡ 0, and λ2 > 0. Now, let’s assume that for all τ > τ0, the optimal
strategy in the case with some flexibility (λ2) is for the central planner to stay at the boundary, z = 1, for

some τ0 > 0. From (12), it is clear that w2(τ, 0) = e−ρ(τ−τ0)w2(τ0, 0), which will become arbitrarily small
over time. Specifically, it will become smaller than w1(1− ε, τ), for arbitrarily small ε > 0, in line with the
previous argument, since w1(τ, 0) ≡ 0 for all τ and w1

z(τ, 0) < −ν, for large τ , for some ν > 0. It can therefore
not be optimal to stay at the boundary for arbitrarily large τ , since w2(τ, 1 − ε) ≥ w1(τ, 1 − ε) > w2(τ, 0).
A similar argument can be made for the boundary z = 0.
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In fact, a similar argument shows that the condition wz = 0 can never occur at boundaries. For example,
focusing on the boundary z = 0, assume that wz = 0 at z = 0 for some τ and define τ∗ = infτ>0 wz(τ, 0) = 0.
Similarly to the argument leading to (44), the space derivative of (42) at the boundary z = 0 is

(wz)τ = −(µ̂+ ρ− σ2)wz + qz + awzz, (45)

where qz = (−µ̂ + σ2) 1−e−ρτ
ρ

is strictly positive for all τ > 0. Since, per definition, wz(τ
−
∗ , 0) > 0 and

wz(τ∗, 0) = 0, it must therefore be that qz + awzz ≤ 0, which, since a(τ, 0) > 0, for τ < τ∗, implies that w is
strictly concave in a neighborhood of τ∗ and z = 0. Moreover, just before τ∗, say at τ∗ −∆τ , wz is zero at
an interior point, close to z = 0, because of the strict convexity of w, i.e., wz(τ∗−∆τ,∆z) = 0. However, at
∆z, wz satisfies the following p.d.e., which follows directly from (42):

(wz)τ = −(µ̂+ ρ− σ2 +O(∆z))wz + (1 +O(∆z))qz +O((∆z)2), (46)

and, since wz = 0, this implies that

(wz)τ = qz +O((∆z)2) > 0, (47)

so at time τ∗, wz(τ∗,∆z) = qz(τ∗−∆τ,∆z)∆τ+O((∆z)2∆τ)+O((∆τ)2) > 0. However, since wzz is strictly
concave on z ∈ [0,∆z], it can not be that wz(τ∗, 0) = 0 and wz(τ∗,∆z) > 0, so we have a contradiction. A
similar argument can be made at the boundary at z = 1.

We have thus shown that the solution to (42) must be an interior one and that, given that the solution
is interior, the formulation as an initial value problem with no boundary conditions (12,13) is well-posed.
We are done.

Since a is a bang-bang control, az = λ(z)sign(wz).

Proof of Proposition 2: We use the following standard lemma, which we state without proof.

Lemma 3 If dY = Y (µ̂dt+σdω) is a constant coefficient geometric Brownian motion, with Y (0) = Y0 > 0,
then

• If µ̂ > σ2

2
, then P(limt→∞ Y (t) =∞) = 1.

• If µ̂ < σ2

2
, then P(limt→∞ Y (t) = 0) = 1.

• If µ̂ > σ2

2
, then for all y < Y0, P (inft {t : Y (t) ≤ y} =∞) > 0.

• If µ̂ < σ2

2
, then , then for all y > Y0, P (inft {t : Y (t) ≥ y} =∞) > 0.

a) We prove a stronger result, that when z(0) > 0 and λ > µ, then z always reaches z∗ > 0 at some later
point in time. Since the problem is time homogeneous, this is sufficient for the first part of the proposition.

Consider 0 < z(0) < z∗. Then, as long as z(t) < z∗, dB = λBdt, so B(t) = eλtB(0). Define D̂(0) = D(0),

and the stochastic process dD̂ = D̂(µ̂dt+ σdω). Define Y (t) = 1
B(0)

e−λtD̂(t). Then, obviously, Dt ≤ D̂t, as

long as z < z∗. Therefore,

z(t) ≥ ẑ(t) def
=

B(t)

B(t) + D̂(t)
=

B(0)

B(0) + e−λt ˆD(t)
=

1

1 + Y (t)
.

Now, it follows that dY = Y ((µ̂− λ)dt+ σdω), as long as z(t) < z∗, and it then follows from lemma 3 that
Y (t) → 0 for large t, since µ − λ < 0. Therefore, as long as z(t) < z∗, z(t) will revert to z∗. An identical
argument can be made for z(0) > z∗.

b) For the second part of the proposition, choose Z > 0 small enough, such that ε
def
= µ − λ 1

1−Z > 0.

Clearly, the “worst case scenario” in proving that z(t) → 0 is if z(0) = 1, i.e., P(limt→∞ z(t) = 0|z(0) =
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z0) ≥ P(limt→∞ z(t) = 0|z(0) = 1) for all 0 ≤ z0 ≤ 1, so if q
def
= P(limt→∞ z(t) = 0|z(0) = 1) = 1, then the

result follows immediately. Define the events:

A1 = inf
t


t : z(t) ≤ Z

2

ff
<∞,

A2 = inf
t
{t : z(t) ≥ Z} =∞ ∩ z(t)→t→∞ 0,

A3 = inf
t
{t : z(t) ≥ Z} =∞ ∩ z(t) 6 →t→∞.

with corresponding probabilities

p1 = P (A1|z(0) = 1) ,

p2 = P
„
A2

˛̨̨
z(0) =

Z

2

«
,

p3 = P
„
A3

˛̨̨
z(0) =

Z

2

«
.

Clearly, pz
def
= P

“
A1

˛̨̨
z(0) = z

”
≥ p1, for all Z

2
≤ z ≤ 1. Also, the Markov property of the dynamics of z

implies that the distribution of z(t+ s) depends only on the value of z(t) and not on previous history.
Now, if we show that p1 = 1, p2 > 0 and p3 = 0, then the result we want to prove follows from the

following argument: Given z(t1) = Z
2

, define the return event, E1, as the event:

z(t2) = Z for some t2 > t1 and z(t3) =
Z

2
for some t3 > t2.

Similarly, define the event E2 as

E2 = E1 ∩
„
z(t4) = Z for some t4 > t3 and z(t5) =

Z

2
for some t5 > t4

«
,

and more generally: EN as

EN = EN−1 ∩
„
z(t2N ) = Z for some t2N > t2N−1 and z(t2N+1) =

Z

2
for some t2N+1 > t2N

«
.

Thus, EN , represents the event that z(t) moves back and forth between Z
2

and Z at least N times, and

the N -return event, QN
def
= EN\EN+1, then represents the event that z(t) moves back and forth exactly

N times (given that z(t) = Z
2

). Moreover, P(Q1) = pZ(1 − p2 − p3)
def
= q0, and more generally, P(QN ) =

(pZ(1− p2 − p3))N = qN0 . Given that z(0) = 1, since z has continuous sample paths (a.s.), z(t) converges to
0 for large t if and only if the following events occur in order:

• A1 occurs, so that z(t) = Z
2

for some t > 0,

• An N -return event, QN occurs for some finite N ≥ 0,

• A2 occurs.

The total probability for this is

q = p1

`
p2 + q0p2 + q20p2 . . .

´
= p1p2

∞X
i=0

qi0 =
p1p2

1− q0
=

p1p2

1− pZ(1− p2 − p3)
=

p2

1− 1(1− p2 − 0)
= 1,

where the last inequality follows from the assumptions that p1 = 1, p2 > 0, p3 = 0 and the fact that
1 ≥ pZ ≥ p1. Since this is the “worst case scenario,” the result also follows for all z(0) < 1.
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What remains to be shown is that indeed p1 = 1, p2 > 0 and p3 = 0. We begin by showing that p2 > 0:

Assume that z(0) = Z
2

. Define D̂(0) = D(0) and let D̂(t) be the strong solution to the stochastic differential

equation: dD̂ = D̂((µ̂−λ Z
1−Z )dt+σdω). Then it follows immediately that D̂(t) ≤ D(t), as long as z(t) ≤ Z.

Also, define Y (t) = 1
B(0)

e−λtD̂(t). Then, as long as zt < Z

z(t) ≤ ẑ(t) def
=

B(t)

B(t) + D̂(t)
=

B(0)

B(0) + e−λt ˆD(t)
=

1

1 + Y (t)
.

Now, it follows that Y0 = 2
Z
− 1, and as long as Yt ≥ 1

Z
− 1, then ẑ(t) ≤ Z. It also follows that dY =

Y ((ε + σ2/2)dt + σdω), where ε = µ − λ Z
1−Z > 0 as previously defined. However, since ε > 0, a direct

application of lemma 3 implies that there is a positive probability that Yt >
1
Z
−1 for all t > 0 and Yt →∞,

i.e., that p′ > 0, where

p′
def
= P

„
inf
t


t : Y (t) ≤ 1

Z
− 1

ff
=∞∩ lim

t→∞
Y (t) =∞

«
.

Since z(t) ≤ ẑ(t) in this region, it follows that p2 ≥ p′, i.e., that the probability that z(t) converges to 0
without ever reaching Z is positive.

We next sthow that p3 > 0: If event A3 occurs when z(0) = Z
2

, then Y (t) 6→ ∞, which we know from
lemma 3 occurs with probability 0, so p3 = 0.

Finally, we show that p1 = 1: We choose a small ε′ > 0. On z ∈ [z∗, 1], define Y (0) = 1
B(0)

D(0) = 0

(Y (0) = 0 since we assume the worst case scenario, z(0) = 1) and the stochastic process dY = Y ((µ̂+λ)dt+
σdω. Then it follows that, as long as z ∈ [z∗, 1], z(t) ≤ 1

1+Y (t)
. Morevoer, a similar argument as in the

proof of a) ensures that z(t) = z∗ for some t > 0. The same argument obisously implies that for any other
z(0) ∈ (z∗, 1], given that Y (0) = 1

B(0)
D(0) = 0, z(t) = z∗ for some t > 0.

Since the diffusion coefficient of dz, z(1 − z)2σ2, in (10) is nonzero around z∗ (remember that z∗ is
strictly interior), it also follows that there is an ε′ > 0, such that, given that z(t) = z∗, with probability
p4 > 0, z(t′) = z∗ − ε for some t′ > t.

Now, we use the following standard lemma, which we state without proof:

Lemma 4 Assume that Y is a diffusion process on an interval [a, b] with absorbing boundaries, defined by
Y (0) = Y0, for some Y0 ∈ (a, b) and dY = µ(Y )dt+σ(Y )dω, where |µ(Y )| ≤ c <∞, and σ(Y ) ≥ d > 0 for all

Y ∈ (a, b) and constants, c, d. Then pa
def
= P {inft{t : Y (t) = a} <∞) > 0, pb

def
= P {inft{t : Y (t) = b} <∞) >

0, and pa + pb = 1. That is, Y eventually reaches a boundary and each boundary is reached with positive
probability.

But, now we are basically done, since an identical argument as the one proving that q = 1 (given
assumptions), implies that p1 = 1. That is, from lemma 4 it follows that, given that z(t) = z∗ − ε′, with
positive probability z reaches Z

2
without leaving the domain (Z

2
, z∗). Moreover, the probability that it stays

in the domain (Z
2
, z∗) for ever is 0 (also from lemma 4) and finally, if it exits the domain to the right (the

z∗ boundary), then it always returns to z∗ − ε at some later point in time. The same argument as showing
that q = 1 (given assumptions), therefore shows that indeed p1 = 1. Therefore, since it is indeed the case
that p1 = 1, p2 > 0 and p3 = 0, it follows that q = 1. We are done.

Proof of Proposition 3: Follows directly from proposition 3 and the Fokker-Planck equation.

Full statement of Proposition 4: Suppose that Condition 1 is satisfied, then for a solution to the social
planner’s problem : V (B,D, t) ∈ C2

`
R2

+ × [0, T ]
´
, with control a : [0, 1]× [0, T ]→ [−1, 1],

a) If γ = 1,

V (B,D, t) =
log(B +D)

ρ
+ w

„
B

B +D
, t

«
,

41



where w : [0, 1]× [0, T ]→ R solves the following PDE

0 = wt +
1

2
σ2z2(1− z)2wzz +

`
az − bµz(1− z) + σ2γz(1− z)2

´
wz

−(ρ+ p)w +
1− e−ρ(T−t)

ρ

„
µ̂(1− z)− σ2(1− z)2

2

«
+p

»
log(1− |a|z)(1− e−ρ(T−t))

ρ
+ w

„
(1− |a|)z
1− |a|z , t

«–
, (48)

where, a(z, t) = α(z, t) sign(wz) and, for each z and t,

α = arg max
α∈[0,1]

α|wz|+ p

»
log(1− αz)(1− e−ρ(T−t))

ρ
+ w

„
(1− α)z

1− αz , t

«–
. (49)

b) If γ > 1:

V (B,D, t) = − (B +D)1−γ

1− γ w

„
B

B +D
, t

«
,

where w : [0, 1]× [0, T ]→ R− solves the following PDE

0 = wt +
1

2
σ2z2(1− z)2wzz +

`
az − bµz(1− z) + σ2γz(1− z)2

´
wz

−
»
ρ+ p− bµ(1− γ)(1− z) +

1

2
σ2γ(1− γ)(1− z)2

–
w

−1 + p

»
1− (1− |a|z)1−γ + w

„
(1− |a|)z
1− |a|z , t

«–
, (50)

where, a(z, t) = α(z, t) sign(wz) and, for each z and t,

α(z, t) = arg max
α∈[0,1]

α|wz|+ p

»
(1− αz)1−γ + w

„
(1− α)z

1− αz , t

«–
. (51)

For all γ ≥ 1, the terminal condition is

w(z, T ) = 0.

Proof of Proposition 4: We have

dB =
`
adt− |a|dJ1´ dt,

dD = −aB dt+D (bµdt+ σ dω) ,

γ = 1: Define

V (B,D, t) ≡ sup
a∈A

Et

»Z T

t

e−ρ(s−t) log(B +D) ds

–
.
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The Bellman equation for optimality with jump-diffusion processes is then

sup
a∈A

»
Vt +

1

2
σ2D2VDD + [bµD − aB]VD + aBVB − (ρ+ p)V + log(B +D) + pV ((1− |a|)B,D, t)

–
= 0.

As before, by homogeneity, we can write V and its derivatives in terms of D and z:

V (B,D, t) =
log(B+D)(1−e−ρ(T−t))

ρ
+ w(z, t).

Using (38-41), and substituting into (30), we obtain

0 = wt +
1

2
σ2z2(1− z)2wzz +

ˆ
az − bµz(1− z) + σ2z(1− z)2

˜
wz − (ρ+ p)w

+
1− e−ρ(T−t)

ρ

»bµ(1− z)− σ2(1− z)2

2

–
+ p

»
1− e−ρ(T−t)

ρ
log(1− |a|z)) + w

„
(1− |a|)z
1− |a|z , t

«–
.

A similar argument as in the proof of Proposition 1 implies that no boundary conditions are needed, and
the natural terminal condition is w(z, T ) = 0.

γ > 1: Define:

V (B,D, t) ≡ sup
a∈A

Et

»Z T

t

e−ρ(s−t)
(B(s) +D(s))1−γ

1− γ ds

–
.

Th Bellman equation for optimality is

0 = sup
a∈A

»
Vt +

1

2
σ2D2VDD + [bµD − aB]VD + aBVB − (ρ+ p)V +

(B +D)1−γ

1− γ + pV ((1− |a|)B +D)

–
.

By homogeneity, we can write

V (B,D, t) = − (B +D)1−γ

1− γ w(z, t),

which, using (32-35), leads to

0 =
1

2
σ2z2(1− z)2wzz +

`
az − bµz(1− z) + σ2γz(1− z)2

´
wz

−
»
ρ+ p− bµ(1− γ)(1− z) +

1

2
σ2γ(1− γ)(1− z)2

–
w

−1 + p

»
(1− |a|z)1−γ − 1 + w

„
(1− |a|)z
1− |a|z , t

«–
.

A similar argument as in the proof of Proposition 1 implies that no boundary conditions are needed, and
the natural terminal condition is w(z, T ) = 0.

Proof of Proposition 5 : In general, a central planner’s problem, possibly including investments, is

max Et

»Z T

t

e−ρ(s−t)u(cs)ds

–
,

subject to constraints. With CRRA utility, this can be rewritten as

1

1− γ min Et

»Z T

t

e−ρ(s−t)u′(cs)csds

–
.
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In general, ct can be chosen by the central planner. In our exchange-like economy with reallocation, however,
ct = Bt + Dt is fixed, and the central planner can only influence future consumption. This is not true in
general, when there is also an instantaneous consumption decision.

Therefore, the optimization problem is identical to

u′(ct)ct
1− γ min

1

u′(ct)ct
Et

»Z T

t

e−ρ(s−t)u′(cs)csds

–
,

but the Euler equations imply that

1

u′(ct)
Et

»Z T

t

e−ρ(s−t)u′(cs)csds

–
= PB + PD,

so the central planners problem is to solve

u′(ct)ct
1− γ min

PB + PD
B +D

, i.e.,

(Bt +Dt)
1−γ

1− γ min
PB + PD
B +D

.

Thus, the central planner’s problem is to minimize the market price-dividend ratio.
In fact, we have

PD + PB
B +D

= (B +D)γ−1(1− γ)Et

»Z T

t

e−ρ(s−t)
(Bs +Ds)

1−γ

1− γ ds

–
= −(B +D)γ−1(1− γ)

(B +D)1−γ

1− γ w(z, t) = −w(z, t).

Proof of Proposition 6: We define P = PD + PB , v = −w, and E = B +D, and we use that P = v ×E.
We wish to calculate

E

»
dP + Edt

P

–
= E

»
dP

P
+

1

v
dt

–
Using Ito calculus, we have

E

»
dP

P

–
= E

»
d(vE)

vE

–
=
E[dv]

v
+
E[dE]

E
+
dv

v

dE

E

=
vt
v
dt+

vz
v

(az − z(1− z)µ̂+ z(1− z)2σ2)dt+
1

2

vzz
v
σ2z2(1− z)2dt

+ (1− z)µ̂dt−
“vz
v

(1− z)σ
”

(z(1− z)σ) dt

=
dt

v

»
vt + (az − z(1− z)µ̂)vz +

1

2
σ2z2(1− z)2vzz + (1− z)µ̂v

–
,

so

E

»
dP + Edt

P

–
=

dt

v

»
vt + (az − z(1− z)µ̂)vz +

1

2
σ2z2(1− z)2vzz + (1− z)µ̂v + 1

–
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From (12) it follows that

vt +
1

2
σ2z2(1− z)2vzz +

`
az − bµz(1− z) + σ2γz(1− z)2

´
vz + 1 =

»
ρ− bµ(1− γ)(1− z) +

1

2
σ2γ(1− γ)(1− z)2

–
v,

so

ηdt = =

„
ρ− bµ(1− γ)(1− z) +

1

2
σ2γ(1− γ)(1− z)2 + (1− z)µ̂− σ2γz(1− z)2 vz

v

«
dt

=

„
ρ+ γµ̂(1− z)− 1

2
γ(γ − 1)(1− z)2 − γσ2z(1− z)2wz

w

«
dt.

b) Follows immediately from the form of η and r.

Proof of Proposition 7: See discussion in Appendix B.

Proof of Proposition 8: If the result is true for λ = 0, then it will also be true for small but positive λ by
continuity, which follows from the well-posedness of the problem (see Proposition 1). That the result holds
for λ = 0 follows from Proposition 5, (iii) and (iv) in Parlour, Stanton, and Walden (2009) (note that z in
that paper is the same as 1− z in this paper).
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