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Abstract
Multi-period forecasts of stock market return volatilities are often used

in many applied areas of �nance where long horizon measures of risk are
necessary. Yet, very little is known about how to forecast variances several
periods ahead, as most of the focus has been placed on one-period ahead
forecasts. In this paper, we compare several approaches of producing
multi-period ahead forecasts �iterated, direct, and mixed data sampling
(MIDAS) � as alternatives to the often-used �scaling-up�method. The
comparison is conducted (pseudo) out-of-sample using returns data of the
US stock market portfolio and a cross section of size and book-to-market
portfolios. The comparison results are surprisingly sharp. For the market,
size, and book-to-market portfolios, we obtain the same precision order-
ing of the forecasting methods. The direct approach provides the worse
(in MSFE sense) forecasts; it is dominated even by the naive �scaling-
up� method. Iterated forecasts are suitable for shorter horizons (5 to
10 periods ahead), but their MSFEs deteriorate as the horizon increases.
The MIDAS forecasts perform well at long horizons: they dominate all
other approaches at horizons of 10-periods ahead and higher. The MIDAS
forecasting advantage becomes most apparent at horizons of 30-periods
ahead and longer. In sum, this study dispels the notion that volatility
is not forecastable at long horizons and o¤ers an approach that delivers
accurate pseudo out-of-sample predictions.
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1 Introduction

What is the best approach to obtain multi-period forecasts of volatility? For instance,

suppose we have daily stock market returns, but need weekly (5-periods ahead), monthly

(20-periods ahead), or quarterly (60-periods ahead) variance forecasts for, say, portfolio

allocation, risk management, or regulatory purposes. One way of obtaining these multi-

period forecasts is to use a direct approach by estimating a horizon-specific forecasting

model of the variance. In our example, we could estimate a GARCH model with weekly,

monthly, or quarterly returns and then use it to directly predict the variance over next

week, month, or quarter. Alternatively, we can use an iterated approach by estimating an

autoregressive forecasting model of variance (such as a GARCH) using daily returns. Weekly,

monthly, or quarterly forecasts of the variance are then obtained by iterating over the daily

autoregressive model for the necessary number of periods. A third method to obtain the

desired multi-period forecasts is the mixed-data sampling (MIDAS) approach. A MIDAS

forecasting regression, introduced by Ghysels, Santa-Clara, and Valkanov ((2005), (2006)),

uses daily squared returns to produce directly multi-period volatility forecast and can be

viewed as a middle ground between the direct and the iterated approaches. Yet another,

perhaps less satisfactory, method is to scale-up the daily variance forecasts by k, where k

is the number of trading days.1 These approaches, with the exception of the MIDAS, have

all been widely used in the empirical finance literature. Yet, little is known about their

properties in the context of variance forecasting and about their ultimate out-of-sample

precision.

In this paper, we compare various approaches of obtaining multi-period forecasts of stock

market return variances. To our knowledge, such a comparison has never been carried out

as the volatility forecasting literature has focused almost exclusively on one-period ahead

forecasts. A few notable exceptions are Diebold, Hickman, Inoue, and Schuermann (1997)

and Christoffersen and Diebold (2000). Perhaps a reason for the lack of papers on the subject

is the theoretical difficulty of comparing multi-period forecasts. The literature on the topic

hinges on the trade-off between bias and estimation variance that exists in multi-period

forecasts (Findley (1983), Findley (1985), Lin and Granger (1994), Clements and Hendry

(1996), Bhanzali (1999), and Chevillon and Hendry (2005)). If the one-period model is known

(no model uncertainty) and we are only concerned with estimation uncertainty, then the

1If we make that assumption, we ignore 25 years of volatility forecasting and modeling literature, starting
with Engle (1982).
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iterated method produces more efficient parameter estimates and better forecasts. However,

in the more realistic case of misspecification in the one-period model (model uncertainty),

the direct method is more robust to biases arising from the misspecification. Because model

uncertainty might lead to severe forecasting biases, the theoretical papers on the subject

seem to favor direct over iterated multi-period forecasts (Bhanzali (1999), Ing (2003), and

Chevillon and Hendry (2005)). Marcellino, Stock, and Watson (2006) compare direct and

iterated forecasts using US macroeconomic data series. However, they don’t consider variance

forecasts nor do they investigate MIDAS models. It must be pointed out that, while the

above papers are based on autoregressive models, none of them directly addresses multi-

period variance forecasts. We make the following contributions with respect to the previous

literature.

First, we investigate whether multi-horizon forecasts of the variance of US stock market

returns are more accurate, in mean square error sense, than the naive but widely-used scaling

approach. While it might seem obvious that the well-documented predictability of variance

using one-period-ahead forecasts implies multi-period predictability, this is not necessarily

the case.2 In fact, Diebold, Hickman, Inoue, and Schuermann (1997) and Christoffersen

and Diebold (2000) provide evidence that the opposite might be true in forecasting return

variances. We consider variance forecasts of the US market portfolio returns as well as of five

size and five book-to-market portfolio returns. The accuracy of all forecasts is assessed in a

pseudo out-of-sample exercise with the mean square forecasting error (MSFE) as a criterion

for forecasting accuracy. We use the MSFE because, in addition to being the most widely

used loss function, it also has some desirable properties in the context of out-of-sample

variance forecasts (Hansen and Lunde (2006) and Patton (2007)).

Second, we carry out an empirical comparison of the various multi-period forecasting

approaches – direct, iterated, and MIDAS – using the same eleven stock return portfolios

(market plus ten size and book-to-market). Because of the lack of theoretical guidance on

this topic, such a comparison would not only provide some stylized facts about the long-

horizon forecastability of return variances, but it would also allow us to gauge if one method

produces clearly superior multi-horizon forecasts relative to the others. The results from such

a data-driven comparison are ultimately conditional on the sample at hand and the design of

the pseudo out-of-sample experiment. However, in our case, the findings (discussed below)

2Model uncertainty, parameter uncertainty, model instability are some of the reasons that might drive a
wedge between one-period and multi-period forecasts.
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are remarkably sharp. At the very least, they speak to the method that should be used

in multi-period volatility forecasts. More generally, our results might provide guidance for

future theoretical work on long-horizon variance forecasting.

As a third contribution, building on recent work by Ghysels, Santa-Clara, and Valkanov

(2006), we analyze more closely the performance of the MIDAS variance forecasts because

it offers a natural middle-ground between the direct and iterated approaches. Indeed in

a MIDAS, daily forecasters (squared returns) are used to produce a direct forecast of the

long-horizon (proxy of) variance. Similarly to an iterated approach, the MIDAS forecasts use

information in the entire history of daily returns, which implies that they will be efficient. At

the same time, the forecasted variable is the long-horizon (proxy of) variance, which allows

us to side-step the need of aggregating the forecasts and introducing bias. We analyze five

families of MIDAS forecasting models, which differ in their specification of the weights place

on lagged squared returns.

Our study yields surprisingly sharp results. We carry out the pseudo out-of-sample

forecasting comparison for the market and ten size and book-to-market portfolios for horizons

of 5-periods ahead (weekly) to 60-periods ahead (quarterly). First, as expected, the scaling-

up method performs poorly relative to the other methods. This result is consistent with the

findings of Diebold, Hickman, Inoue, and Schuermann (1997) and several others who have

documented the poor performance of this approach. What is surprising, however, is that the

direct method is not much better. At short and medium horizons (up to 10 periods ahead),

they are similar, and at long-horizons, scaling-up performs marginally better than the direct

approach. Hence, if the direct method were the only alternative to the scaling-up approach,

and since scaling-up is a poor forecaster of future volatility, one might come to the erroneous

conclusion that the variance is hard to forecast at long horizons.

Our second result dispels that notion. We find that for the variance of the market portfolio,

iterated and MIDAS forecasts perform significantly better than the scaling-up and the direct

approaches. At relatively short horizons of 5- to 10-periods ahead, the iterated forecasts

dominate all others. However, at horizons of 10-periods ahead and higher, MIDAS forecasts

have a significantly lower MSFE relative to the other forecasts. At horizons of 30- and 60-

periods ahead, the MSFE of MIDAS is more than 20 percent lower than that of the next

best forecast. Hence, we find that suitable MIDAS models produce variance forecasts that

are significantly better than other widely used methods.
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Third, the superior performance of MIDAS in multi-period forecasts is also observed in

predicting the variance of the size and book-to-market portfolios. Similarly to the market

variance results, the relative precision of the MIDAS forecasts improves with the horizon.

At horizons of 10-periods and higher, the MIDAS forecasts of eight out of the ten size and

book-to-market portfolios dominate the iterated and direct approaches. At horizons of 30-

periods and higher, the MIDAS has the smallest MSFEs amongst all forecasting methods

for all ten portfolios. We observe that the variance of the size and book-to-market portfolios

is significantly less predictable than that of the entire market. Also, the predictability of the

variance increases with the size of the portfolio. The variance of the largest-cap stocks is the

most predictable, albeit still less forecastable than the market’s. We do not observe such a

discernable pattern for the book-to-market portfolios.

In section two, we introduce the direct, iterated, and MIDAS multi-period forecasts. The

third section discusses the loss function used to evaluate the forecasts. Section four presents

the empirical results. In section five, we conclude and offer some directions for further

research.

2 Multi-Period Variance Forecasts

We use the following notation. We have D daily returns indexed by d = 1, 2, ...D and

Tk = [D/k] long-horizon returns indexed by t = 1, 2, ..., Tk, where [.] is the integer operator.

For instance, in our dataset, we have D = 10920 observations from 1963 to 2005 from

which we can compute T5 = 2184 5-day (or weekly) non-overlapping returns, T10 = 1092

10-day (or bi-weekly) non-overlapping returns, and so on. To keep the notation simple,

we will henceforth drop the subscript from T but will keep in mind that the number of

non-overlapping returns changes with the horizon of interest, k.

The daily return is defined as rd = log (Pd+1/Pd) whereas the k−period continuously

compounded return is defined as Rk
t = log (Pt+1/Pt) = log (Pd+k/Pd) . For instance, the 5-

day (or weekly) return is denoted by R5
t . It follows that Rk

t =
∑k

j=1 rd+j. In this expression,

we have two indices, one counting the days (d) and the other keeping track of the non-

overlapping k periods. To simplify the notation, we will use only one index and introduce

the fractional lag to write Rk
t =

∑k
j=1 rt+j/k. Hence, t + j/k will index the daily returns as

a fraction of the k-period returns. All long-horizon returns are demeaned and are computed
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without overlap to avoid mechanical serial correlation.

We can assemble the k-period, non-overlapping, continuously compounded returns into the

following information set Ik
t =

{
Rk

t , R
k
t−1, R

k
t−2, ...R

k
0

}
. Similarly, the information set for the

daily returns at time t is It =
{
rt,rt−1/k,rt−2/k,...r0

}
. We denote by Ik

T and IT the information

sets based on the history of the entire k-period and one-period returns, respectively. Note

that the two information sets at the end of the sample period are different: Ik
T contains T

non-overlapping k-period returns whereas IT contains D = Tk daily returns, and Ik
T ⊂ IT .

The conditional variance of the daily return at time t is denoted by Vt and that of the multi-

horizon return by V k
t . We are ultimately interested in forecasts of V k

t for various horizons, k.

If daily returns are i.i.d., then V k
t = kVt. However, we know that this is not the case and it is

not surprising that simply scaling the daily variance by the horizon k yields a poor forecast

of V k
t . Hence, we turn to three alternative methods of forecasting V k

t .

2.1 Direct Variance Forecasts

The first method, perhaps the simplest to implement, is to directly forecast V k
t using the

multi-period returns Rk
t . For instance, we can model V k

Tk
as a GARCH(p,q) that we estimate

using the k-period returns in Ik
T and then forecast the next-period variance, V k

T+1|Ik
T
. We

call this a direct approach of forecasting V k
T+1 and denote it by DIRECT V̂ k

T+1. One might

expect this approach to yield accurate estimates on several grounds. First, the parsimony

of the GARCH model makes it hard to beat in pseudo out-of-sample forecasts (Hansen and

Lunde (2005)). Second, the direct approach would produce robust estimates in the sense

that it does not display a bias. However, given that we use the multi-period returns Rk
t

to formulate volatility forecasts, this estimator would not be as efficient as one using the

information in set IT .

In our comparison, we use a GARCH(1,1) model. We also have results from more general

GARCH(p,q) models, where p and q are chosen by the Akaike Information Criterion (AIC)

and Bayes Information Criterion (BIC). However, the AIC- and BIC-chosen models fail to

beat the GARCH(1,1) out-of-sample. This finding confirms that the Hansen and Lunde

(2005) results hold at horizons longer than one-period ahead. Henceforth, we use the

GARCH(1,1) exclusively in our analysis.
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2.2 Iterated Variance Forecasts

The second method is to use the daily returns rt in IT in estimating forecasts of

VT+1/k|IT
, VT+2/k|IT

..., VT+k|IT
. In other words, we form iterated forecasts of the daily

volatility k period forward and, under the assumption that the conditional covariances are

zero, we write that V k
T+1|IT

=
∑k

j=1 VT+j/k|IT
. Notice that this forecast uses information at

time T and the forecasts for days T +2/k, T +3/k, ..., T +1 would have to be iterated from the

one-period daily forecasting model. The iterated forecast is denoted by ITERATEDV k
T+1.

This iterated approach, seems viable because returns are serially uncorrelated (or close),

but their variances are time-varying and persistent. Hence, this is an improvement over the

simple scaling approach. This method has the advantage that we are using daily data to

estimate the forecasting model and will hence be more efficient than the direct approach.

However, since we are iterating the forecasts and summing them, then small errors due to

model misspecification will be amplified. Hence, in general this method is thought, at least

theoretically to be bias-prone. But it will be efficient, because the data used is high-frequency.

This is particularly important in volatility models.

2.3 MIDAS Variance Forecasts

The third approach is to use the daily returns rt+1 in directly formulating a forecast of

Vt

(
Rk

t+1

)
using a mixed-data sampling (or MIDAS) approach. Since this approach is

relatively new, we describe it more in detail. The MIDAS forecasting regression is:

Ṽ k
t+1 = µk + φk

jmax∑

j=0

bk(j, θ)r
2
t−j/k + εk,t (2.1)

where Ṽ k
t+1 is a measure of (future) volatility such as realized variance and the polynomial

lag parameters bk(j, θ) are parameterized to be a pre-specified, parsimonious function of θ.

The estimation of µk, φk, and θ are estimated with QMLE. The variance measure on the

left-hand side, Ṽ k
t+1, and the variables on the right-hand side, rt−j/k, are sampled at different

frequencies. More specifically, in this study the variance in equation (2.1) is measured at

horizons ranging from one week (k = 5) to three months (k = 60), whereas the forecasting

variables are available at daily frequencies. For instance, equation (2.1) relates the realized

variance over the month of, say, December (measured from the close of the market during
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the last trading day of November to the close of the market during the last trading day of

December) with daily squared returns up to the last day of November. The weights placed

on the predictive lagged squared returns are estimated in-sample and used to form an pseudo

out-of-sample forecast.

The lag coefficients bk(j, θ) are parameterized to be a low-dimensional function of underlying

parameters θ. Without this parametric restriction, the number of parameters associated with

the forecasters r2
t−j/k would proliferate significantly, leading to in-sample overfit and poor

out-of-sample forecasts. A suitable parameterization of bk(j, θ) circumvents the problem of

parameter proliferation and is one of the most important ingredients in a MIDAS regression.

We consider several parameterizations of bk(j, θ), some of which have already been suggested

in previous work. Specifically we consider the following five specifications: We postulate a

flexible form for the weight given to the squared return on day t − d:

1. Exponential:

bk(j, θ1, θ2) =
exp{θ1j + θ2j

2}∑∞
i=0 exp{θ1i + θ2i2}

. (2.2)

This scheme guarantees that the weights are positive (which in turn ensures that the

forecasted variance is also positive) and that they add up to one. Also, the functional

form in Eq. (2.2) can produce a wide variety of shapes for different values of the two

parameters, and it is parsimonious, with only two parameters to estimate. Finally, as

long as the coefficient κ2 is negative, the weights go to zero as the lag length increases.

The speed with which the weights decay controls the effective number of observations

used to estimate the conditional variance.

2. Beta:

bk(j, θ1, θ2) =
f( j

jmax , θ1; θ2)
∑jmax

i=1 f( i
jmax , θ1; θ2)

(2.3)

where: f(z, a, b) = za−1(1−z)b−1/β(a, b) and β(a, b) is based on the Gamma function, or

β(a, b) = Γ(a)Γ(b)/Γ(a+b). Specification (2.3) was introduced in Ghysels et al. (2002b,

2004) and is suitable for variance forecasting because it provides positive coefficients,

which is necessary for a.s. positive definiteness of the forecasted variance. For θ1 = 1

and θ2 > 1 one has a slowly decaying pattern typical of volatility filters, which means

that only one parameter is left to determine the shape, whereas in the case of θ1 = θ2

= 1 we obtain equal weights, which corresponds to a rolling estimator of the volatility
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(French, Schwert, and Stambaugh (1987), (2005)). The flexibility of the Beta function

is well known and it is often used in Bayesian econometrics to impose flexible, yet

parsimonious prior distributions. The function can take many shapes, including flat

weights, gradually declining weights as well as hump-shaped patterns.

3. Linear:

bk(j) = 1/jmax (2.4)

where jmax is the truncation point specified above. This simple decay functional form

has the advantage that there are no parameters to estimate in the lagged weight

function and might offer good out-of-sample forecasts.

4. Hyperbolic:

bk(j, θ) =
g( j

jmax , θ)
∑jmax

i=1 g( i
jmax , θ)

(2.5)

where g(j, θ) = Γ(j+θ)/ (Γ(j + 1)Γ(θ)) which can be written equivalently as g(0, θ) = 1

and g(j, θ) = (j + θ − 1) g(j − 1, θ)/j, for j ≥ 1. We also impose the restriction

that θ < 0.5, which would ensure that the forecasted variance is stationary (Tanaka

()). This Gamma functional form has only one parameter to estimate. While it

is not as flexible as the Beta specification about, it has been extensively used in

the variance modeling literature. The weights in (2.5) decay hyperbolically rather

than exponentially (Hosking (1981)). They are nothing but the impulse response of

a ARFIMA model (see, Hosking (1981) and Tanaka (1999) and references therein).

ARFIMA models have successfully been used by Andersen and Bollerslev (1998) and

others in volatility forecasting.

5. Step-function:

bk (j, θ1, θ2) = θ1, 0 6 j < s1 (2.6)

= θ2, s1 6 j < s2

= θ3, s2 6 j 6 jmax

where θ1 > θ2 > θ3 > 0 and θ1, θ2,and θ3 are normalized so that the weights sum

up to one as in the previous specifications. The number and location of the step is

pre-specified and we will consider several specifications with two and three steps.
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The MIDAS forecasts are denoted by MIDASV̂ k
T+1. Whenever necessary, we will specify

the weights used in the forecasts, which implicitly capture the dynamics of the conditional

variance. Larger weights on distant past returns induce more persistence on the variance

process. The weighting function also determines the statistical precision of the estimator by

controlling the amount of data used to estimate the conditional variance. There is a tension

between capturing the dynamics of variance and minimizing measurement error. Because

variances change through time, we would like to use more recent observations to forecast the

level of variance in the next month. However, to the extent that measuring variance precisely

requires a large number of daily observations, the estimator could still place significant weight

on more distant observations.

Some of the above weight specifications have been used in the previous literature, while

others are new to the MIDAS framework but not to the variance forecastability literature.

The exponential lag structure has been suggested by Ghysels, Santa-Clara, and Valkanov

(2005) to study the risk return tradeoff, while the beta lag has been used in Ghysels, Santa-

Clara, and Valkanov (2006) in comparing short-horizon forecasts using different predictors.

The linear lag is a simple natural benchmark, with no parameters to estimate. Hence, it may

prove robust out-of-sample. The hyperbolic weights are similar to the impulse responses of

ARFIMA models which have been successfully used in the variance literature (cite). The step

functions are another simple specification that does not require estimation of the parameters

bk(j, θ) but it does require a specification of the number and relative magnitude of the steps.

It is the specification that presents the most data-mining problems, but is the simplest to

implement. Ghysels and Wright (2005) and Corsi (2004) use this specification to model the

variance of stock returns.

We can think of the mixed-data regression (2.1) as combining the attractive features of the

iterated and direct forecasts. Notice that we can vary the forecast horizon by changing

k, whereas the predictive variables remain the same and allow us to explore the richer

information set IT . This is not true for the direct approach, where the predictive variables

change with the horizon and estimation and forecasts are formed using information set

Ik
T ⊂ IT . In the MIDAS forecasts, it is not the regressors that change but the estimated shape

of the lag function bk, thus changing the weights placed on the lagged daily squared returns.

Moreover, we form direct forecasts of future variance at the horizon of interest without having

to iterate over forecasts. This is in contrast to the iterated GARCH forecasts. Therefore, we

use (2.1) to side-step the iteration and aggregation issues associated with iterated forecasts
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as well as the inefficient use of lagged returns that is characteristic of the direct approach.

While the MIDAS approach to formulate forecasts is quite general, we focused on regression

(2.1) for several reasons. First, we could have extended the number of regression to include

not only daily squared returns but other volatility forecasts such as daily absolute returns,

daily range measures (high-low), and others, as done in Ghysels et al. (2006). We use daily

squared returns only in order to make this forecast as directly comparable with the GARCH

forecasts as possible. Moreover, the comparison of the squared daily return predictors to

other predictors at shorter horizons have already been investigated extensively in Ghysels

et al. (2006). MIDAS regressions typically do not exploit an autoregressive scheme, so

that r2
t−j/k is not necessarily related to lags of the left hand side variable. Instead, MIDAS

regressions are first and foremost regressions and therefore the selection of r2
t−j/k amounts

to choosing the best predictor of future variance from the set of several possible measures

of past fluctuations in returns. In other words, MIDAS is a reduced-form forecasting device

rather than a model of conditional volatility.

3 Comparing the Forecasts

Once we have forecasts DIRECT V̂ k
T+1, ITERATEDV̂ k

T+1, and MIDASV̂ k
T+1, we need to

decide which one is the closest to the true variance. Two issues arise here. First, we don’t

observe the true k-period variance. Second, in evaluating the forecasts, we have to agree on a

loss function. Given the first issue, we require a loss function that produces robust rankings

of the forecasts even in the absence of true variance. We address these two issues below.

3.1 Proxy for Unobservable Long-Horizon Variance

The pseudo out-of-sample forecast error is

ek
t+1 = V k

t+1 − FV k
t+1

where FV k
t is the forecasted variance (either DIRECT V̂ k

T+1, ITERATEDV̂ k
T+1, or

MIDASV̂ k
T+1,) and V k

t+1 is the true variance. However, we cannot obtain ek
t+1 because

the true variance is unobservable. Hence, we use the realized variance RV k
t as a proxy for

V k
t . Andersen and Bollerslev (1998) and subsequent work show that the realized variance
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is a good proxy for the true variance, or at least much better than squared returns. The

realized variance is computed using high-frequency returns. There is an entire literature that

investigates the question how frequent a data we need to get a good measure of the variance.

The concensus in that literature is that we need data that is very frequent. Unfortunately,

we don’t have access to high-frequency data for our sample period, nor for the size and decile

portfolios in the cross-section. Hence, we use the highest frequency data that we have – daily

returns – to compute the realized variance at horizon k. Given that we don’t have true high

frequency data, our estimated RV k
t will be a noisy proxy of the true underlying variance,

V k
t . We have to keep that in mind when ranking the forecasts.

3.2 Ranking the Forecasts: Appropriate Loss Function

Using RV k
t , we compute the feasible pseudo out-of-sample forecast error

uk
t+1 = RV k

t+1 − FV k
t+1

and the sample MSFE at the k-horizon:

MSFEk =
1

T2 − T1 + 1

T2∑

t=T1

uk
t .

The sample MSFE is computed for each of each forecasting horizon and for each forecasting

method. We index the horizon but not the forecasting method to save on notation. For a

horizon k, the empirical efficiency of the forecasts is assessed by comparing the respective

MSFE. The ranking that we thus obtain will be consistent in the sense of Patton (2007).

He showed that when we used the MSFE function, a forecast that dominates using the

feasible errors uk
t+1 will also dominate using the infeasible ek

t+1. In other words, the error

introduced from using a proxy rather than the true volatility will not change the ranking

of our forecasting methods. This robustness property is not shared by some other popular

forecasting evaluation methods, such as the mean absolute forecasting error (MAFE). Hence,

we focus on the MSFE as a loss function to evaluate the forecasts.
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4 Data and Results

4.1 Data

We have daily CRSP log returns for the period July 1, 1963 to December 31, 2005. Using

these returns, we compute k-period continuously compounded, non-overlapping returns Rk
t ,

for k = 5 (weekly), 10 (bi-weekly), 15, 20 (monthly), 30, 60 (quarterly). We also have

data of five daily size and five daily book-to-market portfolio returns obtained from Kenneth

French’s website. In sum, we will forecast the variances of 11 portfolio returns (market plus

10 portfolios) over various horizons . The dataset is standard in empirical finance and, in

the interest of conciseness, we do not provide summary statistics3.

The log daily returns are used to compute the iterated GARCH forecasting models and as

predictors in the MIDAS models. They are also used to compute the realized volatility RV k
t

for each horizon k as a proxy for the true (unobservable) variance V k
t . The long-horizon

returns Rk
t are used in the direct GARCH forecasts.

4.2 Results

In Table 1, we compare the direct, iterated, and MIDAS forecasts to the scaling-up approach.

Scaling the one-period variance by the horizon k is admittedly a naive approach and is not

directly comparable to the other three forecasting methods. However, despite the evidence

against this method (Diebold, Hickman, Inoue, and Schuermann (1997)), it is still widely

used in practice.4 We use the k-rule as a benchmark not because we think it is a particularly

hard forecast to beat, but because of its wide use in the profession. The MIDAS forecasts

are computed using the hyperbolic specification (2.5).

In panel A, we report the level of the MSFE of all forecasting methods discussed above

for horizons of 1, 5, 10, 15, 20, 25, 30, and 60 days. Not surprisingly, the MSFEs increase

approximately at rate k as the forecasting horizon increases. The one-period ahead forecasts

of the iterated, direct, and integrated forecasts are the same, by construction. However,

they differ as the horizon k increases. At 5-period ahead, the iterated, direct, MIDAS,

3They are available upon request.
4This method has been mentioned in the Basel II agreement, which might explain to a great extent is

use by professionals.
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and integrated forecasts have similar MSFEs. The k-rule forecasts are the exception with

significantly higher MSFEs. As the horizon increases, the MSFE of the k-rule is similar to

that of the direct and integrated forecasts. In fact, at horizons of 20 periods and higher, the

k-rule forecasts are better than the direct forecasts and at par with the integrated forecasts.

At horizons of 30 periods and higher, the difference is statistically significant at conventional

levels. This pattern is perhaps best observed in Panel B, which reports the MSFE’s of all

forecasts relative to that of the k-rule. In the case of the direct forecast, the ratio of MSFE

is greater than one for periods of 20 and higher. At 60 periods, the k-rule forecast has a

MSFE about 30 percent lower than the direct method.

The iterated method produces the best forecasts at short horizons. In Panel B, we observe

that at 5-period ahead, its relative MSFE is significantly lower than that of the k-rule.

In fact, it is lower than any of the other methods, including the MIDAS. As the horizon

increases, the relative forecasting performance of the iterated method quickly subsides and

at 60 periods, it is similar to that of the k-rule. This result is consistent with the theoretical

papers that have emphasized the bias in iterated forecasts. As the iterations increase, so

does the bias. Hence, our results suggest that the iterated method is more suitable for

short-horizon forecasts in the range of 5-period (one week) to 20-periods (one month).

The MIDAS method produces the best forecasts at long horizons. In Panel B, its relative

MSFE is better than the k-rule at 5-period ahead forecasts and higher. More importantly,

its forecasting performance only improves as the forecasting horizon increases. At 10-period

ahead and higher, it produces the best forecast and its advantage increases steadily until

30-period ahead. At 60-period, its MSFE is about 23 percent lower than that of the k-rule.

The long-horizon forecastability of the market variance with the MIDAS is a new result.

As observed in Table 1, the rest of the forecasts are either insignificantly better or worse

than the k-rule. Hence, while without the MIDAS model, one might be tempted to conclude

that market variance is hard to forecast at long horizons, the MIDAS approach offers a new

perspective.

It might be argued that the MIDAS approach has an unfair advantage in this pseudo out-of-

sample exercise, because we have chosen the hyperbolic specification (2.5) which is known

from previous work to produce good results. While the same comment can be levied against

the other methods, it is interesting to see whether alternative polynomial specifications would

produce vastly different forecasts. In Table 2, we compute the MSFE of various MIDAS

specifications. The polynomial weights that we use in the MIDAS are the hyperbolic (2.5),
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the linear (2.4), the beta (2.3), the exponential (2.2), and various specifications of step

functions (2.6). We also display the MSFE of the iterated forecast (as a reference) which

was shown to produce the best prediction among the non-MIDAS approaches.

Panel A of Table 2 provides the MSFEs which are directly comparable with Table 1, while

Panel B provides the MSFEs relative to the iterated approach. Focusing our attention on

Panel B, we notice that exponential weights are the worst overall. While these weights

have been used successfully by Ghysels et al. 2005 to estimate the risk return tradeoff,

in the context of volatility forecasting, they are dominated by the other methods. It is

not surprising to find that different weights will be appropriate in different applications.

The suitability of the weighting function will be determined by the stochastic properties of

the predicted variable and it is not reasonable to expect one functional form of bk (j, θ) to

dominate across applications.

The hyperbolic specification produces the best multi-period forecasts. This is not surprising,

given that it is very similar to an ARFIMA model (whose impulse response function is

also hyperbolically decaying) and ARFIMAs produce good out-of-sample forecasts of future

volatility (cite). However, it is interesting to note that the beta and most of the step

specifications produce very good results, as well. With the exception of the exponential

MIDAS, all other models dominate the iterated forecasts at long-horizons.

Tables 3 and 4 display results similar to those in Table 1 for the five size and five book-to-

market portfolios, respectively. In the interest of conciseness, we have omitted the k-rule

forecasts, as they are inferior to the alternative models for all portfolios and all horizons.

First, we notice that the portfolio MSFE across forecasting methods are larger than the

corresponding market MSFE in Table 1. In other words, the variances of the portoflio

returns are less predictable than the variance of the market portfolio.

Looking at Panel B of Table 3, the MSFE of the direct forecasts are markedly higher than

those of the iterated forecasts. For the smallest cap stocks, they are more than 4 times

larger at 60-period ahead. For the largest cap stocks, they are about 17 percent larger.

Hence, the direct approach is particularly inapproriate to use for volatile, small-cap stocks.

By contrast, the MIDAS MSFEs are significantly lower than those of the iterated forecasts,

especially at long horizons. Moreover, the large cap stocks are significantly more predictable

than are smaller cap stocks. Table 4 contains similar results for the book-to-market portfolio

returns. The variances of these portfolio returns seems to be more forecastable that of the
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size portfolios.

5 Conclusion

We consider two widely used methods to forecast volatility at long horizons: iterated

and direct forecasts. In addition, we use a relatively new third approach – MIDAS. All

three approaches yield multi-step ahead variance forecasts without relying on the restrictive

assumption of i.i.d. returns that is implicit in the often-used “scaling-up” approach. We

compare these forecasting methods in terms of their average forecasting accuracy–using the

MSFE. Since no general analytic results are possible, the comparison is carried out using

daily stock market returns from 1963 to 2005 for the US stock market as well as for five size

and five book-to-market portfolios. All forecasts are (pseudo) out-of-sample.

The MIDAS forecasts are much more precise than those of the second best model. We

conjecture that the gains in forecasting power are due to the ability of the approach to take

advantage of the bias-efficiency trade-off that exists in multi-period forecasts. While the

other two approaches are either efficient but biased (iterated) or unbiased but inefficient

(direct), the MIDAS strikes a good balance between the two. Certainly more work is needed

to establish these empirical findings on firm theoretical grounds.
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Table 1: Multi-Period MSFEs of Volatility Forecasts – Market Portfolio

The table reports mean square forecasting errors (MSFE) of the market variance from the iterated, direct,
MIDAS, integrated, and scaling-up methods. The pseudo out-of-sample forecasts obtain by re-estimating
the model at each step and using it to formulate a k-period ahead prediction. The data is from July 1,
1963 to December 31, 2004. The first 1,000 daily observations are used to estimate the first forecast. Panel
A reports the level of the MSFE’s whereas Panel B reports the MSFEs relative to the MSFE of the k-rule
forecast.

Forecasting Forecasting Horizon
Method 1 5 10 15 20 25 30 60

A: MSFE of All Models
ITERATEDV 4.90E-05 1.07E-04 1.87E-04 2.69E-04 3.48E-04 4.25E-04 5.01E-04 9.54E-04
DIRECTV 4.90E-05 1.18E-04 2.27E-04 3.07E-04 4.03E-04 5.01E-04 5.94E-04 1.26E-03
MIDASV 5.63E-05 1.19E-04 1.84E-04 2.47E-04 3.08E-04 3.64E-04 4.19E-04 7.41E-04
INTEGRATED 4.90E-05 1.17E-04 2.18E-04 3.13E-04 3.95E-04 4.66E-04 5.23E-04 9.15E-04
kV 5.33E-05 1.36E-04 2.29E-04 3.17E-04 3.99E-04 4.77E-04 5.52E-04 9.63E-04

B: Relative MSFE – MSFE(Model)/MSFE(kV)
ITERATEDV 0.919 0.785 0.815 0.849 0.872 0.891 0.907 0.991
DIRECTV 0.919 0.868 0.989 0.968 1.009 1.050 1.076 1.307
MIDASV 1.058 0.869 0.803 0.780 0.771 0.763 0.760 0.769
INTEGRATED 0.919 0.857 0.948 0.988 0.989 0.978 0.947 0.950
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Table 2: Multi-Period MSFEs of Various MIDAS Volatility Forecasts – Market
Portfolio

The table reports mean square forecasting errors (MSFE) of the market return variance for various MIDAS
specifications. The specifications are the hyperbolic (2.5), the linear (2.4), the beta (2.3), the exponential
(2.2), and various specifications of step functions (2.6). As a reference, we also report the MSFE of the
iterated method. The pseudo out-of-sample forecasts obtain by re-estimating the model at each step and
using it to formulate a k-period ahead prediction. The data is from July 1, 1963 to December 31, 2004. The
first 1,000 daily observations are used to estimate the first forecast. Panel A reports the level of the MSFE’s
whereas Panel B reports the MSFEs relative to the MSFE of the interated forecast.

Forecasting Forecasting Horizon
Method 1 5 10 15 20 25 30 60

A: MSFE of All Models
ITERATEDV 4.90E-05 1.07E-04 1.87E-04 2.69E-04 3.48E-04 4.25E-04 5.01E-04 9.54E-04
MIDASV HYPERB 5.63E-05 1.19E-04 1.84E-04 2.47E-04 3.08E-04 3.64E-04 4.19E-04 7.41E-04
MIDASV LINEAR 5.23E-05 1.20E-04 1.95E-04 2.65E-04 3.30E-04 3.92E-04 4.52E-04 7.92E-04
MIDASV BETA 5.85E-05 1.24E-04 1.88E-04 2.52E-04 3.16E-04 3.63E-04 4.22E-04 7.71E-04
MIDASV EXP. 5.66E-05 1.40E-04 2.25E-04 3.09E-04 3.92E-04 4.63E-04 5.38E-04 9.51E-04
MIDASV [5 120] 5.90E-05 1.21E-04 1.89E-04 2.54E-04 3.18E-04 3.74E-04 4.32E-04 7.83E-04
MIDASV [10 120] 5.40E-05 1.12E-04 1.75E-04 2.48E-04 3.13E-04 3.66E-04 4.23E-04 7.64E-04
MIDASV [15 120] 6.00E-05 1.08E-04 1.73E-04 2.42E-04 3.09E-04 3.65E-04 4.19E-04 7.59E-04
MIDASV [20 120] 6.19E-05 1.09E-04 1.75E-04 2.39E-04 3.04E-04 3.64E-04 4.18E-04 7.63E-04
MIDASV [5 15 120] 5.39E-05 1.22E-04 1.91E-04 2.57E-04 3.20E-04 3.73E-04 4.34E-04 7.88E-04
MIDASV [5 20 120] 5.59E-05 1.22E-04 1.90E-04 2.55E-04 3.20E-04 3.68E-04 4.30E-04 7.92E-04

B: Relative MSFE–MSFE(Model)/MSFE(ITERATEDV)
MIDASV HYPERB 1.151 1.108 0.985 0.919 0.884 0.855 0.837 0.777
MIDASV LINEAR 1.068 1.120 1.040 0.984 0.948 0.922 0.902 0.830
MIDASV GAMMA 1.195 1.156 1.006 0.937 0.908 0.854 0.842 0.808
MIDASV EXP. 1.156 1.304 1.201 1.148 1.127 1.089 1.075 0.997
MIDASV [5 120] 1.204 1.134 1.013 0.945 0.912 0.878 0.863 0.821
MIDASV [10 120] 1.102 1.047 0.936 0.924 0.897 0.861 0.845 0.801
MIDASV [15 120] 1.225 1.012 0.925 0.901 0.888 0.858 0.837 0.796
MIDASV [20 120] 1.264 1.017 0.934 0.888 0.872 0.857 0.834 0.800
MIDASV [5 15 120] 1.101 1.143 1.022 0.956 0.918 0.877 0.866 0.826
MIDASV [5 20 120] 1.142 1.139 1.015 0.950 0.920 0.866 0.858 0.830
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Table 3: Multi-Period MSFEs of Volatility Forecasts – Size Portfolios

The table reports mean square forecasting errors (MSFE) of the return variance of five size-sorted portfolios.
The forecasts are obtained using the iterated, direct, MIDAS, integrated, and scaling-up methods. The
pseudo out-of-sample forecasts obtain by re-estimating the model at each step and using it to formulate
a k-period ahead prediction. The data is from July 1, 1963 to December 31, 2004. The first 1,000 daily
observations are used to estimate the first forecast. Panel A reports the level of the MSFE’s whereas Panel
B reports the MSFEs relative to the MSFE of the interated forecast.

Size Forecasting Forecasting Horizon
Portfolio Method 1 5 10 15 20 25 30 60

A: MSFE of All Models
1 ITERATEDV 3.13E-05 8.75E-05 1.63E-04 2.42E-04 3.19E-04 3.95E-04 4.70E-04 9.01E-04
2 ITERATEDV 4.02E-05 9.38E-05 1.68E-04 2.43E-04 3.19E-04 3.93E-04 4.65E-04 8.74E-04
3 ITERATEDV 4.12E-05 9.08E-05 1.63E-04 2.34E-04 3.06E-04 3.75E-04 4.43E-04 8.41E-04
4 ITERATEDV 4.50E-05 9.60E-05 1.71E-04 2.48E-04 3.27E-04 4.03E-04 4.78E-04 9.25E-04
5 ITERATEDV 5.88E-05 1.26E-04 2.17E-04 3.08E-04 3.95E-04 4.82E-04 5.67E-04 1.09E-03

1 DIRECTV 3.13E-05 1.61E-04 4.42E-04 6.78E-04 1.09E-03 1.55E-03 1.87E-03 4.00E-03
2 DIRECTV 4.02E-05 1.51E-04 3.98E-04 5.82E-04 8.23E-04 1.11E-03 1.33E-03 2.59E-03
3 DIRECTV 4.12E-05 1.39E-04 3.36E-04 4.92E-04 6.82E-04 8.91E-04 1.05E-03 2.07E-03
4 DIRECTV 4.50E-05 1.36E-04 2.96E-04 4.23E-04 5.68E-04 7.06E-04 8.41E-04 1.72E-03
5 DIRECTV 5.88E-05 1.28E-04 2.30E-04 3.08E-04 4.07E-04 4.98E-04 5.94E-04 1.28E-03

1 MIDASV 3.39E-05 8.77E-05 1.63E-04 2.41E-04 3.14E-04 3.87E-04 4.54E-04 8.49E-04
2 MIDASV 4.33E-05 9.34E-05 1.68E-04 2.47E-04 3.23E-04 3.97E-04 4.65E-04 8.61E-04
3 MIDASV 4.31E-05 9.02E-05 1.62E-04 2.37E-04 3.08E-04 3.77E-04 4.39E-04 8.11E-04
4 MIDASV 4.60E-05 9.44E-05 1.70E-04 2.48E-04 3.24E-04 3.97E-04 4.62E-04 8.58E-04
5 MIDASV 5.72E-05 1.19E-04 2.10E-04 2.97E-04 3.89E-04 4.67E-04 5.40E-04 9.64E-04

1 INTEGRATED 3.13E-05 8.99E-05 1.78E-04 2.62E-04 3.39E-04 4.08E-04 4.76E-04 8.92E-04
2 INTEGRATED 4.02E-05 9.79E-05 1.89E-04 2.81E-04 3.61E-04 4.34E-04 4.98E-04 9.32E-04
3 INTEGRATED 4.12E-05 9.45E-05 1.84E-04 2.71E-04 3.45E-04 4.15E-04 4.75E-04 8.85E-04
4 INTEGRATED 4.50E-05 1.01E-04 1.93E-04 2.86E-04 3.66E-04 4.38E-04 5.01E-04 9.40E-04
5 INTEGRATED 5.88E-05 1.40E-04 2.58E-04 3.68E-04 4.63E-04 5.45E-04 6.08E-04 1.05E-03

B: Relative MSFE–MSFE(Model)/MSFE(ITERATEDV)
1 DIRECTV 1.000 1.839 2.706 2.805 3.417 3.914 3.989 4.445
2 DIRECTV 1.000 1.613 2.363 2.391 2.578 2.815 2.849 2.963
3 DIRECTV 1.000 1.536 2.065 2.099 2.232 2.374 2.370 2.464
4 DIRECTV 1.000 1.414 1.731 1.702 1.738 1.750 1.761 1.860
5 DIRECTV 1.000 1.016 1.061 1.001 1.029 1.033 1.048 1.170

1 MIDASV 1.082 1.003 0.997 0.997 0.984 0.981 0.967 0.943
2 MIDASV 1.077 0.996 1.001 1.016 1.013 1.010 0.999 0.985
3 MIDASV 1.047 0.994 0.998 1.014 1.009 1.004 0.993 0.964
4 MIDASV 1.022 0.984 0.994 0.997 0.990 0.985 0.968 0.928
5 MIDASV 0.974 0.949 0.968 0.967 0.985 0.969 0.952 0.884

1 INTEGRATED 1.000 1.028 1.086 1.085 1.061 1.033 1.013 0.991
2 INTEGRATED 1.000 1.043 1.125 1.153 1.131 1.103 1.071 1.067
3 INTEGRATED 1.000 1.041 1.133 1.159 1.130 1.106 1.074 1.051
4 INTEGRATED 1.000 1.050 1.132 1.153 1.118 1.086 1.048 1.017
5 INTEGRATED 1.000 1.113 1.192 1.198 1.172 1.130 1.071 0.963
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Table 4: Multi-Period MSFEs of Volatility Forecasts – BTM Portfolios

The table reports mean square forecasting errors (MSFE) of the return variance of five book-to-market-sorted
(BTM) portfolios. The forecasts are obtained using the iterated, direct, MIDAS, integrated, and scaling-up
methods. The pseudo out-of-sample forecasts obtain by re-estimating the model at each step and using it to
formulate a k-period ahead prediction. The data is from July 1, 1963 to December 31, 2004. The first 1,000
daily observations are used to estimate the first forecast. Panel A reports the level of the MSFE’s whereas
Panel B reports the MSFEs relative to the MSFE of the interated forecast.

BTM Forecasting Forecasting Horizon
Portfolio Method 1 5 10 15 20 25 30 60

A: MSFE of All Models
1 ITERATEDV 6.44E-05 1.27E-04 2.14E-04 2.98E-04 3.78E-04 4.57E-04 5.36E-04 1.02E-03
2 ITERATEDV 5.27E-05 1.12E-04 1.94E-04 2.79E-04 3.61E-04 4.40E-04 5.17E-04 9.80E-04
3 ITERATEDV 4.47E-05 9.60E-05 1.68E-04 2.43E-04 3.16E-04 3.87E-04 4.57E-04 8.85E-04
4 ITERATEDV 4.00E-05 9.56E-05 1.68E-04 2.39E-04 3.07E-04 3.73E-04 4.35E-04 7.85E-04
5 ITERATEDV 4.17E-05 9.13E-05 1.59E-04 2.26E-04 2.91E-04 3.54E-04 4.12E-04 7.63E-04

1 DIRECTV 6.44E-05 1.48E-04 2.83E-04 3.96E-04 5.12E-04 6.36E-04 7.65E-04 1.61E-03
2 DIRECTV 5.27E-05 1.32E-04 2.62E-04 3.79E-04 4.75E-04 6.02E-04 7.05E-04 1.45E-03
3 DIRECTV 4.47E-05 1.12E-04 2.21E-04 3.10E-04 3.86E-04 4.62E-04 5.62E-04 1.18E-03
4 DIRECTV 4.00E-05 1.04E-04 1.80E-04 2.46E-04 3.21E-04 3.91E-04 4.63E-04 9.25E-04
5 DIRECTV 4.17E-05 1.08E-04 2.20E-04 3.19E-04 4.60E-04 5.69E-04 7.07E-04 1.45E-03

1 MIDASV 5.35E-05 1.07E-04 1.87E-04 2.69E-04 3.51E-04 4.23E-04 4.87E-04 8.74E-04
2 MIDASV 6.53E-05 1.23E-04 2.10E-04 2.97E-04 3.85E-04 4.62E-04 5.38E-04 9.96E-04
3 MIDASV 4.55E-05 9.12E-05 1.62E-04 2.32E-04 3.01E-04 3.66E-04 4.24E-04 7.70E-04
4 MIDASV 3.95E-05 9.14E-05 1.60E-04 2.26E-04 2.91E-04 3.36E-04 3.90E-04 7.02E-04
5 MIDASV 4.20E-05 8.76E-05 1.54E-04 2.19E-04 2.84E-04 3.45E-04 3.99E-04 7.13E-04

1 INTEGRATED 6.44E-05 1.35E-04 2.47E-04 3.51E-04 4.41E-04 5.20E-04 5.84E-04 1.06E-03
2 INTEGRATED 5.27E-05 1.20E-04 2.22E-04 3.19E-04 4.04E-04 4.77E-04 5.33E-04 9.34E-04
3 INTEGRATED 4.47E-05 1.02E-04 1.92E-04 2.77E-04 3.54E-04 4.21E-04 4.75E-04 8.37E-04
4 INTEGRATED 4.00E-05 1.06E-04 1.89E-04 2.68E-04 3.32E-04 3.87E-04 4.33E-04 7.39E-04
5 INTEGRATED 4.17E-05 9.81E-05 1.80E-04 2.59E-04 3.25E-04 3.85E-04 4.34E-04 7.66E-04

B: Relative MSFE–MSFE(Model)/MSFE(ITERATEDV)
1 DIRECTV 1.000 1.164 1.324 1.330 1.354 1.390 1.426 1.577
2 DIRECTV 1.000 1.179 1.352 1.360 1.315 1.368 1.364 1.475
3 DIRECTV 1.000 1.165 1.310 1.277 1.223 1.194 1.230 1.331
4 DIRECTV 1.000 1.084 1.076 1.031 1.043 1.047 1.063 1.179
5 DIRECTV 1.000 1.182 1.382 1.414 1.579 1.611 1.715 1.902

1 MIDASV 0.831 0.843 0.877 0.904 0.928 0.925 0.908 0.857
2 MIDASV 1.238 1.100 1.085 1.065 1.065 1.049 1.040 1.017
3 MIDASV 1.016 0.950 0.962 0.956 0.955 0.946 0.928 0.870
4 MIDASV 0.988 0.956 0.952 0.946 0.947 0.900 0.896 0.894
5 MIDASV 1.008 0.959 0.971 0.968 0.976 0.977 0.966 0.935

1 INTEGRATED 1.000 1.057 1.157 1.180 1.167 1.137 1.089 1.040
2 INTEGRATED 1.000 1.074 1.145 1.145 1.120 1.083 1.032 0.953
3 INTEGRATED 1.000 1.064 1.138 1.143 1.120 1.089 1.040 0.946
4 INTEGRATED 1.000 1.108 1.126 1.123 1.080 1.038 0.995 0.942
5 INTEGRATED 1.000 1.075 1.133 1.145 1.117 1.089 1.052 1.004
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