
Electronic copy available at: http://ssrn.com/abstract=1344583

Optimal liquidation in dark pools

Peter Kratz∗, Torsten Schöneborn†
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Abstract

We consider a finite time horizon, multi-asset optimal liquidation problem in discrete time for an investor
having access to both a traditional trading venue and a dark pool. Our model captures the price impact of
trading in transparent traditional venues as well as the execution uncertainty of trading in a dark pool. We
prove existence and uniqueness of optimal trading strategies for risk averse mean-variance traders and find
that dark pools change optimal trading strategies and can significantly reduce trading costs. Their effect
can be reduced by adverse selection and trading restrictions.

1 Introduction

In the last years, equity trading has been transformed by the advent of so called dark pools. These alternative
trading venues differ significantly from classical exchanges. Although dark pools vary in a number properties
(see, e.g, Butler (2007)), they generally share the following two stylized facts. First, dark pools do not determine
prices. Instead, dark pools monitor the prices determined by the primary (classical) exchanges and settle trades
in the dark pool only if possible at these prices. Thus trades in the dark pool have no price impact. Second,
dark pools are dark. The liquidity available in a dark pool is not quoted, making trade execution in the dark
pool uncertain and unpredictable. In this paper, we analyze trade execution when trading is possible both at
the classical exchange as well as in the dark pool. We first propose a model that captures the stylized facts
above for trading in such a market. Then we determine the optimal trade execution strategy in a discrete time
framework.

Our model for trading and price formation at the classical exchange is a general price impact model. Trade
execution can be enforced by selling aggressively, which however results in higher execution costs due to a
stronger price impact. The dark pool in our model provides a limited and previously unknown amount of
liquidity that can be used for trade execution without price impact. Trades in the dark pool are executed until
the liquidity is exhausted, and there is no way to achieve trade execution in the dark pool for larger orders. The
split of orders between dark pool and exchange is thus driven by the trade-off between execution uncertainty
and price impact costs. While there is no feedback from the dark pool to the price determined at the exchange,
the two venues can be connected since liquidity in the dark pool and price movements at the primary exchange
can be dependent. For example, liquidity on the bid side of the dark pool might be unusually high exactly
when prices move up. By allowing for such correlation in our model, we can incorporate and analyze adverse
selection in the dark pool. We believe that the market model is an important part of this paper since it is to
our knowledge the first mathematical framework for trade execution in dark pools. By design it is a partial
equilibrium model where price impact and dark pool liquidity are assumed to be exogenously given.

In our model, we prove the existence and uniqueness of optimal execution strategies that trade simultaneously
at the primary exchange and in the dark pool. Subsequently, we consider a specific multi-asset market model
with linear price impact. The model can be specified by a small set of parameters which can be directly
estimated from trade execution data. In this market model, we obtain a linear solution of the optimal trade
execution problem which can be computed recursively. This recursive scheme makes the model tractable for
practicable applications and allows us to investigate several examples. When liquidating a position in a single
asset, the current asset position is at all times being offered in the dark pool, while it is liquidated in parallel at
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the primary exchange. The opportunity to trade in the dark pool leads to a slower liquidation at the primary
exchange compared to a market without a dark pool. This observation has several consequences. First, trade
execution algorithms need to be fundamentally adjusted when a dark pool is introduced. It is not sufficient
to use an algorithm that was optimal for execution at the exchange and to add a component that also places
trades in the dark pool; instead, trading at the exchange needs to be adjusted during the entire trade execution
time interval. Second, the delayed trading at the primary exchange could potentially have an adverse effect on
the price quality and should thus be of central interest to supervisory agencies. This effect might be mitigated
by adverse selection in the dark pool, which leads to reduced orders in the dark pool and can even lead to a
complete avoidance of the dark pool.

While in a single-asset setting the entire asset position is placed in the dark pool, this is not true if a
multi-asset portfolio is to be liquidated. If the portfolio is balanced and thus only exposed to little market risk,
then a complete liquidation of the position in one of the assets is unfavorable and thus only a fraction of the
entire portfolio is placed in the dark pool. This highlights again that overly simple adjustments to existing
trade execution algorithms are exposed to potential pitfalls. For dark pools, the reluctance of traders to place
balanced portfolios in a dark pool is an incentive to offer balanced executions in order to attract more liquidity.

Building on empirical investigations of the market impact of large transactions, a number of theoretical
models of illiquid markets have emerged. One part of these models focuses on the underlying mechanisms for
illiquidity effects, e.g., Kyle (1985) and Easley and O’Hara (1987). We follow a second line that takes the liquidity
effects as given and derives optimal trading strategies within such a stylized model market. Several market
models have been proposed for classical exchanges, e.g., Bertsimas and Lo (1998), Almgren and Chriss (2001),
Almgren (2003), Obizhaeva and Wang (2006) and Alfonsi, Schied, and Schulz (2007). Since the advantages and
disadvantages of these models are still a topic of ongoing research, we propose a discrete-time market model
that generalizes all of these models. As a special case, we analyze the linear price impact model by Almgren
and Chriss (2001) for two reasons. First, it captures both the permanent and temporary price impacts of
large trades, while being sufficiently simple to allow for a mathematical analysis. It has thus become the basis
of several theoretical studies, e.g., Rogers and Singh (2007), Almgren and Lorenz (2007), Carlin, Lobo, and
Viswanathan (2007) and Schöneborn and Schied (2008). Second, it demonstrated reasonable properties in real
world applications and serves as the basis of many optimal execution algorithms run by practitioners (see e.g.,
Kissell and Glantz (2003), Schack (2004), Abramowitz (2006), Simmonds (2007) and Leinweber (2007)).

Trade execution in dark pools has raised significant interest of practitioners (see, e.g., Conrad, Johnson, and
Wahal (2003), Abrokwah and Sofianos (2006), Leinweber (2007), Almgren and Harts (2008)). While the effect
of dark pools on price quality has been analyzed by academics (see, e.g., Tse and Hackard (2004) and Hen-
dershott and Jones (2005)), we are not aware of any academic research on optimal trade execution in dark pools.

The remainder of this paper is structured as follows. In Section 2, we introduce the market model. This
consists of a model for the primary trading venue (Subsection 2.1) and for the dark pool (Subsection 2.2).
Furthermore, we describe the trader’s objective function (Subsection 2.3). Existence and uniqueness of optimal
trade execution strategies are established in Section 3. In Section 4, we propose a specific tractable market model
and analyze its properties. Finally, we discuss adverse selection in Section 5, practical trading restrictions in
Section 6 and an alternative to the transaction price of the dark pool in Section 7. All proofs are presented in
Appendix A.1.

2 Model description

The market we consider consists of a risk-free asset and n risky assets. For simplicity of exposition, we assume
that the risk-free asset does not generate interest. Large transactions are usually executed within a few hours
or at most a few days; the effect of discounting is therefore marginal, and we will not consider it in this
paper. We analyze a discrete-time model, i.e., we assume that trades can be executed at the (not necessarily
equidistant1) time points t0, t1, ..., tN . At each of these time points, we assume that the seller as well as a
number of noise traders execute orders. We denote the orders of the seller at time ti at the primary venue by
xi = (x(1)

i , . . . , x
(n)
i ) ∈ Rn and in the dark pool by yi = (y(1)

i , . . . , y
(n)
i ) ∈ Rn, where positive entries denote sell

orders and negative entries denote buy orders. In the following Subsections 2.1 and 2.2, we describe the different
1For example, the distance can be taken in volume time to adjust for the U-shaped intraday pattern of market volatility and

liquidity.
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effects of the orders xi and yi: The execution of the order xi at the primary venue is guaranteed, but has an
adverse effect on the market price. The execution of the order yi in the dark pool is uncertain, but has no price
impact (irrespective of whether it is executed or not). In Subsection 2.3, we define the trading objective of the
investor and specify the set of admissible strategies.

2.1 Transaction price and impact of primary venue orders xi

We assume that the transaction price Pi ∈ Rn at the exchange at time ti can be decomposed into the price
impact of the primary venue trades xj of the large trader and the “fundamental” asset price P̃i ∈ Rn that would
have occurred in the absence of large trades. We model the fundamental asset price P̃i as an arbitrary stochastic
process with independent increments εi ∈ Rn:

P̃i+1 = P̃i + εi+1. (1)

To avoid technical difficulties, we assume that the underlying probability space Ω is finite2. Then we only need
to require that the εi are independent. We do not make assumptions on the distribution of the εi. In particular,
they can have different distributions. The random price changes εi reflect the noise traders’ actions as well as
all external events, e.g., news. The assumption of independence of the εi implies that the random price changes
do not exhibit autocorrelation. The results we derive are sensitive to this assumption; autocorrelation will
in principle have an effect on the proceeds of any dynamic trading strategy. Including autocorrelation in the
market model however shifts the focus from optimal liquidation to optimal investment: even without any initial
asset position, the mathematical model will recommend high-frequency trading to exploit the autocorrelation.
But this effect is not related to the original question of optimal execution. Furthermore, many investors do
not have an explicit view on autocorrelation and thus choose an execution algorithm that is optimal under the
assumption of independence of price increments. Finally, for realistic parameters the effect of autocorrelation
on the optimal execution strategy and the resulting execution cost is marginal as was demonstrated by Almgren
and Chriss (2001). For these reasons, we will not include autocorrelation in our market model.

We allow a general form of the impact of the trades x0, x1, . . . , xi on the transaction price Pi:

Pi = P̃i − fi(x0, . . . , xi).
↑ ↑

“Fundamental” Price impact
asset price of seller

(2)

By allowing fi to depend on xi, we allow the order xi to influence its own execution price (e.g., in the form of
a temporary price impact). We define the “price impact cost of trading” as

∑

i

x>i fi(x0, . . . , xi) (3)

and assume that it is strictly convex, i.e., that for any two trading trajectories x 6= x′ and 0 < t < 1 the following
inequality holds:

∑

i

(txi + (1− t)x′i)
>fi(tx0 + (1− t)x′0, . . . , txi + (1− t)x′i)

< t

(∑

i

x>i fi(x0, . . . , xi)

)
+ (1− t)

(∑

i

x′>i fi(x′0, . . . , x
′
i)

)
. (4)

Furthermore, we require that the price impact cost of trading grows superlinearly, i.e., that

lim
|(x0,...,xN )|→∞

∑
i x>i fi(x0, . . . , xi)
|(x0, . . . , xN )| = ∞. (5)

This framework generalizes most of the existing market impact models of liquidity. For example, the model
suggested by Almgren and Chriss (1999) and Almgren and Chriss (2001) is equivalent to assuming that the εi

2The results of this paper also hold for infinite Ω if the price increments εi satisfy suitable conditions and the set of admissible
strategies is chosen appropriately.
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are identically normally distributed and describing the market impact as

fi(x0, . . . , xi) =




i−1∑

j=0

PermImp(xj)


 + TempImp(xi). (6)

Here, PermImp, TempImp : Rn → Rn are functions describing the permanent and temporary market impact of
a trade. If these functions are linear, we have

fi(x0, . . . , xi) = Γ




i−1∑

j=0

xj


 + Λxi (7)

for constant matrices Γ, Λ ∈ Rn×n. Our framework also includes the limit order book model introduced
by Obizhaeva and Wang (2006) as a single asset example if we again assume that the εi are identically normally
distributed and that the price impact is given by

fi(x0, . . . , xi) = γ




i−1∑

j=0

xj + xi/2


 + λ




i−1∑

j=0

e−ρ(ti−tj)xj + xi/2


 (8)

for constants γ, λ, ρ ∈ R+. Alfonsi, Schied, and Schulz (2007) suggested an extension of this model. The special
case of independent increments of the fundamental price process can also be described in our framework with
the following price impact function:

fi(x0, . . . , xi) =





(∫ xi

0
g

(∑i−1
j=0 e−ρ(ti−tj)xj + y

)
dy

)
/xi if xi 6= 0

g
(∑i−1

j=0 e−ρ(ti−tj)xj

)
if xi = 0

(9)

where g : R→ R is a function determined by the shape of the limit order book.

2.2 Trade execution in the dark pool

Contrary to the primary venue, the dark pool does not guarantee trade execution, since it only provides limited
liquidity. We introduce the random variables ai, bi ∈ [0,∞]n that model the liquidity that can be drawn upon
at time ti for buy orders (ai, ask side of the dark pool) and for sell orders (bi, bid side of the dark pool). The
amount zi = (z(1)

i , . . . , z
(n)
i ) ∈ Rn that is executed in the dark pool between time ti and ti+1 is then given by

z
(k)
i =

{
min(y(k)

i , b
(k)
i ) if y

(k)
i ≥ 0

−min(−y
(k)
i , a

(k)
i ) if y

(k)
i < 0.

(10)

We assume that ai and bi are independent of historical liquidity in the dark pool (a0, . . . , ai−1 and b0, . . . , bi−1)
as well as of previous price moves (ε1, . . . , εi). However, the liquidity parameters ai and bi and the price move
εi+1 at time ti can depend on each other, which allows us to incorporate the simultaneous occurrence of price
jumps and liquidity in the dark pool which can lead to adverse selection (see Section 5). In order to ensure
uniqueness of the optimal strategy, we assume that expected market moves are perfectly rank correlated with
dark pool liquidity, i.e., that for all p > q ≥ 0 we have

E[ε(k)
i+1|a(k)

i = p] ≤ E[ε(k)
i+1|a(k)

i = q], (11)

E[ε(k)
i+1|b(k)

i = p] ≥ E[ε(k)
i+1|b(k)

i = q]. (12)

Economically, this means that the higher the demand in the dark pool, the stronger the price will move upwards,
and the stronger the supply in the dark pool, the stronger the price will move downwards. We also assume that
execution in the dark pool is not guaranteed, i.e., for all i and k

P[a(k)
i = 0] > 0, P[b(k)

i = 0] > 0. (13)

While the dark pool has no impact on prices at the primary exchange, it is less clear to which extent the price
impact fi of the exchange is reflected in the trade price of the dark pool. If for example the price impact fi is
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realized predominantly in the form of a widening spread, then the impact on dark pools that monitor the mid
quote can be much smaller than fi. In Sections 3 to 6, we will make the simplifying assumption that trades in
the dark pool are not influenced by the price impact fi at all, i.e., that they are executed at the fundamental
price P̃i. If trading in the dark pool reflects the price impact fi, then market manipulating strategies become
profitable. We investigate this phenomenon in Section 7.

2.3 The liquidation problem

We consider an investor who has executed trades x0, . . . , xi−1 at times t0, . . . , ti−1 and needs to liquidate a
portfolio Xi = (X(1)

i , . . . , X
(n)
i ) ∈ Rn of risky assets within a finite time-horizon [ti, tN ]. For X

(k)
i > 0, this

implies liquidating a long position in asset k (selling), whereas X
(k)
i < 0 implies liquidating a short position

in asset k (buying). In both cases, we will speak of the “liquidation” or “sale”. We require that at all times
tj ≥ ti the investor’s orders xj , yj are predictable, i.e., that they only depend on past information (ε1, . . . , εj ,
a0, . . . , aj−1 and b0, . . . , bj−1). This includes deterministic (also called static) strategies, i.e., strategies that
do not depend on any εl, al or bl. Since the portfolio has to be liquidated by time tN , we require that in all
scenarios ω ∈ Ω that

N∑

j=i

(xj + zj) = Xi. (14)

We recursively define
Xj+1 := Xj − xj − zj . (15)

Requirement (14) is then equivalent to XN+1 = 0. In order to ensure uniqueness of the optimal strategy, we
assume that the investor only submits orders in the dark pool that have a positive probability of complete
execution3, i.e., that satisfy for all j and k

y
(k)
j ∈

[
−max

ω∈Ω
a
(k)
j (ω),max

ω∈Ω
b
(k)
j (ω)

]
. (16)

Due to order submission fees, this restriction is natural in practice. We call the set of trading strategies fulfilling
the above conditions the set of admissible strategies and denote it by Ai(Xi).

For an admissible strategy (x, y) = (xi, ..., xN , yi, ..., yN ) the trader’s cost of execution is

Ri = X>
i P̃i −

N∑

j=i

(x>j Pj + z>j P̃j) =
N∑

j=i

(
x>j

(
P̃i − P̃j + fj(x0, . . . , xj)

)
+ z>j (P̃i − P̃j)

)
. (17)

Ri is a random variable; depending on market moves εj and dark pool trading opportunities aj and bj , the
liquidation proceeds can vary significantly. The trade-off between expected proceeds and risk is an important
driver of optimal liquidation and has been the focus of several investigations including Almgren and Chriss
(1999), Dubil (2002), Almgren and Lorenz (2007), Schied and Schöneborn (2008) and Schied and Schöneborn
(2009). In this paper, we assume that the investor wants to minimize the following mean-variance function of
execution cost:

Ji(x0, . . . , xi−1, Xi) := min
(x,y)∈Ai(Xi)



E [Ri] + α · E




N∑

j=i

X>
j Σj+1Xj






 . (18)

Here, α ∈ R+
0 is the coefficient of risk aversion and Σj is the covariance matrix of the increments ε

(k)
j . We

call a strategy (x, y) optimal if it realizes the minimum in Equation (18). Note that our optimization criterion
penalizes risk due to market moves εj , but not the risk due to execution uncertainty in the dark pool. Since the
market risk usually outweighs the liquidity risk, disregarding the latter should not lead to significantly different
results while at the same time simplifying the analysis considerably. “Selective risk aversion” focusing only on
market risk and disregarding liquidity risk has been applied before by Walia (2006) and Rogers and Singh (2007)
in the contexts of stochastic liquidity and hedging.

3Due to our assumption of independence of dark pool liquidity ai, bi, the range of potential dark pool liquidity from time ti up
to time ti+1 is independent of the information available at time ti.
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3 Optimal liquidation

The following theorem establishes the existence and uniqueness of an optimal trading strategy that exploits
both the trading opportunities at the primary exchange and the dark pool.

Theorem 3.1. If the random variables εi, ai, bi fulfill the assumptions in Section 2, then there exists a unique
optimal strategy, i.e., there exists a unique (x, y) ∈ Ai(Xi) realizing the minimum in Equation (18).

The theorem is a direct consequence of the following propositions.

Proposition 3.2. An optimal liquidation strategy exists.

Proposition 3.3. The optimal liquidation strategy is unique. More precisely, for each (x0, . . . , xi−1, Xi) there
exists a unique admissible strategy (x, y) ∈ Ai(Xi) that realizes the minimum Ji(x0, . . . , xi−1, Xi) in Equa-
tion (18). Furthermore, the expression




i−1∑

j=0

x>j fj(x0, . . . , xj)


 + Ji(x0, . . . , xi−1, Xi) (19)

is strictly convex in (x0, . . . , xi−1, Xi) ∈ Ri+1, i.e., for any two vectors (x0, . . . , xi−1, Xi) 6= (x̃0, . . . , x̃i−1, X̃i)
and 0 < s < 1 the following inequality holds:




i−1∑

j=0

(sxj + (1− s)x̃j)>fj(sx0 + (1− s)x̃0, . . . , sxj + (1− s)x̃j)




+ Ji(sx0 + (1− s)x̃0, . . . , sxi−1 + (1− s)x̃i−1, sXi + (1− s)X̃i)

< s







i−1∑

j=0

x>j fj(x0, . . . , xj)


 + Ji(x0, . . . , xi−1, Xi)




+ (1− s)







i−1∑

j=0

x̃>j fj(x̃0, . . . , x̃j)


 + Ji(x̃0, . . . , x̃i−1, X̃i)


 . (20)

4 Solution of a tractable model

In the previous section, we have dealt with a general market model. It is hard to derive any additional results
in full generality. In this section, we therefore turn to a special tractable case of the general market model. In
Subsection 4.1, we specify this model in terms of its price impact functions fi, the fundamental price process
P̃ and the liquidity in the dark pool a0, b0, ..., aN , bN . In Subsection 4.2 the value function Ji and the optimal
orders xi, yi at times ti are proven to be of quadratic respectively linear form and are derived in the form of an
explicit backward induction.

In Subsections 4.3 and 4.4, we examine the effects of dark pools for liquidation of a single asset position and
a two asset portfolio, respectively.

4.1 Model specification

In this section, we assume that price impact is linear and purely temporary, i.e.,

fi(xi) = Λxi (21)

for all i, where the price impact matrix Λ = (λi,j) ∈ Rn×n is a positive definite matrix. The price impact
fi then fulfills Conditions (4) and (5). This type of market impact is called temporary since the function fi

only depends on the trade xi at time ti and not on past trades x0, ..., xi−1. Note that Λ can be chosen to be
symmetric, since for the purposes of optimal execution only the product x>i fi(xi) = x>i Λxi is relevant. One
special case are diagonal matrices with strictly positive entries, which correspond to markets without cross asset
price impact.
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For the dark pool, we assume that orders are executed fully or not at all, i.e., a
(k)
i , b

(k)
i ∈ {0,∞} for all i, k.

Furthermore, we assume that the liquidity ((ai, bi))i in the dark pool is identically distributed and independent
of the price moves εi+1. While the order execution probability in asset k can depend on the liquidity of the
other assets, we assume a symmetry between liquidity on the buy and sell side of the dark pool:

P
[
a
(k)
i = ∞|a(1)

i , . . . , a
(k−1)
i , a

(k+1)
i , . . . , a

(n)
i , b

(1)
i , . . . , b

(k−1)
i , b

(k+1)
i , . . . , b

(n)
i

]

= P
[
b
(k)
i = ∞|a(1)

i , . . . , a
(k−1)
i , a

(k+1)
i , . . . , a

(n)
i , b

(1)
i , . . . , b

(k−1)
i , b

(k+1)
i , . . . , b

(n)
i

]
. (22)

The price process P̃ is assumed to be a martingale (i.e., E[εi] = 0) with a constant covariance matrix (i.e.,
Σi = Σj =: Σ).

As a consequence of the above assumptions, we directly obtain that Ji(x0, . . . , xi−1, Xi) is independent of
x0, . . . , xi−1 and that

Ji(Xi) := Ji(x0, . . . , xi−1, Xi) = min
(x,y)∈Ai(Xi)



E




N∑

j=i

x>j Λxj


 + α · E




N∑

j=i

X>
j ΣXj






 . (23)

4.2 Optimal liquidation

The following theorem establishes that the optimal orders xi placed at the primary venue and yi placed in the
dark pool are linear functions of the portfolio Xi at any time ti. Furthermore the value function Ji is quadratic
in Xi.

Theorem 4.1. For 0 ≤ i ≤ N , there exist matrices Ai, Bi ∈ Rn×n, such that the optimal strategy (x, y) is given
by xi = AiXi, yi = BiXi for portfolio Xi at time ti. Furthermore, there exists a matrix Ci ∈ Rn×n such that

Ji(Xi) = X>
i CiXi. (24)

Ai, Bi and Ci are given recursively by AN = I, BN = 0, CN = Λ + α · Σ and Ai = gA(Ci+1), Bi = gB(Ci+1)
and Ci = gC(Ci+1) for functions gA, gB , gC : Rn×n −→ Rn×n independent of i. Furthermore, Ci is positive
definite.

4.3 Liquidating a single-asset position

The easiest case to analyze is the liquidation of a position X0 in a single asset, i.e., n = 1. As some of the most
interesting effects of using dark pools can already be observed in this simple case, we will study it in more depth
in this subsection.

In order to understand the effects of dark pools on portfolio liquidation, it is desirable to compare the
optimal strategies we obtained in the previous subsection with optimal strategies for traders that do not use
dark pools. If p denotes the probability that the order in the dark pool is executed in a time-interval [ti, ti+1),
this corresponds to the case p → 0. Solutions to the optimal liquidation problem for this case are known, see,
e.g., Almgren and Chriss (1999), Almgren and Chriss (2001).

For the remainder of the subsection we let X0 > 0. The following proposition gives explicit formulae for
the optimal strategy and the value function matrix. As a side product of the proof we also obtain recursive
formulae.4

Proposition 4.2. Let

κp := arcosh
(√

1− p

2

(
αΣ
Λ

+ 1 +
1

1− p

))
. (25)

Then the optimal orders at time ti are given by xi = Ai(p)Xi and yi = Bi(p)Xi with

Ai(p) = 1− sinh(κp(N − i))√
1− p sinh(κp(N + 1− i))

, (26)

4Originally we obtained the explicit formulae in a similar way as Almgren and Chriss (2001) obtained those for trading without
dark pool, i.e., we computed the optimal asset position in time via a second order linear difference equation.
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Bi(p) = 1−Ai(p) =
sinh(κp(N − i))√

1− p sinh(κp(N + 1− i))
< 1, (27)

in particular 0 < xi, yi < Xi for i 6= N . The value function is given by Ji(Xi) = Ci(p)X2
i with

Ci(p) =
Λ

1− p
·
(√

1− p sinh(κp(N + 2− i))
sinh(κp(N + 1− i))

− 1
)

. (28)

Corollary 4.3. Assume that the optimal liquidation strategy is being pursued. If no dark pool order has been
executed until ti, then the asset position at time ti is

Xne
i (p) := Xi =

1
√

1− p
i

sinh(κp(N + 1− i))
sinh(κp(N + 1))

X0 (29)

and the optimal orders at time ti are given by

xne
i (p) := xi = Ai(p)Xi =

1
√

1− p
i+1

√
1− p sinh(κp(N + 1− i))− sinh(κp(N − i))

sinh(κp(N + 1))
X0, (30)

yne
i (p) := yi = Bi(p)Xi =

1
√

1− p
i+1

sinh(κp(N − i))
sinh(κp(N + 1))

X0 = Xne
i (p)− xne

i (p). (31)

If a dark pool oder has been executed before ti, then Xi = xi = yi = 0.

As a consequence of Proposition 4.2 and Corollary 4.3, we can compare the optimal strategies with and
without dark pools.

Corollary 4.4 (Properties of the optimal strategy). The optimal strategy stated in Proposition 4.2 has
the following properties:

1. Trading costs are small when the dark pool is liquid, i.e., for i ∈ {1, ..., N − 1}, Ci(p) is strictly decreasing
in p.

2. The higher the probability of dark pool execution, the slower we will initially trade in the primary venue.
More precisely, for i ∈ {1, ..., N − 1}, Xne

i (p) is strictly increasing in p. In particular

Xne
i (p) > Xne

i (0) ∀p > 0. (32)

3. Let Ep [Xi] be the expected asset position at time ti if the probability of execution in the dark pool is p and
the optimal strategy is applied. Then:

Ep [Xi] = (1− p)iXne
i (p) =

√
1− p

i sinh(κp(N + 1− i))
sinh(κp(N + 1))

X0 (33)

and Ep [Xi] is strictly decreasing in p for i ∈ {1, ..., N − 1}, in particular

Ep [Xi] < E0 [Xi] ∀p > 0. (34)

Proposition 4.2 and Corollary 4.4 answer the questions of how to use a dark pool optimally and how to
adjust the trading strategy in the primary venue for liquidating a single asset position. Intuitively, one would
answer these questions as follows:

• As we do not pay price impact in the dark pool, it should always be optimal to post the largest possible
order in the dark pool.

• As we want as much as possible to be executed in the dark pool, we should slow down the trading speed
in the primary venue. If we are not executed towards the end, we have to speed up in order to finish the
liquidation until time T .

8



Tτ

X0

Time

Size of asset position

Tτ

X0

Time

Size of asset position

Figure 1: Comparison of the portfolio evolution for the optimal strategies of a risk-neutral trader (α = 0) of a
stock with large (left) and small (right) probability of execution p in the dark pool. The task of the trader is
to liquidate a position X0 = 1 in N + 1 = 501 trading times. Furthermore: Λ = 500, Σ = 1

500 and p = 3
500 (left

graph), p = 1
1000 (right graph). The solid lines show the scenario, where a trade in the dark pool is executed in

the τ th trading period (left τ = 150, right τ = 350).

By (27) and (32) both intuitions are confirmed by our model. Furthermore, the higher the probability of
execution in the dark pool, the slower we trade in the primary venue. Conversely, the higher the probability of
execution, the smaller the expected asset position at each point in time. Figures 1 and 2 illustrate how the dark
pool changes the optimal strategy in the primary venue. In all pictures, the optimal strategy without using the
dark pool is denoted by the thin line. When the dark pool is used, then the portfolio evolution is stochastic and
depends on the liquidity found in the dark pool. We illustrate the stochastic portfolio evolution with three lines.
The solid line shows portfolio evolution in the scenario where liquidity is found in the dark pool at time τ . If
there is no liquidity found in the dark pool during the entire trade execution, the trader will follow the dotted
line until time T . In the figures, it can be observed how the trading speed is slowed down by the introduction
of a dark pool. The dashed line denotes the expected asset position over time if a dark pool is used.

Tτ

X0

Time

Size of asset position

Tτ

X0

Time

Size of asset position

Figure 2: The same liquidation problems as in Figure 1, but for a risk-averse trader (α = 4).

It is also clear that a higher probability of execution reduces the costs. Figure 3 illustrates the costs of
the strategies depending on N · p, i.e., the expected number of executions in the dark pool within the trading
horizon [0, T ], if the probability of execution in each trading interval is p. The dotted line denotes the costs of
not using a dark pool (which is obviouly independent of p). The solid line represents the costs of the optimal
strategy and the dashed line represents the costs of the following näıve strategy used in a similar form by many
traders in practice:

Use the optimal strategy without dark pools for the primary venue and place the remainder of the position
in the dark pool!

This strategy is obviously cheaper than not using dark pools, as both impact costs and risk costs are at most
as large and smaller if an order in the dark pool is executed before time T . However, it is significantly more
expensive than the optimal strategy, as illustrated by Figure 3.
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4.50
N·p

Costs

2.2

0

Figure 3: Costs of the optimal strategy (solid line), the optimal strategy without dark pool (dotted line) and
the näıve strategy (dashed line) dependent on N · p, i.e., the expected number of executions in the dark pool.
N = 15,Λ = 15,Σ = 1

15 , α = 4.

The costs of a liquidation strategy are composed of impact costs of trading in the primary venue

Λ · E
[

N∑

i=0

x2
i

]
(35)

and the risk costs

α · Σ · E
[

N∑

i=0

X2
i

]
. (36)

Applying the optimal strategy we obtain

E
[
X2

i

]
= (1− p)iXne

i (p)2 =
(

sinh(κp(N + 1− i))
sinh(κp(N + 1))

)2

X2
0 (37)

by Equation (29). This term is increasing for p ∈ (0, αΣ
Λ+αΣ ) and decreasing for p ∈ ( αΣ

Λ+αΣ , 1). Thus the risk
costs are in general not decreasing in p, in particular it is generally not true that the risk costs of using a dark
pool are less than the risk costs of not using a dark pool.

On the other hand, we obtain

E[x2
i ] = (1− p)ixne

i (p)2 =
1

1− p

(√
1− p sinh(κp(N + 1− i))− sinh(κp(N − i))

sinh(κp(N + 1))

)2

X2
0 (38)

by (30). Equation (38) strongly suggests that the impact costs in Equation (35) are strictly decreasing in p. We
leave a proof of this for future research. Figure 4 illustrates the dependence of risk and impact costs on p.

Let us consider the limit of an infinite trading time horizon T →∞ (respectively N →∞). This is equivalent
to dropping the requirement that the liquidation has to be finished within a finite time horizon. If a trader can
only use the primary exchange, then she can liquidate positions at arbitrarily small costs if she is risk-neutral,
but not if she is risk-averse. In both cases, the liquidation requires an infinite time to complete (see Almgren
(2003)). The following proposition shows that a risk-averse investor with an infinite trading time horizon cannot
liquidate arbitrarily cheaply even if a dark pool is available, but the average time required for liquidation is
finite.

Proposition 4.5. For a trader with an infinite time horizon (N →∞), the cost function is J(X0) = CX2
0 with

C := lim
N→∞

C0(p) =
Λ

1− p

(√
1− p exp(κp)− 1

)
. (39)

C is strictly positive for risk averse traders (α > 0) and zero for risk-neutral traders.
Let T̃ be the time taken for liquidation. The average liquidation time is

Ep[T̃ ] =
1− p

p
< ∞. (40)
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1.50
N·p

Risk costs

N· αΣ
αΣ+Λ = 0,26

1.05

1.01
4.50

1.15

0 N·p

Impact costs

Figure 4: Risk costs (left graph) and impact costs (right graph) of the optimal strategy dependent on the
expected number of executions in the dark pool. For (0, N · αΣ

αΣ+Λ ), the risk costs are increasing, whereas the
impact costs are strictly decreasing in the whole interval (0, N · p). The parameters are the same as in Figure 3.

Obviously, for the performance of the strategies it is essential to estimate the parameters Λ,Σ, and p
appropriately. Especially for the probability of execution this seems to be difficult in practice: As orders are
not reported openly in dark pools, it is hard to obtain useful data. Therefore it is important to know the effects
of an imprecise estimate of p.

Let us assume that we have estimated the avarage number of executions in [0, T ] to be N · q. We have seen
already that applying the optimal strategy (xi(q), yi(q))i reduces liquidation costs significantly - provided that
q equals the real-world probability of execution p.

If we have underestimated p, i.e q < p, the strategy (xi(q), yi(q))i is still cheaper than the optimal strategy
without using dark pools. On the other hand, overestimating p significantly can possibly make the strategy
(xi(q), yi(q))i more expensive than the optimal strategy without using dark pools.

Using Equations (29) and (30) we can easily compute the range in which the real-world probability p needs
to be in order to ensure that the costs of the strategy (xi(q), yi(q))i are less than the costs without dark pool:
If p is the real-world probability of execution and q the estimate of a trader, the strategy (xi(q), yi(q))i yields
the costs

Cq
0(p) := Λ ·

N∑

i=0

(1− p)ixne
i (q)2 + αΣ ·

N∑

i=0

(1− p)iXne
i (q)2. (41)

Thus as long as p > p̃, where p̃ can be computed via

Cq
0(p̃) = C0(0), (42)

using (xi(q), yi(q))i is cheaper than not using the dark pool. Figure 5 illustrates the costs of (xi(q), yi(q))i

dependent on p.

4.4 Liquidating a portfolio of two assets

If a portfolio of multiple assets has to be liquidated (n ≥ 2) for a risk-averse investor, then correlation between
the assets comes into play. It might no longer be optimal to always submit the remaining portfolio into the dark
pool. For example, a trader liquidating a well diversified portfolio consisting of two assets will most likely not
want to risk losing her unrisky position by being executed in only one of the two assets. Intuitively, we expect
the optimal order placement in the dark pools to have the following properties:

• If the portfolio is well diversified in the beginning, the orders in the dark pools should be much smaller
than the current portfolio, as the trader does not want to risk entering an undiversified position. The
trading speed in the primary venue should be almost constant, since the portfolio position bears little risk
and a constant trading speed minimizes the price impact cost (cf. the thin lines in Figure 1).

• If the portfolio is poorly diversified, the orders should initially be comparatively large both in the primary
venue and in the dark pool. They might even be larger than the current portfolio. In this case the
execution of the dark pool order for one of the assets leads to a less risky position.

11



0.5qp̃0
p

Costs

Figure 5: The dotted line represents the costs without dark pool, the solid line the costs of the optimal
strategy dependent on p and the dashed line the costs of the strategy (xi(q), yi(q))i (dependent of the real world
probability p); p̃ denotes the minimal value of the real world probability p such that trading with dark pool
does not become more expensive than without. The estimate is q = 0.1. The parameters are as in Figure 3.

It is possible to find explicit formulae for the recursions, both of the value function matrix and the optimal
strategy by the same procedure as for the cases n = 1 for any fixed n ∈ N. However, the calculation becomes
extremely tedious and the formulae become rather unhandy even for n = 2. Therefore we abdict to state the
formulae for any n > 1 (the formulae for the case n = 2 are available from the authors upon request).

We will now illustrate the above intuitions by some numeric examples. First, we want to compare the
expected portfolio evolution using the optimal strategies with and without dark pools. To this end, we consider
different portfolios of two highly correlated stocks with

Σ =
1

500
·
(

1 0.9
0.9 1

)
. (43)

We model the second stock as being more liquid. This is reflected in both a smaller price impact and a higher
execution probability in the dark pool5 compared to the first asset:

Λ =500 ·
(

3 0
0 0.2

)
, (44)

P[No dark pool execution] =
993
1000

, (45)

P[Dark pool execution of first asset] =
1

1000
, (46)

P[Dark pool execution of second asset] =
6

1000
, (47)

P[Dark pool execution of both assets] =0. (48)

We will consider two cases in more depth:

• Long positions in both stocks, i.e., a poorly diversified portfolio: X0 =
(

1
1

)

• A long postion in the first and a short position in the second one, i.e., a well diversified portfolio:

X0 =
(

1
−1

)

Figure 6 shows the evolution of the two portfolios. The left picture corresponds to the first case, the right one
to the second. In both pictures, thin lines are used for the first stock and thick lines for the second. Dotted lines
correspond to trading without dark pools, dashed lines correspond to the expected position in the assets if dark
pools are used and the solid lines correspond to a realization of the liquidation process using dark pools, where
the orders in the second dark pool are executed at times τ1, τ2, τ3 and in the first dark pool only at time τ4.

5Intuitively, we expect a close connection between liquidity costs in the primary venue and probability of execution in the dark
pool. However, we are not aware of any empirical work supporting this.
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Figure 6: Evolution of a portfolio consisting of two highly correlated stocks over time. The left figure illustrates
the poorly diversified portfolio, the right figure the well diversified portfolio. In the displayed scenario, orders
are executed at times τ1, τ2, τ3 and τ4.

For the poorly diversified portfolio, the trader tries to improve her risky position by trading out of the second
stock. For this stock, trading in the primary venue is less expensive and being executed in the dark pool is more
probable. If the trader uses dark pools, this process on average evolves significantly faster than without dark
pools.

For the well diversified portfolio the portfolio position is decreasing almost linearly in time in all cases. We
expect to trade only slightly faster if we use dark pools. Note that this corresponds to the intuition given at
the beginning of the subsection: It is most profitable to trade out of the position almost evenly.

Additionally, orders in the dark pool are very large for the poorly diversified portfolio and comparatively
small in the well diversified portfolio. The reason can be observed in Figure 7. The solid lines in the two
pictures represent the evolution of portfolio risk X>ΣX over time corresponding to the realized liquidation
paths in Figure 6. The dotted lines represent the evolution of risk if the optimal strategy without dark pools is
used and the dashed lined represent the expected evolution of risk.

As long as the portfolio is poorly diversified, the risk is relatively large and is decreased by a large execution
in one of the dark pools significantly (left picture). However, if it is well diversified as in the right picture, each
execution in the dark pools increases the risk. Therefore in this case dark pools save price impact costs, but
potentially increase risk costs. Note also that in the case of an initially well diversified portfolio, the expected
risk can be larger than the risk without using dark pools (right picture).

T

3.8

Time

Risk of portfolio

τ1 τ2 τ3 τ4 T

0.2

Time

Risk of portfolio

τ1 τ2 τ3 τ4

Figure 7: Evolution of risk X>
i ΣXi over time for the liquidation paths in Figure 6 The dashed line denotes the

expected evolution of risk. Note the different scales in the left and the right graph.
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5 Adverse selection

In the previous Section 4, we have assumed that the price increments εi are independent of the liquidity ai, bi

in the dark pool. This assumption is not necessarily fulfilled in reality. In particular, other large traders might
simultaneously seek liquidity in the dark pool and move prices at the primary trading venue. For a trader active
both at the exchange and in the dark pool, this can have two consequences:

• Adverse selection: If price changes εi and liquidity ai, bi in the dark pool at time i are connected, liquidity
seeking traders might find that their trades in the dark pool are usually executed just before a favorable
price move, i.e., exactly when they do not want to be executed, since they miss out on the price improve-
ment. In advance of adverse price movements, they might observe that they rarely find liquidity in the
dark pool. We denote such a phenomenon as “adverse selection”.

• Dark pool pinging: Any smart trader might try to obtain information about the level of liquidity ai, bi

in the dark pool in order to predict future price movements εi+1, . . . at the exchange. This predictive
information can then be exploited in a profit seeking trading strategy.

Since the focus of this paper is optimal trade execution, we limit the discussion to the effects of adverse selection
for two reasons. First, most dark pools go to great length to prevent pinging, since such practices obviously
bring light into the dark pool and thus counteract its primary purpose. Hence, any investigation of dark pool
pinging needs to take into account the detailed legal and algorithmic measures introduced by dark pools, a topic
which we do not want to touch upon. Second, the analysis of dark pool pinging leaves the realm of optimal
trade execution, since the optimal strategy will include trades even without any initial trading intention.

Note first that our model covers the case where the price increments εi+1, · · · are dependent on the dark
pool variables a0, b0, ..., ai, bi (as long as the conditions in Section 2 are satisfied). Therefore we obtain a unique
optimal trading strategy by Theorem 3.1.

As in Section 4, we assume the linear form of price impact fi described in Equation (21) and the Poisson
type execution in the dark pool (ai, bi ∈ {0,∞}). Furthermore, we assume that P̃ is a martingal with identically
distributed increments εi. Thus Equation (18) becomes

Ji(Xi) = min
(x,y)∈Ai(Xi)



E




N∑

j=i

x>j Λxj


 + E




N∑

j=i

z>j εj+1


 + α · E




N∑

j=i

X>
j ΣXj






 . (49)

We obtain the Bellman Equation

Ji(Xi) = min
(xi,yi)∈Rn×Rn

{
x>i Λxi + α ·X>

i ΣXi + E
[
z>i εi+1

]
+ E [Ji+1(Xi − xi − zi)]

}
. (50)

For simplicity, we will restrict ourselves to the case n = 1 for the rest of the section. We assume that the
dependence of the price movements on dark pool liquidity is of the following form (note that E[εi+1] = 0 by the
assumption that P̃ is a martingale):

E[εi+1|ai = ∞] = −A < 0, E[εi+1|bi = ∞] = A > 0. (51)

If p is the probability of execution in the dark pool, Equation (50) yields:

Ji(Xi) = min
(xi,yi)∈R×R

{
Λx2

i + αΣX2
i + p|yi|A + pJi+1(Xi − xi − yi) + (1− p)Ji+1(Xi − xi)

}
. (52)

We will from now on use the following notation: the (unique) optimal strategy at time ti for asset position Xi

is denoted by (xi(Xi), yi(Xi)) ∈ R×R. We obtain the following result:

Theorem 5.1. For i = 0, . . . , N , the cost functional Ji is piecewise a quadratic polynomial and the optimal
strategy (xi(Xi)), yi(Xi)) is piecewise affine linear in Xi. More precisely:

1. If Xi > 0, there exist
0 =: X̄i,0 < · · · < X̄i,N−i+1 := ∞, (53)

such that for i = 0, . . . , N , j = 0, . . . , N − i and Xi ∈ (X̄i,j , X̄i,j+1] the optimal strategy and the cost
functional are given by

xi(Xi) = Ai,j,1Xi + Ai,j,2, (54)
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yi(Xi) = Bi,j,1Xi + Bi,j,2, (55)

Ji(Xi) = Ci,j,1X
2
i + Ci,j,2Xi + Ci,j,3. (56)

Thereby, for i ∈ {0, . . . , N − 1}, j ∈ {1, . . . , N − i}

X̄i,j =
1

2αΣ(1− p) sinh(κp)
·

·
(

2αΣ
(
d(i, j) sinh(jκp)

√
1− p

j+1 − e(i, j) sinh((j − 1)κp)
√

1− p
j+2

)

+ Ap
(√

1− p
j−1

sinh(jκp)−
√

1− p
j
sinh((j − 1)κp)− sinh(κp)

))
, (57)

where

d(i, j) =
A(Ci+j(0) + Λ)

2Ci+j(0)Λ
, (58)

e(i, j) =
A

2Ci+j(0)
, (59)

in particular for i = 0, . . . , N − 1

X̄i,1 =
A(Ci+1(0) + Λ)

2Ci+1(0)Λ
. (60)

Furthermore for i = 0, . . . , N

Ci,0,1 = Ci(0), Ci,0,2 = Ci,0,3 = 0, (61)
Ai,0,1 = Ai(0), Ai,0,2 = 0, (62)
Bi,0,1 = Bi,0,2 = 0, (63)

for i = 0, . . . , N − 1, j = 1, . . . , N − i− 1

Ai,j,1 = 1− X̄i+1,j − X̄i+1,j−1

X̄i,j+1 − X̄i,j
, (64)

Ai,j,2 =
X̄i+1,jX̄i,j − X̄i,j+1X̄i+1,j−1

X̄i,j+1 − X̄i,j
, (65)

Bi,j,1 = 1−Ai,j,1, (66)

Bi,j,2 = −Ai,j,2 − A

2Ci+1(0)
, (67)

Ci,j,1 =
Λ

1− p

(
X̄i−1,j+2 − X̄i−1,j+1

X̄i,j+1 − X̄i,j
− 1

)
, (68)

Ci,j,2 =
X̄i,j+1(2ΛX̄i−1,j+1 −Ap)− X̄i,j(2ΛX̄i−1,j+2 −Ap)

(1− p)(X̄i,j+1 − X̄i,j)
(69)

and for i = 0, . . . , N − 1

Ai,N−i,1 = Ai(p), (70)

Ai,N−i,2 =
Ap

(√
1− p sinh(κp(N + 1− i))− sinh(κp(N − i))−√1− p

N+1−i sinh(κp)
2αΣ(1− p)3/2 sinh(κp(N + 1− i))

, (71)

Bi,N−i,1 = Bi(p), (72)

Bi,N−i,2 = −Ai,j,2 − A

2Ci+1(0)
, (73)

Ci,N−i,1 = Ci(p), (74)

Ci,N−i,2 =
ApΛ

(√
1− p

N+2−i sinh(κp)−
√

1− p sinh(κp(N + 2− i))
)

(1− p)2αΣsinh(κp(N + 1− i))
− ApΛ

(
Λ + (1− p)αΣ

)

(1− p)2αΣ
. (75)
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Finally, for i = 0, . . . , N − 1, j = 1, . . . , N − i, Ci,j,3 is given recursively by

Ci,j,3 =
−1

4Ci+1(0)(Ci+1,j−1,1(1− p) + Λ)

·
{

A2p(Ci+1,j−1,1(1− p) + Λ) + Ci+1(0)
(
(C2

i+1,j−1,2 − 4Ci+1,j−1,1Ci+1,j−1,3)(1− p)2

+ 2ACi+1,j−1,2(1− p)p + A2p2 − 4Ci+1,j−1,3Λ(1− p)
)}

. (76)

2. For i = 0, . . . , N , Xi ≤ X̄i,1 we have

yi(Xi) = 0, (77)
xi(Xi) = Ai(0)Xi, (78)

Ji(Xi) = Ci(0)X2
i , (79)

in particular Xi − xi(Xi) ≤ X̄i+1,1 for i < N .

Furthermore, for i < N , j = 1, . . . , N − i and Xi ∈ (X̄i,j,, X̄i,j+1), xi(Xi), yi(Xi) and Xi − xi(Xi) are
increasing in Xi and

Xi − xi(Xi)− yi(Xi) =
A

2Ci+1(0)
< X̄i+1,1, (80)

Xi − xi(Xi) ∈ (X̄i+1,j−1, X̄i+1,j). (81)

3. For Xi < 0 the optimal strategy and the cost functional are given by

xi(Xi) = −xi(−Xi), (82)
yi(Xi) = −yi(−Xi), (83)
Ji(Xi) = Ji(−Xi). (84)

We can directly deduce the following properties of the optimal strategy.

Corollary 5.2. Let i = 0, . . . , N and Xi > 0.

1. For Xi < X̄i,1 the dark pool is not used at times ti, . . . , tN and the optimal strategy and the cost functional
are the same as without adverse selection and without dark pool.

2. For i < N , j = 1, . . . , N − i and Xi ∈ (X̄i,j , X̄i,j+1) the dark pool is only used at times ti, . . . , ti+j−1

(provided that no order in the dark pool is executed before). From time ti+j respectively after execution in
the dark pool it is not used anymore.

3. For i = 0, . . . N , j = 0, ..., N − i
Ci,j,1, Ci,j,2 ≥ 0, Ci,j,3 ≤ 0 (85)

and Ci,j,1 and Ci,j,3 are decreasing in j and Ci,j,2 is increasing in j.

Moreover
Ai,j,1, Ai,j,2, Bi,j,1 ≥ 0, Bi,j,2 ≤ 0 (86)

and Ai,j,1 and Bi,j,2 are decreasing in j and Ai,j,2 and Bi,j,1 are increasing in j, i.e., xi(Xi) is concave
and yi(Xi) is convex in Xi.

According to Theorem 5.1 and Corollary 5.2 the optimal strategy has the following properties:

• As trading in the dark pool is not entirely free anymore (but inhabits the miss of a favourable price
movement), it is not optimal to place the entire remainder of the position in the dark pool.
Furthermore, if Xi is below the time-dependent boundary X̄i,1 it is optimal to place no order in the dark
pool. The optimal strategy below this boundary is the same as the one without adverse selection and
without dark pool.
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• Only if X0 > X̄0,N and orders in the dark pool are never executed, the optimal asset position stays above
this boundary throughout the whole time horizon [0, T ], i.e., it is optimal to use the dark pool at all
trading times t0, . . . , tN−1.
If X0 ∈ (X̄0,j , X̄0,j+1) for j < N , then - provided no order is executed in the dark pool before - Xj−1 >
X̄j−1,1 and Xj < X̄j,1, i.e., the dark pool is only used for the first j trades.

• If the order in the dark pool is executed, the boundary is crossed.

• As soon as the boundary is crossed (either by execution in the dark pool or by trading in the primary
venue), the optimal asset position stays below the boundary for the rest of the trading horizon.

• By Equations (70), (72) and (74) adverse selection neither changes the optimal strategy nor the cost
functional significantly for very large Xi, i.e., for Xi >> X̄i,N−i.

Tτ1 τ2

1.8

X̄0,100

0.6

Time

Size of asset position

Tτ2

1.8

0.6

Time

Size of asset position

Figure 8: The left picture shows the optimal strategies for a smaller and a larger asset position, if adverse
selection is expected. The right picture shows the respective strategies, if adverse selection is not expected. In
all cases we consider the scenario where the order in the dark pool is executed at time τ2. The solid lines denote
the optimal strategies for this scenario, the dotted those for the scenario where orders in the dark pool are never
executed. The dashed line in the left picture reflects X̄i,1, i.e., the boundary below which the optimal order
in the dark pool is zero. The thin lines in the right pictures denote the optimal strategies without dark pools.
N = 100, Λ = 100, Σ = 1

100 , p = 6
100 , α = 4, A = 2.

We illustrate these properties in Figure 8. The left picture shows the optimal strategies for two initial asset
positions. A larger one (X0 = 1.8) which lies above X̄0,N = X̄0,100 = 1.27 and a smaller one (X0 = 0.6) which
lies beween X̄0,12 and X̄0,13. Consequently, the larger asset position crosses the boundary X̄i,1 (dashed line)
only if the order in the dark pool is executed (which happens at time τ2 in the displayed scenario). The smaller
one crosses the boundary after the twelveth trading period, i.e. at time τ1, if no order in the dark pool is
executed before.

Compared to the optimal strategies, if no adverse selection is expected (right picture, solid lines) the trading
speed in the primary venue is initially faster, but still slower then the trading speed of the optimal strategies
without dark pool (thin lines). Additionally the order in the dark pool is samller than the remainder of the
position and after execution in the dark pool the trader trades out of the rest solely in the primary venue. The
reason for both properties is the fact that trading in the dark pool is not entirely free anymore - and thus (in
relation to it) trading is cheaper in the primary venue.

Fiure 9 shows the dependence of the optimal order size in the primary venue (solid line) and in the dark pool
(dashed line) on the asset position. As proven in Corollary 5.2, the order size in the primary venue is concave
in X0 and the order size in the dark pool is convex in X0.

In Subsection 4.3 we showed that a high probability of execution in the dark pool, slows down trading in the
primary venue initially. Intuitively adverse selection should have the opposite effect: Higher adverse selection
should speed up trading in the primary venue, as trading in the dark pool is more expensive and thus waiting
for execution is less profitable. The following corollary confirms this intuition.

Corollary 5.3. Let X0 > 0 and define Xne
i (i = 0, . . . , N) recursively by Xne

0 = X0, Xne
i+1 = Xne

i − xi(Xne
i ),

i.e., Xne
i is the optimal asset position at time ti provided no order has been executed before. We have that xi(Xi)

is strictly increasing in A and Xne
i is strictly decreasing in A. Furthermore, yi(Xi) is strictly decreasing in A.
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X̄0,2X̄0,1

Asset position

Order size

Figure 9: Optimal order sizes in the dark pool and the primary venue at time t0 dependent on the asset postion
X0. The solid line denotes the optimal order size in the primary venue x0(X0), the dashed line the optimal
order size in the dark pool y0(X0). N = 2, Λ = 10, Σ = 1

2 , p = 0.6, α = 4, A = 10.

15

1.24

A

Order size

1

0.64

p

Order size

Figure 10: Dependence of the optimal order size in the primary venue (solid lines) and in the dark pool (dashed
lines) on adverse selection (left picture) and on the probability of execution in the dark pool (right picture),
respectively. X0 = 1.5, N = 2, Λ = 10, Σ = 1/2, α = 4; furthermore, p = 0.6 in the left picture, A = 10 in the
right picture.

Figure 10 shows the dependence of the trading speed in the primary venue on adverse selection (left picture)
and on the probability of execution (right picture). As we have shown in Corollary 5.3, large adverse selection
speeds up trading in the primary venue and decreases the optimal order size in the dark pool. On the other
hand, probable execution in the dark pools slows down trading in the primary venue and increases the optimal
order size in the dark pool.

6 Trading restrictions

In practice, traders liquidating a portfolio for a client often face trading restrictions. For example, traders might
not be allowed to short any of the stocks in the portfolio. Additionally, they are often bound to the trading
direction intended by the client at all points in time: if the client wants to sell stock A and buy stock B, then
the trader must not submit intermediate buy orders for stock A or sell orders for stock B, even if they might
appear attractive from a risk mitigation perspective as described in Section 4.4. In particular, trading strategies
as in the left picture of Figure 6 are not admissible.

In this section, we will allow for general trading restrictions on trades xi, yi and intermediate portfolio
positions Xi. For each point in time ti and asset k, we assume that there bounds x

(k)
i,min, x

(k)
i,max, y

(k)
i,min, y

(k)
i,max for
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trading and X
(k)
i,min, X

(k)
i,max for the portfolio position. We then define the set of admissible strategies as

A′i(Xi) =
{

(x, y) ∈ Ai(Xi) |x(k)
j,min ≤ x

(k)
j ≤ x

(k)
j,max, y

(k)
j,min ≤ y

(k)
j ≤ y

(k)
j,max, X

(k)
j,min ≤ X

(k)
j ≤ X

(k)
j,max, ∀ j ≥ i, k

}
.

(87)
Since the set of admissible strategies is convex, the proof of Theorem 3.1 also establishes the following theorem:

Theorem 6.1. There is a unique optimal strategy under trading constraints, i.e., there exists a unique

(x, y) ∈ A′i(Xi) (88)

realizing the minimum in

J ′i(x0, . . . , xi−1, Xi) := min
(x,y)∈A′i(Xi)



E [Ri] + α · E




N∑

j=i

X>
j Σj+1Xj






 . (89)

Let us turn back to the case of the trading direction restriction. This is equivalent to

x
(k)
i,min := y

(k)
i,min :=

{
0 if X

(k)
0 ≥ 0

−∞ otherwise
x

(k)
i,max := y

(k)
i,max :=

{
∞ if X

(k)
0 > 0

0 otherwise.
(90)

Under the assumptions of Section 4, the optimal strategy in the single asset case (n = 1) without a trading
constraint does not violate condition (90) (see (129)) and is hence also optimal within A′. As already discussed,
the optimal strategy within A in the multiple asset case (n ≥ 2) might violate condition (90). Unfortunately,
the value function J ′ is not of a quadratic form like J and is thus harder to analyze analytically.

We illustrate the effects of restriction (90) by a simple 1-period example. The left graph of Figure 11 shows
the unrestricted optimal strategy for the liquidation of a poorly diversified portfolio by a risk averse trader
(α = 4), i.e., long positions in two strongly correlated stocks:

Σ =
1
2
·
(

1 0.9
0.9 1

)
, X0 =

(
1
1

)
. (91)

We consider the second stock to be more liquid than the first one with probabilities of execution in the dark
pools 1/4 and 1/20, respectively (and probability 0 for simultaneous execution) and price impact matrix

Λ =
(

6 0
0 2

)
. (92)

The three lines represent the three possible scenarios: Either none of the orders in the dark pools is executed
(solid line) or exactly one of the orders in the dark pools is executed (dashed line for the first stock and dotted
line for the second stock).

If we restrict short-selling the picture differs significantly. In the specific 1-period example outlined above it
is easy to see that the optimal strategy has to fulfil X0 = x0 + y0, i.e., the whole portfolio is split into orders in
the primary venue and orders in the dark pools. Using this restriction it is easy to compute x0 and y0. While
the orders in the primary venue are very similar to the ones of the unrestricted optimal strategy, the orders in
the dark pools are significantly smaller.

7 Trading prices in the dark pool

So far we have assumed that trades in the dark pool are executed at the unaffected price P̃ . Within this section,
we will instead assume that dark pool orders are executed at the exchange quoted price P which includes the
temporary market impact of the orders xi. As discussed in Section 2.2, this might be a more appropriate
assumption for some dark pools. As we will see in this section, this results in profitable market manipulating
strategies unless the model parameters are chosen with great care. In this section, we will for simplicity assume
the tractable single asset model described in Section 4.3 (in particular zero drift of the fundamental price, linear
temporary impact and no adverse selection) and furthermore assume that the investor is risk neutral (α = 0).

Market manipulation is a concern in all market models where a large trader’s orders have a feedback effect
on the execution price of her own orders. Huberman and Stanzl (2004) and Gatheral (2008) derive necessary
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Figure 11: Change of the optimal strategy for the liquidation of a portfolio in a 1-period model, if short-selling
is not allowed (left graph).

conditions for market models that exclude profitable market manipulation at a primary exchange. Both papers
disregard trading opportunities in dark pools. Our market model for the primary exchange fulfills the require-
ments established in these papers, i.e., it is not possible to generate profits from market manipulation by trading
only at the primary exchange. However it might be possible to generate profits from market manipulation if
orders are placed cleverly in parallel in the dark pool. It is unclear whether such profitable market manipulation
strategies exist in reality; given that such strategies were used and had to be forbidden6, such opportunities
seem to be available at least sometimes. Nevertheless we agree with Huberman and Stanzl (2004) and Gatheral
(2008) that an appropriate mathematical market model should exclude profitable market manipulation. For
the purposes of this chapter, we define market manipulation as any order (whether in the dark pool or at the
primary exchange) that is opposed to the underlying trading target, i.e., a buy order (xi < 0 or yi < 0) if a long
position is to be liquidated (Xi ≥ 0) or conversely a sell order if a short position is to be liquidated7.

In the following, we will consider in particular a market manipulation strategy similar to the classical ‘pump
and dump’ strategy8. In our market model, selling the stock at the primary exchange after artificially elevating
its price (‘pumping’) cannot generate profits due to the associated price reaction. A liquidation in the dark
pool however does not face such a price penalty. Consider the following strategy: Assume that the initial asset
position is 0 and that the number of trading time points N + 1 is divisible by four. From t0 until t(N+1)/4, the
investor buys a stock quantity X at each point in time at the primary exchange. Simultaneously she seeks to
dump shares by placing a sell order for (N + 1)X/2 in the dark pool until the order gets executed in the dark
pool (if at all). At time t(N+1)/4, the investor either holds a long or short position of ((N + 1)/4)X in the risky
asset, which she liquidates at a constant rate over the remaining time points t(N+1)/4, . . . , tN . The expected
trading proceeds are then

E

[
N∑

i=0

(xi + zi)Pi

]
=E

[
N∑

i=0

(xi + zi)P̃i

]

︸ ︷︷ ︸
=0

−E
[

N∑

i=0

(xi + zi)Λxi

]
(93)

=Λ
(
−(N + 1)(1/4 + 3/4 · 1/9)X2 + (1− p(N+1)/4)(N + 1)X2/2

)
(94)

=Λ(N + 1)
(
1/6− p(N+1)/4/2

)
X2 (95)

6See Gatheral (2008) for an exposition
7As we saw in Section 4.4, such orders can be attractive as risk mitigation tools in a multi asset setting. In the single asset

setting of this section this justification does not apply, and we saw in Section 4.3 that if trades are executed in the dark pool at
fundamental prices then market manipulation as defined here is never optimal.

8“‘Pump and dump’ schemes, also known as ‘hype and dump manipulation’, involve the touting of a company’s stock
[...] . After pumping the stock, fraudsters make huge profits by selling their cheap stock into the market.” (From
http://www.sec.gov/answers/pumpdump.htm)
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The last expression is positive if the number of trading time points N + 1 is large enough. Furthermore, the
expected proceeds grow in the position sizing factor X: the larger the bets, the larger the expected proceeds.
The following proposition summarizes the issues we found.

Proposition 7.1. Assume that trades in the dark pool are executed at the market price P . If

N + 1 > 2 log(1/6)/ log(p), (96)

i.e., the number of trading time points N + 1 is large enough, then profitable market manipulation strategies
exist and optimal strategies do not exist.

In Section 4.3, we assumed both infinite liquidity in the dark pool if trading is possible (ai, bi ∈ {0,∞}) and
no adverse selection (εi+1 independent of ai, bi). Let us consider two alternative assumptions:

• Liquidity in the dark pool could be limited even if trading in the dark pool is possible: ai, bi ∈ {0, L} with
0 < L < ∞

• There might be adverse selection: E[εi+1] = 0, E[εi+1|ai = L] = −A < 0, E[εi+1|bi = L] = A > 0

By limiting dark pool liquidity, market manipulating strategies with very large trades cannot be profitable.
On the other hand, adverse selection makes market manipulation by small trades unprofitable. The following
proposition shows that if the original assumptions of Section 4.3 are replaced by the two previous assumptions
and adverse selection is strong enough, then the undesirable properties outlined in Proposition 7.1 disappear.

Proposition 7.2. Assume that trades in the dark pool are executed at the market price P . Furthermore assume
that liquidity in the dark pool is limited even at points in time when dark pool trading is possible and that there
is adverse selection. If

A > 2ΛL, (97)

i.e., adverse selection is strong enough, then optimal strategies exist and these are not market manipulating.

Note that neither limited dark pool liquidity nor adverse selection alone are sufficient to establish the previous
proposition; only the combination of the two ensures the desired property. The assumptions of Proposition 7.2
are strong; we leave it for future research to determine tighter necessary and sufficient conditions for the exclusion
of profitable market manipulation in markets with dark pools. We only want to remark that our assumptions
are not too restrictive for dark pool usage in general: for large initial asset positions X0, the optimal strategy
places orders in the dark pool in a non-market manipulating fashion.

A Appendix

A.1 Proofs

Proof of Proposition 3.2. Instead of describing a strategy (x, y) as a predictable function, we can alternatively
describe it as a vector

v = (xi(ω1), x0(ω2), . . . , xi(ωM ), x1(ω1), . . . , xN (ωM )︸ ︷︷ ︸
=:vx

, yi(ω1), . . . , yN (ωM )︸ ︷︷ ︸
=:vy

)> ∈ R2×M×(N+1−i) (98)

where Ω = {ω1, . . . , ωM}. The objective function

J(v) = E [Ri] + α · E



N∑

j=i

X>
j Σj+1Xj


 (99)

is continuous in the strategy v ∈ R2×M×(N+1−i). We will now show that

lim
‖v‖→∞

J(v) = ∞. (100)

The existence of an optimal strategy is a direct consequence of the previous property since the set of admissible
strategies corresponds to a closed subset of R2×M×(N+1−i).
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First we note that it is sufficient to prove Equation (100) for α = 0, for which we obtain

J(v) = E[Ri] = E




N∑

j=i

x>j fj(x0, . . . , xj)




︸ ︷︷ ︸
=:A

+E




N∑

j=i

x>j (P̃i − P̃j)




︸ ︷︷ ︸
=:B

+E




N∑

j=i

z>j (P̃i − P̃j)




︸ ︷︷ ︸
=:C

. (101)

It follows directly from the superlinear growth of the price impact cost of trading (Assumption (5)) that

lim
‖vx‖→∞

A

‖vx‖ = ∞. (102)

Since Ω is finite, P̃i − P̃j is bounded, and thus

lim
‖vx‖→∞

|B|
‖vx‖ < constB < ∞ (103)

and

lim
‖vy‖→∞

|C|
‖vy‖ < constC < ∞. (104)

By Assumption (13), we have

lim
‖vy‖→∞

‖vx‖
‖vy‖ > constxy > 0. (105)

Equation (100) now follows directly from Equations (102), (103), (104) and (105).

Proof of Proposition 3.3. We proceed by backwards induction over i. For i = N , the validity of the proposition
follows since the only admissible strategy is xN = XN , yN = 0 due to Assumption (13), and the convexity of
Equation (19) follows directly from the convexity of the price impact cost of trading (Assumption (4)).

We now prove that if the proposition holds for i + 1, then it also holds for i. Consider two points
(x0, . . . , xi−1, Xi) and (x̃0, . . . , x̃i−1, X̃i). For these points, an optimal order xi, yi respectively x̃i, ỹi exists
by Proposition 3.2. We now define

xj(s) := (1− s)xj + sx̃j for all 0 ≤ j ≤ i, 0 ≤ s ≤ 1, (106)

Xi(s) := (1− s)Xi + sX̃i for all 0 ≤ s ≤ 1. (107)

Let us assume that we have a continuous function yi(s) such that yi(0) = yi and yi(1) = ỹi. By the dynamic
programming principle, we then have

Ji(x0(s), . . . , xi−1(s), Xi(s)) ≤xi(s)>fi(x0(s), . . . , xi(s)) + αXi(s)>Σi+1Xi(s)

+ (Xi(s)− xi(s))>E[P̃i − P̃i+1]− E[zi(s)>(P̃i − P̃i+1)]
+ E[Ji+1(x0(s), . . . , xi(s), Xi(s)− xi(s)− zi(s))] (108)

=:h(s) (109)

where the first inequality is an equality for s = 0 and s = 1. Note that we used the shorthand notation
zi(s) := zi(yi(s)). We will now show that for a suitable choice of the function yi(s), the expression

i−1∑

j=0

xj(s)>fj(x0(s), . . . , xj(s)) + h(s) (110)

is strictly convex in s. Equation (20) and thus the convexity of Expression (19) as well as the uniqueness of the
optimal strategy at time ti are then a direct consequence.

The key step in the proof is the definition of yi(s). We set it such that E[zi(s)] is linear in s. More formally,
we define a function

g(y) := E[z(y)] (111)
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and set
yi(s) := g−1((1− s)E[zi] + sE[z̃i]). (112)

By 0 < s1 < · · · < sM < 1 we denote the points at which there is a coordinate k such that P[−y
(k)
i (sj) = a

(k)
i ] > 0

or P[y(k)
i (sj) = b

(k)
i ] > 0. On ]sj , sj+1[, the convexity of Expression (110) is clear since the map

s 7→ (x0(s), . . . , xi(s), zi(s), Xi(s)) (113)

is pathwise linear and the Expression (110) is pathwise strictly convex by the induction hypothesis. The only
points where convexity of Expression (110) can break down are thus the points sj . Pick one point sj of these
and define

z̄
(k)
i (s) :=

{
E

[
z
(k)
i (s)| − a

(k)
i ≤ y

(k)
i (sj) ≤ b

(k)
i

]
if − a

(k)
i ≤ y

(k)
i (sj) ≤ b

(k)
i

z
(k)
i (s) otherwise,

(114)

h̄(s) :=xi(s)>fi(x0(s), . . . , xi(s)) + αXi(s)>Σi+1Xi(s)

+ (Xi(s)− xi(s))>E[P̃i − P̃i+1]− E[z̄i(s)>(P̃i − P̃i+1)]
+ E[Ji+1(x0(s), . . . , xi(s), Xi(s)− xi(s)− z̄i(s))]. (115)

Since z̄i(s) is linear in s on ]sj−1, sj+1[, we obtain that

i−1∑

j=0

xj(s)>fj(x0(s), . . . , xj(s)) + h̄(s) (116)

is convex in s on ]sj−1, sj+1[. Furthermore, it is clear that h̄(sj) = h(sj). Let us assume that h̄(s) ≤ h(s) for
s ∈]sj−1, sj+1[. Then the convexity of Expression (110) follows at the point sj and thus we have convexity of
Expression (110) at all points sj and on all intervals ]sj , sj+1[, i.e., on all [0, 1], completing the proof.

To show that h̄(s) ≤ h(s) for s ∈]sj−1, sj+1[, we observe

h(s)− h̄(s) =− E
[
(zi(s)− z̄i(s))(P̃i − P̃i+1);∃k : −a

(k)
i ≤ y

(k)
i (sj) ≤ b

(k)
i

]

︸ ︷︷ ︸
=:A′

+ E
[
Ji+1(x0(s), . . . , xi(s), Xi(s)− xi(s)− zi(s));∃k : −a

(k)
i ≤ y

(k)
i (sj) ≤ b

(k)
i

]

︸ ︷︷ ︸
=:B′

− E
[
Ji+1(x0(s), . . . , xi(s), Xi(s)− xi(s)− z̄i(s));∃k : −a

(k)
i ≤ y

(k)
i (sj) ≤ b

(k)
i

]

︸ ︷︷ ︸
=:C′

. (117)

It is clear that B′ > C ′ by convexity of Ji+1(x0, . . . , xi, Xi) in Xi (by the induction hypothesis) and

z̄i(s) = E[zi(s)|∃k : −a
(k)
i ≤ y

(k)
i (sj) ≤ b

(k)
i ]. (118)

Finally, because of the rank correlation of dark pool liquidity and expected market price moves (Assumptions (11)
and (12)), we know that A′ ≤ 0.

Proof of Theorem 4.1. For the proof of the theorem, we need to introduce the following notation: In each
time-interval [ti, ti+1), there are 2n possible scenarios with respect to execution and non-execution of the order
yi ∈ Rn in the dark pool. Each of these scenarios occurs with a fixed probability, which we denote by pl for the
lth scenario, determined by the distribution of the random variables ai and bi. We denote the amount executed
in the dark pool at time i in scenario l by zi,l. Due to the symmetry condition (22), we have

z
(k)
i,l :=

{
y
(k)
i , if in the lth scenario the order in the kth asset in the dark pool is executed,

0 otherwise
(119)

independent of the sign of yi. There exists a diagonal matrix Zl ∈ Rn×n (with 1’s and 0’s on the diagonal) such
that

zi,l = Zlyi. (120)
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We prove the theorem by backward induction. For k = N the claim is trivial, as xN = IXN , yN = 0XN

and JN (XN ) = X>
N (Λ + α · Σ)XN . Note that CN = Λ + α · Σ is positive definite, as Λ is positive definite and

Σ (as a covariance matrix) is positive semi-definite.
For i < N we consider the Bellman Equation

Ji(Xi) = min
(xi,yi)∈Rn×Rn

{
x>i Λxi + α ·X>

i ΣXi +
∑

l

plJi+1(Xi − xi − Zlyi)
}

(121)

and use the induction hypothesis:

Ji(Xi) = min
(xi,yi)∈Rn×Rn

{
x>i Λxi + α ·X>

i ΣXi +
∑

l

pl(Xi − xi − Zlyi)>Ci+1(Xi − xi − Zlyi)

︸ ︷︷ ︸
=:J̃i(Xi,x

(1)
i ,...,x

(n)
i ,y

(1)
i ,...,y

(n)
i )

}
. (122)

J̃(Xi, ·) is strictly convex (as Ci+1 is positive definite) and thus any solution (xi, yi) ∈ Rn × Rn of

∂J̃i

∂x
(1)
i

(Xi, xi, yi) = 0, . . . ,
∂J̃i

∂x
(n)
i

(Xi, xi, yi) = 0,
∂J̃i

∂y
(1)
i

(Xi, xi, yi) = 0, . . . ,
∂J̃i

∂y
(n)
i

(Xi, xi, yi) = 0 (123)

is a global minimum of J̃(Xi, ·). Therefore, by existence and uniqueness of the optimal strategy (Theorem 3.1),
(123) has a unique solution (xi, yi) dependent on the portfolio Xi. It is easy to see that (123) is of the form

F (xi, yi) = G(Xi, Xi) (124)

for matrices F, G ∈ R2n×2n. Thus the solution of (123) is linear in Xi and there exist matrices Ai, Bi such that
xi = AiXi, yi = BiXi and functions gA, gB : Rn×n −→ Rn×n such that

Ai = gA(Ci+1), Bi = gB(Ci+1). (125)

Combining these observations, we obtain

Ji(Xi) = (AiXi)>Λ(AiXi) + α ·X>
i ΣXi

+
∑

l

pl · (Xi −AiXi − ZlBiXi)>Ci+1(Xi −AiXi − ZlBiXi) (126)

= X>
i

(
A>i ΛAi + αΣ +

∑

l

pl · (I −Ai − ZlBi)>Ci+1(I −Ai − ZlBi)

︸ ︷︷ ︸
=:Ci

)
Xi, (127)

and Ci is of the required form by (125). Clearly, Ci is positive semi-definite by induction hypothesis. To see
that Ci is indeed positive definite, we note that for each x ∈ Rn, x 6= 0 either Aix 6= 0 or there exists an l such
that (I −Ai − ZlBi)x 6= 0 by (13).

Proof of Proposition 4.2. Proof by backward induction: For i = N , (28) becomes

CN (p) = Λ + αΣ (128)

as required. For i > N , we precede as in the proof of Theorem 4.1 and obtain

Ai(p) =
(1− p)Ci+1(p)

(1− p)Ci+1(p) + Λ
, Bi(p) =

Λ
(1− p)Ci+1(p) + Λ

(129)

and

Ci(p) =
αΣΛ + (1− p)Ci+1(p)(Λ + αΣ)

Λ + (1− p)Ci+1(p)
. (130)

Plugging the induction hypothesis into (129) and (130), we obtain (26), (27) and (28).
Finally, Bi(p) < 1 follws direcly from Equation (129) and the fact that Ci(p) > 0.

Proof of Corollary 4.3. The proof by forward induction is a straightforward calculation.
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Proof of Corollary 4.4. 1. If p is the real-world probability of execution in the dark pool and q > p, applying
the strategy ((xj(q), yj(q)))j≥i yields strictly less costs then Ci(q) and stricly more costs then Ci(p). Thus
Ci(p) < Ci(q).

2. Note first that

κ′p =
p(αΣ + Λ)− αΣ

4Λ
√

1− p
3

√(√
1−p
2

(
αΣ
Λ + 1 + 1

1−p

))2

− 1

. (131)

Therefore, κp is strictly decreasing in p in (0, αΣ
αΣ+Λ ) and strictly increasing in ( αΣ

αΣ+Λ , 1) and sinh(κp(N+1−i))
sinh(κp(N+1))

is strictly increasing in p in (0, αΣ
αΣ+Λ ) and strictly decreasing in ( αΣ

αΣ+Λ , 1). Thus Xne
i (p) is strictly

increasing for p ∈ (0, αΣ
αΣ+Λ ) and we assume p > αΣ

αΣ+Λ from now on. We show that (Xne
i )′(p) > 0. To this

end we compute

(Xne
i )′(p)
X0

=
1

(1− p)i sinh2(κp(N + 1))
·

·
(
(N + 1− i)

√
1− p

i
κ′p sinh(κp(N + 1)) cosh(κp(N + 1− i))

− (N + 1)
√

1− p
i
κ′p sinh(κp(N + 1− i)) cosh(κp(N + 1))

− −i

2

√
1− p

i−2
sinh(κp(N + 1− i)) sinh(κp(N + 1))

)
(132)

by Equation (29). As κ′p > 0 for p > αΣ
αΣ+Λ we have that (Xne

i )′(p) > 0 if and only if

(N + 1) sinh(κp(N + 1− i)) cosh(κp(N + 1))
− (N + 1− i) sinh(κp(N + 1)) cosh(κp(N + 1− i))

< ic(p) sinh(κp(N + 1− i)) sinh(κp(N + 1)), (133)

where

c(p) :=
1

2(1− p)κ′p
=

√
((1− p)αΣ + (2− p)Λ)2 − 4Λ2(1− p)

p(αΣ + Λ)− αΣ
. (134)

Note that c(p) ≥ 1 for p ∈ ( αΣ
αΣ+Λ , 1) and thus it is sufficient to show

β sinh(αx) cosh(βx)− α sinh(βx) cosh(αx) < (β − α) sinh(αx) sinh(βx) (135)

for 0 < α < β, x > 0. Inequality (135) is equivalent to

f(x) := (β − α) exp(−(α + β)x)− β exp((α− β)x) + α exp((β − α)x) > 0. (136)

It is easy to see that f(0) = 0 and f ′(x) > 0 for x > 0 which finishes the proof.

3. As κp is strictly decreasing in p in (0, αΣ
αΣ+Λ ) and strictly increasing in ( αΣ

αΣ+Λ , 1), it is clear that Ep [Xi]
is strictly decreasing in p for p ∈ ( αΣ

αΣ+Λ , 1). Therefore we assume p < αΣ
αΣ+Λ from now on and show that

Ep [Xi]
′
< 0. To this end we compute

Ep [Xi]
′

X0
=

1
sinh2(κp(N + 1)

·

·
(
(N + 1− i)

√
1− p

i
κ′p sinh(κp(N + 1)) cosh(κp(N + 1− i))

− (N + 1)
√

1− p
i
κ′p sinh(κp(N + 1− i)) cosh(κp(N + 1))

+
−i

2

√
1− p

i−2
sinh(κp(N + 1− i)) sinh(κp(N + 1))

)
(137)

by Equation (33). As κ′p < 0 for p < αΣ
αΣ+Λ we have that Ep [Xi]

′
< 0 if and only if

(N + 1) sinh(κp(N + 1− i)) cosh(κp(N + 1))
− (N + 1− i) sinh(κp(N + 1)) cosh(κp(N + 1− i))

< −ic(p) sinh(κp(N + 1− i)) sinh(κp(N + 1)), (138)
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for c(p) as in Equation (134). Note that −c(p) ≥ 1 for p ∈ (0, αΣ
αΣ+Λ ) and thus the claim follows as before

from Inequality (135).

Proof of Proposition 4.5. The calculation of C is straightforward. For α = 0, we have

κp = log
(

1√
1− p

)
(139)

and thus C = 0. Furthermore, for fixed p, κp is strictly increasing in alpha and thus C > 0 for risk averse
traders.

For the expected time of liquidation we compute

Ep[T̃ ] = lim
N→∞

(
p

N−1∑

i=1

i(1− p)i−1 + N(1− p)N−1

)
(140)

= p

∞∑

i=1

i(1− p)i−1 =
1− p

p
. (141)

For the proof of Theorem 5.1 we need the following lemma.

Lemma A.1. Ai,j,1, . . . , Ci,j,3 and X̄i,j are given recurively as follows: For i = 0, . . . , N

Ci,0,1 = Ci(0), Ci,0,2 = Ci,0,3 = 0, (142)
Ai,0,1 = Ai(0), Ai,0,2 = 0, (143)
Bi,0,1 = Bi,0,2 = 0 (144)

and for i = 0, . . . , N − 1

X̄i,1 =
A(Ci+1(0) + Λ)

2Ci+1(0)Λ
, (145)

Furthermore, for i = 0, . . . , N − 1, j = 1, . . . , N − i

Ci,j,1 =
αΣΛ + Ci+1,j−1,1(1− p)(Λ + αΣ)

Ci+1,j−1,1(1− p) + Λ
, (146)

Ci,j,2 =
(Ci+1,j−1,2(1− p) + Ap)Λ

Ci+1,j−1,1(1− p) + Λ
, (147)

Ci,j,3 =
−1

4Ci+1(0)(Ci+1,j−1,1(1− p) + Λ)

·
{

A2p(Ci+1,j−1,1(1− p) + Λ) + Ci+1(0)
(
(C2

i+1,j−1,2 − 4Ci+1,j−1,1Ci+1,j−1,3)(1− p)2

+ 2ACi+1,j−1,2(1− p)p + A2p2 − 4Ci+1,j−1,3Λ(1− p)
)}

, (148)

Ai,j,1 =
Ci+1,j−1,1(1− p)

Ci+1,j−1,1(1− p) + Λ
, (149)

Ai,j,2 =
Ci+1,j−1,2(1− p) + Ap

2(Ci+1,j−1,1(1− p) + Λ)
, (150)

Bi,j,1 =
Λ

Ci+1,j−1,1(1− p) + Λ
, (151)

Bi,j,2 = −Ci+1(0)Ci+1,j−1,2(1− p) + A(Ci+1,j−1,1(1− p) + Ci+1(0)p + Λ)
2Ci+1(0)(Ci+1,j−1,1(1− p) + Λ)

(152)

and for i ==, . . . , N − 2 and j = 2, ..., N − i

X̄i,j = min{X > X̄i,j−1 |X − xi(X) = X̄i+1,j−1} (153)
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=
Ci+1,j−2,2(1− p) + Ap + 2(Ci+1,j−2,1(1− p) + Λ)X̄i+1,j−1

2Λ
. (154)

Proof of Lemma A.1. Observing (52), a straightforward backward induction shows that Ji is monotoic in the
following sence:

|Xi| < |Yi| ⇒ Ji(Xi) < Ji(Yi) and Ji(−Xi) = Ji(Xi). (155)

Using (155), it is easy to see that for Xi ≥ 0 we have

xi(Xi), yi(Xi) ≥ 0 and xi(Xi) + yi(Xi) ≤ Xi (156)

(and therefore we can assume without loss of generality that Xi ≥ 0 ∀i).
Furthermore, Ji is strictly convex by Proposition 3.3 and therefore continuous. Using (156) again, we can

easily deduce that also xi(Xi) and yi(Xi) (as functions of Xi) are continuous.
We now prove the lemma by backward induction. For i = N , there is only one admissible strategy and all

the properties are trivially satisfied.
For the induction step, we assume that all properties are valid for time ti+1 (i < N). By Equation (50) and

Inequalities (156) we obtain:

Ji(Xi) = min
xi,yi≥0

{
Λx2

i + αΣX2
i + pyiA + pJi+1(Xi − xi − yi) + (1− p)Ji+1(Xi − xi)

}
. (157)

For finishing the proof, we will show the following two statements:

i) For j ∈ {1, . . . N−i} and X̄i,j < Xi < X̄i,j+1 (for X̄i,j , X̄i,j+1 as in Equation (154)), Ji(Xi), xi(Xi), yi(Xi)
are given by Equations (54)- (56).

ii) For Xi ≤ X̄i,1, yi(Xi) = 0, x(Xi) = Ai(0)Xi, Ji(Xi) = Ci(0)X2
i .

We will show i) by induction on j.
By (156) and (backward) induction hypothesis we know that

Ji(Xi) = min
xi,yi≥0

{
Λx2

i + αΣX2
i + pyiA + pCi+1(0)(Xi − xi − yi)2 + (1− p)Ci+1(0)(Xi − xi)2

}
︸ ︷︷ ︸

=:J̃i(xi,yi)

. (158)

for small Xi (at least for Xi < X̄i+1,1 as this implies 0 ≤ Xi − xi(Xi)− yi(Xi) ≤ Xi − xi(Xi) ≤ X̄i+1,1).
The system of linear equations ∂J̃i

∂xi
(xi, yi) = 0, ∂J̃i

∂yi
(xi, yi) = 0 has the unique solution (x̃i, ỹi) given by

x̃i =
Ci+1(0)(1− p)

Ci+1(0)(1− p) + Λ
Xi +

Ap

2(Ci+1(0)(1− p) + Λ)
= Ai,1,1Xi + Ai,1,2, (159)

ỹi =
Λ

Ci+1(0)(1− p) + Λ
Xi − A(Ci+1(0) + Λ)

2Ci+1(0)(Ci+1(0)(1− p) + Λ)
= Bi,1,1Xi + Bi,1,2. (160)

By existence and uniqueness of the optimal strategy (Theorem 3.1), the positive definiteness of the Hessian of
J̃ and the (backward) induction hypothesis (x̃i, ỹi) is the optimal strategy as long as

ỹi > 0 and Xi − x̃i < X̄i+1,1. (161)

An easy calculation shows that (161) is equivalent to

Xi >
A(Ci+1(0) + Λ)

2Ci+1(0)Λ
= X̄i,1 and Xi < X̄i,2. (162)

Consequently (xi(Xi), yi(Xi)) is the optimal strategy for Xi ∈ (X̄i,1, X̄i,2). Plugging this into J̃ we obtain

Ji(Xi) = Ci,1,1X
2
i + Ci,1,2Xi + Ci,1,3, (163)

which finishes the proof of the induction basis for i).
For the induction step, we assume that the claims are true for some j ∈ {1, . . . N − i − 1}. Therefore,

X̄i,j+1 − xi(X̄i,j+1) = X̄i+1,j by continuitiy of xi(Xi). Furthermore, by continuity of xi(Xi) and yi(Xi) there
exists an ε > 0 such that

yi(Xi) > 0, (164)
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Xi − xi(Xi) < X̄i+1,j+1, (165)
Xi − xi(Xi)− yi(Xi) < X̄i+1,1 (166)

for Xi ∈ (X̄i,j+1, X̄i,j+1 + ε).
Assume that Xi − xi(Xi) < X̄i+1,j . The backward induction hypotesis implies

Ji(Xi) = min
xi,yi>0

{
Λx2

i + αΣX2
i + pyiA + pCi+1(0)(Xi − xi − yi)2

+(1− p)
(
Ci+1,j−1,1(Xi − xi)2 + Ci+1,j−1,2(Xi − xi) + Ci+1,j−1,3

)}
︸ ︷︷ ︸

=:J̄i(xi,yi)

. (167)

A simple calculation shows that this minimization problem has the unique solution

x̄i = Ai,j,1Xi + Ai,j,2, (168)
ȳi = Bi,j,1Xi + Bi,j,2. (169)

This implies Xi − x̄i > X̄i+1,j , a contradiction.
Therefore Xi − xi(Xi) ≥ X̄i+1,j for Xi ∈ (X̄i,j+1, X̄i,j+1 + ε). Thus, by (backward) induction hypothesis

Ji(Xi) = min
xi,yi>0

{
Λx2

i + αΣX2
i + pyiA + pCi+1(0)(Xi − xi − yi)2

+(1− p)
(
Ci+1,j,1(Xi − xi)2 + Ci+1,j,2(Xi − xi) + Ci+1,j,3

)}
︸ ︷︷ ︸

=:Ĵi(xi,yi)

. (170)

Again, the Hessian of Ĵ is positive definite and the gradient equals zero for (x̂, ŷ) such that

x̂i =
Ci+1,j,1(1− p)

Ci+1,j,1(1− p) + Λ
Xi +

Ci+1,j,2(1− p) + Ap

2(Ci+1,j,1(1− p) + Λ)
(171)

= Ai,j+1,1X + Ai,j+1,2, (172)

ŷi =
Λ

Ci+1,j,1(1− p) + Λ
Xi − Ci+1(0)Ci+1,j,2(1− p) + A(Ci+1,j,1(1− p) + Ci+1(0)p + Λ)

2Ci+1(0)(Ci+1,j,1(1− p) + Λ)
(173)

= Bi,j+1,1Xi + Bi,j+1,2. (174)

Note that Xi − x̂i − ŷi = A
2Ci+1(0)

and Ci+1,j,1 > 0 by strict convexity of Ji+1 and (backward) induction
hypothesis. Therefore x̂, ŷi and Xi − x̂i are strictly increasing in Xi. (x̂i, ŷi) defines the optimal strategy as
long as Xi − x̂i < X̄i+1,j+1 and ŷi > 0, i.e., as long as Xi < X̄i,j+2. Plugging (x̂i, ŷi) into Ĵi we obtain

Ji(Xi) = Ci,j+1,1X
2
i + Ci,j+1,2Xi + Ci,j+1,3 (175)

which finishes the proof of i).
For ii) let Xi < X̄i,1. Note that X̄i,1 − xi(X̄i,1) < X̄i+1,1 by i) and therefore Xi − xi(Xi) < X̄i+1,1 for some

ε and Xi ∈ (X̄i,1, X̄i,1 − ε) by continuity of xi(Xi). Similarly as before, yi(Xi) > 0 yields a contradicition (as
long as Xi − xi(Xi) < X̄i+1,1) as it implies yi(Xi) = ỹi < 0. Therefore yi(Xi) = 0 and xi(Xi) can be obtained
by minimizing

Λx2
i + αΣX2

i + Ci+1(0)(Xi − xi)2, (176)

i.e.,

xi(Xi) =
Ci+1(0)

Ci+1(0) + Λ
Xi = Ai(0)Xi. (177)

Plugging this into (176), we obtain

Ji(X) =
αΣΛ + Ci+1(0)(Λ + αΣ)

Ci+1(0) + Λ
X2

i = Ci(0)X2
i . (178)
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Proof of Theorem 5.1. Let h ∈ {1, . . . , N} and X0 = X̄0,h. Furthermore, let Xne
i be the asset position at time ti

provided no order has been executed before, i.e., Xne
i is defined recursively by Xne

0 = X0 Xne
i = Xne

i−1−xi(Xne
i−1)

and for i > 0. By Equation (153) we have
Xne

i = X̄i,h−i (179)

for i = 0, . . . , h− 1, in particular

Xne
h−1 =

A(Ch(0) + Λ)
2Ch(0)Λ

. (180)

Moreover, we obtain

Xne
h = Xne

h−1 − xh−1(Xne
h−1) = (1−Ah−1(0))Xne

h−1 =
A

2Ch(0)
(181)

by Equations (143) and (129) and for i = 0, . . . , h− 2.

Xne
i − xi(Xne

i )− yi(Xne
i ) =

A

2Ci+1(0)
(182)

by Equation (80).
Let now (x′i, y

′
i) be any trading strategy such that for i = 0, . . . , h− 2

X0 −
h−2∑

i=0

x′i = X̄h−1,1, (183)

X ′
i − x′i − y′i =

A

2Ci+1(0)
, (184)

where X ′
0 = X0 and X ′

i = X ′
i−1 − x′i−1 for i > 0 (in particular X ′

h−1 = X̄h−1,1) and (x′i, y
′
i) is the optimal

trading strategy for i ≥ h− 1 and after execution in the dark pool, respectively (in particular X ′
h = A

2Ch(0) and
the optimal strategy satisfies these criteria).

This strategy yields the costs

U(X ′
0, . . . , X

′
N ) = Λ

h−1∑

i=0

(1− p)i(X ′
i −X ′

i+1)
2 + αΣ

h−1∑

i=0

(1− p)i(X ′
i)

2 + A

h−2∑

i=0

p(1− p)i
(
X ′

i+1 −
A

2Ci+1(0)
)

+
h−2∑

i=0

(1− p)ipCi+1(0)
( A

2Ci+1(0)
)2 + (1− p)hCh(0)

( A

2Ch(0)
)2

. (185)

By Lemma A.1 (Xne
0 , . . . , Xne

N ) minimizes U uniquely. Therefore we know that (Xne
0 , . . . , Xne

N ) solves the system
of linear equations

∂U

∂Xi
(X ′

0, . . . , X
′
N ) = 0 (i = 0, . . . , h− 1). (186)

We obtain the inhomogeneous linear difference equation

X ′
i

(
1 +

1
1− p

+
αΣ
Λ

)
+

Ap

2(1− p)Λ
= X ′

i−1 +
1

1− p
X ′

i−1. (187)

By standard methods we compute a solution of Equation (187)

X ′
i =

−Ap

2(1− p)αΣ
(188)

and two linearly independent solutions of the corresponding homogeneous linear difference equation

X ′
i =

exp(κp(h− 1− i))
√

1− p
i

, X ′
i =

exp(−κp(h− 1− i))
√

1− p
i

. (189)

Consequently, the solutions of Equation (187) are given by

−Ap

2(1− p)αΣ
+ a · exp(κp(h− 1− i))

√
1− p

i
+ b · exp(−κp(h− 1− i))

√
1− p

i
(190)
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for a, b ∈ R. X̄i,h−i (i = 0, . . . , h−1) is the unique solution of Equation (187) satisfying the boundary conditions
from Equations (180) and (181). Some tedious algebraic manipulation (and substituting h by j + i) confirms
Equation.

Moreover, by Lemma A.1 we have

X̄i,j −Ai,j,1X̄i,j −Ai,j,2 = X̄i+1,j−1 (191)
X̄i,j+1 −Ai,j,1X̄i,j+1 −Ai,j,2 = X̄i+1,j (192)

for i = 0, . . . , N − 1, j = 1, . . . , N − i − 1. Solving this system of linear equations in Ai,j,1 and Ai,j,2 yields
Equations (64) and (65). Equations (66) - (69) follow from that directly with the recursions from Lemma A.1.

Finally, the formulae for j = N−i can be proven by backward induction using the recursions from Lemma A.1,
which completes the proof of 1. 2. and 3. follow directly.

Proof of Corollary 5.2. 1. and 2. are direct consequences of Theorem 5.1. 3. is a straightforward backward
induction using the recursions from Lemma A.1.

Proof of Corollary 5.3. It is easy to see by backward induction that for i = 0, . . . , N − 1, j = 1, . . . , N − i, Ci,j,2

and thus Ai,j,2 and X̄i,j are strctily increasing in A.
Before we proceed, we introduce the following notation: For a setting with adverse selection A, we denote the

optimal strategy at time ti by adding A as a superscript: (xA
i (Xi), yA

i (Xi)). In a similar fashion we charactrize
optimal trajectories etc.

Let now A > A′, i ∈ {0, . . . , N − 1} and Xi ∈ [X̄A
i,j , X̄

A
i,j+1) for j ∈ {1, . . . , N − i}. As X̄i,j is increasing in

A, we have Xi ∈ [X̄A′
i,h, X̄A′

i,h+1) for h ≥ j. Therefore

xA
i (Xi) = AA

i,j,1Xi + AA
i,j,2 (193)

≥ AA
i,h,1Xi + AA

i,h,2 (194)

> AA′
i,h,1Xi + AA′

i,h,2 (195)

= xA′
i (Xi), (196)

where (194) follows from Corollary 5.2 2. and (195) follows from the fact that Ai,j,1 is independent of A and
Ai,j,2 is strictly increasing in A. Consequently xi(Xi) is increasing in A.

Furthermore, by Equation (80), xi(Xi) + yi(Xi) is decreasing in A and therefore - as xi(Xi) is increasing in
A - yi(Xi) is decreasing in A.

By forward induction we deduce (Xne
i )A < (Xne

i )A′ for i > 0, X0 > X̄A′
0,1 (note that always ((Xne

0 )A =
(Xne

i )A′ and ((Xne
0 )A = (Xne

i )A′ for all i, if X0 ≤ X̄A′
0,1):

(Xne
i )A = (Xne

i−1)
A − xA

i ((Xne
i−1)

A) (197)

< (Xne
i−1)

A′ − xA
i ((Xne

i−1)
A′) (198)

≤ (Xne
i−1)

A′ − xA′
i ((Xne

i−1)
A′) (199)

= (Xne
i )A′ , (200)

where (198) follows by induction hypothesis and from the fact that Xi − xi(Xi) is strictly increasing in Xi and
(199) follows from the fact that xi(Xi) is increasing in A.

Proof of Theorem 7.1. Direct consequence of the preceding example of a market manipulating strategy.

Proof of Proposition 7.2. The same line of argument as in the proof of Proposition 3.2 establishes the existence
of optimal strategies since dark pool liquidity is limited.

Consider the optimal strategy for an initial asset position of X0. Assume that at any time ti an asset position
of Xi is being held and orders of xi and yi are optimal. By our requirements for admissible strategies, we know
that |yi| ≤ L. We first assume that sign(xi) 6= sign(yi). The expected cost of trading at time ti and thereafter
are

Λx2
i + pJi+1(Xi − xi) + (1− p) (Ji+1(Xi − xi − yi) + (Λxi + Asign(yi))yi) (201)
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A direct calculation shows that if Ji+1(Xi−xi) < Ji+1(Xi−xi−yi)+(Λxi +Asign(yi))yi then orders of x̃i = xi

and ỹi = 0 result in lower costs; otherwise, x̃i = xi + yi and ỹi = 0 result in lower costs due to Condition 97. In
both cases a contradiction is established. Hence the optimal strategy satisfies sign(xi) = sign(yi) at all times ti.

Given that sign(xi) = sign(yi), it is obvious that an optimal strategy cannot have sign(xi) = sign(yi) 6=
sign(Xi), i.e., cannot be market manipulating.
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