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Abstract

Writers of index options earn high returns due to a significant and high volatility risk premium, but writers of options

in single-stock markets earn lower returns. Using an incomplete information economy, we develop a structural model

with multiple assets where agents have heterogeneous beliefs about the growth of firms’ fundamentals and a business-cycle

indicator and explain the different volatility risk premia of index and single-stock options. The wedge between the index

and individual volatility risk premium can be explained by a correlation risk premium which emerges endogenously due to

agents’ optimal risk-sharing. In a full information economy with independent fundamentals, returns correlate solely due to

the correlation of the individual stock with the aggregate endowment. In our economy, stock return correlation carries an

additional component which is driven by firm-specific and common (business-cycle) disagreement. This correlation crucially

depends on two main features: (i) The weight given to each firm for the estimation of the unknown dividend growth rates and

(ii) the amount of economic uncertainty prevalent in the economy. We show that in equilibrium the skewness and volatility

risk premia of the individual stocks and the index differ due to this correlation risk premium. The different exposure to

disagreement risk is compensated in the cross-section of options and model-implied trading strategies exploiting differences

in disagreement earn substantial excess returns. We test the model predictions in a set of panel regressions, by merging

three datasets of firm-specific information on analysts’ earning forecasts, options data on S&P 100 index options, options on

all constituents, and stock returns. Sorting stocks based on differences in beliefs, we find that volatility trading strategies

exploiting different exposures to disagreement risk in the cross-section of options earn high Sharpe ratios. The results are

robust to different standard control variables and transaction costs and are not subsumed by other theories explaining the

volatility risk premia.
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The average implied volatility of index options on the S&P 100 is about 19.2% per year, but the

realized volatility is only about 16.7%. The volatility risk premium, defined as the difference between implied and

realized volatility, is large and results into large returns for index option sellers. On the other hand, the average

implied volatility of single-name options on all S&P 100 constituents is about 32.7% and the realized volatility is

31.8%, which yields a volatility risk premium of 1%. Two noteworthy empirical features arise here: First, implied

volatilities of individual stock options are on average much higher than the one of index options. Second, the volatility

risk premium is larger for index options. This paper develops a structural model that explains endogenously these

empirical facts in an incomplete information economy with multiple assets and heterogeneous beliefs. Investors

have different perceptions of the uncertainty of economic fundamentals so that in equilibrium uncertainty drives a

substantial fraction of second moments of asset returns. These features have direct implications for the absolute and

relative size of the volatility premium of individual and index options, as well as for the excess returns of several

well-established option trading strategies. We study these model implications both theoretically and empirically.

The recent global financial crisis which has caused havoc across all markets, has brought asset volatility and

correlations into the limelight of the financial press, due to unusual high levels of volatility and correlation. As a

little contested fact, plummeting returns come together with a surge in volatility and correlation. For instance, a

well known volatility measure like the VIX, commonly also labeled fear gauge index, reached an intraday all time

high of almost 90% in October 2008. Volatility measures obtained from derivative prices provide useful information

on investors’ perceptions of future uncertainty. To motivate the relation between the volatility risk premium and

economic uncertainty, we plot in Figure 1 (right panel) the volatility risk premium on the S&P 500 together with

a proxy of an economy-wide uncertainty, calculated from differences of analysts’ forecasts of future earnings in a

cross-section of firms in the S&P 500.

[Insert Figure 1 approximately here.]

Figure 1 highlights a strong co-movement between the volatility risk premium and our uncertainty proxy. For

instance, both after the LTCM collapse in late summer 1998 and the terrorists’ attacks in September 2001 (yellow

bars), the volatility risk premium and the uncertainty proxy spike. For instance, the volatility risk premium increased

tenfold three months before October 2001 and dropped by a factor of 11 three months after the attacks. At the same

time, the economy-wide uncertainty increased threefold and then dropped by a factor of two. Moreover, we find that

a simple regression of the volatility risk premium on the uncertainty proxy yields a statistically highly significant

standardized coefficient of 0.58 and an adjusted R2 of 23%. Interestingly, a strong positive relationship between the

volatility risk premium and uncertainty prevails also in a cross-sectional perspective. In the left panel of Figure 1, we

plot on the abscissa the average uncertainty proxy of 14 different sectors and on the ordinate the average volatility

risk premia for these sectors.1 Apart from the energy and media sector, we observe an almost linear relationship

between uncertainty proxies and volatility risk premia, which is well described by the least-squares line in the Figure.

1We compute the index volatility risk premium as the difference between the VIX and the 30 day (annualized) realized volatility on
the S&P 500. The volatility risk premia on the individual sectors are calculated from implied volatilities of 30 day at-the-money options
on individual stocks. We then average across time and across all firms within each sector. Realized volatility is calculated from daily log
returns over one month.
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The high levels of volatility and correlations have caused an increase in the trading volumes of volatility products,

such as variance and correlation swaps, even if the aggregate trading volume of common assets such as stock or bonds

have decreased drastically.2 Over the past few years, volatility products have emerged as an asset class on their own

right as more and more hedge funds engaged in so called volatility arbitrage strategies:3 The core idea of volatility

trading is that if the expected volatility is consistently higher than the realized volatility, then the seller of options

locks in the premium. Buyers, on the other hand, go long in volatility because they want to hedge against a market

downturn. The classical and most popular example of such a volatility strategy is a long position in a straddle. An

alternative strategy involves delta-hedging an option position: If the investor is successful in hedging away the priced

risk, then a major determinant of the profit or loss from this strategy is the difference between the realized volatility

and the expected volatility of the option. Finally, to take advantage of the higher average weighted volatility of

constituents versus the index volatility itself, banks and hedge funds enter so called dispersion trades. These trading

strategies involve usually a short position in the index volatility and a long position in the constituents volatility.4

To illustrate the economics behind these trades in more detail, we plot in Figure 2 the average returns on all S&P

100 constituents in October 2000. The index return itself at this time is 2%. The measured dispersion for this month,

defined as the difference between the sum of weighted constituents’ variance and the index variance, is 32%. In this

particular month, the investor had earned the gamma profits on this portfolio and earned the theta in the index,

which she could use to pay for the theta in the single stocks. In the right panel, we plot the constituents returns one

year later. The measured dispersion is only 5%, the average pairwise correlation between stock returns has reached

27%, but the index return is -1%. Stock return correlations increase when returns are low.5 In this case, the investor

left some money on the table, since she is paying for the theta in the stocks.6 This example demonstrates that

correlation is an important risk factor embedded in this kind of trades: Being long a dispersion trade means being

short in correlation. A glimpse on Figure 1 reveals that interestingly October 2001 coincides with the month where

the common uncertainty reached its all time high. We find that from October 2000 to October 2001 the common

uncertainty proxy increased more than tenfold. This basic paradigm is encouraging and illustrates the challenge to

understand the driving forces behind these kind of trades and the link to economic uncertainty.

[Insert Figure 2 approximately here.]

In this paper, we ask why dispersion in analysts’ forecasts is so strongly related to implied volatility of index

and single-name options and we explore in more detail the underlying drivers of the differential pricing of these

2The growth in variance trading is said to have increased by 100% in 2008 (see http://www.euromoney.com/Article/2059815).

3E.g., LTCM was labeled the “Central Bank of Volatility” (see Lowenstein, 2000).
4See Appendix B for details. Short dispersion trades, also called Chinese positions, are not that common. The reason is that shorting

constituents volatility means shorting equity gamma. One could argue that the short equity gamma is covered by the long gamma
position in the index. However, unforseen events such as mergers and acquisitions or company bankruptcies can cause big losses.

5It is a well documented fact that stock return correlations increase at market downturns. See e.g. Erb, Harvey, and Viskanta (1994),
Ledoit, Santa-Clara, and Wolf (2003), and Moskowitz (2003). Ribeiro and Veronesi (2002) build a model in which higher uncertainty in
bad states induce excess comovement in the correlations of stock returns.

6As stylized this example might be, Barings PLC sustained huge losses from short positions in volatility on Nikkei futures as the
Nikkei plunged in 1995. Similarly, when LTCM collapsed in late 1998, it had a 35 million short vega position due to the high index
implied volatility. Many high-tech companies issued puts cheaply to manage their employee stock-option programs. LTCM bought heaps
of these puts, issued by companies such as Microsoft and Dell, and hedged them by selling puts on the S&P 500 (see Lowenstein, 2000).
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assets. We extend the standard Lucas (1978) economy to a setting with two trees and disagreeing investors. The

growth rate of the two firms’ dividend stream and a business cycle indicator is unknown to the agents. Hence, the

growth rates have to be estimated. In our model, disagreement among investors is a key priced state variable that

drives the second moments of stock returns, as well as the smile and the volatility risk premia of individual and

index options. Stochastic volatilities and correlations of stock returns arise endogenously from the diverging optimal

consumer policies of pessimistic and optimistic investors. Option implied volatility skews and volatility risk premia

reflect the higher protection needs of pessimistic investors, who buy financial protection from optimistic agents in

exchange for a premium. The more specific implications of our model are as follows.

First, a higher disagreement on the future dividends of one firm induces a higher stock volatility and a negative

skewness in the distribution of the stock returns of that particular firm. At the same time, it also impacts on the

second stock return through the stochastic discount factor. In our economy, stock return correlation is endogenously

driven by the time-variability of disagreement. This finding gives theoretical support to the empirical evidence that

correlations between asset returns vary over time.7 In a standard Lucas economy with homogeneous agents, the

state price density varies only due to dividend fluctuations. Stock returns are correlated due to the correlation

of the individual stock with the aggregate endowment (“diversification effect”), a feature that is documented in

Cochrane, Longstaff, and Santa-Clara (2008). In our economy, the state price density depends additionally on the

cross-sectional wealth that is shifted across agents (“risk-sharing effect”). We show that this additional component

dominates the two trees effect and is independent of the number of firms and their size in the aggregate market.

Second, the risk-neutral skewness of the individual firm can be smaller or larger (in absolute terms) than the skewness

of the index, depending on the share of the firm in the aggregate market and the size of the disagreement about the

business cycle component. If the disagreement about the business cycle and the disagreement about firms’ future

dividends are large, then the risk-neutral skewness of the index can be more negative than the individual stock due

to an additional correlation component. Vice versa, if the disagreement about the business cycle is zero and the

share of the individual firm in the aggregate market is small, then the risk-neutral skewness of the individual firm

tends to be more negative than the index. The differential pricing of index and single-stock options is empirically

validated in Bakshi, Kapadia, and Madan (2003). Third, we provide an economic rationale for the different size of

volatility risk premia in index and individual stock options. Volatility risk premia of individual and index options

represent compensation for the priced disagreement risk. Hence, in the cross-section of options the volatility risk

premium depends on the size of belief heterogeneity of this particular firm and the business cycle indicator. As the

risk-neutral skewness, the volatility risk premium for index options can be larger or smaller depending on the size of

disagreement and of the firm’s share. Fourth, option excess returns reflect the different exposure to disagreement risk.

Investors who buy options of firms which are more prone to heterogeneity in beliefs are compensated in equilibrium

for holding this risk. We test these implications by running simulated option trading strategies which exploit the

difference between the volatility risk premia of index and individual options. We find that the excess returns of these

strategies are substantial and the their annualized Sharpe ratio exceeds a short put index option strategy twice.

7See Bollerslev, Engle, and Wooldridge (1988), and Moskowitz (2003), among many others.
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To validate our model empirically, we use data on S&P 100 index options and on single-stock options for all the

index constituents in the period January 1996 to June 2007. We merge this dataset with analysts earning forecasts

from the Institutional Brokers Estimate System (I/B/E/S) and stock return data from CRSP. We first compute a

belief disagreement proxy for each individual firm and then construct a common factor that proxies for the overall

belief disagreement across firms. We obtain a number of interesting results.

First, as predicted by our theoretical model, we find that belief disagreement increases the volatility risk premium

of both index and individual stock options in a way that is remarkably robust with respect to the inclusion of other

control variables. E.g., in a regression including the market volatility risk premium, the R2 is about 12% higher

when disagreement is accounted for. A simple regression of the market volatility risk premium on the volatility risk

premium of single-stocks yields a R2 of about 8%. To the best of our knowledge, there are only a few academic

studies on the determinants of volatility risk premia. Carr and Wu (2009) find that classical risk factors, such as the

market excess return, the Fama and French (1993) factors, a momentum factor, or two-bond market factors, cannot

explain the variance risk premia of a limited set of individual options. Bollerslev, Gibson, and Zhou (2007) argue

that the volatility risk premium in index options comes from time-varying risk aversion. In particular, they find that

macro-finance variables have a statistically significant effect on the index volatility risk premium. In our model, the

time-variability in the volatility risk premia of both index and single-stock options comes from the fluctuations of

belief disagreement.

Second, we study simple option-based trading strategies aimed at exploiting the cross-sectional difference in

volatility risk premia. This is a natural question in our context, since belief disagreement is theoretically linked

to the option volatility risk premia. In particular, we study at-the-money straddle and put dispersion portfolios.

Accordingly, each month we short the index straddles or puts, and buy individual straddles or puts, respectively.

Ideally, the investor wishes to have the cheapest single name options in his portfolio. Since higher disagreement

is linked to a higher volatility risk premium, we pick each month the quintile of firms with the highest belief

disagreement and for these firms we buy straddles and puts, respectively. Both the at-the-money straddle and put

portfolios generate statistically and economically significant returns. For example, the straddle portfolio yields an

annualized Sharpe ratio of 1.96 and the put portfolio an annualized Sharpe ratio of 2.02. These Sharpe ratios are 2.5

times higher than the Sharpe ratio derived from investing all wealth into the index itself. Goyal and Saretto (2008)

find similarly high returns and Sharpe ratios for straddle strategies, when sorting their portfolios of single-stock

options according to the difference in implied and realized volatility, and interpret this as some form of volatility

mispricing. While these features are indeed inconsistent with a single factor option-pricing model, such as the Black

and Scholes (1973) and Merton (1973) model, in our economy they are fully compatible with the existence of a priced

disagreement factor.

Third, we test whether the high returns of our portfolios are subsumed by other effects, which are typically used

to account for differences in the cross-section of stock returns. We find that the results persist in any size, book-to-

market, and momentum portfolio. We use a linear factor model including Fama and French (1993) factors and the

Carhart (1997) momentum factor, and find that none of these factors contributes to the explanation of these option
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returns. Much of the recent literature on option returns has been devoted to the impact of trading frictions in form of

transaction costs and margins on the profitability of option strategies. We test the impact of transaction costs on our

trading strategies and find that transaction costs indeed lower the profitability of our trading strategies. However,

the Sharpe ratio of the straddle portfolio exceeds the Sharpe ratio of a standard trading strategy that is known to be

very profitable (see Bondarenko, 2003), shorting index put options, by 40% and the put portfolio exceeds the short

index portfolio by 30%. Moreover, the CAPM alphas of our strategies still remain statistically significant.

Finally, our results are robust also with respect to other potential theories of volatility risk premia. Empirical

evidence has shown that volatility risk premia tend to be high prior to an earning announcement. For example, when

Cisco announced their earnings on August 10th, 2004, it managed to beat analysts’ forecast with a 41% leap in net

income, and a 26% increase in sales among other records for profitability. However, the share price lost more than

10% on the specific day of the announcement. Moreover, the share price sank more than 15% the next 60 trading

days and the volatility risk premium increased by 43% from 0.10 to 0.14 prior to the announcement. Beber and

Brandt (2006) study state-price densities of bond prices before and after macro announcements. They document a

strong decrease in implied volatility and changes in skewness and kurtosis of the state-price density of bond option

returns after a macro announcement. They attribute the changes in the higher moments of the state-price density

to a time-varying risk aversion. Dubinsky and Johannes (2006) find similar effects for stock options and earning

announcements. Implied volatilities of single-stock options increase prior to and decrease subsequent to an earning

announcement. They argue that anticipated uncertainty surrounding the fundamental information about the firm

causes the implied volatility to increase. Once the uncertainty is revealed, the implied volatility drops. This interplay

of uncertainty, news revelation, and volatility risk premia is interesting also in our model. For instance, we find that

in the previous month to the earning announcement of Cisco, belief disagreement rose by more than 30% from

0.68 to 0.95. These numbers suggest a non-trivial link between earning announcements, belief disagreement, and

the volatility risk premium in individual options. We test this hypothesis and find that earning announcements

have a significant impact on the volatility risk premium. An interaction term of belief disagreement and earnings

announcements, however, is not statistically significant. This suggests that belief disagreement has a significant

impact on volatility risk premia independent of the presence of earning announcements. Much more research is

needed in this direction.

Related Literature. Equilibrium models with multiple assets have been studied in the literature before, notably by

Menzly, Santos and Veronesi (2004), Santos and Veronesi (2006), Pavlova and Rigobon (2007), Cochrane, Longstaff,

and Santa-Clara (2008), and Martin (2009). Menzly, Santos, and Veronesi (2004) and Santos and Veronesi (2006)

study a multi-asset economy with external habit where the dividend shares of assets are mean-reverting processes.

Pavlova and Rigobon (2007) study a two country two good economy with demand shocks and log-linear preferences.

Martin (2009) studies an economy with a collection of Lucas trees, so called Lucas orchards, and its impact on asset

prices, risk premia, and the term structure. The model is able to replicate many salient features of asset returns such

as momentum, mean-reversion, contagion, fight-to-quality, the value-growth effect, and excess volatility. Cochrane,

Longstaff, and Santa-Clara (2008) study a Lucas (1978) economy with multiple assets and its implications for stock
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return moments, correlations, and the equity risk premium. We extend this literature by considering multiple agents

who disagree on the expected growth rate of the firm’s fundamentals. This implies a pricing kernel that is directly

affected by the belief disagreement of both firms. Importantly, it implies an endogenous stochastic correlation that

is driven by belief disagreement. We want to emphasize upfront that the intuition of our economy is completely

different from the one in Cochrane, Longstaff, and Santa-Clara (2008). In their economy, the existence of a second

asset induces correlation of stock returns. There is no trading among agents and the endogenous correlation comes

from the fact that if tree two enjoys a positive dividend shock this raises asset two’s return, and it also lowers

asset one’s share. As a consequence, expected returns typically rise with a tree’s share of dividends, to attract

investors to hold that larger share. Stock returns are correlated because a shock to any of the dividend streams is

important for aggregate consumption. This is reflected in the state price density which is a function of the share

dynamics and which represents the only source for stock return correlations. In addition to this effect, in our economy

there is an increased correlation which comes from the optimal risk sharing among investors. The more pessimistic

agent selects a relatively higher consumption in states of low dividends for firm 1, firm 2, or both. Similarly, the

more optimistic agent selects a relatively higher consumption in states of high dividends. In order to finance the

optimal consumption plan, the pessimistic investor asks financial protection, i.e., put options, from the optimist.

This excess demand lowers the price of securities having positive exposure to dividend shocks of the two firms, and

the risk implied by bad dividend states is transferred from the pessimist to the optimist. Individual put options offer

financial protection against low dividend states of this firm. The higher price of these options reflects the desire of the

pessimistic agent to buy protection against low dividend states of one of the two firms. Such a price is higher when

the consumption share of this particular firm is more different from one, which happens when investors disagree more

on the probability of the event that one firm will pay low dividends. If investors disagree on the joint occurrence of a

low dividend for both firms, then their aggregate marginal utility out of the dividends of the two firms will differ even

more. In this case, the pessimist requires protection against a joint bad state in dividends, which is best achieved by

means of a index put option on the index.

The early literature on volatility risk premia is large and deals mostly with index options. Fleming, Ostdiek, and

Whaley (1995), Jackwerth and Rubinstein (1996), and Christensen and Prabhala (1998) observe that realized index

volatilities tend to be substantially lower than implied volatilities of index options.8 However, these papers mainly

focus on the forecasting power of implied volatility for realized volatility, and study different measures of volatility.

More recently, the literature on single-name options has found a more mixed evidence of the existence of a nonzero

volatility risk premium. Bakshi and Kapadia (2003b) show that individual equity option prices embed a negative

market volatility risk premium, although much smaller than for the index option, but their study is focussed on 25

stocks only. Bollen and Whaley (2004) report that the average deviation between the Black and Scholes implied

volatility and realized volatility is approximately zero for all the 20 individual stocks they study. Carr and Wu

(2009) find evidence of a volatility risk premium, but also using only a subset of 35 stocks. Driessen, Maenhout,

8We note that there is some debate in the literature on the volatility risk premium being non-zero or not. Bates (2000), Benzoni
(2002), Chernov and Ghysels (2000), Jones (2003), and Pan (2002) find large negative volatility risk premia using structural models.
Broadie, Chernov, and Johannes (2007) find no evidence for a volatility risk premium on diffusive volatility risk, but possibly a risk
premium on volatility jumps.
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and Vilkov (2008) find insignificant differences between implied and realized volatilities studying average model-free

volatility measures. The authors do find a significant difference in index options and interpret this as a correlation

risk premium. A trading strategy that exploits this correlation risk premium yields high Sharpe ratios. Duarte

and Jones (2007) study the impact of systematic risk on volatility risk premia and find evidence of a volatility risk

premium that varies with the overall level of market volatility. Our empirical findings complement this literature, by

showing that disagreement is potentially an important determining factor of volatility risk premia.

The literature aiming at giving a structural explanations for the emergence of volatility risk premia is sparse.

Motivated by the empirical results in Bollen and Whaley (2004), who show that changes in implied volatility are

correlated with signed option volume, Gârleanu, Pedersen, and Poteshman (2009) study the relationship between the

level of end user option demand and the level and overall shape of implied volatility curves. They document that end

users tend to have a net long index option position and a short equity-option position, thus helping to explain the

relative expensiveness of index options.9 They also show that there is a strong downward skew in the net demand

of index but not equity options, which helps to explain the difference in the shapes of their overall implied volatility

curves. However, their framework is more effective in explaining the steeper slope of index options due to excess

demand of out-of-the-money puts, but less so in differentiating the pricing of individual options in the cross-section.

Eraker (2007a) studies an equilibrium with long-run risk coupled with a highly persistent volatility process. Similarly,

Drechsler and Yaron (2008) add infrequent but potentially large spikes in the level of volatility and infrequent jumps

in the small, persistent component of consumption and dividend growth. While the volatility shocks from a standard

long-run risk model have a market price of risk which is sufficiently large to generate a variance risk premium,

second and third moments of the variance risk premium together with the short-horizon predictability of expected

stock returns by the variance risk premium can only be generated in a setting with non-Gaussian shocks. Zhou

(2009) attributes the time-variation of the market volatility risk premium to the stochastic volatility of volatility

in consumption growth when agents face recursive preferences. In contrast to these papers, we do not study the

long-run component in consumption growth, moreover, we not only focus on the time-series but also cross-section of

volatility risk premia of individual options.

A vast literature has studied the risk-reward features of option strategies focussing to a large extent on the

over-pricing of out-of-the-money index put options. Coval and Shumway (2001) report monthly Sharpe ratios of

about 0.3 for zero beta straddle portfolios and Eraker (2007b) find an annualized Sharpe ratio of 1 for selling index

out-of-the-money put options. Driessen and Maenhout (2008) find annualized Sharpe ratios of on average 0.72 for

different index option strategies. Broadie, Chernov, and Johannes (2007) point out that index put options have large

negative betas, which in turn yields large negative returns if the CAPM holds, and find that the high returns of out-

of-the-money puts do not contradict the Black and Scholes and CAPM assumptions. More recent papers study the

risk reward of option strategies that exploit differences in volatility risk premia. Goyal and Saretto (2008) study the

cross-section of individual options and find that portfolios sorted according to the difference of implied and realized

volatility earn high Sharpe ratios. They attribute these high returns to some form of volatility mispricing. Driessen,

9These findings are also complemented by the recent work of Lakonishok, Lee, Pearson, and Poteshman (2007) who document that
for both individual equity calls and puts end users are more short than long.

7



Maenhout, and Vilkov (2008) argue that priced correlation risk is the main driving factor of index volatility risk

premia. They find that a simple option-based trading strategy that locks in the correlation risk premium earns high

Sharpe ratios. However, once they account for trading frictions, such as margins and transaction costs, they find that

the correlation risk premium cannot be exploited to generate economically significant excess returns. They interpret

this finding as a limit to arbitrage. We depart from these papers in the following dimensions: First, we explain

volatility risk premia on individual and index stock options by belief disagreement. None of the aforementioned

papers gives an economic rationale for the main drivers of volatility risk premia or the portfolio returns. Second, we

show that the volatility risk premia compensate for the priced disagreement risk. Third, we empirically show that

belief disagreement is indeed priced in the cross-section of option returns, even after transaction costs.

Finally, we are not the first to study the impact of belief disagreement on the implied volatility of options.

Buraschi and Jiltsov (2006) demonstrate in a single asset heterogeneous agents economy that belief disagreement

increases the implied volatility smile of index options. In this paper, we go one step beyond and provide a rationale

for the difference in volatility risk premia of index and single-stock options, both theoretically and empirically. We

study a multi-asset economy and focus on the impact of belief disagreement on volatility risk premia of index and

individual options, and on option trading strategies.

The remainder of the paper is organized as follows: Section I. provides the model setup. Section II. gives

theoretical model predictions. Section III. describes our panel data set and Section IV. presents the results of our

empirical study. Finally, Section VI. concludes the paper.

I. The Economy with Uncertainty and Heterogeneous Beliefs

A. The Model

We extend the standard single-asset Lucas-tree pure-exchange framework to the case with two assets and two

investors. The economy has infinite horizon [0,∞) with uncertainty represented by a filtered probability space

(Ω,F , {Ft}, P ) on which is defined a standard Brownian motion W =
(
WD1

, WD2
, Wz , WµD1

, WµD2
, Wµz

)′
in R6.

All stochastic processes are assumed adapted to {Ft; t ∈ [0,∞)}, the augmented filtration generated by the Brownian

motion W . There are two firms in the economy, which produce their perishable good. Dividends of firm i = 1, 2

have the following dynamics:

d log Di(t) = µDi(t)dt + σDidWDi(t).

Dividends are observable, but their expected growth rate is unobservable and has to be estimated given the available

information. The growth rate of dividends of firm i has the following dynamics:

dµDi(t) = (a0Di + a1DiµDi(t)) dt + σµDi
dWµDi

(t).
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To capture a business-cycle indicator of firm-specific uncertainty, we allow the firm’s future dividends to be related

to a market-wide factor that affects the competitive landscape. We therefore consider a signal z(t), which is related

to the unknown dividend growth rate of each firm. It has the following dynamics:

dz(t) = (αD1
µD1

(t) + αD2
µD2

(t) + βµz(t)) dt + σzdWz(t),

dµz = (a0z + a1zµz(t)) dt + σµz dWµz (t).

The unobservable signal growth rate is µz, and σz is the volatility of the signal z, a0z is the long-term growth

rate of the expected change in the signal. a1z < 0 the mean-reversion parameter and σµz > 0 the volatility. For

simplicity, we assume that the firm specific Brownian motions WD1
and WD2

are independent and that they are

independent from the signal Brownian motion Wz. These assumptions allow us to focus on the additional impact of

belief disagreement on option prices and variance risk premia in our economy.

Investors use both information on the dividends, Di(t), and the signal, z(t) to make their inferences about the

growth rates µDi and µz. If β = 0, then note that the signal z(t) contains information exclusively about the aggregate

expected growth rate of dividends.

B. Disagreement

Disagreement in our economy is modeled by two agents with different beliefs about the expected growth rates of

dividends and signals. Agents update their beliefs using all available information according to Bayes’ law. We

consider learning dynamics, in which different steady-state posterior beliefs follow from different subjective volatility

parameters, σn
µDi

, σn
µz

, where n = A, B indicates agents A and B. This assumption allows for a non-trivial steady-state

distribution of the disagreement process. Moreover, since the dividends’ expected growth rates µDi are unobservable,

the true value of σµDi
is unknown to all investors and cannot be recovered from the quadratic variations of the

observable variables even if we sample at asymptotically high frequency.

Let mn(t) :=
(
mn

D1
(t), mn

D2
(t), mn

z (t)
)′

:= En
(
(µD1

(t), µD2
(t), µz(t))

′
|FY

t

)
, and

µ(t) := (µD1
(t), µD2

(t), µz(t))
′
and γn(t) := En

(
(µ(t) − mn(t)) (µ(t) − mn(t))

′
|FY

t

)
where FY

t := FD1,D2,z
t is the in-

formation generated by D1(t), D2(t), and z(t) up to time t. En(·) denotes expectation relative to the subjective prob-

ability of investor n = A, B. To specify the disagreement process in our model, let Y (t) = (log D1(t), log D2(t), z(t)),

bA = diag(σA
µD1

, σA
µD2

, σA
µz

), a0 = (a0D1
, a0D2

, a0z)
′, a1 = diag (a1D1

, a1D2
, a1z), B = diag(σD1

, σD2
, σz) and A =








1 0 0

0 1 0

αD1
αD2

β








. The posterior beliefs of agent A can be obtained in a standard fashion by using the Kalman-

Bucy filter, and is given by:

dmA(t) = (a0 + a1m
A(t))dt + γA(t)A′B−1dWA

Y (t), (1)

dγA(t)/dt = a1γ
A(t) + γA(t)a′

1 + bAbA′
− γA(t)A′(BB′)−1AγA(t), (2)
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with initial conditions mA(0) = mA
0 and γA(0) =








γA
D1

(0) γA
D1D2

(0) γA
D1z(0)

γA
D1D2

(0) γA
D2

(0) γA
D2z(0)

γA
D1z(0) γA

D2z(0) γA
z (0)








= γA
0 , where dWA

Y (t) :=

B−1
((

dY (t) − AmA(t)
)
dt
)

is the innovation process induced by investor A’s belief and filtration.10 The agent

specific parameter bn in the dynamics of γn(t) impacts on the distribution of mn(t) only indirectly by influencing

the Riccati differential equation for γn(t). If we assume that this parameter is perceived identically by all investors,

then we can model a setting of rational Bayesian investors who disagree because of different initial priors at time

zero. Hence, heterogeneous beliefs arise from agents’ different prior knowledge about the informativeness of signals

and the dynamics of unobservable economic variables.

To specify the dynamic disagreement structure in our economy, we need a learning process for agent B. It is

defined by the following three dimensional process:

Ψ(t) :=








ΨD1
(t)

ΨD2
(t)

Ψz(t)








=








(
mA

D1
(t) − mB

D1
(t)
)
/σD1

(
mA

D2
(t) − mB

D2
(t)
)
/σD2

(
mA

z (t) − mB
z (t)

)
/σz








.

ΨDi (Ψz) measures the disagreement about the expected growth rate of dividend i (signal). The dynamics of Ψ(t)

is given by:

dΨ(t) = B−1
(
a1B + γB(t)A′B−1

)
Ψ(t)dt + B−1(γA(t) − γB(t))A′B−1dWA

Y (t), (3)

with initial conditions

Ψ(0) =
(
(mA

D1
(0) − mB

D1
(0))/σD1

, (mA
D2

(0) − mB
D2

(0))/σD2
, (mA

z (0) − mB
z (0))/σz

)

and γB(0) = γB
0 .

B.1. Uncertainty Co-movement

Note from equation (3) that if there is no common signal, the individual disagreement processes do not co-move. The

reason is that the Riccati equation (2) for the steady-state volatilities only allows for the trivial solution that the

steady-state covariance for the growth rate of firm 1 and 2 is equal to zero, i.e. γD1D2
= 0. In the following, we seek

to give a better understanding of the common uncertainty component and the reasons for its introduction. From

an empirical point of view, Figure 1 points towards a strong counter-cyclical common component which is extracted

from the cross-section of individual disagreement proxies. Moreover, Buraschi, Trojani, and Vedolin (2008) show that

this counter-cyclicality is common to different market sectors. A growing body of empirical finance has documented

so called spillover effects from one market to another or from one sector to another, even if the fundamentals are

10A formal proof of this result can be found in Liptser and Shiryaev (2000).
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very weakly linked. The literature has distinguishes between two different channels: Real and financial linkages. The

macro finance literature has mostly explained these effects via real linkages such as demand or supply shocks, see

Pavlova and Rigobon (2007). However, empirical evidence for these links is rather weak (see e.g. Kaminsky and

Reinhard, 2000). The latter channel has adopted either asymmetric information, correlated default or correlated

liquidity as a possible explanation of contagion. The approach taken here is very different. Firms or markets in

our economy are naturally related via the common uncertainty component. Moreover, depending on the weights,

αDi and β, the signal shocks weighted by the firm-specific disagreement can have a larger or smaller impact on

asset prices. To see this, we give in the following Proposition the instantaneous correlation between the different

uncertainty proxies for each firm and the common signal.

Proposition 1. The instantaneous uncertainty correlation between firm 1 and firm 2 takes the following form:

corr(dΨD1
dΨD2

) =

((

γA
D1

− γB
D1

σ2
D1

)(

γA
D1D2

− γB
D1D2

σD1
σD2

)

+

(

γA
D1D2

− γB
D1D2

σD1
σD2

)(

γA
D2

− γB
D2

σ2
D2

)

+

(

αD1

(
γA

D1
− γB

D1

)
+ αD2

(
γA

D1D2
− γB

D1D2

)
+ β

(
γA

D1z − γB
D1z

)

σD1
σz

)

×

(

αD1

(
γA

D1D2
− γB

D1D2

)
+ αD2

(
γA

D2
− γB

D2

)
+ β

(
γA

D2z − γB
D2z

)

σD2
σz

))

×

1/

{(

γA
D1

− γB
D1

σ2
D1

+
γA

D1D2
− γB

D1D2

σD1
σD2

+
αD1

(
γA

D1
− γB

D1

)
+ αD2

(
γA

D1D2
− γB

D1D2

)
+ β

(
γA

D1z − γB
D1z

)

σD1
σz

)

×

(

γA
D1D2

− γB
D1D2

σD1
σD2

+
γA

D2
− γB

D2

σ2
D2

+
αD1

(
γA

D1D2
− γB

D1D2

)
+ αD2

(
γA

D2
− γB

D2

)
+ β

(
γA

D2z − γB
D2z

)

σD2
σz

)}

,

where γn represent the steady state covariance/variance of firm’s expected growth rates solving the Riccati equation (2) from

the perspective of agent n. The instantaneous uncertainty correlation between firm 1 and the signal takes the following form:

corr (dΨD1
dΨz) =

((

γA
D1

− γB
D1

σ2
D1

)(

γA
D1z − γB

D1z

σD1z

)

+

(

γA
D1D2

− γB
D1D2

σD1
σD2

)(

γA
D2z − γB

D2z

σD2σz

)

+

(

αD1

(
γA

D1
− γB

D1

)
+ αD2

(
γA

D1D2
− γB

D1D2

)
+ β

(
γA

D1z − γB
D1z

)

σD1
σz

)

×

(

αD1

(
γA

D1z − γB
D1z

)
+ αD2

(
γA

D2z − γB
D2z

)
+ β

(
γA

z − γB
z

)

σ2
z

))

1/

{(

γA
D1

− γB
D1

σ2
D1

+
γA

D1D2
− γB

D1D2

σD1
σD2

+
αD1

(
γA

D1
− γB

D1

)
+ αD2

(
γA

D1D2
− γB

D1D2

)
+ β

(
γA

D1z − γB
D1z

)

σD1
σz

)

×

(

γA
D1z − γB

D1z

σD1
σz

+
γA

D2z − γB
D2z

σD2
σz

+
αD1

(
γA

D1z − γB
D1z

)
+ αD2

(
γA

D2z − γB
D2z

)
+ β

(
γA

z − γB
z

)

σ2
z

)}

.

A similar expression arises for the instantaneous correlation between the disagreement about firm 2 expected growth rate and

the disagreement about the signal growth rate.

In the following, we want to study two different cases which are of particular interest (i) αD1
= αD2

= 0.5 and

β = 0 and (ii) ∆σµz ≡ σA
µz

− σB
µz

> 0 and σ̄µz ≡ 0.5
(
σA

µz
+ σB

µz

)
> 0. In case (i), the signal is fully informative

about the firm-specific information. In other words, the expected growth rate of the signal contains only information

about the expected growth rates of firms’ future dividends. The second case considers the amount of subjective
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economic uncertainty prevalent in the economy. ∆σµz is the difference in agent-specific uncertainty and can be seen

as a precision measure for the disagreement. Similarly, σµz is the average agent-subjective economic uncertainty.

Buraschi, Trojani, and Vedolin (2008) show that the first and second moment of the steady-state distribution of

Ψ(t) depend on the average amount of economic uncertainty, σµz , and the difference in subjective uncertainty, ∆σµz .

In particular, if agents agree on the amount of subjective economic uncertainty, i.e. ∆σµz = 0, then the signal is

deterministic and the instantaneous correlation between firm-specific disagreement is nil.

In Figure 3, we depict the instantaneous correlation between uncertainty of firm 1 and firm 2 (left panels) and

firm 1 and the exogenous signal (right panels) as a function of the weight given to each firm for the estimation of the

signal growth rate, αDi and the difference in subjective uncertainty (upper panels) and average amount of subjective

uncertainty (lower panels). The rest of the economy is symmetrical in the sense that all firm-specific parameters are

chosen such that firm 1 and firm 2 are the same.

[Insert Figure 3 approximately here.]

The correlation between the firm specific disagreement is largest when the weighs given to each firm are 1/2

and the weight given to the signal for the updating is zero. This is intuitive, as in this case, the signal captures

pure firm-specific information. When the weight given to each firm is very small, i.e. αD1
and αD2

approach zero,

then the signal is non-informative for the updating of the individual expected growth rates of each form and the

correlation is almost zero. We also note that the correlation is larger for higher differences in subjective uncertainty.

This is a direct consequence of the fact that when the difference in subjective uncertainty would equal zero, then

the diffusion of the signal dynamics equals zero as well. In the right panels, we plot the correlation between the firm

specific and common disagreement. The correlation is increasing in the own firm’s weight and decreasing in the other

firm’s weight. For example, when we increase the weight of firm 1 from 0.1 to 0.5 while keeping the weight given to

firm 2 equal to 0.1, then the correlation between firm 1 and the signal disagreement increases more than 50%. On

the contrary, if we increase the weight given to firm 2 and keep constant the weight of firm 1 at say 0.1, then the

correlation decreases from 0.3 to 0.12. Economically, a larger weight given to the other firm for updating means that

the common disagreement becomes less informative about the own firm-specific disagreement and hence, we expect

the correlation between the firm-specific and common disagreement to be smaller.

C. Investors’ Preferences and Equilibrium

There are two investors in the economy with different subjective beliefs, but identical in all other aspects, such

as preferences, endowments, and risk aversion. They maximize the life-time expected power utility subject to the

relevant budget constraint:

V n = sup
cn

D1
,cn

D2

En

(∫ ∞

0

e−δt

(
cn
D1

(t)1−γ

1 − γ
+

cn
D2

(t)1−γ

1 − γ

)

dt
∣
∣
∣ FY

0

)

, (4)
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where cn
Di

(t) is the consumption of agent n at time t of good i, γ > 0 is the relative risk aversion coefficient, and

δ ≥ 0 is the time preference parameter. We assume time-separable utility functions. This not only simplifies the

computation of the equilibrium, but also interpretations, since we can sum over individual beliefs without making

any further assumptions on aggregation. Agents can trade in the risk-free bond, the firms’ stocks and additionally

on options written on the stocks and an index. We denote by r(t) the risk free rate of the zero-coupon bond,

assumed in zero net supply, by Si(t) the stock price of firm i, assumed in positive net supply, by Oi(t) the price of

a European option on the stock i, assumed in zero net supply, and by I(t) the index option, also assumed in zero

net supply. Trading in the risk-free bond and the firms’ stock is not sufficient to complete the market, if agents can

trade additionally on the options written on the stocks and the index, then markets are complete.

Definition 1 (Equilibrium). An equilibrium consists of a unique stochastic discount factor such that (I) given

equilibrium prices, all agents in the economy solve the optimization problem (4), subject to their budget constraint.

(II) Good and financial markets clear.

To solve for the equilibrium, we apply standard methods as introduced by Cox and Huang (1989), Cuoco and

He (1994), Karatzas and Shreve (1998), and Basak and Cuoco (1998). The stochastic discount factor ξn(t) of agent

n can be easily derived. Given the expressions for ξn(t), we can price any contingent claim in the economy, by

computing the expectations of its contingent claim payoff weighted by the state price density.

Since the investors’ preferences are separable over the two goods, the representative investor’s utility is also

separable. In this economy we need two representative investors to construct the equilibrium, because we have two

goods. We write the representative agent’s utility function as:

U1 (cD1
(t), λ(t)) = sup

cD1
(t)=cA

D1
(t)+cB

D1
(t)

{

cA
D1

(t)1−γ

1 − γ
+ λ(t)

cB
D1

(t)1−γ

1 − γ

}

,

and the second one as:

U2 (cD2
(t), λ(t)) = sup

cD2
(t)=cA

D2
(t)+cB

D2
(t)

{

cA
D2

(t)1−γ

1 − γ
+ λ(t)

cB
D2

(t)1−γ

1 − γ

}

,

where λ(t) > 0 is the stochastic weight that captures the impact of belief disagreement. From market clearing and

the optimality condition in equation (4), we obtain the equilibrium consumption allocations and the corresponding

individual stochastic discount factors. The stochastic discount factor and the individual optimal consumption policies

of agent A and B are of the following form:

ξA(t) =
e−δt

yA
D1(t)

−γ
(

1 + λ(t)1/γ
)γ

, ξB(t) =
e−δt

yB
D1(t)

−γ
(

1 + λ(t)1/γ
)γ

λ(t)−1,

and

cA
Di

(t) = Di(t)
(

1 + λ(t)1/γ
)−1

, cB
Di

(t) = Di(t)λ(t)1/γ
(

1 + λ(t)1/γ
)−1

.
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The subjective state prices ξn(t) are functions of D1(t) and the weighting process λ(t). The separability of the utility

function implies such a simple expression for ξn(t). The weighting process λ(t) = yAξA(t)/
(
yBξB(t)

)
follows the

dynamics:

dλ(t)

λ(t)
= −

(
2∑

i=1

ΨDi(t)dWA
Di

(t) +

(
2∑

i=1

αDiΨDi(t)
σDi

σz
+ βΨz(t)

)

dWA
z (t)

)

. (5)

Finally, the relative price of the second good is of the form:

rp(t) =

(
D2(t)

D1(t)

)−γ

.

In contrast to the single-good economy, the dynamics of λ(t) depends on the disagreement about dividends related

to both firms and the business cycle indicator: dλ(t) is subject to shocks WDi , Wz , i = 1, 2, each weighted by

the disagreement indices ΨDi(t) and Ψz(t), respectively. In particular, we note that the weights αDi also fix the

impact of the individual firms disagreement subject to the signal shock Wz. The state price volatility is increasing

in the disagreement about the cash flows and signals of each firm. The state-price ξn(t) reflects the different optimal

consumption policies of the two agents in the economy. Assume, for simplicity, that investor A is optimistic about

both firms. Then, investor B will select a relatively higher consumption in states of low dividends for firm 1, firm 2,

or both. Similarly, investor A will select a relatively higher consumption in states of high dividends. It follows that

the relative consumption share in this economy is stochastic and its cyclical behavior is reflected in the dynamics

of the stochastic weight λ(t). In order to finance that optimal consumption plan, the pessimistic investor asks

financial protection, i.e. put options, from the optimist. This excess demand lowers the price of securities having

positive exposure to dividend shocks of the two firms and the risk implied by bad cash flow states is transferred

from the pessimist to the optimist. If a negative dividend state occurs, the more optimistic agent is hit twice: First,

because the aggregate endowment is lower, second, as a consequence of the protection agreement that makes her

consumption share lower in those states. In the economy with two firms, individual put options on stocks of firm i

offer financial protection against low dividend states of this firm. The higher price of these options reflects the desire

of the pessimistic agent to buy protection against low dividend states of one of the two firms. Such a price is higher

when the consumption share of good i is more different from one, which happens when investors disagree more on

the probability of the event that one firm will pay low dividends. If investors disagree also on the joint occurrence of

a low dividend for both firms, then their aggregate marginal utility out of the dividends of the two firms will differ

even more. The pessimist then requires protection against a joint bad state in dividends, which is best achieved by

means of an index option on the two stocks. The larger difference of the marginal utility of the two investors in such

a joint bad state requires the price of the index option to increase even more than the price of the individual options.

This feature could explain the larger size of volatility premia on index options relative to those of individual options.
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D. Security Prices

For convenience, we give the relevant expressions for the prices of financial assets from the perspective of agent A.

The equilibrium stock price of firm 1 and 2 are given by:

S1(t) = D1(t)E
A
t

(∫ ∞

t

e−δ(u−t) ξ
A(u)

ξA(t)

D1(u)

D1(t)
du

)

, (6)

and

S2(t) = D2(t)E
A
t

(
∫ ∞

t

e−δ(u−t) ξ
A(u)

ξA(t)

(
D2(u)

D2(t)

)1+γ (
D1(u)

D1(t)

)−γ

du

)

. (7)

The stock index is simply the weighted sum of the two stock prices, ID(t) = ω1S1(t)+ ω2S2(t), where ω1 and ω2 are

the market capitalizations of stock 1 and 2, respectively, at time t. The price of a European call option on stock i is:

Oi(t, T ) = EA
t

(
ξA(T )

ξA(t)
(Si(T ) − Ki)

+

)

, (8)

where Ki is the strike price of the option, and the price of the index call option is:

I(t, T ) = EA
t

(
ξA(T )

ξA(t)
(ID(T ) − KID)+

)

, (9)

where KID is the strike price of the index option. To compute all these expectations, we need the joint density of

(D1(t), D2(t), λ(t)), and the contingent payoff, because the stochastic discount factor is a function of either dividend

and the stochastic weight λ(t). This density is not available in closed form. However, we can compute its Laplace

transform explicitly.

Lemma 1. The joint Laplace transform under the steady state distribution of D1(t), D2(t) and λ(t) under the belief of agent

A is given by:

EA
t

((
D1(T )

D1(t)

)ǫD1
(

D2(T )

D2(t)

)ǫD2
(

λ(T )

λ(t)

)χ)

= FmA

(

mA, t, T ; ǫD1
, ǫD2

)

× FΨ (Ψ, t, T ; ǫD1
, ǫD2

, χ) , (10)

where

FmA (mA, t, T ; ǫD1
, ǫD2

) = exp
(

AmA(τ ) + BmA (τ )mA
)

, (11)

with τ = T − t and

FΨ (Ψ, t, ǫD1
, ǫD2

, χ, u) = exp
(
AΨ(τ ) + BΨ(τ )Ψ + Ψ′CΨ(τ )Ψ

)
.

for functions AmA , BmA , AΨ, BΨ and CΨ detailed in the proof in the Appendix.

We compute all equilibrium quantities with respect to the steady-state distribution of beliefs, which is non-trivial

when agents disagree about σµz in our model. Using the Laplace transform in Lemma 1, we can now price more

efficiently any contingent claim in our economy using Fourier inversion methods. In this way, we can avoid to a
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large extent the use of Monte Carlo methods, which would be highly computationally demanding in our multi asset

economy. In the following Lemma, we give semi-analytical expressions for asset prices in our economy.

Lemma 2. Let

G(t, T, xD1
, xD2

; Ψ) ≡

∫
∞

0

(

1 + λ(T )1/γ

1 + λ(t)1/γ

)γ [

1

2π

∫
+∞

−∞

(
λ(T )

λ(t)

)
−iχ

FΨ (Ψ, t, T ; x, iχ) dχ

]

dλ(T )

λ(T )
.

1. The equilibrium price of stock 1 is:

S1(t) := S1

(

D1, m
A, Ψ

)

,

= D1(t)

∫ ∞

t

e−δ(u−t)FmA (mA, t, u; 1 − γ, 0)G (t, u, 1 − γ, 0; , Ψ) du.

2. The equilibrium price of stock 2 is:

S2(t) := S2

(

D1, D2, m
A, Ψ

)

,

= D2(t)

∫ ∞

t

e−δ(u−t)FmA

(

mA, t, u;−2γ, 1 + γ
)

G (t, u,−2γ, 1 + γ; , Ψ) du.

3. The equilibrium price of the index is:

ID(t) := ID
(

D1, D2, m
A, Ψ

)

= ω1S1(t) + ω2S2(t).

4. The equilibrium price of the European option on stock 1 is:

O1(t) := O1

(

D1, m
A, Ψ

)

,

= EA
t

(

e−δ(T−t)

(
D1(t)

D1(T )

1 + λ(T )1/γ

1 + λ(t)1/γ

)γ

(S1(T ) − K1)
+

)

.

The formula for the option on stock 2 is identical with the corresponding replacements, and with S2(T ) and K2 replacing

S1(T ) and K1, respectively.

5. The equilibrium price of the European option on the index is:

I(t) := I
(

D1, D2, m
A, Ψ

)

,

= EA
t

(

e−δ(T−t)

(
D1(t)

D1(T )

1 + λ(T )1/γ

1 + λ(t)1/γ

)γ

(ID(T ) − KID)+
)

.

From the above formulas, we obtain a semi-explicit dependence for the prices of stocks and options in our

economy on the degree of disagreement among investors. In particular, we can reduce the system of ordinary

differential equations for functions AΨ, BΨ and CΨ to a system of matrix Riccati equations which can be linearized

using Radon’s Lemma. In this way, we circumvent computationally intensive numerical integrations. Using these

formulas, we can study conveniently the impact of disagreement and uncertainty on volatility risk premia of options.
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II. Model Predictions

Using the solutions of Lemmas 1 and 2, we study the impact of belief disagreement on the volatility risk premia

of individual stocks and the index. To this end, we calibrate the model to the dividend dynamics of the S&P 500

and assume for simplicity of exposition a symmetric economy. The parameters are summarized in Table 1. Risk

aversion is set to 2 and the dividend volatility of firm 1 and 2 is 4%. We study comparative statistics for changes in

belief disagreement ΨD1
and Ψz between zero and 0.3.

[Insert Table 1 approximately here.]

A. Endogenous Stock Return Correlation

Returns are correlated even if the underlying fundamentals are weakly linked or not correlated at all. This is due

to the correlation of the fundamentals with the aggregate endowment (see Cochrane, Longstaff, and Santa-Clara,

2008). In our economy, the stock return correlation has an additional component due to heterogeneous beliefs. To

see this, note that the price of each stock is given by:

dSi(t)

Si(t)
= mA

Si
(t)dt + σSiD1

(t)dWA
D1

(t) + σSiD2
(t)dWA

D2
(t) + σSiz(t)dWA

z (t).

The conditional covariance between the returns on stock 1 and 2 is given in the following Proposition.

Proposition 2. The conditional covariance of stock 1 and stock 2 returns is given by:

Covt

(
dS1

S1

dS2

S2

)

= σS1D1
(t)σS2D1

(t)dt + σS1D2
(t)σS2D2

(t)dt + σS1z(t)σS2z(t)dt,

where the coefficients, σS1D1
(t), σS2D1

(t), σS1D2
(t), σS2D2

(t), σS1z(t) and σS2z(t) are given in the Appendix.

Note that the equilibrium quantities, σSiDi(t) and σSiz(t) depend on the disagreement process Ψ(t). In Figure 4

we depict the correlation as a function of belief disagreement about the dividend growth rates, ΨD1
(t) and ΨD2

(t)

when little weight is given to each individual firm, αDi = 0.1 (left panels) and when little weight is given to the signal,

β = 0.1 (right panels). Stock return correlation is an increasing function of both belief disagreement. An increase in

belief disagreement from zero to 0.3 increases the correlation from 0.07 to approximately 0.22 for αDi = 0.1 and 0.3 for

αDi = 0.45. The higher correlation in case of β = 0.1 is a consequence of the higher correlation between firm-specific

disagreement documented in the previous subsection. In the lower panels, we additionally rise the average level of

subjective volatility, which increases the stock return correlation even more. In the two tree economy of Cochrane,

Longstaff, and Santa-Clara (2008) stock return correlations are increasing because of a diversification effect: Stock

returns are correlated because a shock to any of the dividend streams is important for aggregate consumption and

this is reflected in the state price density which is a function of the share dynamics and which represents the only
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source for stock return correlations.11 In our economy there is an additional increased correlation which comes from

the optimal risk sharing among investors (“risk-sharing effect”). The more pessimistic agent in our economy selects

a relatively higher consumption in states of low dividends for firm 1, firm 2, or both. Similarly, the more optimistic

agent selects a relatively higher consumption in states of high dividends. In order to finance the optimal consumption

plan, the pessimistic investor asks financial protection from the optimist. This excess demand lowers the price of

securities having positive exposure to dividend shocks of the two firms, and the risk implied by bad dividend states

is transferred from the pessimist to the optimist.12

This feature of our model could also be interesting in light of the 2007-2008 credit crisis at whose heart lies an

apparent puzzle: The mortgage sector is small relative to the overall economy, nevertheless, the mortgage sector has

been the catalyst of the current crisis. Traditionally, financial contagion is viewed as being triggered via correlated

defaults or demand and supply shocks in some sectors. However, the number of defaults cannot be one of the drivers of

the current crisis.13 As we argue, the reason could be a spreading of uncertainty as documented in Sector B.1.. Note

that the impact of uncertainty is on the prices itself. If uncertainty in one sector increases, the common uncertainty

in the overall economy will rise as well and thereby trigger returns to correlate even more. It is natural to assume

that the overall economic uncertainty in crisis periods is heightened and therefore, according to our model, we also

expect a higher correlation among firm-specific disagreement. This feature of our model complements the work of

Ribeiro and Veronesi (2002). In their economy, time variation in correlations of asset returns arises from the learning

of the representative agent as each individual drift of the output processes is driven by a common business cycle

indicator. Further, excess comovements in the correlations of asset returns emerge because of increased uncertainty in

bad times. However, in their model, there is no country-specific component in the uncertainty. Therefore, contagion

like spreading from one market to the other is not possible. Moreover, in a full information economy as in Cochrane,

Longstaff, and Santa-Clara (2008), the return correlation hinges crucially on the size of the asset share. If an

asset has a very small share in the overall endowment, the return correlation is nearly zero, only for symmetric

economies, the return correlation reaches reasonable numbers. Martin (2009) introduces rare disasters which offers

him an interesting leeway. Small assets in his economy co-move endogenously, despite independent fundamentals or

a negligible size of the asset. Moreover, disasters spread in an asymmetric fashion, which means that if a large firm

experiences a disaster, the price of the other small asset experiences a large negative shock in the price. Vice versa, if

the small asset suffers a disaster, the price of the other asset jumps up. Our economy is more simplistic in the sense

that independent of the size of an asset, stock returns correlate endogenously. Contagion-like effects emerge via the

spreading of disagreement from one firm to the other. However, the effect is always symmetric in our economy, as

the disagreement correlation does not depend on the firm size itself.

[Insert Figure 4 approximately here.]

11In the economy of Cochrane, Longstaff, and Santa-Clara (2008) the representative agent derives utility from one good only. The two
representative agents in our economy derive utility from both goods. Nonetheless, via the budget constraint a diversification effect as
documented in Cochrane et al. is present.

12For a rigorous treatment of stock return correlations in an economy with heterogeneous beliefs, see also Ehling and Heyerdahl-Larsen
(2008).

13The overall issuer weighted annual default rate – including both investment grade and speculative grade entities – was the lowest in
2007 since 1981, see Standard & Poor’s (2008).
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B. Index and Individual Risk-Neutral Skewness and Volatility Risk Premia

B.1. Risk-Neutral Skewness

Bakshi, Kapadia, and Madan (2003) relate the differential pricing of index and individual options to the risk-neutral

skewness and conclude that the more negative the risk-neutral skewness, the steeper the implied volatility smile. In

our model, negative dividend shocks will not only increase the stock (index) volatility but will also depress the stock

(index) price. As a consequence, the risk-neutral skewness of the return distribution is negative.14 To formalize the

relationship between the market and individual stock skewness, note that in equilibrium, the excess return of stock

i can be written as:

mA
Si

− r(t) = γCov

(
dSi

Si
, d(D1 + D2)

)

−
λ(t)1/γ

1 + λ(t)1/γ
Cov

(
dSi

Si
,
dλ

λ

)

,

where the first term is the standard consumption CAPM term. Rearranging terms yields that:

mSi − r(t) = γCov

(
dSi

Si
, d(D1 + D2)

)

−
(

1 + λ(t)1/γ
)−1

(

mSi − mA
Si

σDi

)

σSi(t) − λ(t)1/γ
(

1 + λ(t)1/γ
)−1

(

mSi − mB
Si

σDi

)

σSi(t).

Hence, the excess return can be represented as a risk-tolerance weighted average of agents perceived growth rates.

Assume now that we would construct a “consensus” agent. Jouini and Napp (2007) show that such an agent exists and

under the assumption of power utility her “consensus” belief is proxied by the weighted average of the heterogeneous

beliefs so that the market aggregate behavior is in principle a weighted average of heterogeneous individual behaviors

(see also Chiarella, Dieci, and He, 2008). We can now write the dynamics of the return of stock i in the following

CCAPM form:

ri(t) = βMrM (t) + βΨΨ(t) + ǫi(t), (12)

where Ψ(t) is the consensus belief, ri(t) is the return on stock of firm i, and rM (t) is the return on the market. Assume

that the idiosyncratic risk ǫi is Gaussian and independent of the market return, rM , and the common disagreement,

Ψ. The following Proposition relates the market and individual skewness.

Proposition 3. If stock returns follow a CCAPM model as in equation (12), then the skewness of the individual

stock is linked to the market skewness and the disagreement skewness as:

SKEW (ri) = β3
MSKEW (rM ) + β3

Ψ
SKEW (Ψ) − SKEW (mM ) + COSKEWS

+3βM

∫ ∞

−∞

rMq(rM )drM + 3βΨ

∫ 1

0

Ψq(Ψ)dΨ + 3mM (βM − 1)

−6βMβΨ

∫ ∞

−∞

∫ 1

0

∫ ∞

−∞

rMΨmMq(rM , Ψ, mM )drMdΨdmM (13)

14See Buraschi and Jiltsov (2006).
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where COSKEW are the coskewness terms given in the appendix, q(·) the risk-neutral density, and mM the growth

rate of the market return under the risk-neutral measure of the consensus agent.

Clearly, equation (13) reveals that the conditions under which the individual skew is less negative than the index

are not very intuitive, moreover, as the joint distribution of the expected return of the market, the common belief,

and the market return itself cannot be calculated in closed form. To grasp a better intuition, we depict in Figure 5

(left panels), the difference of the index and individual risk-neutral skewness for αDi = 0.1. The difference of risk-

neutral skewness is negatively related to firm-specific and the signal disagreement: If we increase both disagreement

from zero to 0.3, we find that the difference decreases from nil to -0.04. In case of a higher weight given to αDi , we

find in the right panels, that for a average subjective uncertainty of 0.02, that the difference can be as large as -0.5.

[Insert Figure 5 approximately here.]

Intuitively, note that the diffusion term of the stochastic discount factor is related to agents’ consumption shares:

A negative dividend shock in one firm increases the volatility of the stochastic discount factor. However, if the second

firm experiences a negative dividend shock as well, then the index volatility will increase even more. This is due

to the decreasing marginal utility of consumption of the two investors, which generates endogenously the negative

skewness in the market. The stronger negative skewness of the index follows exactly in those cases when both firms

experience a negative dividend shock. Second, to understand the larger difference in case of a small β, for the ease

of exposition, reversing the thinking and assume that the common disagreement is set to zero, i.e. Ψz(t) = 0. In this

case, a large increase of disagreement in one firm will induce a large negative skewness for this firm. At the same

time, the additional impact on the index volatility due to correlation can potentially be very small depending on the

weights given for the updating of the beliefs. As a consequence the impact on the index skewness is rather small and

down-weighted by the size of the share of this asset in the index.

B.2. Volatility Risk Premia

In a standard Black and Scholes (1973) world, the implied volatility surface of single-stocks and index options is flat.

Bakshi, Kapadia, and Madan (2003) report a one-to-one mapping between the risk-neutral skewness and the implied

volatility smile. In our economy, belief disagreement increases both the individual and index risk-neutral skewness

and as a consequence, belief disagreement in our economy will generate an implied volatility smile. We consider the

same two scenarios as in the previous case: In Figure 6, left panels, we depict, the absolute difference between the

implied and instantaneous volatility. In a standard Merton (1974) world, the implied volatility and the instantaneous

volatility would coincide, implying a zero volatility risk premium. In our economy, however, there is a difference,

which represents compensation for the priced disagreement risk. The volatility risk premium for an at-the-money

option is 1.3% (0.6%) for the index and 1.25% (0.7%) for the individual stock for a difference in subjective uncertainty

of 0.02 (0.01). The numbers are slightly higher for a higher average uncertainty: When average uncertainty is set to

0.1, then the index volatility risk premium can be as large as 1.8% and 2% for the individual stock. When the weight
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of the individual firm is increased to 0.45, then we note two things from the right panels in Figure 6: First, the

overall volatility risk premia are larger than in the left panels and second, the index volatility risk premium is always

larger than the individual volatility risk premium. For instance, the index risk premium for an average uncertainty of

0.1 (0.01) is 3% (2%), while for the individual stock the risk premia are 1.6% and 1.2% for an at-the-money option,

respectively.

[Insert Figure 6 approximately here.]

C. Synthesizing Volatility and Correlation Risk Premia from Prices

A direct measure of the volatility and correlation risk premium could be derived, if we would use prices from

derivatives that pay volatility or correlation. In the follow, we extract the volatility and correlation risk premium

directly from variance swap prices. A long variance swap pays the difference between the realized variance over some

time period and a constant called the variance swap rate:

(RVi(t, T ) − SWi(t, T ))Li,

where Li is the notional dollar value of the contract of firm i, RVi(t, T ) is the realized variance of the stock price of

firm i over some time period, and SWi(t, T ) denotes the variance swap rate. Let Q denote the risk-neutral probability

measure from the viewpoint of agent A. A swap has a market value of zero at entry:

SWi(t, T ) = EQ
t (RVi(t, T )) .

Under the physical measure the variance swap rate and the realized variance are linked by the following equation:

SWi(t, T ) = EP
t

(
ξA(T )

ξA(t)
RVi(t, T )

)

= EP
t (RVi(t, T )) + CovP

t

(
ξA(T )

ξA(t)
, RVi(t, T )

)

.

The variance risk premium of firm i is now defined as the difference between the swap rate and the realized variance:

V ARPi(t) = SWi(t, T ) − EP
t (RVi(t, T )) = CovP

t

(
ξA(T )

ξA(t)
, RVi(t, T )

)

. (14)

Equation (14) makes clear why variance swaps are a good hedge for high disagreement in our economy. The con-

ditional covariance between the stochastic discount factor and the realized variance is positive in our economy.

Similarly, the variance risk premium on the index is a weighted sum of the individual variance risk premia plus a

covariance term, and follows directly by using Itô’s Lemma:

V ARPI(t) =

2∑

i=1

ω̄iV ARPi(t) + 2ω1ω2COV RP (t), (15)
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where ω̄i = ω2
i +

∑

j 6=i ωiωj
Cov(Si,Sj)

σSi
and COV RP (t) = EQ

t (Cov(S1, S2))−EP
t (Cov(S1, S2)) denotes the covariance

risk premium. The variance risk premium on the index is larger than the average individual variance risk premia

due to the covariance risk premium term, which is non-zero in our economy. There are two main reasons for this.

First, the covariance under the physical and risk-neutral dynamics are different, i.e. CovQ
t (S1, S2) 6= CovP

t (S1, S2).

Second, the dynamics of the economic fundamentals are different under the physical and risk-neutral measure, to

this end, the drift adjustment leads to a non-zero difference, in other words CovQ
t (S1, S2) − EQ

t

(

CovQ
t+1(S1, S2)

)

6=

CovP
t (S1, S2) − EP

t

(
CovP

t+1(S1, S2)
)
. Moreover, in our economy, the covariance risk premium has the attractive

feature that it is inherently counter-cyclical due to its dependence on the business cycle disagreement. Negative

shocks in the underlying fundamentals cause disagreement to increase which increases the correlation among the

different stocks which implies a higher covariance risk premium in times of high disagreement.

To make the variance swap rate and realized volatility more tractable, we use the standard industry approach

and synthesize the variance risk premium from plain vanilla option prices. Under the assumption of no arbitrage, the

variance swap rate can be synthesized using out-of-the-money put options. When the swap rate process is continuous,

this relation is exact (see e.g. Carr and Madan, 1998, Britten-Jones and Neuberger, 2000 and Carr and Wu, 2009).

SWi(t) = EQ
t (RV (t, T )) =

2

(T − t)B(t, T )

∫ ∞

0

P (K, T )

K2
dK, (16)

where B(t, T ) is the price of a zero coupon bond with maturity T and P (K, T ) is a out-of-the-money put option

with strike K and maturity T . For a variance swap with 30 days to maturity, we define the realized variance:

RV (t, t + 30) =
365

30

30∑

i=1

Ri(tn)2,

where we define a set of dates t = t0 < t1 < · · · < tN = T and Ri(tn) = log (Si(tn, T )/Si(tn−1, T )). We can now

calculate the (negative) volatility risk premium for firm i as:

V OLRPi(t) =
(√

SWi(t, T ) −
√

RVi(t, T )
)

× 100, (17)

and a similar expression arises for the index. We plot in Figure 7 the volatility risk premium for an individual firm

(left panels) and the correlation risk premium (right panels) as a function of belief disagreement about firm 1 and

the common signal.

[Insert Figure 7 approximately here.]

Both the firm-specific and common disagreement increase the volatility risk premium of firm 1 and the correlation

risk premium. Increasing the firm-specific and common disagreement from zero to 0.3 increases the volatility risk

premium of firm 1 from 0.2% to 1.6% for αDi = 0.1 and to 0.8% for αDi = 0.45. The correlation risk premium

increases from zero to 1% for αDi = 0.1 and 1.6% for αDi = 0.45. These features are inline with our previous
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reasoning: Higher firm-specific and common disagreement increases the correlation and therefore should carry a

higher risk premium.

D. Simulated Option Trading Strategies

The previous subsection has shown that the volatility risk premia of index and individual options are driven by belief

disagreement. The industry standard for exploiting the volatility risk premium in individual and index options is a

straddle portfolio which involves buying a call and a put with the same moneyness. An alternative strategy involves

delta-hedging an option position.15 The idea is that if the investor is successful in hedging away the priced risk,

then a major determinant of the profit or loss from this strategy is the difference between the realized and implied

volatility. The advantages of a delta-hedged trade relative to a straddle are the potentially lower transaction costs

since stock trading is cheaper than options trading.16 The disadvantage is that straddle portfolios are more profitable

than delta-hedged portfolios, because the former benefit from the difference in volatility risk premia of both calls

and puts, while the latter benefit from only one option, either call or put. Moreover, at-the-money straddles are

known to be very liquid (see Bondarenko, 2003) and have been analyzed extensively in the literature (see Coval and

Shumway, 2001 and Driessen and Maenhout, 2007). Bakshi and Kapadia (2003a) study delta-hedged portfolios and

find that delta-hedged call and put portfolios statistically under-perform zero, with losses that are most pronounced

for at-the-money options. The authors argue that these findings are consistent with a negative volatility risk premium

in index options. In addition they find that during periods of higher volatility the under-performance is worst, and

this is due to the negative correlation of delta-hedged gains of at-the-money options and historical volatility. In the

following, we employ two trading strategies, which exploit the difference in the volatility risk premia of individual

and index options. These strategies are so called dispersion trades which involve a short option position on an index,

against a long option position in the index constituents. The aim of the strategy is to realize a maximum difference

between the index implied volatility and the average constituents volatility. In this case, the strategy will make

money on both the long option position on the individual stocks and on the short option position on the index by

earning theta. The success of the strategy lies in determining which component stocks to pick and it is, therefore,

critical to make sure to buy the cheapest options. Determining cheap options is simple in our framework. When

belief disagreement is large for one firm, the volatility risk premium for this particular firm should be large as well,

since the investor wants to be compensated for holding the risk. If investors disagree on the joint occurrence of

a bad dividend state for both firms then their aggregate marginal utility will differ more than in the case if they

disagree only on a bad state for one firm. In this case, the pessimist requires protection against a joint bad state in

dividends by asking put index options from the more optimistic agent, since these options pay-off the most in bad

15Academic papers looking at option trading strategies include Jackwerth (2000), Coval and Shumway (2001), Aı̈t-Sahalia, Wang, and
Yared (2001), Bakshi and Kapadia (2003a), Bondarenko (2003), Bollen and Whaley (2004), Jones (2006), Driessen and Maenhout (2007),
and Santa-Clara and Saretto (2007), among others. These papers focus on index options only. Option trading strategies for individual
options are treated in Goyal and Saretto (2008) and Driessen, Maenhout, and Vilkov (2008).

16Delta-hedged positions are expensive. Strikes must be rolled which increases transaction costs. Moreover, it is not a priori clear which
delta to choose. Branger and Schlag (2004) show that delta-hedged errors are not zero if the incorrect model is used or if rebalancing
is discrete. This implies that if jumps or stochastic volatility are present and the Black-Scholes (1973) model is used to compute deltas,
then the delta-hedged returns may be biased.
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states. Hence, if our predictions are correct, a short position in the index and a long position in the constituents

should yield excess returns, because the index volatility risk premium is larger than the one of individuals. In the

following, we simulate dispersion trades on individual and index straddle (put) options.

To test these strategies, we simulate two stocks17 with equal weights which form the index. We use the formulas

provided in Proposition 2 and apply a discrete-time version of the dividend dynamics. The Gaussian error terms

for both dividend processes are drawn independently. The parameters used for the simulation are summarized in

Table 1. To be consistent with the empirical work, the simulated sample path is taken to be 11 years and 5 months

(2,877 days). At the beginning, at-the-money index straddles (puts) are sold and at-the-money straddles (puts) on

the individual stock are bought such that the portfolio is vega neutral. We chose the stock with the highest belief

disagreement at the end of the month. Making the portfolio vega neutral assures a volatility exposure, instead of a

pure directional one. An equivalent amount of the particular stock is bought to delta neutral the portfolio and the

remainder is invested in the risk-free bond. Across each simulation run, we generate 137 observations on gains and

losses. In Table 2, we report the sample moments of each trading strategy over 1,000 simulations. The first point

to note is that the annualized Sharpe ratio of the both dispersion trades are above 1: For the straddle portfolio the

annualized Sharpe ratio is approximately 1.9 and for the put portfolio it is 1.5. The average return for an index put

option seller is high at 11.7%, however, the Sharpe ratio is around 0.60 due to the high standard deviation. We also

note that the dispersion trades involve much smaller skewness and a slightly smaller kurtosis than selling index puts.

[Insert Table 2 approximately here.]

III. Data

A. Options Data

We use option information from the OptionMetrics Ivy DB database, which is the most comprehensive database

available. Data runs from January 1996 to June 2007. Our index option sample contains trades and quotes of S&P

100 index options traded on the Chicago Board Options Exchange (CBOE). The S&P 100 is a capitalization-weighted

index with quarterly re-balancing. Options on the index are European style and expire on the third Friday of the

contract month. Our sample also consists of trades and quotes of CBOE options on all constituents of the S&P

100. Individual stock options are American style. They usually expire on the Saturday following the third Friday

of the contract month. Therefore, time to maturity is defined as the number of calendar days between the last

trading date and expiration date. We apply a number of data filters to circumvent the problem of large outliers.

First, we eliminate prices that violate arbitrage bounds, i.e. call prices are required not to fall outside the interval
(
Se−rd − Ke−τr, Se−τd

)
, where S is the value of the underlying asset, K is the option’s strike price, d is the dividend

yield, r is the risk-free rate, and τ is the time to maturity. Second, we eliminate all observations for which (i) the

17Clearly, the assumption that two stocks represent the market is very unrealistic. However, the computational burden for more than
two stocks becomes very high. For tractability reasons we confine ourselves to two firms.
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ask is lower than the bid price, (ii) the bid is equal to zero, or (iii) the spread is lower than the minimum tick size

(equal to USD 0.05 for options trading below USD 3 and USD 0.10 in any other cases). Importantly, to mitigate

the impact of stale quotes we eliminate from the sample all the observations for which both the bid and the ask are

equal to the previous day prices. We focus on short-term options which are known to be the most liquid with a time

to maturity between 14 and 31 days.

B. Stock Returns Data

Stock data is retrieved from the CRSP database. To calculate the realized variance, we use daily returns from CRSP

for single-stocks and from OptionMetrics for the index.18 We calculate the realized variance over 21-day windows,

requiring that the stock has at least 15 non-zero return observations.

C. Difference in Beliefs Proxy

To obtain a proxy of belief disagreement, we follow the procedure in Buraschi, Trojani, and Vedolin (2008). We

use analyst forecasts of earnings per share from the Institutional Brokers Estimate System (I/B/E/S) database and

compute for each firm the mean absolute difference scaled by an indicator of earnings uncertainty. In order to get

a common belief disagreement factor for the index, we estimate a dynamic component using factor analysis for the

analysts earning forecasts. Factor analysis has mainly been implemented for forecasting measures of macroeconomic

activity and inflation (see, e.g., Stock and Watson 2002a, 2002b, 2004) and more recently in financial applications (see

Ludvigson and Ng, 2007). Dynamic factor models allows us to escape the limitations of existing empirical analyzes

in several dimensions. If comovements between individual difference in beliefs are strong, it makes sense to represent

the overall belief disagreement in the economy by an index or a few factors, which describe the common behavior

of these variables. Using dynamic factors instead of principal components has two reasons. First, we want it to be

dynamic. Second, we want to allow for cross-correlation among the idiosyncratic components, because orthogonality

is an unrealistic assumption in our setting. We estimate the common belief disagreement process according to Forni,

Hallin, Lippi, and Reichlin (2000). To estimate the common component, we weight the individual belief disagreement

processes of each firm by its market capitalization. This approach is quite natural in our context.

D. Other Control Variables

To focus on the additional explanatory power of belief disagreement, we include in our regressions several other

determinants as controls. A natural variable is market volatility. A negative volatility risk premium increases the

option price, which results in an implied volatility that is higher than the expected future volatility. This is equal

to say that the drift of the risk-neutral volatility process exceeds the drift under the physical probability measure.

Since individual volatilities are generally positively correlated with market volatility, one might argue that individual

18CRSP data only runs until December 2006. For the remaining six months, we rely on stock prices from OptionMetrics for the
individual stocks.
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volatilities will also exceed realized volatility. We calculate market volatility from CRSP and Optionmetrics prices

as the 21-day historical realized volatility.

We also add a skewness measure to our regressions. Jump risk will change the underlying distribution of stock

returns and hence it will also impact the volatility risk premium. Bakshi, Kapadia, and Madan (2003) provide

a theoretical foundation how skewness is related to the implied volatility function. The more negative the risk-

neutral skewness, the steeper the implied volatility function. We proxy skewness by the difference between the

implied volatility of a put with 0.92 strike-to-spot ratio (or the closest available) and the implied volatility of an

at-the-money put, dividend by the difference in strike-to-spot ratios.

Systematic risk effects are captured by including a market excess return, the two Fama and French (1993) factors,

and the Carhart (1997) momentum factor to our model. These data are available from Kenneth French’s web page.

Business-cycle effects are captured by macro factors. We proxy these factors by the price-earning ratio of the

market, industrial production, housing start number, the producer price index, and non-farm employment to our

regressions. Since the price-earning ratio for the S&P 100 does not exist, we use price-earnings data from the S&P

500. We estimate a macro factor with dynamic factor analysis using industrial production, housing start number,

the producer price index, non-farm employment, and the S&P 500 P/E ratio. We retrieve S&P 500 price-earnings

data from the S&P webpage, and the other macro variables we get from FRED.

We summarize the moments of the most important variables in Table 3. We find that both the index and individual

volatility risk premia are negative. The volatility risk premium of the index is twice as large as the individual risk

premia. Testing the null hypothesis that index implied and realized volatility are on average equal is very strongly

rejected, based on a t-Test with Newey-West (1987) autocorrelation consistent standard errors for 22 lags. For the

individual firms, we test for each individual firm the null hypothesis of a zero volatility risk premium, and find that

at the 5% confidence level we cannot reject the null for 25% of all firms in our sample. Driessen, Maenhout, and

Vilkov (2008) find that in their sample 2/3 of firms have a volatility risk premium which is not statistically different

from zero using average model-free implied and average realized volatility. Bakshi and Kapadia (2003b) find that

the difference between realized and implied volatility of single stock options is on average -1.5%. Their conclusions,

however, apply to a subset of 25 firms for a short time period (January 1991 to December 1995). Carr and Wu

(2009) use a similarly limited, though longer sample of 35 firms, and find a slightly stronger evidence of a variance

risk premium in individual options. Duarte and Jones (2007) study the largest set of options with 5,156 stocks and

find no evidence that the volatility risk premium is nonzero on average. However, they find strong evidence of a

conditional risk premium that varies positively with the overall level of market volatility. Goyal and Saretto (2008)

find on average a positive volatility risk premium in individual options.

[Insert Table 3 approximately here.]
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IV. Empirical Analysis

In this section, we test the main predictions of our theoretical model. We analyze in a set of panel regressions the

impact of belief disagreement on volatility risk premia of individual and index options together with the covariance

risk premium. In a second step, we sort stocks according to the size of belief disagreement and examine monthly

portfolio returns of straddles and puts being short in the index and long in the constituents. We then study whether

these returns are related to stock/option characteristics.

In our model, belief disagreement increases the volatility risk premia of both index and individual options. Since

the volatility risk premia of individual and index options are both negative, we expect a negative sign in these

regressions. If we can show that belief disagreement indeed impacts significantly the volatility risk premia, then a

trading strategy that is stratified according to the size of belief disagreement, taking advantage of this priced risk

premium, should yield excess returns.

A. Volatility Risk Premium

In this subsection, we examine several structural determinants of volatility risk premia. For each firm i, we denote

by RVi,t+δ − IVi,t+δ the volatility risk premium. We run the following regression for the individual risk premia:

RVi,t+δ − IVi,t+δ
︸ ︷︷ ︸

Volatility Risk Premium

= β0 + β1DIBi,t + β2DIB(t) +

7∑

j=3

βjControl(j)i,t+δ +

2∑

k=1

γkControlt+δ + ǫi,t+δ, (18)

where DIBi,t is the proxy of belief disagreement of each individual firm i at time t, DIBt the common disagreement

estimated from the cross-section of individual disagreement proxies, Controli,t+δ are the control variables of each

firm i at time t+ δ, and Controlt+δ are time-series determinants, such as market volatility and the macro factor. For

the index, we run the following regression:

RVt+δ − IVt+δ
︸ ︷︷ ︸

Index Volatility Risk Premium

= β0 + β1DIBt +

7∑

k=2

βkControlt+δ + ǫt+δ. (19)

To get a measure of the correlation risk premium, we use equation (15):19

CORRPt = β0 + β1DIBt +

3∑

k=2

βkControlt+δ + ǫt+δ, (20)

where CORRPt is the correlation risk premium calculated as the difference between the index and weighted individual

variance risk premia.

One main prediction from the theoretical model is that options of stocks with larger belief disagreement have both

larger volatility and correlation risk premia. The results for the baseline regressions are reported in Table 4, column

19Clearly, the relationship between the index and weighted individual volatility risk premia presented in equation (15) is only correct,
if the weights ωi are constant over time, which empirically, is not the case.
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(1) for the individual risk premia and column (5) for the index risk premium. The coefficient of belief disagreement

is economically and highly statistically significant for both the individual and index volatility risk premium. It also

has the correct sign: Higher belief disagreement increases the volatility risk premia. Belief disagreement, a jump

risk measure, and macro factors alone explain 26% of the variation in individual volatility risk premia and 22% of

the variation in index volatility risk premia. The jump risk factor is not statistically significant at the standard

significance levels and it has the wrong sign: Intuitively, we would expect that a higher jump risk would imply a

higher volatility risk premium. Market volatility and the macro factor, however, are highly statistically significant.

The loading of market volatility is negative, which is inline with the idea brought forward in Buraschi and Jackwerth

(2001) and Bakshi and Kapadia (2003b): They suggest that one reason why implied volatilities are on average greater

than realized volatilities is because market volatility is priced in equity options. The coefficient for the macro factor

is positive and the intuition is that good business cycle states decrease the volatility risk premia of both individual

and index options, while bad business cycle states increase the volatility risk premia. In a regression without belief

disagreement, we find that the adjusted R2 decreases to 10%, which indicates that it is the most important variable.

This is interesting, since we would expect that the macro factor and the market volatility would be most important

in explaining the volatility risk premia of index options, since the market volatility is by definition inherently linked

to the volatility risk premium. Finally, in column (8) of Table 4, we regress the difference between the index variance

risk premium and a weighted average of the constituents variance risk premia on the common disagreement proxy.

The correlation risk premium is positively related to belief disagreement which is in line with our theoretical findings.

The coefficient is statistically significant at the 5%. The market volatility increases the correlation risk premium,

which is intuitive. At times of high market turmoil, which are associated with both higher market volatility and

higher correlation among different stocks, risk-averse agents will demand a higher risk premium to holding a basket

of stocks or options due to heightened correlation.

[Insert Table 4 approximately here.]

B. Trading Strategies

The results of the previous subsection show that the volatility risk premia of index and single-stock options are

potentially related to disagreement about a firm’s future dividends and an business cycle indicator. In the following,

we seek to understand the extent to which belief disagreement can explain the apparent mispricing in option prices

documented in the literature. The purpose of this section is to determine whether the difference in beliefs can

generate abnormal trading opportunities by exploiting the existing structure of variance risk premia in index and

single-stock options. We do so by carrying out a series of trading strategies that are often used in the industry. We

focus on the following two benchmark strategies:

1. A (short-maturity) at-the-money straddle.

2. A (short-maturity) at-the-money put.
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We test the performance of straddle and plain vanilla put dispersion strategies implied by so called generalized

dispersion trades. In standard dispersion trades, a short volatility position in the index results in a long volatility

position in all constituents. Since trading a whole book of constituents volatility is much too expensive20, investment

banks trade only a basket of single-stock volatilities. This may be either due to liquidity issues or because investors

wish to buy single-stock volatility where they think the options are particularly cheap. The art of such a trade is

to find the cheapest options to form the basket. In our economy, the firms with the highest dispersion have options

which are under-priced and should hence yield the largest excess return. We first hedge the individual variance risk

to get the individual weights for the options, by building a vega-neutral position. We then build a delta-neutral

position to get the weights for the underlying stocks. The resulting strategy shorts all the wealth in index puts or

straddles and invests a fraction in the individual puts or straddles, a fraction in the individual stock and the rest is

invested in the risk-free bond.

Next, we construct a time series of our option strategies discussed above. To circumvent microstructure biases,

we initiate option portfolio strategies on Tuesday, as opposed to the first trading day (Monday). The returns are

constructed using, as a reference beginning price, the average of the closing bid and ask quotes. To compute the

closing price, we use the terminal payoff of the option depending on the stock price at expiration and the strike price

of the option. After expiration, a new option is chosen having the same characteristics and a new monthly return

can be calculated. We use equally weighted monthly returns on calls and puts. This procedure is repeated for each

month.

Table 5 provides summary statistics on the option portfolios. The average return on the straddle portfolio is

almost 20% and for the put portfolio it is 2.7%. Both the straddle and put portfolio return attractive Sharpe ratios:

The annualized Sharpe ratio for the Straddle portfolio is 1.96 and the one for the put portfolio it is 2.02.21 To

compare these numbers, investing all wealth into the index directly would have yielded a Sharpe ratio of 0.38 and a

short index put portfolio would have produced a Sharpe ratio of 0.79.22 Our numbers for the straddle portfolio are

comparable to Goyal and Saretto (2008), who report a monthly return of 22% for a straddle portfolio and 2.6% for

the delta-hedged puts. Coval and Shumway (2001) report 3% return per week for a zero-beta at-the-money straddle

portfolio on the S&P 500.

We note that these findings also complement the work of Coval and Shumway (2001) and Bakshi and Kapadia

(2003a) who find that negative delta hedged gains are consistent with a negative volatility risk premium. In our

economy, higher belief disagreement results in a drop in market returns and an increase of the market volatility.

This negative correlation yields the negative volatility risk premium. The negative risk premium is directly related

20Driessen, Maenhout, and Vilkov (2008) find that their correlation trading strategy does not yield significant abnormal returns after
transaction costs and margins. In their study they employ the trading strategy on all constituents of the S&P 100 which is in general
too costly. An industry standard is to reduce the number of constituents. The reason is the so called spread risk (or so called slippage).
The spread risk is created by the liquidity and hence market makers; if an option is less actively traded, the market maker widens the
volatility spread that she is prepared to trade for. In constructing a market or capitalization weighted single stock basket, the dispersion
trader requires very tight spreads that actually reflect the degree of correlation that an underlying single stock may have with an index,
as the spread deviates away from this range then the whole dispersion trade becomes less economically viable.

21We note, however, that Sharpe ratios can be highly misleading when analyzing derivatives (see Goetzmann, Ingersoll, Spiegel, and
Welch, 2007).

22The annualized Sharpe ratio for the short put strategy is comparable to Bondarenko (2003).

29



to the delta-hedged gains. The volatility risk premium in our economy is θσSi
= −cov

(
dλ
λ , dσSi

)
. The risk premium

is decreasing in the covariance between the stock volatility and the stochastic weight, λ(t). When λ(t) is high, the

representative agent puts less weight on the first agent. Since stock volatility is negatively correlated with changes

in λ(t), the stock itself is more valuable to the first agent, and she requires a smaller risk premium.

Altogether the results confirm our theoretical model. Higher belief disagreement increases the spread between the

implied volatilities of single-stock options and the spread between the implied volatility of single-stocks and index

options. Both the straddle and the put dispersion portfolio yield economically meaningful returns.

[Insert Table 5 approximately here.]

C. Risk Adjusted Returns

Next, we examine whether the option trading strategy returns can be explained by a standard asset pricing model,

such as the CAPM.23 To this end, we regress the straddle and put option returns of the two strategies on various

factors which are known to impact the cross-section of stock returns. We use the standard Fama and French (1993)

factor, and the Carhart (1997) momentum factor.

We report the CAPM alpha and beta estimates in Table 5. The CAPM beta is insignificant for both the dispersion

straddle and dispersion put portfolio, which means that the trading strategy is quite successful in hedging away the

market risk. The CAPM beta for the short index put portfolio is much higher in value and statistically significant

at the 5% level. The CAPM alpha is highly statistically significant and positive for all three strategies. The CAPM

alpha of the straddle portfolio is approximately 16% with a t-value of 4.42. For the put portfolio the CAPM alpha is

2% with a t-value of 2.23. The short index put portfolio has a higher alpha coefficient, 11%, but it is only significant

at the 10% level. The size of magnitude is approximately inline with the alphas estimated in Driessen, Maenhout,

and Vilkov (2008) and Goyal and Saretto (2008). The size, book-to-market, and momentum factors load negatively

on the strategy returns, but are all insignificant.

V. Robustness Checks

Our results support the hypothesis that belief disagreement is an important priced risk factor for volatility risk

premia of individual and index options. We have also shown that an option trading strategy that exploits this priced

disagreement risk yields excess returns. In this section, we assess the robustness of our results by studying the impact

of transaction costs or whether other sources of risk capture the effect of belief disagreement.

A. Transaction Costs

There is a large body of literature that documents that transaction costs in the options market are quite large and

that they are in part responsible for some pricing anomalies. However, we note that the literature has not reached

23Option prices are convex functions of the underlying stock price and therefore the linear relation implied by the CAPM introduces
a misspecification. We acknowledge that as a consequence, the CAPM α can be strongly biased (see Broadie, Chernov, and Johannes,
2007).
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complete consensus on the issue. Constantinides, Jackwerth, and Perrakis (2008) find that transaction costs do not

eliminate the abnormal profits of index put and call strategies for different moneyness. Santa-Clara and Saretto

(2007), on the other hand, find that transaction costs and margin requirements severely impact the profitability of

index option trading strategies that involve writing out-of-the-money puts. The intuition is that these frictions limit

arbitrageurs from supplying liquidity to the market. Therefore, trading strategies that involve providing liquidity

to the market (writing options) have an exceptionally good performance. Goyal and Saretto (2008) find that the

profits are higher for illiquid stock options than for liquid options. In particular, liquidity considerations reduce, but

do not eliminate, the economically important profits of their portfolios of individual options. Driessen, Maenhout,

and Vilkov (2008) find that transaction costs and margin requirements significantly reduce the profitability of their

correlation trading strategy because of the larger bid-ask spread for individual options.

At first sight, one could expect that the results should not be explained by the transaction costs or bid-ask

spreads. This is because we focus on buy-and-hold strategies that involve very little trading. In fact, options are

assumed to be traded only once, namely at the beginning of each period. Moreover, our trading strategies do not

involve the writing of out-of-the-money options, which are particularly prone to these trading frictions. The average

bid-ask spread for the index options is approximately 6.23% and for the individual options it amounts to 8.29%. In

the following, we study the impact of these spreads on the performance of our trading strategies. In the previous

analysis, we have used mid quotes calculated from the bid-ask spread. Now, we calculate bid returns when options

are written and ask returns when options are bought. The results are reported in Table 6. Indeed, we find that the

bid-ask spreads lower the return of the straddle strategy by approximately 42% from 19% monthly return to 11%.

For the put strategy, the average returns decreases from 2.7% to 1.2%. In line with the literature, the impact on the

other strategies is small. The decrease in the short index put strategy is 13%, from a 37% to 32% monthly return.

The annualized Sharpe ratio of the straddle strategy is still above one. For the put strategy the Sharpe ratio drops

to 0.8. The CAPM alpha is still statistically significant, but now only at the 5% level.

[Insert Table 6 approximately here.]

B. Fundamental Uncertainty and Earning Announcements

When firms announce earnings every quarter, they reveal firm fundamentals which were, to some extent, unknown

to investors prior to the announcement. One could argue that this uncertainty about the fundamentals of the firm

is related to investor’s expectations about future fundamentals of the firm such as earnings. Empirical evidence has

shown that volatility risk premia tend to be high prior to an earnings announcement. It is therefore an interesting

question whether the results implied by our proxy of belief disagreement are affected by the introduction of an

uncertainty measure.

Ederington and Lee (1996) and Beber and Brandt (2006) document a strong decrease in implied volatility sub-

sequent to major macroeconomic announcements in U.S. Treasury bond futures. While the first document that the

implied volatility falls around announcements, the latter find in addition that the skewness and kurtosis of the options
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returns distribution change after announcements. Dubinsky and Johannes (2006) find the same effect for earning

announcements: Implied volatilities of single stock options increase prior to and decrease subsequent to an earning

announcement. In particular, the risk-neutral volatility of price jumps due to earning announcements, capturing the

anticipated uncertainty for the equity price embedded in an earnings announcements, should be a priced risk factor.

For single stock options, they find that there is no priced jump risk premium. However, there is evidence of a jump

volatility risk premium.24

Dubinsky and Johannes (2006) develop an estimator of fundamental uncertainty surrounding announcement dates

using option prices. In the following, we use their term-structure estimator which is defined as:25

(

σQ
time

)2

= Ti

(

(σt,Ti)
2 − (σt+1,Ti−1)

2
)

,

where σt,Ti is the Black-Scholes implied volatility of an at-the-money option at time t with Ti days to maturity.

In a similar vein, Frazzini and Lamont (2007) find that there is a premium around scheduled earnings announce-

ment dates, which is large, robust, and strongly related to the fact that volume surges around announcement dates.

One explanation for the high volume around earnings announcements is differences of opinion about the meaning of

the announcements (Kandel and Pearson, 1995). Hence, one explanation for the earnings announcement premium

is that differences of opinion increase around earnings announcements, leading to a rise in price. Since volume and

returns move together during and after the announcement, the volume hypothesis can explain both the event-day

returns and the post-event drift in returns.

In the following, we want to test whether belief disagreement is subsumed by these earning announcement effects

and whether our results are robust to the inclusion of the uncertainty measure proposed in Dubinsky and Johannes

(2006).

B.1. Fundamental Uncertainty

Comparing our measure of belief disagreement to fundamental uncertainty, we find that the average belief disagree-

ment is 50% higher than the fundamental uncertainty. Moreover, the proxy for belief disagreement has also more

time-variation than the uncertainty proxy in terms of standard deviation.

We add fundamental uncertainty to our regression in Table 4, columns (4) and (7), respectively. We find that

fundamental uncertainty is loading negatively on the volatility risk premium, which is intuitive: The higher the

fundamental uncertainty, the more negative the volatility risk premium. It is interesting to note, however, that

the slope coefficient of belief disagreement is not affected by the inclusion of fundamental uncertainty. The size of

the belief disagreement coefficients is larger both for the individual and the index options volatility risk premium

regression.

24An evidence of a risk premium attached to the volatility of jump sizes in index options is also reported in Broadie, Chernov, and
Johannes (2007).

25Their term-structure estimator is less noisy than a time-series estimator, as it does not depend on implied volatilities at different
dates.
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B.2. Earning Announcements

Quarterly earning announcement dates are from the I/B/E/S database. As reported in DellaVigna and Pollet (2009)

before 1995, a high number of earnings announcements was recorded with an error of at least one trading day.

During the more recent years, the accuracy of the earnings date has increased substantially, and is almost perfect

after December 1994. The variable earning announcement is a dummy variable which takes the value of 1 if there

has been an earning announcement the previous month. The variable interaction is belief disagreement multiplied

by the dummy earning surprise.

The results are summarized in Table 4, column (2). We note that the variable earning announcement is negative

and highly significant, but the interaction term is not. Again, the inclusion of this variable does not affect the

statistical significance of the belief disagreement coefficient. This suggests that belief disagreement has a significant

impact on individual volatility risk premia independent of the presence of earning announcements.

C. Net-Buying Pressure

An alternative hypothesis which could possibly explain the volatility risk premium in single-stock and index options

is the demand-based hypothesis in Bollen and Whaley (2004). As they argue, buying pressure in index put options

drives the slope of the implied volatility, while buying pressure for calls on single-stocks appears to drive the shape

of the implied volatility of single-stocks. Motivated by this evidence, we add buying pressure to our regression.

In accordance to Bollen and Whaley (2004), we define net buying pressure as the difference between the number

of contracts traded during the day at prices higher than the prevailing bid/ask quote midpoint and the number of

contracts traded during the day at prices below the prevailing bid/ask quote midpoint, times the absolute value of

the option’s delta and then scale this difference by the total trading volume across all option series.

Results are reported in Table 4, columns (3) and (6). Apart from the coefficient of demand pressure in puts for

the index, the estimated coefficients are insignificant. Demand pressure in puts loads negatively on the volatility

risk premium: Higher demand pressure in index puts increases the implied volatility, which leads to the increase in

volatility risk premium. The estimated slope coefficient of belief disagreement is not affected by the inclusion of this

variable.

VI. Conclusion

In this paper, we study theoretically and empirically the relation between belief disagreement among investors

and the cross-sectional differences in option returns. Our model extends in a parsimonious way the standard Lucas

(1978) model by considering an incomplete-market economy in which agents have heterogeneous beliefs about the

firm’s fundamentals and a business cycle indicator. We model two firms whose expected dividend growth rates are

unknown to the investors, and hence have to be estimated. This feature generates an additional risk factor due to
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disagreement, which is not priced in the standard multi-asset Lucas (1978) economy (see e.g., Cochrane, Longstaff,

and Santa-Clara, 2008). This risk factor generates interesting asset pricing implications. We test our model using

panel data consisting of data on professional earning forecasts, option returns on both index and individual options,

and stock return data. We summarize our findings as follows.

First, we find that belief disagreement unambiguously increases the volatility risk premia of both index and

individual options due to the optimal wealth shifting across investors. In our model, risk is transferred from the

pessimistic agent to the optimistic investors. A negative dividend shock increases the volatility of the stock and

decreases the stock price itself. This negative correlation between stock price and volatility induces a negative

skewness. The skewness of the index can be larger or smaller than the skewness of the individual firm depending on

the on the share of the firm in the aggregate market, the disagreement about the business cycle component, and the

disagreement about both firms.

A negative dividend shock in both firms increases the volatility even more. This is due to the decreasing marginal

utility of consumption of both agents, which generates endogenously the even stronger negative skewness in the

market. The stronger negative skewness of the index follows from this doubling effect. Hence, the slope of the

index implied volatility function is steeper than for the individual options. This is empirically supported e.g., by

the findings in Bakshi, Kapadia, and Madan (2003). We empirically find strong support that belief disagreement

impacts the volatility risk premia of both individual and index options. These results are robust to the inclusion of

other risk factors.

Second, in our model volatility risk premia of individual and index options represent compensation for priced dis-

agreement risk. Hence, in the cross-section the volatility risk premium will depend on the size of belief heterogeneity

of this particular firm. The volatility risk premium of the index is larger due to the more negative slope of the implied

volatility smile of index options. Moreover, if volatility risk premia indeed represent a compensation for disagreement

risk, then a portfolio which is sorted according to the size of belief disagreement and aimed at exploiting this premia,

should generate excess returns. To this end, we simulate trading strategies which are short index volatility and long

individual volatility. We do this by selling index at-the-money straddles (puts) and buying individual at-the-money

straddles (puts). We find that in our economy a straddle (put) trading strategy yields significant excess returns and

a Sharpe ratio which is three times (twice) as large as being short the whole wealth in index put options – a strategy

which has been shown to be very successful in the literature. We also test these implications empirically. We employ

the same trading strategies on S&P 100 index options and individual options on all constituents of the index. We

find that these strategies earn excess returns of 20% per month with a very high Sharpe ratio. These results persist

in any size, book-to-market, and momentum portfolio. Taking into account transaction costs, the profitability of the

trading strategies are lowered. However, the Sharpe ratios still exceed the Sharpe ratios of traditional option trading

strategies.

There are several potentially interesting avenues for future research. First, the robustness section has revealed

that disagreement and earning announcement seem to be intimately linked. Frazzini and Lamont (2007) find a

substantial announcement premium of between 7% and 18% and attribute this premium to higher trading volume
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at the announcement date induced by the buying pressure of some investors. It could be interesting to study how

news or earning announcements affect investors’ beliefs. To this end, one could model a signal/news channel for

each firm, potentially correlated among firms, to include jumps which occur deterministically at given earning or

dividend announcement dates. In such an economy, higher trading volume is endogenously induced by hightened

disagreement. Second, the seminal work of Dixit and Pindyck (1994) shows that investment behavior becomes more

cautious when uncertainty is high. One could think about a multi firm production economy, where uncertainty mixes

with adjustment costs for capital and labor. If the firm-specific disagreement interacts with the adjustment costs

then one could potentially generate interesting real-option effects which drive fluctuations in future investments. Of

particular interest could be the interaction of demand shocks and uncertainty. The terrorists’ attacks of September

2001 illustrate this point more clearly: In the wake of the attacks, the airline industry suffered a large decrease in

overall demand in airline transportation and at the same time, forecasts of future profitability became more uncertain

in this sector.26 Without any model, it is hard to disentangle the different effects of uncertainty and demand shocks

on the productivity of the overall sector. Using an average sector-wide Tobin’s q, we find in preliminary research

that sector-specific disagreement has an economically significant impact on expected productivity which is robust to

the inclusion of standard determinants of capital efficiency.

26We find that the disagreement in the transportation sector more than doubled in October 2001 compared to the previous year value
and dropped by a factor of three the next year.
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Appendices

A Proofs

A-1 Equilibrium

The solution of the disagreement and the learning dynamics are given in detail in Buraschi, Trojani, and Vedolin (2008).
The solution of the equilibrium is a straight-forward extension of the proofs to two assets; see Buraschi, Trojani, and Vedolin
(2008).

A-2 Joint Laplace Transform

To save space, we defer all calculations to a separate technical Appendix, which is available on the authors’ webpage.

A-3 Stock Price Volatility, Correlation and Skewness

The price of the stock satisfies a diffusion process which is given by:
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Using the following the derivatives,
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we can easily compute the stock volatility which is given by
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The correlation between stock 1 and stock 2 can be calculated as follows:
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Assume that the stock return is related to the market return via the following two factor representation:

ri(t) = βMrM (t) + βΨΨ(t) + ǫi(t), (A-1)

where ri is the return on the stock price of firm i, rM is the return on the market, and Ψ is the common disagreement. The
skewness of ri is defined as:27

SKEW (ri) = E
(
(ri − E(ri))

3
)
.

27For simplicity, we omit the standardization by the variance to the power 3/2.
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Plugging relation (A-1) into this definition yields:

SKEW (ri) = E
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where E(ri) := mM . The last equality comes from the fact that ǫi ∼ N(0, 1) and that all co-skewness terms with ǫi are zero,
because we assume independence between Ψ, mM and ǫi.
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To synthesize the risk-neutral skewness, we follow Bakshi and Madan (2000) that the entire collection of twice-differentiable
payoff functions with bounded expectation can be spanned algebraically. Applying this result to the stock price S1(t), we get
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0
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where GS1
is the partial derivative of the payoff function G(S1) with respect to S1 and GS1S1

the corresponding second-order
partial derivative. By setting S̃1 = S1(t), we obtain the final formula for the risk-neutral skewness of the stock, after mimicking
the steps in Bakshi, Kapadia, and Madan (2003) (Theorem 1, p. 137).

Let s(t, T ) = ln(S1(t + T )) be the firm value return between time t and T . The risk-neutral skewness of s(t, T ) of stock
S1 is given by
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The skewness of stock 2 and of the index are equivalent.

This concludes the discussion about the stock volatility and skewness.
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B Dispersion Trading

A-1 The Basics

Consider an index with n stocks. σi is the volatility of stock i, ωi is the weight of stock i in the index, and ρij is the correlation
between stock i and stock j. The index itself has the following volatility:

σ2
Index =

n∑

i=1

ω2
i σ2

i +

n∑

i6=j

ωiωjσiσjρij .

The average index variance is:
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ω2
i σ2

i .

We can now compare this average number to the actual index volatility. We define a dispersion spread, D, as:
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√
√
√
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Index =
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σ̄2
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Index.

The upper bound for the dispersion spread is now simply the average basket volatility and the lower bound is zero. A trading
strategy which bets on the dispersion spread has two legs. If the investor is long dispersion, then she is long the volatility
of the constituents and short index volatility. So, it would be desirable to have lots of volatility on the constituents and no
volatility on the index. One of the main drivers is the exposure of this strategy to correlation. Particularly, it is quite easy to
see that if one is long dispersion then she is also short in correlation, by considering the average correlation:

ρ̄ =
σ2

Index −
∑n

i=1 ω2
i σ2

i
∑n

i6=j ωiωjσiσj

A-2 P&L of a Dispersion Trade

For simplicity reasons, we study a case with constant volatility.28 So, consider a delta-hedged portfolio which is long the stock
options and short the index options. Remember, that the P&L of a delta-hedged option Π in a Black and Scholes framework
is (see Hull, 2002)

P&L = θ

[(
dS

Sσ
√

dt

)2

− 1

]

,

where the θ of the option is defined as the options sensitivity with respect to a change in the time to maturity.

Let the term n = dS

Sσ
√

dt
represent the standardized move of the underlying stock S on the considered time period. Then,

the P&L of the index can be written as

P&L = θI

(
n2

I − 1
)
,

= θI

((
n∑

i=1

ωini
σi

σIndex

)2

− 1

)

,

= θI





n∑

i=1

(

ωini
σi

σIndex

)2

+
∑

i6=j

ωiωjσiσj

σIndex
ninj − 1



 ,

= θI

n∑

i=1

ω2
i σ2

i

σ2
Index

(
n2

i − 1
)

+ θI

∑

i6=j

ωiωjσiσj

σ2
Index

(ninj − δij) .

28Adding stochastic volatility yields analogous expressions with some additional terms which account for the Vega, Volga, and Vanna
of the option.
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Hence, a dispersion trade being short the index options and being long the individual options has the following P&L:

P&L =

n∑

i=1

P&Li − P&LI ,

=
n∑

i=1

θi

(
n2

i − 1
)

+ θI

(
n2

I − 1
)
.

The short and long positions in the options are reflected in the sign of the θi. A long (short) position means a positive
(negative) θ.

A-3 Weighting Scheme for Dispersion Trading

Since trading all constituents would be far too expensive, the investor has to ask herself which stock she should pick and then,
how to weight them. There are the following weighting schemes, which are employed in the industry:

1. Vega Hedging:
The investor will build her dispersion such that the vega of the index equals the sum of the vegas of the constituents.

2. Gamma Hedging:
The gamma of the index is worth the sum of the gamma of the components. As the portfolio is already delta-hedged,
this weighting scheme protects the investor against any move in the stocks, but leaves her with a vega position.

3. Theta Hedging:
This strategy results in a short vega and a short gamma position.29

29To this end, remember that the relationship between the option’s theta and gamma is as follows:

θ ≈ −

1

2
ΓS2σ2,

where S is the underlying spot price.
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Table 1

Choice of Parameter Values and Benchmark Values of State Variables

This table lists the parameter values used for all figures in the paper. We calibrate the model to the mean and volatility of the dividends
on the S&P 500. The average growth rate for the period 1996-2006 is 5.93% and the volatility is 3.52%. The initial values for the
conditional variances are set to their steady-state variances.

Parameters for Fundamentals

Long-term growth rate of dividend growth a0Di 0.01

Mean-reversion parameter of dividend growth a1Di -0.01

Volatility of dividend σDi 0.07

Initial level of dividend Di 1.00

Initial level of dividend growth mA
Di

0.01

Parameters for Signal

Long-term growth rate of signal a0z 0.01

Mean-reversion parameter of signal a1z -0.03

Volatility of signal σz 0.06

Agent specific Parameters

Relative risk aversion for both agents γ 2.00

Time Preference Parameter ρ 0.02

45



Table 2

Moments of Simulated Option Strategies

This table reports summary statics of the simulated strategy returns, average, standard deviation, skewness, kurtosis and Sharpe ratio.
The Dispersion Straddle and Dispersion Put portfolios are formed by investing 100% of the wealth in shorting index straddles or puts,
respectively, and investing a fraction of wealth into the options of the firm with the highest belief disagreement such that the portfolio is
vega neutral. The remainder is invested in the individual stock of this particular firm such that the portfolio is delta neutral. The index
consists of two equally weighted stocks. We simulate 2,877 trading days and 1,000 simulation runs. All options are at-the-money with a
maturity of 28 trading days.

Dispersion Straddle Dispersion Put Index Short Index Put

Return 0.127 0.050 0.010 0.117
StDev 0.231 0.121 0.038 0.653
Skewness -3.127 -4.125 -7.423 -8.239
Kurtosis 7.532 8.022 5.819 8.477
Ann. SR 1.867 1.482 0.683 0.607
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Table 3

Summary Statistics of Most Important Variables

We report summary statistics of the main variables used in the analysis. The data runs from January 1996 to June 2007, with monthly
frequency. Risk Premium is the difference between the realized and implied volatility. The realized volatility is calculated from stock
return data retrieved from the CRSP database. It is calculated over a 21-day window, requiring that there are at least 15 nonzero
observations per window. The implied volatility is calculated from option prices taken from the Optionmetrics database. Dispersion
Individual is defined as the ratio of the mean absolute difference of analysts’ forecasts and the standard deviation of these forecasts,
retrieved from the I/B/E/S database. Dispersion Common is a common component estimated by dynamic factor analysis from the
individual disagreement series. Market Volatility is defined as the historical volatility over a 21-day window. Corr Individual (Index) is
the time-series average correlation with the individual (index) volatility risk premium.

Mean StDev 0.25 percentile 0.75 percentile Corr Individual Corr Index

Risk Premium Individual -0.0110 0.0357 -0.0356 -0.0041 1.0000 0.6917
Risk Premium Index -0.0261 0.0336 -0.0475 -0.0131 0.6917 1.0000
DIB Individual 0.3089 0.2038 0.1612 0.3787 0.5973 –
DIB Common 0.0410 0.0231 0.0264 0.0486 – 0.5252
Market Volatility 0.1663 0.0752 0.1070 0.2076 -0.0160 -0.6262
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Table 4

Volatility and Correlation Risk Premium Regressions

Using data from January 1996 to June 2007, we run regressions from the volatility risk premium of individual and index options on a number of determinants. The volatility risk
premium is defined as the difference between the options’ 21 day realized and implied volatility. The correlation risk premium is approximated as the difference between the index
volatility risk premium and a weighted average of the constituents volatility risk premia. DiB is our proxy for difference in beliefs for each firm, defined as the mean absolute difference
among analysts forecasts standardized, Dib Common is our proxy for difference in beliefs for the market, Market Vola is the 21 day realized volatility of the index, Skewness is
measured as the difference between the implied volatility of a put with 0.92 strike-to-spot ratio (or the closest available) and the implied volatility of an at-the-money put, dividend
by the difference in strike-to-spot ratios. Earning Announcement is a dummy variable which takes the value of 1 if there is an earning announcement scheduled for the respective

month and zero else. Interaction is the variable Earning Announcement multiplied by DiB. Fundamental Uncertainty is defined as
(

σ
Q
time

)2
= Ti

((
σt,Ti

)2
−

(
σt+1,Ti−1

)2
)

. DP

is demand pressure and is defined as the difference between the number of contracts traded during the day at prices higher than the prevailing bid/ask quote midpoint and the
number of contracts traded during the day at prices below the prevailing bid/ask quote midpoint, times the absolute value of the option’s delta and then scale this difference by
the total trading volume across all option series. Macro Factor is a common component estimated via dynamic factor analysis from Industrial production, Housing Starts, S&P 500
P/E ratio, and, Producer Price index (PPI). We use logarithmic changes over the past twelve months. ⋆ denotes significance at the 10% level, ⋆⋆ denotes significance at the 5%
level and ⋆ ⋆ ⋆ denotes significance at the 1% level. All estimations use autocorrelation and heteroskedasticity-consistent t-statistics reported in parenthesis below the estimated
coefficient.

Individual Index Correlation

(1) (2) (3) (4) (5) (6) (7) (8)
Constant −0.001⋆⋆⋆ −0.001⋆⋆⋆ −0.001⋆⋆⋆ −0.001⋆⋆⋆ −0.001⋆⋆⋆ −0.001⋆⋆⋆ −0.001⋆⋆⋆ −0.002⋆⋆⋆

(-8.21) (-7.37) (-5.78) (-6.48) (-7.89) (-6.11) (-4.32) (-2.71)
DiB −0.037⋆⋆⋆ −0.043⋆⋆⋆ −0.042⋆⋆⋆ −0.038⋆⋆⋆

(-22.18) (-17.83) (-19.82) (-18.82)
Common DiB −0.012⋆⋆ −0.009⋆⋆ −0.010⋆⋆ −0.019⋆⋆ −0.028⋆⋆⋆ −0.038⋆⋆⋆ −0.045⋆⋆⋆ −0.098⋆⋆

(-2.37) (-2.21) (-2.49) (-2.53) (-5.28) (-6.28) (-5.37) (-2.12)
Market Vola −0.028⋆⋆ −0.031⋆⋆ −0.030⋆⋆ −0.029⋆ −0.097⋆⋆⋆ −0.091⋆⋆ −0.136⋆⋆ −0.041⋆⋆

(-2.45) (-1.99) (-2.17) (-1.83) (-3.01) (-2.47) (-2.33) (-2.35)
Macro Factor 0.031⋆⋆ 0.039⋆⋆ 0.021⋆⋆ 0.013⋆⋆ 0.010⋆⋆ 0.012⋆ 0.017⋆⋆⋆ 0.018

(2.25) (2.52) (2.33) (2.39) (2.29) (1.69) (3.41) (1.49)
Skewness 0.012⋆ 0.011 0.009 0.008 0.014⋆⋆ 0.011 0.002

(1.71) (1.12) (0.83) (1.16) (1.89) (1.32) (1.17)
DP Calls 0.041 −0.098

(1.61) (-1.02)
DP Puts 0.020 −0.029⋆

(1.29) (-1.71)
Earning Announc. −0.004⋆⋆⋆

(-2.74)
Interaction -0.018

(-1.13)
Fund. Uncertainty −0.019⋆⋆⋆ −0.121⋆⋆⋆

(-2.99) (-3.29)
Adj. R2 0.26 0.28 0.30 0.31 0.22 0.24 0.25 0.08
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Table 5

Returns on Option Strategies

This table reports summary statics of the strategy returns, average, standard deviation, skewness, kurtosis and Sharpe ratio. The
Dispersion Straddle and Dispersion Put portfolios are formed by investing 100% of the wealth in shorting index straddles or puts,
respectively, and investing a fraction of wealth into the options of firms with the highest belief disagreement such that the portfolio is
vega neutral. The remainder is invested in the individual stocks such that the portfolio is delta neutral. The index put is an equally-
weighted portfolio of index put options with Black-Scholes deltas ranging from -0.8 to -0.2. Option returns of single-stocks and the index
are sampled between January 1996 and June 2007. All statistics are monthly, except the Sharpe ratios, which are annualized.

Dispersion Straddle Dispersion Put S&P 100 Short Index Put

Return 0.199 0.027 0.007 0.371
StDev 0.347 0.042 0.048 1.612
Skewness -1.131 -2.876 -0.620 -3.499
Kurtosis 5.120 4.327 1.782 4.439
Ann. SR 1.962 2.027 0.381 0.792
CAPM Alpha 0.162⋆⋆⋆ 0.019⋆⋆ 0.110⋆

t-Stat 4.42 2.23 1.65
CAPM Beta 0.231 0.012 3.239⋆⋆

t-Stat 1.12 1.53 2.38
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Table 6

Impact of Transaction Costs on Returns on Option Strategies

This table reports summary statics of the strategy returns, average, standard deviation, skewness, kurtosis and Sharpe ratio. We sort
stocks based into quintiles based on the size of belief disagreement. Quintile 5 consists of stocks with the highest belief disagreement
while quintile one consists of stocks with the lowest belief disagreement. The index put is an equally-weighted portfolio of 1-month index
put options with Black-Scholes deltas ranging from -0.8 to -0.2. We use bid prices when options are written and ask prices when options
are bought. Option returns of single-stocks and the index are sampled between January 1996 and June 2007. All statistics are monthly,
except the Sharpe ratios, which are annualized.

Mid Point Bid-to-Ask

ATM Straddle Put Short Index Put ATM Straddle Put Short Index Put

Return 0.199 0.027 0.371 0.115 0.012 0.321
StDev 0.347 0.042 1.612 0.356 0.040 1.752
Ann. SR 1.962 2.027 0.792 1.094 0.822 0.630
CAPM Alpha 0.162⋆⋆⋆ 0.019⋆⋆ 0.110⋆ 0.076⋆⋆ 0.009⋆ 0.076⋆

t-Stat 4.42 2.23 1.64 2.11 1.78 1.64
CAPM Beta 0.231 0.012 3.239⋆⋆ 0.523 0.045 0.412
t-Stat 1.12 1.53 2.38 1.01 1.21 1.43
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Figure 1. Industry and Index Volatility Risk Premia and Uncertainty-DiB
The left panel plots the average volatility risk premium defined as the difference between the 30 day at-the-money implied volatility and
the 30 day realized volatility for different sectors together with the corresponding sector disagreement proxies. The right panel plots the
Hodrick-Prescott filtered index volatility risk premium defined as the difference between the end-of-month VIX and the annualized 30
day realized volatility on the S&P 500 together with the Hodrick-Prescott filtered common disagreement proxy. Realized volatility is
the square root of the sum of squared daily log returns on the S&P 500 over the month. Both volatility measures are of monthly basis
and are available at the end of each observation month. The shaded areas represent financial or economic crisis defined according to the
NBER.
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Figure 2. Constituents Returns on S&P 100, Correlation, and Uncertainty
This figure plots the average returns of all constituents on the S&P 100 in October 2000 and October 2001 together with the common
uncertainty proxy, the average pairwise correlation and the index return. The average pairwise correlation is calculated from daily returns
using a one-month window.
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Figure 3. Uncertainty Correlation
The upper left panel plots the instantaneous correlation between the disagreement about firm 1, ΨD1

, and firm 2, ΨD2
, as a function of

the weights αD1
and αD2

for different levels of difference in subjective uncertainty (σµ1
z
−σµ2

z
≡ ∆σµz ). The upper right panel plots the

instantaneous correlation between the disagreement about firm 1, ΨD1
, and the signal, Ψz , as a function of the weights αD1

and αD2
for

different levels of difference in subjective uncertainty (σµ1
z
− σµ2

z
≡ ∆σµz ). The lower panels plot the same correlations but for different

levels of average economic uncertainty, (σ̄µz ) and ∆σµz is fixed to 0.01. The parameters chosen are summarized in Table 1.

53



0
0.075

0.15
0.225

0.3 0

0.075

0.15

0.225

0.3
0

0.05

0.1

0.15

0.2

0.25

Ψz

Stock Return Correlation, αD1
= αD2

= 0.1

ΨD1

S
to

ck
R

et
u
rn

C
o
rr

el
a
ti
o
n

0
0.075

0.15
0.225

0.3 0

0.075

0.15

0.225

0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Ψz

Stock Return Correlation, αD1
= αD2

= 0.45

ΨD1
S
to

ck
R

et
u
rn

C
o
rr

el
a
ti
o
n∆σµz

= 0.02
∆σµz

= 0.02

∆σµz
= 0.01

∆σµz
= 0.01

0
0.075

0.15
0.225

0.3 0

0.075

0.15

0.225

0.3
0   

0.1

0.2

0.3

0.4

0.5

0.6

Ψz

Stock Return Correlation, αD1
= αD2

= 0.1

ΨD1

S
to

ck
R

et
u
rn

C
o
rr

el
a
ti
o
n

0
0.075

0.15
0.225

0.3 0

0.075

0.15

0.225

0.3
0   

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ψz

Stock Return Correlation, αD1
= αD2

= 0.45

ΨD1

S
to

ck
R

et
u
rn

C
o
rr

el
a
ti
o
n

σ̄µz
= 0.1

σ̄µz
= 0.1

σ̄µz
= 0.02

σ̄µz
= 0.02

Figure 4. Stock Return Correlation
This figure plots the return correlation of stock 1 and stock 2 as a function of belief disagreement ΨD1

and ΨD2
. The parameters chosen

are summarized in Table 1.
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Figure 5. Risk-Neutral Skewness for Individual Stock and Index Options
These figures plot the risk-neutral skewness of the returns of stock 1 (left panel) and the index (right panel). The parameters chosen are
summarized in Table 1.
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Figure 6. Index and Individual Stock Volatility Risk Premia
This figure plots the volatility risk premia for the individual stock and the index. In the left panel, we plot the risk premia for high
disagreement, i.e. ΨD1

= ΨD2
= Ψz = 0.3 and low disagreement, i.e. ΨD1

= ΨD2
= Ψz = 0.1. The right panel plots the risk premia

for high disagreement, i.e. ΨD1
= ΨD2

= 0.3 and Ψz = 0 and low disagreement, i.e. ΨD1
= ΨD2

= 0.1 and Ψz = 0. The volatility

risk premium is defined as the difference between the implied volatility and the square root of the integrated variance EA
t

(∫ T
t

σ2(s)ds
)

under the physical measure. The parameters chosen are summarized in Table 1. Moneyness, is defined as ln
(

S
K

)

.
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Figure 7. Volatility and Covariance Risk Premia
The left panel plots the volatility risk premium for firm 1 as a function of the disagreement about the growth rate of firm 1, ΨD1

, and
the disagreement about the signal, Ψz. The volatility risk premium is calculated as the difference between the 30 day realized volatility
and the volatility swap rate using a discretized version of equation 17. The 30 day realized volatility is calculated from running 10,000
simulations and averaging. The parameters chosen are summarized in Table 1.
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