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Abstract

We develop an expression for the long-term discount rate in an economy in which a
representative consumer has access to both a risk-free and a risky production technol-
ogy. Even when the risk-free sector is very small, and with probability one becomes a
negligible fraction of the economy in the long run, interest rates are determined differ-
ently than in a single-sector economy. As in a single-risky-sector economy, the short rate
depends on risk aversion; however, the long rate depends on consumption growth and
volatility (i.e., the production possibilities of the economy), but not on the representa-
tive investor’s risk aversion. Rather than always being flat, the yield curve is usually
upward sloping but may be downward sloping. In the latter case, the slope predicts a
future increase in consumption growth rates and lower future short-term interest rates.
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1 Introduction

How should society value a $1 certain cash flow in the distant future? Any rational invest-
ment in projects whose benefits accrue over long time horizons requires an answer to this
question. Further, since traded bonds typically have maturities less than thirty years, the
answer must necessarily be theoretical.

Much of our intuition concerning the behavior of the long-term discount rate comes from
the one-tree model of Lucas (1978), in which long-term and short-term rates are constant,
equal, and depend heavily on the level of risk aversion in the economy. In this paper,
we show that this intuition is actually extremely fragile by considering a simple two-tree
extension of this economy. Despite the fact that, with probability one, our model looks
indistinguishable from the one-tree Lucas (1978) model in the long run, long-term interest
rates behave completely differently in the two economies.1

We consider how a risk-averse agent who consumes dividends from two sources, one risky
and one risk-free, values cash flows in the future. Dividends from the risky asset follow a
geometric Brownian motion, and all dividends are consumed instantaneously. Mechanically
then, our paper essentially characterizes the term structure in a Lucas economy with two
trees, one with a risky, and the other a riskless, dividend.2 This is the simplest possible
extension of the one-tree Lucas (1978) model and, as long as the growth rate of the risky
tree exceeds that of the riskless tree, this economy in the long run looks indistinguishable
from a one-tree economy. Nevertheless, it has very different implications for interest rate
behavior. In particular, we find that the long and short rates are determined by different
variables. The short rate essentially follows the same dynamics as it would in a one-tree
economy, being the sum of the personal discount rate, the expected growth rate times
the risk aversion coefficient, and the precautionary savings motive; however, the long rate
depends only on the growth rate and volatility of consumption. Thus, the appropriate rate
at which to discount long-term cash flows only depends on the technological characteristics
of the economy and does not depend on the risk-aversion of the representative agent. This
result holds regardless of the fraction of the economy — strictly between zero and one —
that is made up of the riskless sector. The reason for the difference between the one-tree and
the two-tree models is the insurance provided by the riskless tree in extreme low probability,
low consumption, states of the world, i.e., in the far-left tail of the distribution. Even if the

1The degeneracy of our model is important. If we started with a model that always looked different
from the one-tree model, we would not then be particularly surprised to find that many economic variables,
including the long rate, differed between the two economies.

2Building on the one-tree framework of Lucas (1978), the two-tree model was first introduced in Cochrane,
Longstaff, and Santa-Clara (2008) and then further extended by Martin (2008). Further, Santos and Veronesi
(2006) also present a multiple sector asset pricing economy which in equilibrium has the characteristics of
the two-tree economy.
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riskless tree is arbitrarily small, it significantly influences the long-term rate.
The reason why risk aversion becomes unimportant for bond yields as the horizon in-

creases, even though bond prices depend on risk aversion, is that differences between bond
prices in economies indexed by different levels of risk aversion are sufficiently small, com-
pared with the compounding inherent in the yield calculation, that the price differences
become unimportant at the long end of the curve. The price of a bond is the expected
discounted value of a dollar multiplied by the representative agent’s marginal utility. In
the two-tree model, the marginal utility (irrespective of risk aversion) is bounded above
and below. If the agent consumes the fruit of a risk-free tree, which provides insurance,
then marginal utility is always bounded above. Indeed, one can find an upper bound on
the ratio of marginal utilities for two agents with the same personal discount factor but
different risk aversion coefficients independently of time horizon. Therefore, bond prices
for the same maturity for any two economies that differ only in the risk aversion of their
representative agents will not differ “by much.” For long maturities this will lead to similar
yields. Finally, we observe that bond prices will be driven by the maximum consumption
available to the agent. Therefore, the yields derived from the bond prices will be equivalent
and will depend on the economic variables that determine the agent’s consumption, not on
risk aversion. This observation has implications for evaluating long term investments across
countries; by the logic of this approach, different discount rates should be used in countries
with different expected growth rates.

Weitzman (1998, 2001) (see also Weitzman (2005)) has pioneered investigations into the
appropriate discount rate to use when valuing long-term projects such as those required to
mitigate climate change. He argues that, if there is parameter uncertainty, the appropriate
long-term discount rate to analyze the costs and benefits of long-term investments (e.g.,
investments to avoid global warming) is lower than that inferred from the short- and mid-
term rates. Our results underline, in a simple parsimonious framework, that we should
expect a separation between short and long rates. As in Weitzman’s studies, the reason for
such a separation in our model is the behavior of the economy in the far-left tail, i.e., in the
worst-case scenarios. However, the long rate in our framework can be either higher or lower
than the short rate, whereas in Weitzman’s studies it is always lower because of parameter
uncertainty.

Central to our analysis is the existence of a risk-free consumption stream. There are
many plausible economic frameworks that give rise to such a sector; we posit two. First,
in an economy with technology shocks, if there is enough “memory” in the economy, it is
natural to assume that production levels can never fall below some threshold. Alternatively,
a lower bound on consumption can be interpreted as subsistence farming or consumption.
Second, bonds may not be in zero net supply. The assumption that bonds are in zero
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net supply is consistent with an infinitely lived representative agent in an economy absent
any frictions. In particular, any bonds that she issues, she also consumes. By contrast, in
a world with finitely lived investors, or with frictions, it may be possible for the current
generation to borrow against the consumption of future generations, leading to a positive
supply of bonds and risk-free consumption for the current generation over a significant time
period. Indeed, in any economy in which Ricardian equivalence fails, government bonds
can be in positive net supply.

The importance of the low consumption states in the CRRA-lognormal framework was
emphasized in Kogan, Ross, Wang, and Westerfield (2006), who studied the price impact
of irrational traders in capital markets. Earlier, Geweke (2001) made the point that the
CRRA-lognormal framework is not robust to different distributional assumptions in the
far-left tails. In fact, a small “fattening” of the left tail-distribution, e.g., introduced by
parameter uncertainty in a Bayesian framework, makes expected utility infinitely negative.
Further, Barro (2005) (following Rietz (1988)) uses the absence of consumption insurance
to generate empirically reasonable equity premia.3 Thus, we are not the first to consider the
effect of extreme events in consumption based asset pricing. All of these approaches consider
the effect of catastrophic risk, either actual or suspected, on agents’ valuation for risky bets.
However, as we have argued above, it is difficult to envisage economic environments in which
agents cannot guarantee themselves at least a subsistence level of consumption. By this
reasoning, the equity premium puzzle cannot be resolved by appealing to low probability
catastrophic states, because agents always have resources with which they can guarantee
themselves at least subsistence consumption.

The paper is organized as follows. In the next section, we introduce the model. In
Section 3, we study the term structure and the utility of the representative investor, and
finally, Section 4 concludes. All proofs are deferred to an appendix.

2 Model

Consider an economy that evolves between times 0 and T (where T can be finite or infinite),
in which there are two sources of the consumption good. The first pays a riskless dividend,
B(t) dt, which grows at a constant rate k over time, so the time t > 0 dividend is B(t) =
B0 e

kt. We call this asset a bond. For simplicity, we focus on the case where k = 0, so B(t)
is constant, but our results readily generalize to nonzero growth rates.

The second, risky asset grows stochastically, and pays an instantaneous dividend of
D(t) dt, where D(t) = D0 e

y(t), y(0) = 0, dy = µdt+σ dω, and µ and σ are constants. Here,
3An interesting and unresolved question in the catastrophic events literature is if and how the expected

utility of a representative agent who faces decimation should be defined. This “survival problem” has been
examined by Majumdar and Hashimzade (2006).
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ω is a standard Brownian motion, which generates a standard filtration, Ft, on t ∈ [0, T ).
We also define µ̂ = µ+ σ2/2.

It will be useful to consider the share of the risky asset in the overall economy and
so we define the risky share, z(t) = D(t)/(B(t) + D(t)). Notice that if z is constrained
to be one, all resources are in the risky asset and the economy collapses to a standard
one tree model in line with that in Lucas (1978).4 It will sometimes be convenient to use
d = log(z)− log(1− z) = log(D/B).

There is a price-taking representative investor with constant relative risk-averse (CRRA)
utility and risk-aversion coefficient γ > 0, who consumes the output of both trees:

U(t) = Et

[∫ T

t
e−ρ(s−t)u(B(s) +D(s)) ds

]
. (1)

Here,

u(c) =

{
log(c), γ = 1,
c1−γ

1−γ , γ 6= 1.
(2)

The prices of all assets are determined by her valuations, and a standard argument implies
that, in equilibrium, an asset that pays out ξ(t), where ξ is an Ft adapted process satisfying
standard conditions, commands an initial price of

P T0 =
1

u′(B0 +D0)
E0

[∫ T

0
e−ρsu′(B(s) +D(s))ξ(s) ds

]
. (3)

Equation (3) is the Euler equation that relates the agent’s aggregate consumption, her
marginal utility and her valuation for all securities, including risk-free ones. When we
analyze welfare and utility in Subsection 3.1 below, we establish that prices of risk-free
bonds can be expressed as a function of the fraction of the representative agent’s wealth
held in the risky asset. Therefore, we write bond prices as P τ0 (z), where z = D0/(B0 +D0).

A zero-coupon risk-free bond with maturity date τ has the price

P τ0 =
1

u′(B0 +D0)
E0

[
e−ρτu′(B(s) +D(s))

]
. (4)

The τ -period spot rate at time 0 is defined as

rτ = − log(P τ0 )
τ

,

4The Fisherian consumption model presented in Lucas (1978) follows earlier equilibrium models such as
Rubinstein (1976).
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while the short rate is defined as
rs = lim

τ↘0
rτ ,

and the long rate, in an economy with T =∞, is defined as

rl = lim
τ→∞

rτ .

Standard stochastic calculus implies dynamics for the capital in the risky sector and for
the risky share:

dD = D (µ̂ dt+ σ dω) ,

dz = z(1− z) (µ̂ dt+ σ dω)− z2(1− z)σ2 dt. (5)

We note that when µ > 0, the distribution of the risky share, z(t) ∈ (0, 1), converges in
probability to one for large t, z →p 1. In this case, the growth rate of real variables (i.e.,
dividends and consumption) in the economy behaves much like that in the one-tree model
for large t. If, on the other hand, µ < 0, the share converges to zero, z →p 0. In this
case, real variables become almost risk free over time. If µ = 0, then the share converges in
probability to a two point distribution, with 50% mass at 0 and 50% mass at 1.5 In what
follows, we focus our attention on the economically interesting case of µ > 0.

Cochrane, Longstaff, and Santa-Clara (2008) also characterize the economy in terms
of the relative share of each asset, z, and express dynamics for the share. However, they
assume that both trees are risky with the same growth rate in most of their analysis. In
our formulation, the difference between the drifts of the two trees is µ, whereas in their case
the difference is zero. This leads to different formulae for the dynamics of the risky share
(in our model, Equation (5)).

Through the Feynman-Kac equations, a general partial differential equation (PDE) for
the price of a zero coupon bond can be derived:

Proposition 1 The price, at time s, of a τ -maturity zero coupon bond, where s + τ ≤ T ,
is P τs (z) = F (s, z), where F is the solution to the following PDE:

Ft +
1
2
σ2z2(1− z)2Fzz + (γµ̂z(1− z)− σ2(1 + γ)z2(1− z))Fz

−
(
ρ+ γµ̂z − 1

2
γ(γ + 1)σ2z2

)
F = 0. (6)

5The convergence also holds a.s. for µ 6= 0, but not for µ = 0.
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F (z, s+ τ) ≡ 1, (7)

s ≤ t ≤ τ,

0 ≤ z ≤ 1.

We note that no boundary conditions are needed at the z = 0 and z = 1 boundaries. The
technical reason is that both the first order (Fz) and the second order (Fzz) terms vanish
at these boundaries, so that the PDE turns into a first order ODE in t. The boundary con-
ditions in the two-tree model are further analyzed in a companion paper, Parlour, Stanton,
and Walden (2009).

Intuitively, boundary conditions are not needed because both boundaries are absorbing:
If the economy is in either the risk-free (z = 0) or the full-risk (z = 1) state, it stays in
this state as there is no way to transfer capital between the trees. At either of these end
points, the model collapses to the one-tree framework and bond prices are deterministic.
Consider Equation (6) evaluated at z = 0 and z = 1 respectively. The solution to Ft −(
ρ+ γµ̂z − 1

2γ(γ + 1)σ2z2
)
F = 0, F (s + τ) = 1 is P τs = F (s) = e−ρτ when z = 0 and is

the discount rate in a deterministic economy. Similarly, when z = 1 the economy is the
standard CRRA-lognormal framework and the price is P τs = F (s) = e−(ρ+γbµ−γ(γ+1)σ2/2)τ .

3 Characterization of the economy

The normalized expected utility of the representative agent, or the welfare, is helpful in
understanding the term structure as the valuation of any risk-free bond depends on the
agent’s expected marginal utility. We first characterize the welfare and then proceed to
characterize the term structure.

First, observe that without loss of generality, we can normalize the size of the economy
to 1. That is, we assume that B0 +D0 = 1. The homogeneity of the utility function implies
that such a normalization has no impact on the term structure, and that the expected utility,
when γ 6= 1, is scalable as U(t, z, B + D) = (B + D)1−γU(t, z, 1) def= (B + D)1−γw(t, z),
where w(t, z) is the normalized welfare at share z, w(t, z) def= U(t, z, 1). In the special case

of log-utility, i.e., when γ = 1, we have U(t, z, B + D) =
log(B+D)(1−e−ρ(T−t))

ρ + w(t, z). In
the infinite horizon case, the welfare is not time dependent, w = w(z).
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3.1 Expected utility

The expected utility of the representative investor can be found by solving a PDE. In
the appendix, we develop the PDE that characterizes the representative agent’s welfare
and state this as Proposition 6. Here, we report the infinite horizon case, which can be
calculated directly.6 We have

Proposition 2 In the infinite horizon economy, T =∞, define q =
√
µ2 + 2ρσ2. Suppose

that
(i) γ = 1. Then, if the initial risky share is 0 < z < 1, the expected utility of the represen-
tative agent is

w(z) =
1
2ρ

( (
2µ2 + σ2(2ρ+ q) + µ(σ2 + 2q)

)
2F1

(
1,
q − µ
σ2

,
q − µ
σ2

+ 1,
z − 1
z

)
+ 2

z

z − 1
(
µ2 + ρσ2 − µq

)
2F1

(
1,
q + µ

σ2
+ 1,

q + µ

σ2
+ 2,

z

z − 1

))
/
(
µ2 − µq + 2ρ(σ2 + q)

)
,

where 2F1 is the hypergeometric function. Also, w(0) = 0 and w(1) = µ
ρ2

.
(ii) If γ > 1: then if the initial risky share is 0 < z < 1, the expected utility of the
representative agent is

w(z) =
(1− z)1−γ

q(1− γ)

×
[(1− z

z

)µ−q
σ2
(
V

(
1− z
z

, γ +
q − µ
σ2

, 1− γ
)

+ V

(
1− z
z

, γ +
q − µ
σ2

− 1, 1− γ
))

+
(

z

1− z

)− q+µ
σ2
(
V

(
z

1− z
,
q + µ

σ2
, 1− γ

)
+ V

(
z

1− z
,
q + µ

σ2
+ 1, 1− γ

))]
.

Here, V (y, a, b) def=
∫ y
0 t

a−1(1 + t)b−1dt is defined for a > 0. Also, w(0) = 1
ρ(1−γ) . Moreover,

define x def= ρ + (γ − 1)µ − (γ − 1)2 σ
2

2 . Then, if x > 0, w(1) = − 1
x . If, on the other hand,

x ≤ 0, then w(1) = −∞.

The function V is related to the incomplete Beta function, B(x, a, b) def=
∫ x
0 t

a−1(1− t)b−1dt

(see Gradshteyn and Ryzhik (2000)), via the relation V (x, a, b) = (−1)aB(−x, a, b). How-
ever, the Beta function is complex valued for negative x, so we prefer using the function V ,
which is real valued. Also, since the Beta function and the hypergeometric function satisfy

6Here, we treat the infinite horizon case, T =∞, as the limit as T →∞.
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the relationship, B(x, a, b) = 2F1(1− b, a, a+ 1, x), the cases γ = 1 and γ > 1 have similar
functional forms.

Part (ii) of Proposition 2 provides intuition for why the risk-free tree alters the economy
relative to the one-tree model. In it, we define x = ρ+ (γ− 1)µ− (γ− 1)2 σ

2

2 . Suppose that
x ≤ 0, then expected utility at z = 1 is infinitely negative, conversely for x > 0, the utility
is strictly positive. The case of z = 1 corresponds to the standard Lucas-Tree model, with
one risky tree, in which bonds are in zero net supply. However, for z arbitrarily close to but
less than one, expected utility is finite because of the insurance provided by the risk-free
tree in bad states of the world. Thus, even in an economy with a very small risk-free tree,
where real variables behave much like in the one-tree model, the representative agent’s asset
valuations differ markedly from those in the one-tree model.

To understand the importance of the insurance offered by the risk-free asset, we analyze
the point at which x = 0, which we refer to as the break-point of the model. In particular,
we consider its implications for risk aversion. Consider the following rough parametrization:
Suppose that the consumption growth rate is µ = 1% and that the consumption volatility
is σ = 4%. These numbers are quite close to international data for developed countries. For
example, the average annual consumption volatility for ten countries between 1970-2000
reported in Campbell (2003) is 2.13%, so the number is off by a factor less than two. We
make the upward adjustment to reflect the arguments in both Parker (2001) and Gabaix
and Laibson (2001) that consumption adjustment costs may artificially reduce measured
consumption volatility. We take the personal discount rate to be ρ = 1%. Given these
parameters, if x = 0, then the risk-aversion break-point coefficient is

γ = 1 +
q + µ

σ2
, (8)

where q =
√
µ2 + 2ρσ2, as defined in Proposition 2.

The above parameter values yield a risk aversion value of γ = 14.43. Thus, if γ > 14.43
— a high, but not extreme number — expected utility is negatively infinite. If consumption
volatility is halved, so that σ = 2% then the break-point occurs at γ = 52.0. Now, even
if γ is lower than this, but still close to the break-point, the behavior of the representative
investor will still be very sensitive to z close to z = 1.

Even when x > 0, the differences between the one-tree and two-tree models may be
large. Figure 1 illustrates the expected utility as a function of z, the share in the risky
asset, for the case of log-utility, γ = 1. We see that the utility function is quite flat in the
interior, but decreases sharply close to the boundaries z = 0 and z = 1, suggesting that
these (one-tree) boundary cases may be quite different from the interior case, even though
it is always the case that x > 0 when γ = 1.
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Figure 1: Expected utility as a function of z, the risky asset share. Parameters:
ρ = 1/8, σ = 2, µ = 1/10, γ = 1. w(0) = 0 and w(1) = 6.4.

Also, when T < ∞, expected utility will be finite for arbitrary z, regardless of T .
However, if the time horizon is large, we should again expect the representative agent to
be sensitive to z changes close to z = 1, similar to the case in Figure 1 with T = ∞ and
γ = 1. Thus, if the equilibrium is close to or beyond the break point defined in Equation (8),
caution should be taken with quantitative implications of the one-tree model. With this in
mind, we move on to our main objective, studying the term structure of interest rates.

3.2 The Term Structure

We first recall some well-known properties of the one-tree model, which formally occurs as
a special case of our two-tree model when z = 1. For z = 1 the yield curve is constant,

r = ρ+ γ

(
µ+

σ2

2

)
− γ(γ + 1)

σ2

2
.

The expected return of stocks is

g = ρ+ γ

(
µ+

σ2

2

)
− γ(γ − 1)

σ2

2
,

implying that the equity premium is

g − r = γσ2.
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With an equity premium of 5% and a volatility of σ = 4%, this implies a risk-aversion
parameter of γ = 31. The sensitivity of the interest rate to γ is shown in Figure 2, for
σ = 1%, σ = 2% and σ = 4%.

5 10 15 20 25 30
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

γ

r

σ = 0.02

σ = 0.04

σ = 0.01

Figure 2: Risk-free rate in one-tree model. Parameters: ρ = 1%, µ = 1%, γ = 31,
σ = 1%, 2%, 4%.

The main implication of Figure 2 is that for a high γ (in this case γ = 31), which is
needed to match the equity premium, the interest rate is very sensitive to parameter values,
i.e., to the combination of ρ, µ and σ. This is the risk-free rate puzzle. For γ = 30, when
σ = 0.01, the risk-free rate is 26%, whereas when σ = 0.04, it is −43%. Thus, as for example
noted in Campbell (2003), a reasonable interest rate only occurs as a “knife-edge” case.

In the two-tree model, the term structure is no longer constant. We have:

Proposition 3 Consider an infinite horizon economy in which the relative size of the sec-
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tors is d = log(z/(1− z)) = log(D/B). Then, the price of a τ -period bond is given by

P τ = (1 + ed)γe−ρτ
1√

2πσ2τ

∫ ∞
−∞

e−(y−d−µτ)2/(2σ2τ)

(1 + ey)γ
dy. (9)

By defining F (x) = ex
2
Erfc(x), where Erfc is the error function, Erfc(x) = (

√
π)−1

∫∞
z e−t

2
dt,

Equation (9) can be expressed in the following form:

(i) If γ = 1:

P τ =
(1 + ed)γe−ρτ−(d+µτ)2/(2σ2τ)

2
×

∞∑
n=0

(−1)nan

(
F

(
d+ µτ + nτσ2

√
2σ2τ

)
+ F

(
−d− µτ + (n+ γ)τσ2

√
2σ2τ

))
, (10)

(ii) If γ ≥ 1:

P τ =
(1 + ed)γe−ρτ−(d+µτ)2/(2σ2τ)

2
× lim
ε↘0

∞∑
n=0

(−1)ne−εnan

(
F

(
ε+ d+ µτ + nτσ2

√
2σ2τ

)
+ F

(
ε− d− µτ + (n+ γ)τσ2

√
2σ2τ

))
,(11)

(iii) If γ = 1 and d+µτ
σ2τ

= m ∈ N, then

P τ =
(1 + ed)e−ρτ−m

2σ2τ/2

2

(
1 + 2

m−1∑
n=1

(−1)nen
2σ2τ/2

)
. (12)

Here,

an =
Γ(γ + n)

Γ(γ)Γ(n+ 1)
,

where Γ(x) =
∫∞
0 e−ttx−1dt, which reduces to an =

(
n+γ−1

γ

)
when γ is integer valued.

We note that Equations (10) and (12) are special cases of Equation (11).7 Martin (2008)
independently characterizes the term structure in an economy with many trees. His frame-
work is more general than ours in that it allows for general Levy processes and multiple
trees, but his solution is based on Fourier transform techniques, and so his characterization
is less specific than those in Proposition 3.

We use Equations (11)–(12) to study the yield curve with parameters ρ = 1%, σ = 20%,
7The reason why the limit as ε ↘ 0 is needed when γ > 1 is that the series diverges otherwise. This is

expanded upon in the proof in the appendix.
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µ = 4%, z = 90%, and risk-aversion coefficients between 2 and 5. The results are shown
in Figure 3. The choice of z = 90% at t = 0 means that the risky tree initially dominates

0 50 100 150 200 250 300
−0.2

−0.15

−0.1

−0.05

0

0.05

t

r(
t)

γ=5

γ=2

γ=3

γ=4

rl=3%

Figure 3: Term structure of interest rates in the two-tree model. Parameters:
ρ = 1%, σ = 20%, µ = 4%, z = 90% γ = 2, 3, 4, 5.

the economy and, since µ̂ > σ2

2 , the risky share converges to z = 1 as t grows, so the
consumption growth rate is fairly stable in this economy.

We note that the yield curves in the figure are upward sloping and that the slope and
curvature increases with the risk aversion coefficient, γ. Moreover, although the short end
of the curve is sensitive to γ, as in the one-tree model, there seems to be an asymptotic
long-term rate that does not seem to vary much with γ. To understand these properties of
the yield curve, we analyze the short rate, rs, and the long rate, rl. We have
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Proposition 4 The short-term rate is

rs = ρ+ γz

(
µ+

σ2

2

)
− γ(γ + 1)

σ2

2
z2.

For z ∈ (0, 1), if µ ≤ γσ2, the long-term rate is

rl = ρ+
1
2
× µ2

σ2
. (13)

If, on the other hand, z ∈ (0, 1) and µ > γσ2, the long-term rate is

rl = ρ+ γ

(
µ+

σ2

2

)
− γ(γ + 1)

σ2

2
. (14)

Thus, the short rate has the same structure as in the one-tree model and, as long as µ > γσ2,
the long rate is the same as the long rate in the economy with only one risky tree. This
makes intuitive sense, since the economy will almost surely be very similar to the one-tree
economy in the long run.

If µ < γσ2, however, the long rate is a constant, independent of the risk aversion
parameter. Since γσ2 is the equilibrium equity premium, which is approximately 5–8% per
year,8 while µ, the consumption growth rate, is about 1% per year, µ < γσ2; this suggests
that the long-term rate is γ (risk-aversion) independent in practice.9

This γ-independence stands in stark contrast to the results in the one-tree model, where,
as we have seen, the interest rate is very sensitive to risk aversion.10 Specifically, in the
two-tree model, the long rate is always greater than the personal discount rate, rl > ρ,
regardless of the aggregate risk aversion in the economy. In our previous example, with
µ = 1%, σ = 4% and ρ = 1%, the long-term rate is rl = 4.125%, regardless of γ and also of
z ∈ (0, 1) in the two-tree model, whereas it is rl = ρ + γµ̂ − γ(γ + 1)σ2/2 = −45% in the
one-tree model.

Notice that this γ-independence offers a resolution to the risk-free rate puzzle at the
long end of the term structure. The insurance offered by the (in the long run vanishingly

8See, e.g., the discussion in Brealey, Myers, and Allen (2008), page 180.
9A somewhat related result on the long rate is presented in Dybvig, Ingersoll, and Ross (1996), who show

that long rates can never fall over time because Bayesian updaters can never be surprised by a worse state.
Within our specific economy, our result is stronger than the Dybvig-Ingersoll-Ross theorem, since it states
that rl is constant over time, and across risk-aversion.

10We have verified that the formula is indeed correct by numerically integrating Equation (4) directly.
Mathematica code is provided in the appendix, showing that with parameters, ρ = 1%, µ = 3.5%, σ = 20%,

γ = 2.5, the long rate converges to rl = ρ+ µ2

2σ2 = 2.53% (in line with Equation (13), since 3.5% < 2.5×20%2).

On the contrary, Equation (14) would, for example give rl = ρ + γµ− γ2σ2/2 = 1% + 2.5× 3.5%− 2.52 ×
20%2/2 = −2.75%. By varying B0, D0 and γ, it is easily verified that rl does not depend on these parameters.
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small) risk-free tree is thus extremely important for long-term discount rates. Technically,
the risk-free tree bounds marginal utility from above in bad states of the world, which
has a major impact on what the investor is willing to pay for risk-free assets. Therefore,
even if risk aversion is high, the discount rate will be modest. In this sense, this approach
is opposite of Rietz (1988) and Barro (2005), who explain the equity premium puzzle by
introducing rare catastrophic events, while keeping γ low. Our approach on the other hand,
which puts a limit on aggregate losses in the economy, allows for a higher γ without affecting
the long-term rate, which leads to higher equity premia. We stress, though, that the main
point of our analysis is to better understand the determinants of long rates, not to solve the
equity premium puzzle. Further, as we alluded to in the introduction, a subsistence level of
consumption seems to be the most plausible assumption.

The differences between the long rates in the two models further underlines the fragility
of the CRRA-lognormal model in longer time horizons, when risk aversion is high. Regard-
less of how close z is to 1 in the two-tree model, the long-term rate is drastically different
from the case when z is identically equal to 1. Similar to the expected utility results, the
differences between the two models are driven by the insurance the risk-free tree provides
in the far-left tails.

At a broad level, our results are reminiscent of, but distinct from, those found in Weitz-
man (1998, 2001). Weitzman argues that if there is parameter uncertainty, the long-term
discount rate is lower than that inferred from the short- and mid-term rates. We agree with
Weitzman that a careful analysis of the implicit assumptions about return distributions and
utility in the tails is needed to understand the long-term discount rate. Unlike in Weitzman
(1998, 2001), however, the long rate in our model may be higher than the short rate. This
distinction is obviously important if existing market data are used to infer a maximum
possible discount rate.

We first clarify the effect of the risk-free sector on the long-term rate.

Corollary 1 (i) Regardless of the size of the risk-free sector, for a fixed choice of γ, ρ, σ
and µ, then the existence of such a sector means that the long-term rate is greater than or
equal to the long-term rate without such a sector.
(ii) If µ < γσ2, then the long-term rate in an economy with a risk-free sector is strictly
higher than in an economy without.

Since the short rate is equal to the long rate in the one-tree economy, and the short
rates are basically the same in the two-tree and one-tree economies when z is close to 1,
this also implies the following result:

15



Corollary 2 If µ < γσ2, then for z close to 1, rl > rs in the two-tree economy.

Thus, for z close to 1, our results are the opposite of those obtained by Weitzman: The short
rate is lower than the long-term rate. When z is close to 1, the consumption growth rate and
volatility are stable; they depend on z, which is almost constant, as seen from Equation (5),
and the fact that z →p 1. However, when z is far away from 1, the consumption growth
rate and volatilities will change over time as z converges to 1. Specifically, the consumption
growth rate will increase from zµ to µ. Thus,

Corollary 3 (i) In an economy in which the consumption growth rate is expected to be
stable over time, rl > rs.
(ii) Whereas, if rs ≥ rl then the consumption growth rate is expected to increase.
(iii) In the long run, the yield curve will on average be upward sloping.

This corollary is important in evaluating the appropriate long term discount rates across
different countries. Specifically, if we assume that there are sufficient barriers between
countries, then in mature economies such as the United States, consumption growth is stable
and the appropriate discount rate to use should be larger than the shorter, observed market
rates. By contrast, in rapidly developing nations such as India, where the consumption
growth rate is expected to increase, calculating the appropriate discount rate from market
rates is somewhat more complex. There will be long time periods in which the appropriate
rate at which to discount long run projects will be lower than the observed shorter, market
rates.

We have not yet shown that there are states in the world in which rl < rs. In Figure 4
we show the yield curve for different values of z between z = 0.1 and z = 0.5, for µ = 1/3,
σ = 1, ρ = 0, γ = 1. We see that there are indeed regions in which the yield curve is
downward sloping. A further analysis leads to the following conditions that determine the
sign of rl − rs:

Proposition 5 Define

q2
def=

√(
µ

σ2
+

1
2

)2

− 1 + γ

γ
× µ2

σ4
.

Then, if µ < γσ2, for z ∈ (0, 1),
(i) The term structure slopes up, rl > rs, if z < 1

1+γ

( µ
σ2 + 1

2 − q2
)

or z > 1
1+γ

( µ
σ2 + 1

2 + q2
)
,

(ii) The term structure slopes down, rl < rs, if 1
1+γ

( µ
σ2 + 1

2 − q2
)
< z < 1

1+γ

( µ
σ2 + 1

2 + q2
)
.
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Figure 4: Zero-coupon yield curve 0-12 years, for varying z. Parameters: µ = 1/3,
σ2 = 1, ρ = 0, γ = 1.

(iii) rl − rs is decreasing in z if z < 1
1+γ

(
1
2 + µ

σ2

)
.

(iv) rl − rs is increasing in z if z > 1
1+γ

(
1
2 + µ

σ2

)
.

What is the economic intuition behind these results? Suppose that the economy is far
away from the long-term z, which is close to 1. In this case, the instantaneous short rate is
just the representative agent’s expected relative change in marginal utility. Market clearing
that is imposed on the economy as it evolves means that the agent must be indifferent
between consuming today and transferring consumption to tomorrow. Suppose that he
expects a lower marginal utility next period. He therefore values consumption next period
less (a decrease in demand for consumption tomorrow). Market clearing imposes that
interest rates rise. Therefore, the term structure slopes up.

There is a large empirical literature that examines the relationship between the term
structure and the macro economy (Ang, Piazzesi, and Wei (2006) present a survey). In
this literature, a stylized fact is that the higher the slope of the term structure, the larger
expected GDP growth.11 The relationship between the slope of the term structure and the

11Kessel (1965); Harvey (1986, 1988, 1989, 1993); Laurent (1988); Stock and Watson (1989); Chen (1991);
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growth rate is consistent with our model. Indeed, part (iv) of Proposition 5 provides a
condition under which the slope of the term structure is increasing in z (above a threshold
value for z). When the economy is naturally in this region, then a larger slope implies
that the growth rate will be higher. There is evidence (Bernard and Gerlach (1998) and
Bonser-Neal and Morley (1997)) that the term structure slope has different predictive power
in different countries. In as much as different parameters govern the evolution of different
economies, our model suggests that there should be international differences in the predictive
power of the term structure.

Other features of the observed term structure are consistent with those generated by
the two-tree framework. Inspection of Figure 4 indicates that the term structure can be
hump-shaped for some values of z. The presence of a hump is one of the stylized properties
of the real world term structure (see Nelson and Siegel (1987)). The curvature, however, is
quite small and is even smaller for lower values of σ2. Ang, Bekaert, and Wei (2007) analyze
ten years of TIPS data to characterize the real term structure in the United States. They
find that, unconditionally, the term structure of real rates is somewhat flat, with a peak at
the one year maturity, and sometimes slopes downward. They find that the short end is
quite variable and on average there is little or no term spread.

Thus, in addition to pointing out the sensitivity of the term structure in CRRA-
lognormal framework, our model is in line with several stylized facts documented in the
empirical term structure literature, and leads to some novel predictions. It is promising
that such a rich structure is provided by such a simple parsimonious model.

4 Concluding remarks

Finding the appropriate rate at which to discount cashflows is fundamental to finance. As
society contemplates investments with long horizons, it is important for us to be able to
address basic questions about how to value cashflows in the distant future. We have shown
that if the representative agent has access to a minimum subsistence level of consumption,
then her valuation of long-run cashflows is markedly different from her valuation in the ab-
sence of such a guaranteed minimum. Indeed, at longer horizons and with highly risk averse
agents, the insurance offered by the additional risk-free sector changes the representative
investor’s valuation of risk-free investments and makes the long rate completely independent
of the agent’s risk aversion. Our results are consistent with the view that long-term discount
rates are determined by factors different from those that drive short- and mid-term discount

Estrella and Hardouvelis (1991); Estrella and Mishkin (1998); Dotsey (1998); Hamilton and Kim (2002);
Moody and Taylor (2003) consider the relationship between GDP growth and term spreads in the US, while
Jorion and Mishkin (1991); Harvey (1991); Estrella and Mishkin (1997); Plosser and Rouwenhorst (1994);
Bernard and Gerlach (1998) consider the international evidence.

18



rates, giving us greater flexibility in resolving the risk-free rate puzzle and providing insight
into how to discount long-term cashflows.

The fact that different variables drive the long and short rates in our economy means
that, unlike the flat term structure in a one-tree economy, the term structure in a two-
tree economy can exhibit more of the shapes observed in practice. For example, the term
structure frequently slopes upwards, and can be hump shaped. Further, the slope of the term
structure in a two-tree economy conveys information about expected future consumption
growth rates, consistent with empirical results such as those in Ang, Piazzesi, and Wei
(2006). This suggests that the model has appropriate qualitative features.

More generally, our results illustrate that the standard long-horizon Lucas model with
a CRRA representative investor and a log-normal consumption process is highly sensitive
to small perturbations, especially when risk aversion is high. One test of how severe this
sensitivity may be is given by checking whether the parameters of the model imply that the
equilibrium is close to, or even above, a break point. Our framework also suggests that there
are non-monotonicities in the relationship between the term structure and future economic
aggregates, which future empirical research should account for.
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Welfare in finite horizon case

Proposition 6 The welfare, w, at time t < T is, the solution to the following PDE:

wt +
1
2
σ2z2(1− z)2wzz +

[
µ̂z(1− z)− σ2γz(1− z)2

]
wz

−
[
ρ+ µ̂(γ − 1)(1− z)− 1

2
σ2γ(γ − 1)(1− z)2

]
w +Rγ(z) = 0,

where

Rγ(z) =

 1−e−ρ(T−t)
ρ

(
µ̂z − σ2z2

2

)
, γ = 1,

1
1−γ , γ 6= 1.

The boundary condition is
w(z, T ) = 0. (15)

Proof of Proposition 6:
Using Equation (1) and the Feynman-Kac equations, we get that U = w(0, z), where

w(t, z) solves the partial differential equation

wt +
1
2
σ2z2(1− z)2wzz +

[
µ̂z(1− z)− σ2γz(1− z)2

]
wz

−
[
ρ+ µ̂(γ − 1)(1− z)− 1

2
σ2γ(γ − 1)(1− z)2

]
w +Rγ(z) = 0,

where

Rγ(z) =

 1−e−ρ(T−t)
ρ

(
µ̂z − σ2z2

2

)
, γ = 1,

1
1−γ , γ 6= 1.

The boundary condition is

w(z, T ) = 0.

A similar argument to the proof of Proposition 1 shows that no boundary conditions
are needed at the z = 0 and z = 1 boundaries.
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Proofs

Proof of Proposition 1:
Using Equation (4), that u′(c) = c−γ , and the Feynman Kac formula, we obtain the following

pricing equation for any asset P :

Pt +
1
2
σ2D2PDD +

[
µ̂D − σ2γD2

B +D

]
PD

−
(
ρ+ µ̂γ

D

B +D
− 1

2
σ2γ(γ + 1)

D2

(B +D)2

)
P + δ(B,D, t) = 0. (16)

Using z = D/(B +D), for bonds this equation can be simplified to

pt +
1
2
σ2z2(1− z)2pzz +

[
γµ̂z(1− z)− σ2(1 + γ)z2(1− z)

]
pz

−
[
ρ+ γµ̂z − 1

2
γ(1 + γ)σ2z2

]
p = 0, (17)

with terminal condition

F (z, s+ τ) ≡ 1,

To show that no boundary conditions are needed at the z = 0 and z = 1, we show that the
PDE without boundary conditions is well posed (Egorov and Shubin (1992)). The concept of well-
posedness additionally requires the solution to depend continuously on initial and given boundary
conditions, and ensures that the given boundary conditions are enough.

We note that the PDE (17) is parabolic in the interior, both the parabolic and hyperbolic
terms vanish at the boundaries. This can be viewed as a special case of an outflow boundary for
a hyperbolic PDE. For outflow boundaries to hyperbolic equations, no boundary conditions are
needed, i.e., if the Cauchy problem is well posed, then the initial-boundary value with an outflow
boundary is well-posed without a boundary condition (Kreiss and Lorenz (1989)), and it suggests
that no boundary conditions are needed.

To show that this is indeed the case, we use the energy method to show that the operator
Pw

def= −
[
ρ+ γµ̂z − 1

2γ(1 + γ)σ2z2
]
w+ (z(1− z)γµ̂− (1 + γ)z2(1− z)σ2)wz + σ2

2 z
2(1− z)2wzz

def=
aw+bwz+cwzz is maximally semi-bounded, i.e., we use the L2 inner product 〈f, g〉 =

∫ 1

0
f(x)g(x)dx,

and the norm ‖w‖2 = 〈w,w〉, and show that for any smooth function, w, 〈w,Pw〉 ≤ α‖w‖2, for
some α > 0.12 This allows us to bound the growth of d

dτ ‖w(t, ·)‖2 by d
dτ ‖w(t, ·)‖2 ≤ α‖w‖2, since

1
2 ×

d
dτ ‖w(t, ·)‖2 = 〈w,Pw〉. Such a growth bound, in turn, ensures well-posedness (see Kreiss and

Lorenz (1989) and Gustafsson, Kreiss, and Oliger (1995)).

12Since we impose no boundary conditions, it immediately follows that P is maximally semi-bounded if
it is semi-bounded.
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By integration by parts, defining q = maxz∈[0,1] |ρ+ γµ̂z − 1
2γ(1 + γ)σ2z2|, we have

〈w,Pw〉 = 〈w, aw〉+ 〈w, cwz〉+ 〈w, dwzz〉

≤ q‖w‖2 +
1
2
(
〈w, cwz〉 − 〈wz, cw〉 − 〈w, czw〉+ [w2c]10

)
− 〈wz, dwz〉 − 〈w, dzwz〉+ [wdwz]10

= q‖w‖2 − 〈w, czw〉 − 〈wz, dwz〉 − 〈w, dzwz〉

≤
(
q + σ2

)
‖w‖2 − σ2

2

∫ 1

0

z2(1− z)2w2
zdz.

Here, the last inequality follows from

−〈wz, dwz〉 − 〈w, dzwz〉 =
σ2

2

∫ 1

0

z(1− z)
(
−z(1− z)w2

z − (2− 4z)wwz
)
dz

≤ σ2

2

∫ 1

0

z(1− z)
(
−z(1− z)w2

z + 2|w||wz|
)
dz

≤ σ2

2

∫ 1

0

z(1− z)
(
−z(1− z)w2

z +
z(1− z)

2
w2
z +

2
z(1− z)

w2

)
dz

= σ2‖w‖2 − σ2

2

∫ 1

0

z2(1− z)2w2
zdz,

where we used the relation |u||v| ≤ 1
2 (δ|u| + |v|/δ) for all u, v for all δ > 0. We therefore have the

estimate

d

dτ
‖w‖2 ≤

(
q + σ2

)
‖w‖2.

We have thus derived an energy estimate for the growth of ‖w‖2, and well-posedness follows
immediately from the theory in Kreiss and Lorenz (1989) and Gustafsson, Kreiss, and Oliger (1995).

Proof of Proposition 2: For γ = 1,

w(z) = E

[∫ ∞
0

e−ρs log
(
B0

(
1 +

D0

B0
ey(s)

))
ds

]
=

log(1− z)
ρ

+ E

(∫ ∞
0

e−ρs log
(

1 +
z

1− z
ey(s)

)
ds

]
=

log(1− z)
ρ

+
∫ ∞

0

∫ ∞
−∞

1√
2πσ2s

e−ρs log
(

1 +
z

1− z
ey(s)

)
e−(y−µs)2/(2σ2s)dy ds

=
log(1− z)

ρ
+
∫ ∞
−∞

e
y(µ−

√
µ2+2ρσ2 sign(y))

σ2

log
(

1 + z
1−z e

y
)

√
µ2 + 2ρσ2

dy

= G(z;µ, σ2, ρ),
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where

G(z;µ, σ2, ρ) =
( (

2µ2 + σ2(2ρ+ q) + µ(σ2 + 2q)
)

2F1

(
1,
q − µ
σ2

,
q − µ
σ2

+ 1,
z − 1
z

)
+ 2

z

z − 1
(
µ2 + ρσ2 − µq

)
2F1

(
1,
q + µ

σ2
+ 1,

q + µ

σ2
+ 2,

z

z − 1

)
− 2

(
µ2 − µq + 2ρ(σ2 + q)

)
log(z)

)
/
(
2ρ(µ2 − µq + 2ρ(σ2 + q))

)
,

q =
√
µ2 + 2ρσ2 and 2F1 is the hypergeometric function.

It is easy to check that w(0) = µ/ρ2, corresponding to the classical Lucas case with log utility
and a risk-free sector in zero net supply. We also have w(1) = 0, corresponding to the case when
the whole economy is risk-free, and w(0) =

∫∞
0
e−ρs log(1)ds = 0.

For γ > 1,

(1− γ)w(z) = E

[∫ ∞
0

e−ρs
(
B0

(
1 +

D0

B0
ey(s)

))1−γ

ds

]

= (1− z)1−γE

[∫ ∞
0

e−ρs
(

1 +
z

1− z
ey(s)

)1−γ

ds

]

=
∫ ∞
−∞

e
y(µ−

√
µ2+2ρσ2 sign(y))

σ2

(
1 + z

1−z e
y
)1−γ

q

=
(1− z)1−γ

q

×
[(1− z

z

)µ−q
σ2
(
V

(
1− z
z

, γ +
q − µ
σ2

, 1− γ
)

+ V

(
1− z
z

, γ +
q − µ
σ2

− 1, 1− γ
))

+
(

z

1− z

)− q+µ
σ2
(
V

(
z

1− z
,
q + µ

σ2
, 1− γ

)
+ V

(
z

1− z
,
q + µ

σ2
+ 1, 1− γ

))]
,

where V (x, a, b) def=
∫ x
0
ta−1(1 + t)b−1dt, and the result follows.

Proof of Proposition 3:

(i) : The function 1
(1+z)γ is analytic in the complex plane, |z| < 1, and can therefore be expanded

in the power expansion
1

(1 + z)γ
=
∞∑
n=0

(−1)nanzn.

For y < 0, we use this expansion to get 1/(1 + ey)γ =
∑∞
n=0(−1)naneny, and for y > 0, we get a

similar expansion 1/(1 + ey)γ = e−γy
∑∞
n=0(−1)nane−ny.
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Now, from Equation (4), it follows that

√
2πσ2τ

P τ

(1 + ed)γe−ρτ
=

∫ ∞
−∞

e−(y−d−µτ)2/(2σ2τ)

(1 + ey)γ
dy

=
(∫ −ε
−∞

+
∫ ∞
ε

+
∫ ε

−ε

)
e−(y−d−µτ)2/(2σ2τ)

(1 + ey)γ
dy

=
∫ −ε
−∞

e−(y−d−µτ)2/(2σ2τ)

(1 + ey)γ
dy +

∫ ∞
ε

e−(y−d−µτ)2/(2σ2τ)

(1 + ey)γ
dy +O(ε)

=
∫ 0

−∞

e−(y−ε−d−µτ)2/(2σ2τ)

(1 + ey−ε)γ
dy +

∫ ∞
0

e−(y+ε−d−µτ)2/(2σ2τ)

(1 + ey+ε)γ
dy +O(ε).(18)

For all ε > 0 and y < 0, However, since,

e−(y−d−ε−µτ)2/(2σ2τ)

(1 + ey−ε)γ
=
∞∑
n=0

(−1)nane−(y−ε−d−µτ)2/(2σ2)+n(y−ε) =
∞∑
n=0

(−1)nane−
ε
2ne(y−ε−d−µτ)

2/(2σ2)τ+n(y− ε2 ),

the first term is equal to

∫ 0

−∞

∞∑
n=0

(−1)nane−
ε
2ne−(y−ε−d−µτ)2/(2σ2τ)+n(y− ε2 )dy. (19)

Now, define gM,ε(y) =
∑M
n=0 an(−1)ne−εn/2e−(y−ε−d−µτ)2/(2σ2τ)+n(y− ε2 ), y < 0, M ∈ N, and

hε(y) = e−(y−ε−d−µτ)2/(2σ2τ). Then, since an ∼ Cnγ for large n, it is clear that supn≥0 ane
−εn/2 =

C <∞. Therefore,

|gM,ε(y)| ≤ C

M∑
n=0

e−(y−ε−d−µτ)2/(2σ2τ)+n(y− ε2 )

≤ C

∞∑
n=0

e−(y−ε−d−µτ)2/(2σ2τ)+n(y− ε2 ) = C
e−(y−ε−d−µτ)2/(2σ2τ)

1− e−ε/2ey

≤ C ′εe
−(y−ε−d−µτ)2/(2σ2τ) = C ′εhε(y).

Clearly,
∫ 0

−∞ C ′εhε(y)dy <∞, and therefore the dominated convergence theorem implies that
∫ 0

−∞ limn→ gM,ε(y)dy =

limn→∞
∫ 0

−∞ gM,ε(y)dy, i.e.,

∫ 0

−∞

e−(y−ε−d−µτ)2/(2σ2τ)

(1 + ey−ε)γ
dy =

∞∑
n=0

∫ 0

−∞
(−1)nane−

ε
2ne−(y−ε−d−µτ)2/(2σ2τ)+n(y− ε2 )dy

=
∞∑
n=0

(−1)nane−
ε
2n

∫ 0

−∞
e−(y−ε−d−µτ)2/(2σ2τ)+n(y− ε2 )dy

Define F (x) = ex
2
Erfc(x), where Erfc is the error function Erfc(x) = (

√
π)−1

∫∞
z
e−t

2
dt (see
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Abramowitz and Stegun (1964)). Then, since

1√
2πσ2τ

∫ 0

−∞
e−(y−εd−µτ)2/(2σ2τ)+n(y−ε/2)dy =

1
2
en(ε/2+d+µτ)+n2τσ2/2Erfc

(
ε+ d+ µτ + nτσ2

√
2σ2τ

)
=

e−n
ε
2 e−(ε+d+µτ)2/(2σ2τ)

2
F

(
ε+ d+ µτ + nτσ2

√
2σ2τ

)
,

it follows that

1√
2πσ2τ

∫ 0

−∞

e−(y−ε−d−µτ)2/(2σ2τ)

(1 + ey−ε)γ
dy =

1
2

∞∑
n=0

(−1)nane−εne−(ε+d+µτ)2/(2σ2τ)F

(
ε+ d+ µτ + nτσ2

√
2σ2τ

)

= (1 +O(ε))
1
2
e−(d+µτ)2/(2σ2τ)

∞∑
n=0

(−1)nane−εnF
(
ε+ d+ µτ + nτσ2

√
2σ2τ

)
.

An identical argument for the
∫∞
0

e−(y+ε−d−µτ)2/(2σ2τ)

(1+ey+ε)γ dy term leads to

1√
2πσ2τ

∫ ∞
0

e−(y+ε−d−µτ)2/(2σ2τ)

(1 + ey+ε)γ
dy =

1
2

∞∑
n=0

(−1)nane−εne−(ε+d+µτ)2/(2σ2τ)F

(
ε− d− µτ + (n+ γ)τσ2

√
2σ2τ

)

= (1 +O(ε))e−(d+µτ)2/(2σ2τ)
∞∑
n=0

(−1)nane−εnF
(
ε− d− µτ + (n+ γ)τσ2

√
2σ2τ

)

Putting it all together in Equation (18), we get

P τ =
(1 + ed)γe−ρτ√

2πσ2τ

(∫ 0

−∞

e−(y−ε−d−µτ)2/(2σ2τ)

(1 + ey−ε)γ
dy +

∫ ∞
0

e−(y+ε−d−µτ)2/(2σ2τ)

(1 + ey+ε)γ
dy +O(ε)

)

= O(ε) +
(1 + ed)γe−ρτ−(d+µτ)2/(2σ2τ)

2

×
∞∑
n=0

(−1)ne−εnan

(
F

(
ε+ d+ µτ + nτσ2

√
2σ2τ

)
+ F

(
ε− d− µτ + (n+ γ)τσ2

√
2σ2τ

))
,

and thus, as ε↘ 0, we get convergence to Equation (11).
The formula is straightforward to use, since F (x) ∼ 1/x for large x. An error analysis implies

that if n terms is used in the expansion, ε ∼ log(n)/n should be chosen.

(ii): When γ = 1, an = 1 for all n, and we can choose ε = 0 and still apply the dominated
convergence theorem in Equation (19) to get

P τ =
(1 + ed)γe−ρτ−(d+µτ)2/(2σ2τ)

2
×

∞∑
n=0

(−1)nan

(
F

(
d+ µτ + nτσ2

√
2σ2τ

)
+ F

(
−d− µτ + (n+ γ)τσ2

√
2σ2τ

))
, (20)
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(iii): For
d+ µτ

σ2τ
= m ∈ N,

Equation (20) reduces to a case for which closed form expressions exist, so

P τ =
(1 + ed)e−ρτ−m

2σ2τ/2

2

(
1 + 2

m−1∑
n=1

(−1)nen
2σ2τ/2

)
.

Finally, we note that Since P τ = e−r(τ)τ , where r(τ) is the time-τ spot rate, we have

r(τ) = ρ+
µ2

2σ2
+

1
τ

(
log
(
− (1 + ed)γ

2

)
+

d2

2σ2τ
+
dµ

σ2
+ log(z)

)
,

where z = limε↘0

∑∞
n=0(−1)ne−εnan

(
F
(
ε+d+µτ+nτσ2
√

2σ2τ

)
+ F

(
ε−d−µτ+(n+γ)τσ2

√
2σ2τ

))
.

Proof of Proposition 4:
The result for rs is standard. From Proposition 1 we know that

P τt +
1
2
σ2z2(1− z)2P τzz +

[
−µ̂z(1− z) + 2σ2z(1− z)2

]
P τz −

[
ρ+ γµ̂(1− z)− 1

2
γ(γ + 1)σ2(1− z)2

]
P τ = 0,

and since P τ (τ, z) = 1, it is clear that P (0, z) = 1−
[
ρ+ γµ̂(1− z)− 1

2γ(γ + 1)σ2(1− z)2
]
τ + o(τ),

for small τ . Since − log(1 − s) = s + O(s2) for small s, it is clear that rs = limτ↘0− log(P τ )
τ =

ρ+ γµ̂(1− z)− 1
2γ(γ + 1)σ2(1− z)2.

For rl, we proceed as follows: We have

P τ = (1 + ed)γe−ρτ
1√

2πσ2τ

∫ ∞
−∞

e−(y−µτ)2/(2σ2τ)

(1 + ed+y)γ
dy = (1 + ed)γe−ρτ

1√
2π

∫ ∞
−∞

e−x
2/2

(1 + edexσ
√
τ+µτ )γ

dx.

We study the behavior of 1√
2π

∫∞
−∞

e−x
2/2

(1+edexσ
√
τ+µτ )γ

dx for large τ . We decompose:

1√
2π

∫ ∞
−∞

e−x
2/2

(1 + edexσ
√
τ+µτ )γ

dx

=
1√
2π

∫ −µτ+d
σ
√
τ

−∞

e−x
2/2

(1 + exσ
√
τ+µτ+d)γ

dx+
1√
2π

∫ ∞
−µτ+d
σ
√
τ

e−x
2/2

(1 + exσ
√
τ+µτ+d)γ

dx. (21)

We prove the results for rl by studying the first and second term in Equation (21) separately for the
two cases µ ≤ γσ2 and µ > γσ2 respectively. By showing that the first term behaves like e−

µ

2σ2 τ for
large τ for all µ, whereas the second term behaves like e−

µ

2σ2 τ when µ ≤ γσ2 and like e−(γµ−γ2σ2/2)τ

when µ > γσ2, the result will follow.
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Since 0 < exσ
√
τ+µτ+d ≤ 1 for x ≤ −µτ+d

σ
√
τ

, we have

1√
2π

∫ −µτ+d
σ
√
τ

−∞

e−x
2/2

(1 + exσ
√
τ+µτ+d)γ

dx = C
1√
2π

∫ −µτ+d
σ
√
τ

−∞
e−x

2/2dx = C ×N
(
−µτ + d

σ
√
τ

)
,

for some C ∈ [1/2γ , 1], whereN(·) is the cumulative normal distribution function, N(v) def= 1√
2π

∫ v
−∞ e−y

2/2dy.
Now, we use

N(−v) = C2
e−v

2/2

v
, C2 ∈

1√
2π

[
v2

1 + v2
, 1
]
, (22)

which is valid for v � 0, to get

1√
2π

∫ −µτ+d
σ
√
τ

−∞

e−x
2/2

(1 + exσ
√
τ+µτ+d)γ

dx = C × C2
e−q

2/2

q
= C3

e−
µ2

2σ2 τ−
µd

σ2− d2

2σ2τ

q
,

where

C3 ∈
1√
2π

[
1

2γ+1
, 1
]
, and q =

µτ + d

σ
√
τ
.

We next study the second term in Equation (21), when µ < γσ2. First, we note that µ < γσ2

implies that γσ − µ
σ > 0. Obviously, 1

(1+exσ
√
τ+µτ+d)γ

≤ e−γ(xσ
√
τ+µτ+d), so

0 ≤ 1√
2π

∫ ∞
−µτ+d
σ
√
τ

e−x
2/2

(1 + exσ
√
τ+µτ+d)γ

dx ≤ 1√
2π

∫ ∞
−µτ+d
σ
√
τ

e−(x2+2xγσ
√
τ)/2−γµτ−γddx

=
1√
2π

∫ ∞
−µτ+d
σ
√
τ

e−(x+γσ
√
τ)2/2+ γ2σ2τ

2 −γµτ−dγdx

= e−γde−τ(γµ−γ
2σ2/2) 1√

2π

∫ ∞
−µτ+d
σ
√
τ

+γσ
√
τ

e−x
2/2dx

= e−γde−τ(γµ−γ
2σ2/2) 1√

2π

∫ ∞
(γσ−µσ )√τ− d

σ
√
τ

e−x
2/2dx

= e−γde−τ(γµ−γ
2σ2/2)N

(
−
(
γσ − µ

σ

)√
τ +

d

σ
√
τ

)
≤ e−γde−τ(γµ−γ

2σ2/2) 1√
2π

e−q
2
2/2

q2

= e−γde−τ(γµ−γ
2σ2/2) 1√

2π
e−

d2

2σ2τ
+γd− dµ

σ2−(γ2 σ2
2 −γµ+ µ2

2σ2 )τ

q2

= e−
d2

2σ2τ
− dµ
σ2 × 1√

2π
e
−µ2

2σ2 τ

q2
,

where q2 =
(
γσ − µ

σ

)√
τ − d

σ
√
τ

, and we used that 1√
2π

∫∞
v
e−y

2/2dy = N(−v), and Equation (22).
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Thus,

1√
2π

∫ ∞
−µτ+d
σ
√
τ

e−x
2/2

(1 + exσ
√
τ+µτ+d)γ

dx = C4e
− d2

2σ2τ
− dµ
σ2 × e

−µ2

2σ2 τ

q2
,

where C4 ∈
[
0, 1√

2π

]
. Putting it all together, for large τ we get

P τ = (1 + ed)γe−ρt
(

1√
2π

∫ −µτ+d
σ
√
τ

−∞

e−x
2/2

(1 + exσ
√
τ+µτ+d)γ

dx+
1√
2π

∫ ∞
−µτ+d
σ
√
τ

e−x
2/2

(1 + exσ
√
τ+µτ+d)γ

dx

)

= (1 + ed)γe−ρt

C3
e−

µ2

2σ2 τ−
µd

σ2− d2

2σ2τ

q
+ C4e

− d2

2σ2τ
− dµ
σ2 × e

−µ2

2σ2 τ

q2


= e

−
“
ρ+ µ2

2σ2

”
τ (1 + ed)γe−

µd

σ2− d2

2σ2τ

(
C3

q
+
C4

q2

)
.

Therefore,

− log(P τ )
τ

= ρ+
µ2

2σ2
+
Q(τ)
τ

, where Q(τ) = log
(

(1 + ed)γe−
µd

σ2− d2

2σ2τ

(
C3

q
+
C4

q2

))
.

Now, Q(τ) = log
(
(1 + ed)γ

)
− µd

σ2 − d2

2σ2τ + log
(
C3
q + C4

q2

)
, and since C3 ∈ 1√

2π

[
1

2γ+1 , 1
]
, C4 ∈[

0, 1√
2π

]
, q = µτ+d

σ
√
τ

and q2 =
(
γσ − µ

σ

)√
τ − d

σ
√
τ

, it follows that |Q(τ)| = o(τ) for large τ , i.e., that

limτ→∞
|Q(τ)|
τ = 0. From this it immediately follows that limτ→∞− log(P τ )

τ = ρ+ µ2

2σ2 .

We now consider the case when µ > γσ2, and define v = µ/σ − γσ > 0. We first note
that µ2

2σ2 ≥ γµ − γ2σ2/2, since µ2/(2σ2) − γµ + γ2σ2/2 = 1
2σ2 (µ − γσ2)2 ≥ 0. Thus, since

the
∫ −µτ+d

σ
√
τ

−∞
e−x

2/2

(1+edexσ
√
τ+µτ )γ

dx-term in Equation (21) behaves like e−τ×µ
2/(2σ2) for large τ , if the∫∞

−µτ+d
σ
√
τ

e−x
2/2

(1+exσ
√
τ+µτ+d)γ

dx ∼ e−τ(µγ−γ
2σ2/2), for large τ , then the result we wish to prove follows,

since it is always the case that c1e−α1τ + c2e
−α2τ ∼ e−min(α1,α2)τ for large τ , for arbitrary c1 > 0,

c2 > 0, α1 > 0, α2 > 0.
We have

1√
2π

∫ ∞
−µτ+d
σ
√
τ

e−x
2/2

(1 + exσ
√
τ+µτ+d)γ

dx ≤ 1√
2π

∫ ∞
−µτ+d
σ
√
τ

e−(x2+2xγσ
√
τ)/2−γµτ−γddx

=
1√
2π

∫ ∞
−µτ+d
σ
√
τ

e−(x+γσ
√
τ)2/2+ γ2σ2τ

2 −γµτ−dγdx

= e−γde−τ(γµ−γ
2σ2/2) 1√

2π

∫ ∞
−µτ+d
σ
√
τ

+γσ
√
τ

e−x
2/2dx

= e−γde−τ(γµ−γ
2σ2/2)N

(
v
√
τ +

d

σ
√
τ

)
= e−γde−τ(γµ−γ

2σ2/2)(1−O(e−vτ )).
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Also, since 1 + exσ
√
τ+µτ+d ≤ 2exσ

√
τ+µτ+d

1√
2π

∫ ∞
−µτ+d
σ
√
τ

e−x
2/2

(1 + exσ
√
τ+µτ+d)γ

dx ≥ 1
2γ

1√
2π

∫ ∞
−µτ+d
σ
√
τ

e−(x2+2xγσ
√
τ)/2−γµτ−γddx

=
1
2γ

1√
2π

∫ ∞
−µτ+d
σ
√
τ

e−(x+γσ
√
τ)2/2+ γ2σ2τ

2 −γµτ−dγdx

=
1
2γ
e−γde−τ(γµ−γ

2σ2/2) 1√
2π

∫ ∞
−µτ+d
σ
√
τ

+γσ
√
τ

e−x
2/2dx

=
1
2γ
e−γde−τ(γµ−γ

2σ2/2)N

(
v
√
τ +

d

σ
√
τ

)
=

1
2γ
e−γde−τ(γµ−γ

2σ2/2)(1−O(e−vτ )).

Thus, it is the case that

1√
2π

∫ ∞
−µτ+d
σ
√
τ

e−x
2/2

(1 + exσ
√
τ+µτ+d)γ

dx = C5e
−τ(γµ−γ2σ2/2),

where C5 ∈
[
e−γd

2γ − ε, e
−γd + ε

]
, for arbitrary ε > 0, for large enough τ .

We therefore get

− log(P τ )
τ

= −1
τ

log
(

(1 + ed)γe−ρτ
(
e−τ

µ2

2σ2 e−
µd

σ2− d2

2σ2τ
C3

q
+ C5e

−τ(γµ−γ2σ2/2)

))
.

Now, since µ2

2σ2 ≥ γµ − γ2σ2/2, the second term within the log-expression dominates the first,
so we get

− log(P τ )
τ

= −1
τ

(
log
(

(1 + ed)γe−ρτC5e
−τ(γµ−γ2σ2/2)

)
+ o(τ)

)
=

(ρ+ γµ− γ2σ2/2)τ + o(τ)
τ

,

so indeed limτ→∞− log(P τ )
τ = ρ+ γµ− γ2σ2/2 = ρ+ γ(µ+ σ2/2)− γ(γ + 1)σ2/2.

Proof of Proposition 5: When µ < γσ2, we have v(z) def= rl−rs = µ2

2σ2 − (µ+σ2/2)γz+γ(γ+1)σ
2

2 z
2.

We have, v′′(z) = γ(γ + 1)σ
2

> 0, so this is a convex function. Moreover, v′(z) = 0 at z = µ
σ2 + 1

2 ,
so (iii) and (iv) follow immediately.

Now, the solutions to v(z) = 0 are z = µ
σ2 + 1

2 ± q. To ensure that the solutions are real valued,
we define C = µ

σ2 < γ. We then have q2 = (C + 1
2 )2 − 1+γ

γ C2 = 1
γ

(
1
4 + C(1− γC)

)
> 0, so indeed

the solutions are real valued.
We also note in passing that µ < γσ2 is also a sufficient condition for both the solutions to

v(z) = 0 to lie strictly within the interval [0, 1].

Proof of Corollary 1: Follows immediately from the arguments in Proposition 4.
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Proof of Corollary 2: Follows immediately from the arguments in Proposition 4.

Proof of Corollary 3: Follows immediately from the arguments in Proposition 4.

Mathematica code

We have verified numerically that the formulae for the long rate given in Proposition 4 are indeed
correct, by directly evaluating Equation (4). The following Mathematica code calculates the yield
for different maturities.

For example, with parameters, ρ = 1%, µ = 3.5%, σ = 20%, γ = 2.5, the long rate is close to
rl = ρ+ µ2

2σ2 = 2.53% in line with Equation (13). The list L provides pairs of time to maturity and
yields, {t, rt}. For example, the last element in L shows that for a time to maturity of 10,000 years
the yield is 2.56% in this example.

By varying B0, D0 and γ in the code, it is easily verified that the long rate does not depend on
these parameters. It can also be checked that, for µ > γσ2, Equation (14) provides the correct long
rate.

In[1]:= B0 = 2;D0 = 1;σ = 0.2;µ = 0.035; γ = 2.5; ρ = 0.01;Off[Integrate::gener];
In[2]:= L = {};T = {1, 10, 100, 1000, 10000,−1};
In[3]:= For[ t = First[T], t > 0,

P= N[Integrate[(B0 +D0)γ ∗ Exp[−ρt]∗
1/Sqrt[2π ∗ σ2t] ∗ Exp[−(y − µt)2/(2 ∗ σ2t)]/(B0 +D0 ∗ Exp[y])γ, {y,−∞,∞}]];
r = −Log[P ]/t;
L = Append[L, {t, r}]; T = Delete[T, 1]; t= First[T];]

In[4]:= L (* L is a list with elements {t, rt}, from numerical calculations*)
Out[4]= {{1,0.0362381},{10,0.0350963},{100,0.0307781},{1000,0.026798},{10000,0.0255731}}

In[5]:= rl = If[µ < γσ2, ρ+ µ2

2σ2 , ρ+ γµ− γ2σ2/2] (* Theoretical value of long rate *)
Out[5]= 0.0253125
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