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1 Introduction

A common problem in modern portfolio management is to earn higher expected return

than a pre-specified unmanaged benchmark portfolio, while minimizing the variance

of the difference of the two returns, the “tracking error variance.” Active managers,

who are compensated for performance relative to a given benchmark, typically face

this kind of problem. While this problem is obviously interesting in practice, it is also

important for academic scholars since its distinct portfolio policies and equilibrium

implications add new insights to the conventional mean-variance setting.

This paper makes the following contributions. We develop explicit solutions for

the optimal active portfolios, with an array of possible constraints, under the assump-

tion that active managers have information about security returns (the “conditioning

information,” which this paper interprets to mean any predetermined information

active managers can access) that is not available to their clients. We focus in par-

ticular, on problems in which the manager uses the information to optimize mean

variance performance measures that the client without the conditioning information

can observe. The generic form of the optimal portfolios can be characterized by three

components: a mean-variance efficient portfolio, a “hedging demand” for the bench-

mark portfolio, and the portfolio with global minimum conditional second moment.

Such a representation generalizes Hansen and Richard (1987), and specializes Fama

(1996) and Ferson, Siegel, and Xu (2006). A simulation shows that, abstracting from

misspecification and estimation errors, our solutions potentially improve the measured

performance by a factor of four when compared to portfolios ignoring conditioning

information. When implemented realistically on currency or equity data, the optimal

portfolios actually produce robust superior performance.

The problem of tracking error investing is formally posed in Roll (1992). He argues

that it takes a long time to reliably measure the value-added from a fund manager, and

a benchmark reduces the estimation error in portfolio performance. Starks (1987),

Admati and Pfleiderer (1997), and Ou-Yang (2003) study compensation contracts
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involving benchmarks and address the agency problems between the fund managers

and their clients that arises because the two parties potentially have conflicts of

interests. Jorion (2003) argues that active managers may not be willing to disclose

their information to the clients, and ex post performance based on realized returns is

very noisy. Such issues motivate the use of constraints on portfolio risk profiles. Roll

(1992), Jorion (2003), Stutzer (2003), and Alexander and Baptista (2008) consider

different constraints and provide analytical solutions. Brennan (1993), Cuoco and

Kaniel (2007), Gómez and Zapatero (2003), Stutzer (2003), and Cornell and Roll

(2005) derive market equilibrium implications of tracking error variance minimization.

The above studies raise interesting issues related to tracking error variance mini-

mization but ignore the presence of conditioning information. Conditioning informa-

tion plays a central role in modern portfolio management since a substantial portion of

clients delegate their investment decisions to professional money managers in the be-

lief that managers are better informed; see Avramov and Chordia (2006), and Bansal,

Dahlquist, and Harvey (2004). This is the first study to explore the optimal portfo-

lios of tracking error investors and their equilibrium implications when conditioning

information is explicit.1

There are alternative ways to exploit conditioning information. An active manager

may pursue “conditional tracking efficiency” or CTE, where he uses the conditioning

information to optimize conditional measures. Even if conditioning information is not

explicitly stated, we can interpret the means and variances in previous studies like Roll

(1992), Jorion (2003), and Stutzer (2003) as conditional moments to produce CTE

solutions. This is what these authors probably have in mind. However, this paper

illustrates that when there is conditioning information, an active manager may pursue

“unconditional tracking efficiency” or UTE, where he uses conditioning information

1Zhou (2008) recently introduces conditioning information to the active portfolio management

context in a different problem. He revisits the fundamental law of active portfolio management by

Grinold (1989) and Grinold and Kahn (2000), and considers how an informed active manger can

maximize unconditional value-added, approximated by unconditional risk-adjusted portfolio return.
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to form portfolios that optimize unconditional performance measures.2 We argue this

is a natural formulation. We call problems which ignore conditioning information

altogether “no-information tracking efficiency” or NITE.

The central contribution of this paper is to develop the UTE problem. The infor-

mation structure of UTE is common in practice. The portfolio manager conducting

an optimization uses more information than is available to his clients. If the clients

do not have conditioning information, they can only form unconditional performance

measures. It is sensible that the active manager uses conditioning information to

form portfolios that maximize his performance from the clients’ perspective. Our

focus on unconditional measures is consistent with Dybvig and Ross (1985), Hansen

and Richard (1987), Ferson and Siegel (2001), Abhyankar, Basu, and Stremme (2005),

Ferson, Siegel, and Xu (2006), and Zhou (2008).

The rest of this paper is organized as follows. Section 2 provides solutions to UTE

versions of the modern portfolio management problem. It also discusses the properties

of the solutions, connecting them to the familiar concepts of mean-variance efficiency

and hedging demands. Section 3 gives extensions. Section 4 provides empirical ex-

amples. Section 5 presents an international financial market application. Section 6

concludes the paper.

2 The Portfolio Management Problem

Consider an active manager who faces N risky assets. Suppose R is an N -dimensional

vector of raw asset returns, Rb is the raw return of the benchmark with unconditional

mean µb and unconditional variance σ2
b . The unconditional moments are the ones we

estimate using the usual sample means and variances. At the beginning of the period,

the active manager uses conditioning information Z to form the optimal portfolio

2In an Appendix, Corollaries 1 and 4 provide simple analytical illustration of the amount of

unconditional inefficiency a CTE strategy produces.
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weights, x(Z), and the portfolio return is Rp = x(Z)′R.

Under UTE versions of modern portfolio management, the active manager’s prob-

lem is to minimize the unconditional tracking error variance, var(Rp − Rb), for a

given level of “alpha” ᾱp, i.e., IE(Rp − Rb) = ᾱp. The active manager may also face

portfolio risk constraints such as cov(Rp, Rb) = σ̄bp or var(Rp) = σ̄2
p for given values

of σ̄bp or σ̄2
p . In addition, a portfolio weight constraint which restricts the sum of

the portfolio weights to be 1 may be imposed. The active manager’s problem can be

summarized as

min
x(Z)

var(Rp − Rb),

s.t. IE(Rp −Rb) = ᾱp,

cov(Rp, Rb) = σ̄bp or var(Rp) = σ̄2
p ,

x(Z)′1 = 1.

(1)

where 1 is an N -dimensional vector of ones. The general solution to the optimization

problem (1) is provided in Proposition 1.

Proposition 1 The general solution for the UTE portfolios has the following generic

form,

x(Z) = λ1xmv(Z) + λ2xh(Z) + λ3x0(Z) (2)

≡ λ1Φ(Z)µ(Z) + λ2Φ(Z)γ(Z) + λ3x0(Z), (3)

where

µ(Z) = IE(R|Z),

Ω(Z) = IE(RR′|Z),

γ(Z) = IE[R(Rb − µb)|Z].

(4)

and

Φ(Z) = Ω(Z)−1 − Ω(Z)−1
11

′Ω(Z)−1

1′Ω(Z)−11
, (5)

x0(Z) =
Ω(Z)−1

1

1′Ω(Z)−11
. (6)
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The parameters λ1, λ2, and λ3 are constants, whose values depend on the portfolio

constraints, but not on the realizations of the conditioning information Z.

Proof: The solution can be found using calculus of variations, as shown in the Ap-

pendix.

2.1 Interpreting the Solution

The optimal portfolio weights in Equation (2) are the sum of three terms, similar to

Fama’s (1996) representation of multifactor minimum variance portfolios and Ferson,

Siegel, and Xu’s (2006) results for mimicking portfolios with conditioning informa-

tion. Motivated by Ferson and Siegel (2001) and Ferson, Siegel, and Xu (2006), we

interpret the zero net investment portfolios xmv(Z) and xh(Z) as the “mean-variance

component” and the “hedging demand component,” respectively, and the normal

portfolio x0(Z) as the “global minimum conditional second moment portfolio weight

vector.”

Hansen and Richard (1987) show that the return on an unconditional minimum

variance portfolio, Rumv, can be decomposed as

Rumv = λeRe +Rn, (7)

where Re is a zero net investment portfolio, λe is a constant, and Rn has portfolio

weights that sum to 1. Our generic form of the UTE solution produces3

Rp = x(Z)′R = λ1xmv(Z)′R + λ2xh(Z)′R + x0(Z)′R

≡ λ1Rmv + λ2Rh +R0.
(8)

Since x0(Z)′1 = 1, xmv(Z)′1 = 0, xh(Z)′1 = 0, and λ1, λ2 are constants, Equation

(8) adds an additional term, Rh, to the Hansen and Richard (1987) representation.

This is a special case of Ferson, Siegel, and Xu’s (2006) “K + 2 fund separation,”

3Here since xmv(Z) and xh(Z) are zero net investment portfolios, x(Z)′1 = 1 if and only if

λ3 = 1. Special cases are discussed below.
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where K is the number of relevant risk factors to hedge in the mimicking portfolio

construction context. In our case, K = 1. Thus, a tracking error investor ends up

with an induced “hedging demand” relative to the benchmark portfolio.

The component λ1xmv(Z) captures mean-variance investing behavior. It is in-

teresting to compare this component with Ferson and Siegel’s (2001) uncondition-

ally mean-variance efficient portfolio, the portfolio minimizing unconditional portfo-

lio variance for a given unconditional expected return. For a given expected return

restriction, the solutions are not identical.4 The difference, in Lagrangian multiplier

rather than in conditional mean, is induced by tracking error variance minimization.

Intuitively, to maintain the same expected return as the unconditionally efficient

portfolio, the UTE portfolio has to adjust its position to offset the expected return

generated by the hedging demand component.

The term λ2xh(Z) captures the “hedging demand” induced by the benchmark.

Intuitively, to minimize tracking error, the manager tends to hedge fluctuations in the

benchmark. Appendix A.5 shows that hedging demand for the benchmark portfolio

can induce a priced risk factor in equilibrium.

Hedging demand does not always matter in modern portfolio management. Con-

sider two special cases: λ2 = 0 or γ(Z) = 0. In either case, the UTE portfolio will

reduce to the unconditionally efficient portfolio of Ferson and Siegel (2001). γ(Z) = 0

is unlikely, because it implies that all portfolios have zero covariance with benchmark.

There is no way to hedge in this case, even the manager has preference for hedging

benchmark.5

The case λ2 = 0 can happen when a portfolio risk constraint is not binding. One

possibility is that the active manager has preference unaffected by the portfolio risk

4Note imposing an alpha constraint is equivalent to imposing IE(Rp) = ᾱp + µb.
5An extreme case is when the benchmark in a risk free rate. In this case, the tracking error

variance minimization problem reduces to the classical minimum variance problem, and the optimal

portfolio is the same as Ferson and Siegel’s (2001) unconditionally efficient portfolio.

6



constraint. Another possibility is that the constraint carries a zero shadow price.6

In either situation, the shadow price of the portfolio risk constraint is zero, and no

hedging demand is induced by the benchmark.

3 Extensions

The generic solution (3) can accommodate different portfolio constraints. This is

important because portfolio constraints are common in practice, and can be imposed

to improve the out-of-sample performance of classical mean-variance portfolio solu-

tions.7 However, the literature on unconditional portfolio efficiency with conditioning

information has not developed portfolio constraints. This paper studies portfolio

constraints and presents evidence of their effects on the out-of-sample performance

of UTE strategies. We consider constraints on systematic (beta) risk and on total

portfolio variance, without a risk free asset. In the absence of conditioning informa-

tion, these problems reduce to the formulations in Roll (1992), Jorion (2003), and

Alexandar and Baptista (2008). We allow a risk free asset and a fixed benchmark.

A special case reduces to Stutzer’s (2003) problem. We then discuss direct upper

and lower bound constraints on portfolio weights, e.g. Jagannathan and Ma (2003),

and relate our solutions to the norm-constrained portfolios of DeMiguel, Garlappi,

Nogales, and Uppal (2009). Finally, we consider a problem in which clients may have

6For example, in Proposition 2 (no risk free rate, with a portfolio beta constraint), if we set the

constraint

β̄p =
1

σ2

b

[

(ᾱp + µb − µ0)ψ2

ψ1

+ σb0

]

, (9)

then λ2 = 0. Similarly, if we set

σ̄2

p =
(ᾱp + µb − µ0)

2

ψ1

+ Ω0 − (ᾱp + µb)
2, (10)

in Proposition 3 (no risk free rate, with a total portfolio variance constraint), then λ2 = 0 as well.
7See, for example, Frost and Savarino (1988), Chan, Karceski, and Lakonishok (1999), Jagan-

nathan and Ma (2003), DeMiguel, Garlappi, and Uppal (2007), Kan and Zhou (2007), and Alexander,

Baptista, and Yan (2008), and DeMiguel, Garlappi, Nogales, and Uppal (2009).

7



a subset of the active manager’s information.

3.1 No Risk Free Asset, Constraints on Portfolio Risk

Consider an active manager who faces N risky assets, no risk free asset and a re-

striction that the portfolio beta on the benchmark equals a target beta β̄p, i.e.,

cov(Rp, Rb)/σ
2
b = β̄p. The beta constraint is equivalent to setting σ̄bp = β̄pσ

2
b in

(1). This constraint is sensible when the clients want to restrict the systematic risk

of the portfolio. The active manager’s problem is summarized as

min
x(Z)

var(Rp −Rb)

s.t. IE(Rp − Rb) = ᾱp, cov(Rp, Rb) = β̄pσ
2
b , x(Z)′1 = 1.

(11)

Roll (1992) solves this problem without taking into account the conditioning infor-

mation. The solution to the optimization problem (11) is provided in Proposition 2

in the Appendix. It is a special case of (3) with particular values for the λ’s.

Jorion (2003) considers a total portfolio risk constraint, i.e., the active manager

has to maintain var(Rp) = σ̄2
p. The total risk constraint can be translated into a

constraint on value-at-risk; see Jorion (2000) and Alexandar and Baptista (2008).

The UTE version of this problem is summarized as

min
x(Z)

var(Rp − Rb)

s.t. IE(Rp −Rb) = ᾱp,var(Rp, Rb) = σ̄2
p , x(Z)′1 = 1.

(12)

The solution to the UTE version of Jorion’s (2003) problem with conditioning infor-

mation is presented in Proposition 3 in the Appendix. Once again the solution is a

special case of (3).
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3.2 No Risk Free Asset and No Portfolio Risk Constraint

If we relax the constraints on portfolio risk, the active manager’s problem reduces to

the following problem

min
x(Z)

var(Rp −Rb)

s.t. IE(Rp − Rb) = ᾱp, x(Z)′1 = 1.

(13)

Roll (1992) considers this problem but again no conditioning information is used.

The solution is provided in Proposition 4 in the Appendix.

3.3 Exogenous Benchmark Portfolio Weights

Suppose that the benchmark portfolio weights are exogenous, observable, and fixed

at the beginning of the holding period. The weights may vary from period to period,

provided that they are in the manager’s information set. The observability of fixed

exogenous benchmark portfolio weights is assumed in Roll (1992), Jorion (2003), and

Stutzer (2003), for example. This implies that the active manager is able to hold

or replicate the benchmark. Actual benchmark weights may also evolve during the

measurement period. We do not model the effects of intra-period variation in the

benchmark weights.8

First suppose there is no risk free asset and the benchmark portfolio weight vector

is xb(Z). Define w(Z) ≡ x(Z)−xb(Z), where w(Z) is a zero net investment portfolio

weight vector. We can define the portfolio alpha, beta, variance, and tracking error

variance in terms of w(Z) and the conditional moments in (4). The active manager’s

8In the case that the benchmark is difficult to replicate but an active portfolio manager can

engage in a futures contract on the benchmark, an exchange-traded fund indexing the benchmark,

or a managed portfolio mimicking the benchmark. Treating a feasible mimicking portfolio as an

investable asset, the active manager can apply our solutions as an approximation.
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problem is

min
w(Z)

var(Rp − Rb) = IE[w(Z)′Ω(Z)w(Z)] − {IE[w(Z)′µ(Z)]}2,

s.t. IE[w(Z)′µ(Z)] = ᾱp,

cov(Rp, Rb) = σ̄bp or var(Rp) = σ̄2
p,

w(Z)′1 = 0,

(14)

for pre-determined ᾱp and σ̄bp or σ̄2
p , where the choice variable is w(Z). As in Propo-

sition 1, the solution has the following generic form,

x(Z) = w(Z) + xb(Z),

w(Z) = λ1xmv(Z) + λ2xh(Z) + λ3x0(Z).
(15)

The solutions are provided in Propositions 5–7 in the Appendix, which solve for

the relevant values of the λ’s.

3.4 The Presence of a Risk Free Asset

Now we consider examples with a risk free asset with return Rf . The risk free rate

can be conditionally risk free, i.e. varying from period to period, and observed at the

beginning of each period. In this formulation of the problem the active manager faces

a benchmark portfolio with return in excess of the risk free rate, i.e., rb ≡ Rb − Rf ,

and uses conditioning information, Z, to choose an unrestricted weights vector x(Z)

of the N risky assets, investing the rest of the investable funds in the risk free asset

or borrowing at the rate Rf . Suppose r ≡ (R − Rf1) is an N -vector of risky asset

returns in excess of the risk free rate, and rb is the benchmark return in excess of Rf .

The observed returns on the investor’s portfolio will be Rp = x(Z)′r+Rf ≡ rp +Rf ,

where rp is the excess return of the active portfolio.
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The active manager’s problem becomes

min
x(Z)

var(rp − rb)

s.t. IE(rp − rb) = ᾱp

cov(rp, rb)/var(rb) = β̄p or var(rp) = σ̄2
p .

(16)

The solutions are provided in Propositions 8 and 9 in the Appendix.9 Stutzer (2003)

solves a special case in which portfolio risk constraints and conditioning information

are absent.

3.5 Portfolio Weight Constraints

Direct constraints on portfolio weights are common in practice and well studied in

the academic literature. Empirical studies show that portfolio efficiency is gained out

of sample when certain portfolio weight constraints are imposed.10 We can consider a

portfolio weight lower bound x = (x1, . . . , xN )′, where xj corresponds to the minimum

weight on asset j. A lower bound becomes no short-sale constraint when x = 0. Upper

bounds can be defined similarly as x̄ = (x1, . . . , xN)′.11

To impose the above constraints in the UTE problem, we add

xjp(Z) ≥ xj, (17)

xjp(Z) ≤ xj, (18)

j = 1, . . . , N . For simplicity, we ignore portfolio risk constraints for now. The optimal

solution to, problem (13) for example, along with constraints (17) and (18), has the

9Transforming the N risky asset returns into returns in excess of the benchmark and applying

the unconditionally efficient portfolio in Theorem 2 of Ferson and Siegel (2001) yields the UTE

solution in Proposition 9(iii). An assumption of this approach is that the active manager can hold

or replicate the benchmark portfolio.
10See Frost and Savarino (1988), Jagannathan and Ma (2003), and DeMiguel, Garlappi, and Uppal

(2007), among others.
11Jagannathan and Ma (2003) set x = 0 and x1 = · · · = xN .
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first order conditions of

Ω(Z)xp(Z) = λ1µ(Z) + γ(Z) + λ3(Z)1 + Λ(Z) − Λ(Z) almost surely, (19)

IE[xp(Z)′µ(Z)] = ᾱp + µb, (20)

Λj(Z) ≥ 0, or Λj(Z) = 0 if xjp(Z) > xj , (21)

Λ
j
(Z) ≥ 0, or Λ

j
(Z) = 0 if xjp(Z) < xj , (22)

where Λ(Z) and Λ(Z) are N -vectors of shadow prices of constraints (17) and (18),

with typical elements Λj(Z) and Λ
j
(Z), respectively. The solution has the form

xp(Z) = λ1Φ(Z)µ(Z) + Φ(Z)γ(Z) + x0(Z) + Φ(Z)[Λ(Z) − Λ(Z)], (23)

subject to (21) and (22). Similar to DeMiguel, Garlappi, and Uppal (2007), we can

define an adjusted conditional return vector

µ†(Z) = µ(Z) +
Λ(Z) − Λ(Z)

λ1
, (24)

and the above solution (23) becomes the familiar generic form (3). As a result, we

have a “shrinkage in conditional means” interpretation: assuming λ1 > 0, the lower

(upper) bound constraint is more likely to be binding when conditional expected

return is low (high), and the adjusted conditional means tilt toward the average.

An alternative shrinkage interpretation focuses on shrinkage in the conditional

second moment matrix of returns, generalizing Jagannathan and Ma (2003). Define

Ω†(Z) = Ω(Z) + [1Λ(Z)′ + Λ(Z)1′] − [1Λ(Z)′ + Λ(Z)1′], (25)

and we will have12

Ω†(Z)xp(Z) = λ1µ(Z) + γ(Z) + [λ3(Z) + Λ(Z)′x− Λ(Z)′x]1 (26)

≡ λ1µ(Z) + γ(Z) + λ†3(Z)1, (27)

which corresponds to (87). In other words, xp(Z) solves a UTE problem in which

conditional second moment matrix is Ω†(Z) and no portfolio weight upper or lower

12We utilize the relations Λ(Z)′[xp(Z) − x] = 0, Λ(Z)′[xp(Z) − x] = 0, xp(Z)′1 = 1, and (19).
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bound constraint is imposed. The optimal UTE solution has the familiar generic

form, with Φ(Z) replaced by

Φ†(Z) ≡ Ω†(Z)−1 − Ω†(Z)−1
11

′Ω†(Z)−1

1′Ω†(Z)−11
. (28)

Since the upper (lower) bound constraint is more likely to be binding when conditional

second moment of an asset is low (high), we have a shrinkage in conditional second

moments.

3.6 Relation to Portfolio Norm Constraints

DeMiguel, Garlappi, Nogales, and Uppal (2009) derive a general class nesting a num-

ber of portfolio weight constraints. When the UTE problem is considered, their

“1-norm” constraint imposes

‖xp(Z)‖1 ≡ |xp(Z)|′1 ≤ d1. (29)

If we set d1 = 1, the above problem reduces to a shortsale-constrained problem,13 and

the solution is in (23) and (21) in which x = 0 and Λ(Z) is turned off.

DeMiguel, Garlappi, Nogales, and Uppal (2009) also consider an “A-norm” con-

straint, which imposes

‖xp(Z)‖A ≡ xp(Z)′Axp(Z) ≤ dA. (30)

The problem considered in (12) is a special case in which we only consider equality

constraint and set A to unconditional covariance matrix of returns and dA = σ̄2
p .

3.7 Partial Observability of Conditioning Information by the

Clients

The UTE portfolios we develop are based on the assumption that the clients do not

have access to the conditioning information. In practice it may be possible that some

13See Proposition 1 of DeMiguel, Garlappi, Nogales, and Uppal (2009).
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sophisticated clients observe part of the active manager’s conditioning information

and compensate him based on the conditional performance measure implied by their

information. Suppose the clients have information z ⊂ Z. The active manager’s

problem becomes a special CTE problem defined over z,

min
x(Z)

var(Rp −Rb|z),

s.t. IE(Rp − Rb|z) = ᾱp(z), x(Z)′1 = 1,

(31)

and possibly other portfolio risk constraints. The generic form of the optimal portfolio

becomes

x(Z) = λ1(z)xmv(Z) + λ2(z)xh(Z) + λ3x0(Z), (32)

where λ1(z) and λ2(z) depend on the clients’ information. The values of the condi-

tional λ(z)’s may be found as straightforward generalizations of our UTE solutions.

However, such solutions are more difficult to implement than the UTE portfolios,

given that z is heterogeneous across clients and hard to measure.

4 Empirical Examples

We consider two special cases to develop intuition about the relation between the

active portfolio weight function and the conditioning information. In the first case

we impose no portfolio risk constraint. In the second example we examine the effects

of a portfolio risk constraint.

4.1 Behavior of the UTE Portfolio Weights

Suppose the active manager has only two risky assets a and b with raw returns Ra

and Rb, respectively, and a risk free asset with return Rf . Assume asset b is the

benchmark, i.e., the benchmark portfolio weights are xb = (0, 1)′. The conditioning

information is a scalar random variable Z.
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Define ra and rb as the asset returns in excess of risk free rate and suppose that

the conditional expectations of ra and rb are linear in Z, and that the covariance

matrix of ra and rb conditional on Z is constant14,

IE





ra

rb

∣

∣

∣

∣

∣

∣

Z



 =





δ0a + δ1aZ

δ0b + δ1bZ



 ,var





ra

rb

∣

∣
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 . (33)

Since there is a risk free asset and the benchmark portfolio weights are known,

Proposition 9(iii) gives the active portfolio weight function as x(Z) = w(Z) + xb,

where

w(Z) = λ1Ω(Z)−1µ(Z)

=
λ1

|Ω(Z)|





IE(r2
b |Z)IE(ra|Z) − IE(rb|Z)IE(rarb|Z)

IE(r2
a|Z)IE(rb|Z) − IE(ra|Z)IE(rarb|Z)



 ,
(34)

and

|Ω(Z)| = IE(r2
a|Z)IE(r2

b |Z) − [IE(rarb|Z)]2. (35)

In Equation (34) |Ω(Z)| is a function of Z4, and both IE(r2
b |Z)IE(ra|Z)−IE(rb|Z)

IE(rarb|Z) and IE(r2
a|Z)IE(rb|Z)−IE(ra|Z)IE(rarb|Z) are functions of Z3, so we con-

clude that w(Z) → 0 and thus x(Z) → xb as Z → ±∞. This result generalizes

Ferson and Siegel (2001), who show that the unconditionally efficient portfolio has a

conservative response to strong signals. Ferson, Siegel, and Xu (2006) use a similar

characterization. The active manager becomes very conservative when the signal is

strong – he simply holds the benchmark in the limit. The intuition is that when the

conditioning information is extreme, the active manager may easily satisfy the alpha

constraint by holding a tiny w(Z), and at the same time minimize the tracking error

variance by investing most of the fund in the benchmark.

14Such a formulation corresponds to a linear predictive model with conditional homoskedasticity,

as would be implied by joint normality of (ra, rb, Z).
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Figure 1 depicts the relation between the portfolio weights in excess of the bench-

mark, i.e., w(Z), and the strength of (standardized) signal.15 Here Z is positively

correlated with ra and negatively correlated with rb. Consider the case when Z > 0.

As Z increases from zero, the portfolio weight on asset a (dotted curve) is positive

and increases initially. After hitting its peak where the standardized Z is 2.5, the

weight on asset a shrinks quickly and approaches zero. The portfolio weight on asset

b in excess of the benchmark (solid curve) decreases initially, and then increases and

approaches zero after reaching its trough at which the standardized Z is 3.3. When

Z < 0, the pattern reverses.

4.2 Portfolio Risk Constraints on UTE Weights

We illustrate the effects of portfolio risk constraints in the previous example. The

portfolio risk constraint is β̄p = 1.5. Proposition 9(i) or 9(ii) gives the optimal

portfolio weights as x(Z) = w(Z) + xb, where

w(Z) =
λ1 − λ2µb
|Ω(Z)|





IE(r2
b |Z)IE(ra|Z) − IE(rb|Z)IE(rarb|Z)

IE(r2
a|Z)IE(rb|Z) − IE(ra|Z)IE(rarb|Z)



+ λ2xb, (36)

Under the assumption in (33), the first term of the right hand side of w(Z) approaches

(0, 0)′ as Z → ±∞, and the second term is a fraction of the benchmark portfolio,

proportional to the shadow price of the portfolio risk constraint. Thus x(Z) →
(1 + λ2)xb when the active manager receives a very strong signal.

The active manager does not hold the benchmark given an extreme signal, when a

portfolio risk constraint is imposed. Figure 2 depicts the influences of the constraint

on the portfolio weights in excess of the benchmark, using the same set of parameters

as in the first example and adding a β̄p = 1.5 constraint. While the weight on asset a

15We use a currency portfolio return (described below) to draw this picture. The Japanese Yen is

asset a, UK Pounds are asset b, and the conditioning information is the lagged return of Japanese

Yen. δ’s are estimated by least squares, and the conditional covariance matrix is the covariance

matrix of the residuals, scaled by 1%. ᾱp is set to 5% annually.
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(dotted curve) displays similar limiting behavior to Figure 1, the portfolio weight on

asset b (solid curve) does not approach zero even when Z gets very large. Instead, it

approaches λ2 = 0.702. The reason is to meet the portfolio risk constraint. Here the

target beta is 1.5, while the realized beta is 1.702.

5 Empirical Analysis

We assess the performance of the tracking efficient portfolios, with or without con-

ditioning information, in this section. We provide an application to international

financial data. We choose a currency portfolio management example for several rea-

sons. First, conditioning information is likely to be important in currency trading

given the large swings in conditional risk premiums (e.g. Hansen and Hodrick (1980)

and Fama (1984)). Second, the currency market is very large and liquid. Microstruc-

ture and default risk issues are relatively minor.16 Third, it is relatively easy to short

currencies. The models without constraints may therefore be more realistic in cur-

rency markets where short selling is relatively inexpensive. Fourth, there is room for

active management since many currency market participants, such as central banks,

equity managers, tourists, and international businesses, do not concentrate on ex-

change rate exposure. Note that, our approach can be applied to other asset classes

as well; an application to equity portfolio management is presented in Section 5.6.3.

Suppose that a US-based active manager speculates in currencies and forms cur-

rency portfolios using four major currencies: US Dollars, Japanese Yen, UK Pounds,

and Euro. The manager faces an unmanaged currency benchmark portfolio of the

16For example, the bid-ask spread of Eurocurrencies could be as low as 15 basis points (Grabbe,

1996).
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above four currencies17, defined by Rb,t = x′b,t−1Rt, where xb,t−1 is a vector of exoge-

nous benchmark weights known at t− 1, and the return on currency j is

Rj
t =

sjt (1 + yjt−1)

sjt−1

− 1, (39)

where sjt is the spot exchange rate for currency j, and yjt−1 is the one-period Eurocur-

rency deposit rate or Treasury rate for currency j, observed at time t− 1.18

We use monthly data for spot and forward exchange rates, and deposit rates for

the above four currencies for the period from August 1978 to January 2005. We

deflate all returns by US inflation rates19 so that all returns are risky real returns.

We annualize monthly real returns, and report annual rates by multiplying them by

12.

17In practice, currency benchmarks are often defined in the following fashion,

Rb,t = x′b,t−1[(1 − ωh)Ruc
t + ωhR

c
t ], (37)

where xb,t−1 depends on relative equity market value of each country, Ruc
t is a vector of uncovered

returns, defined in (39), Rc
t is a vector of covered returns, defined as

Rc,j
t =

f j
t−1

(1 + yj
t−1

)

sj
t−1

− 1, (38)

where f j is the forward exchange rate for currency j. Conventionally the pre-determined scalar ωh

is called “hedge ratio,” usually set to 0, 0.5, or 1 in practice. The case we consider in our empirical

study is a special case where ωh is set to zero. While not tabulated here, the UTE portfolios

remain advantageous regardless the choice of ωh. This is because the predictable component in Rb

is increasing with ωh.
18We acquire exchange rate data for Japanese Yen from the Federal Reserve Bank of St. Louis

website, and the UK Pounds and synthetic Euro exchange rates from Datastream. The Eurodollar,

Euroyen, and Europound deposit rates are also available in Datastream. We construct the monthly

interest rate for synthetic Euro using the same method Datastream uses to calculate synthetic Euro

interest rate, which is a GDP-weighted average of Euro region interest rates. Should some interest

rates be unavailable, we rescale the other weights so that they sum to one.
19We define the inflation rate as the growth rate of the not-seasonally-adjusted Consumer Price

Index for all urban consumers (all items less food and energy), available from Federal Reserve Bank

of St. Louis website.
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Motivated by Hansen and Hodrick (1980), Bilson (1981), and Fama (1984), we

consider the following conditioning information: past forecast errors, defined as the

difference between the spot exchange rate and the lagged forward exchange rate20;

the forward premium, defined as the difference between the logarithms of the forward

exchange rate and the contemporaneous spot exchange rate; past depreciation rates,

defined as the difference between the logarithms of the spot exchange rate and the

lagged spot exchange rate; and lagged real dollar returns on the individual currencies.

5.1 Estimation

We describe the estimation of the conditional moments in this section. As in the

previous section, we assume a very simple and conservative formulation for the re-

turn generating process: Suppose returns are linear in predictor variables and the

conditional covariance matrix is constant.21

Let Rj
t denote the returns on currency j at time t. The conditioning information

available to the active manager at time t is Zt−1. The conditional expected return

for currency j, µj(Zt−1) = IE(Rj |Zt−1), is the fitted value of the following time series

regression,

Rj
t = Z ′

t−1δ
j + εjt . (40)

The conditional second moment matrix Ω(Z) in the presence of conditioning infor-

mation is

Ω(Zt−1) = Σε + µ(Zt−1)µ(Zt−1)
′, (41)

20All forward exchange rate data, except for synthetic Euro, are from Datastream. We construct

the implied forward exchange rates by assuming covered interest rate parity holds. We use similar

methods to construct the forward exchange rate for other currencies whenever explicit forward rate

data are missing.
21Such a formulation is conservative in the sense that we model only a first order effect for

conditional means and assume conditional homoskedasticity for the covariance matrix estimator. As

described in a later subsection, a factor model capturing the first two moments of currency returns

provides substantial improvement to the UTE portfolios.
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where Σε, assumed to be constant over time, is the covariance matrix of the εjt ’s in

(40). Ω(Zt−1) is time-varying due to the time-varying nature of µ(Zt−1). Estimators

δ and Σε are the maximum likelihood estimators under joint normality of R and Z.

We assume xb,t−1 is known throughout our empirical study. With the knowledge

of µ(Z) and Ω(Z), we infer γ(Z) by γ(Z) = Ω(Z)xb−µbµ(Z). With µ(Z), γ(Z), and

Ω(Z), we estimate the portfolio parameters µ0, σb0, Ω0, ψ’s, and η’s by taking the

sample means.

5.2 In-Sample Predictability and Model Selection

For in-sample study, we use the sample from October 1978 to December 1998, a total

of 243 observations. The Euro was formally introduced in January 1999, and we leave

the post-1998 data, 73 observations, for an out-of-sample study.

Time series regressions like (40) of currency returns on all the instruments jointly

suggest that the instruments have explanatory power.22 To mitigate overfitting in the

out-of-sample experiments, we consider a parsimonious specification in which every

predictor variable has joint explanatory power for all currencies.23 The final instru-

ments are a constant, the depreciation rates of the Japanese Yen and UK Pounds, the

lagged returns of the Japanese Yen, UK Pounds, and US Dollars. These instruments

produce p-values below 0.2% in joint tests of significance with White’s (1980) correc-

tion, but the adjusted R2 is small; typically only half of one percent. Presumably in

practice some active managers could find conditioning information that works better.

If we find that the conditioning information in the examples is important, it is likely

to be more important in practice.

22The estimation results are available upon request.
23We use the following model selection procedure. We use GMM to estimate (40) for all assets

simultaneously. For each predictor variable Zi, we test the joint hypothesis of δj
i = 0 for all i, where

Zi and δj
i are the i-th element of Z and δj , respectively. We eliminate Zi if the δj

i ’s are not jointly

significant. Each equation is forced to have the same set of instruments.

20



5.3 Potential Benefits of the UTE Portfolios

This section explores the potential advantage of our unconditionally tracking efficient

(UTE) solutions over the no-information tracking efficient (NITE) and the condition-

ally tracking efficient (CTE) portfolios.24 The comparison abstracts from misspec-

ification and estimation errors of the statistical moments. The reason we want to

abstract these issues is to allow the active manager to use the “correct” models for

the conditional moments in the simulations (i.e. the same ones that generate the

simulated data).

We abstract from these issues because in the simulation we are able to observe

a large simulated data set and know its data generating process, we can use the

correctly specified models for the conditional moments and estimate the parameters

precisely.

We simulate 1,000 paths, each of them containing an artificial data set of 12,000

observations. This is equivalent to the number of monthly observations in 1,000

years.25 Since the parameters of the data generating process are fixed and the manager

knows the structure of the data generating process, the maximum likelihood estimates

24We consider a special case of CTE solutions which can be obtained by reinterpreting all the

moments in NITE solutions as conditional moments.
25We first use a block bootstrap to resample the instruments and the growth rate of equity market

values in pairs, creating an artificial data set of 12,000 observations. The benchmark weights can be

calculated by simulated equity market values: We first randomly draw an observation from the equity

market value data and treat it as the initial value for the simulated series, then apply the simulated

growth rates to that initial value and then construct the whole artificial series for equity values.

Then we form the returns for individual currencies and the benchmark, using the return generating

process in the parsimonious regression model (using the model selection procedure in footnote 23) for

first moment and a constant covariance matrix for second moment. When estimating the conditional

moments, we use exactly the same specification used to calibrate the simulation. The unconditional

moments and other parameters can be obtained by taking sample averages. Then we form the NITE,

the CTE and the UTE portfolios and compute the performance measures. The exercise is repeated

1,000 times.
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that he uses will essentially be at the probability limits.

The performance of the active portfolios is summarized in Table I. We first con-

sider the case where there is no portfolio risk constraint and no riskless rate. The

target alphas are set to 1%, 3%, and 5% per year. For each portfolio, we compute

the difference between the active portfolio return and the benchmark return. We

report the sample average of the difference between the two returns, “alpha,” and

the standard error of the difference, “tracking error volatility.” We also report the

statistic summarizing the ratio of alpha to tracking error volatility, the “information

ratio.”26

The advantage of using conditioning information to form dynamic portfolios is

obvious, and the dominance of the UTE portfolio is substantial. While Table I shows

that all of the active portfolios on average achieve target alphas precisely, the tracking

error volatilities of the NITE portfolios are larger than that of the UTE and the CTE

portfolios. With an information ratio of 0.358, the UTE portfolios almost double

that of the CTE portfolios (0.193) and are four times better than that of the NITE

portfolios (0.072).27 None of the 1,000 simulation paths presents NITE portfolios or

CTE portfolios with smaller tracking error volatilities or greater information ratios

than the UTE portfolios.

The potential benefit of the UTE portfolios can be visualized by the tracking effi-

ciency frontiers, defined as the graphical relation between the alphas of the portfolios

and their tracking error volatilities. Figure 3 shows the tracking efficiency frontiers,

averaged across the 1,000 simulation trials. Clearly the CTE portfolios dominate the

NITE portfolios, and UTE portfolios dominate the NITE and the CTE portfolios, in

the sense that for any given alpha, the superior portfolios have much lower tracking

26Note this is different from Treynor and Black’s (1973) “appraisal ratio,” i.e. Jensen’s (1969) alpha

divided by residual volatility, which is also sometimes referred as information ratio (e.g. Grinold

and Kahn, 1999).
27Note in this case, since the Lagrangian multipliers are proportional to ᾱp, the information ratio

is invariant to ᾱp for non-zero alphas. See Corollary 2.
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error volatility than do the inferior portfolios.

5.4 In-Sample Performance

We next turn to the data to evaluate the performance of the tracking efficient portfo-

lios in a realistic finite sample. First we use the data for the period October 1978 to

December 1998 to estimate unconditional and conditional moments, assuming linear

conditional first moment and constant conditional covariance structure, and apply

the optimal portfolio solutions to the data.

Besides the information ratio, empirically we also consider the following measures:

the first one is an “incentive,” expressed as the additional performance required by the

NITE portfolio such that it is on par with a dynamic portfolio. Suppose uninformed

clients are indifferent between the performance of an enhanced NITE portfolio and

the performance of an actively managed portfolio when we equate their unconditional

information ratios:

αp
√

var(Rp − Rb)
=

αNITE + Ip
√

var(RNITE −Rb)
. (42)

Solving,

Ip = ypαp − αNITE, (43)

yp ≡
√

var(RNITE − Rb)
√

var(Rp − Rb)
, (44)

which has an equivalent representation

Ip = [ypRp + (1 − yp)Rb] − RNITE (45)

≡ RH − RNITE. (46)

Therefore Ip is a (vertical) distance measure extending M2 (see Graham and Har-

vey (1997) and Modigliani and Modigliani (1997)) to the tracking-error investment

context: we use a management portfolio and the benchmark portfolio to form a hy-

pothetical portfolio H whose tracking error volatility is the same as that of the NITE
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portfolio, then we find the return differential of the hypothetical portfolio and the

NITE portfolio. Our incentive measure is consistent with the information measure.

In addition, it also illustrates an economic magnitude, i.e. the amount by which a

managed portfolio outperforms a NITE portfolio, if the managed portfolio’s track-

ing error volatility is normalized to the level of the NITE portfolio’s tracking error

volatility.

Although when we impose αp = αNITE = ᾱ, we have

Ip = ᾱ

(

√

var(RNITE − Rb)
√

var(Rp − Rb)
− 1

)

(47)

ex ante, empirically we use ex post alpha estimates instead the ex ante ones to include

the possibility that estimation errors may drive resulting alphas away from the target

values.

Motivated by Fleming, Kirby, and Ostdiek (2001) and Ferson and Siegel (2001),

we also consider a management fee measure, which represents the percentage of assets

uninformed investors are willing to pay to switch from the NITE portfolio to an active

portfolio. Assuming uninformed investors have quadratic utility defined over tracking

errors, a management fee fp solves

T
∑

t=1

[

(Rp,t −Rb,t − fp) − ∆(Rp,t −Rb,t − fp)
2
]

=

T
∑

t=1

[

(RNITE,t − Rb,t) − ∆(RNITE,t − Rb,t)
2
]

,

(48)

where ∆ = 0.5RRA/(1 + RRA), and RRA is the relative risk aversion. Following

Fleming, Kirby, and Ostdiek (2001), we set RRA = 1 or 10 to represent risk tolerant

or highly risk averse behaviors. Note while the management fee measure is an intuitive

utility-based measure, it has several shortcomings. First, this approach may mismatch

alpha and its implied risk aversion. Second, an aggressive strategy may lead to better

performance as the risk is not normalized.28

28As an analogy, when two portfolios are compared, the portfolio with lower Treynor’s (1966)

measure (reward-to-beta ratio) may have higher Jensen’s alpha if it takes excessive systematic risk.
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Finally, we also include the familiar unconditional Sharpe (1966) ratio as a perfor-

mance measure for the sake of completeness. Jorion (2003) argues that putting a total

variance constraint on a tracking portfolio enhances its mean-variance performance.

Note that, however, our optimal tracking efficient portfolio does not necessary have

the highest unconditional Sharpe ratio since its main objective is maximum uncondi-

tional information ratio.

Panel A of Table II does not impose portfolio risk constraints. The NITE and

the UTE portfolios generate alphas close to the target alphas, while the alphas of the

CTE portfolios are a bit above the target alphas. The UTE portfolios feature the

lowest tracking error volatilities, while the NITE portfolios have the highest tracking

error volatilities. The resulting information ratios of the UTE portfolios (0.415) are

four times better than that of the NITE portfolios (0.079) and 51% better than that of

the CTE portfolios (0.275). The incentives of UTE are uniformly higher than those

of CTE. Note that it is not surprising to have a higher incentive than a portfolio

alpha since we have to use leverage to construct hypothetical portfolios in this case.

In addition, the management fees for the dynamic portfolios are all positive. CTE

portfolios have the highest Sharpe ratios.

5.5 Out-of-Sample Performance

We use a “fixed window” evaluation scheme to explore the out-of-sample performance

of the active portfolios using the data after the introduction of the Euro.29 For the

UTE and the CTE portfolios, we estimate the models for conditional moments using

29The fixed window evaluation scheme highlights the time-invariant feature of NITE portfolio

weights (Grinblatt and Titman (1993) address similar issues). Other evaluation schemes, e.g., re-

cursive or rolling window, allow for re-estimation of unconditional as well as conditional moments.

They allow the NITE portfolios to use new return data, a type of conditioning information. Of

course, in practice one observes that NITE solutions are often paired with rolling windows. Thus,

this combination is worth evaluating as well on its own merits (rolling NITE). See Section 5.6.4 for

an evaluation of various methods.
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pre-1999 data, and apply the parameter estimates directly to the new conditioning

information to form the new conditional moments out of sample. For the NITE

portfolios, we estimate the unconditional moments in sample only and do not update

them out of sample.

Panel B of Table II summarizes the out-of-sample performance of the active port-

folios. It shows that the NITE portfolios always produce alphas higher than the target

alphas. Neither the UTE nor the CTE portfolios achieve the target alphas, however.

The tracking error volatilities for the UTE portfolios are always smaller than those of

the NITE and the CTE portfolios. In terms of the size of information ratios, the UTE

portfolios (0.177) still outperform the CTE (0.124) and the NITE (0.116) portfolios,

but the advantage is not as substantial as we have seen in sample. The information

ratios of the UTE portfolios are 43% better than that of the CTE portfolios and

53% better than that of the NITE portfolios. Consistent with information ratios, the

incentives of UTE portfolios are all positive and higher than those of CTE portfolios.

The management fee of UTE is higher than that of CTE only when clients are highly

risk averse and ask for 5% alpha. CTE portfolios also have the highest Sharpe ratios

out of sample.

Figures 4–7 depict out-of-sample portfolio weights in excess of the benchmark

weights. Since we use fixed-window evaluation scheme, NITE portfolio excess weights

are constant over time. Both CTE and UTE strategies display time-varying excess

weights, but the paths of CTE excess weights are much more volatile. This result

casts serious concern on the CTE strategy as it will induce high transaction cost.

On the other hand, the transaction cost incurred by the UTE portfolios should be

moderate.30

30Note that even the NITE strategy has transaction cost since it rebalances periodically.
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5.6 Robustness

5.6.1 Portfolio Risk Constraints

Now we examine whether the advantage of the UTE portfolios persists when a port-

folio risk constraint is imposed. Panels A and B of Table III consider a portfolio beta

constraint of β̄p = 1, and Panels C and D of Table III consider a total risk constraint

of σ̄2
p = σ2

b .
31 These are also interesting in view of Frost and Savarino (1988), who

find that constraints can actually improve the out-of-sample performance of mean

variance optimized portfolios.

Table III shows that the UTE portfolios still dominate the NITE and the CTE

portfolios in and out of sample.32 Compared with the results in Table II, the perfor-

mance of the UTE portfolios is virtually unaffected when a portfolio risk constraint

is imposed. Interestingly, the extra penalty from the portfolio risk constraint is rel-

atively more pronounced for the CTE portfolios. The intuition is that, when bench-

mark weights are known, the Lagrangian multiplier for the hedging component of the

portfolio in excess of benchmark portfolio is zero when no portfolio risk constraint

is imposed, but it is nonzero when a portfolio risk constraint is imposed. Since the

Lagrangian multiplier is time-varying for the CTE portfolios, their portfolio weights

become too volatile, compared with the NITE and the UTE portfolios, and there-

fore their performance is severely impacted as their tracking error volatilities inflate

dramatically.

The incentives for UTE portfolios are higher than corresponding ones in Table II

since the adverse effects of portfolio constraints on UTE portfolios are weaker than

those on other portfolios. Management fees are usually positive in sample, but only

UTE portfolio is able to deliver positive fee out of sample, when clients are highly

31Similar constraints are studied by Roll (1993) and Jorion (2003), respectively.
32Note that we do not report the results for target alphas of 3% and 5% when a total risk constraint

is imposed since such targets produce optimal NITE portfolio with complex numbers and thus are

infeasible. Jorion (2003) does not find alphas higher than 2% in a different data set.
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risk averse and targeting higher alphas. NITE portfolios tend to have higher Sharpe

ratios out of sample.

5.6.2 Conditional Heteroskedasticity

Motivated by Chan, Karceski, and Lakonishok (1999), we consider a conditional ver-

sion of a “common factor representation,” a factor model for the conditional moments

whose time variation is driven by factors as well as predictor instruments.33 We use

a constant and the growth rate of a trade weighted US dollar exchange rate index34

as the common factors and call them F . The statistical model follows,

Ft = Z ′
t−1ξ + ut,

Rj
t = F ′

tB
j(Zt−1) + vjt ,

Bj(Zt−1) = Z ′
t−1π

j,

(49)

where Bj(Zt−1) is the conditional regression beta of Rj
t on Ft, conditional on Zt−1.

Thus, IE(vjt |Z) = IE(vjtFt|Z) = IE(vjtFtZt−1|Z) = 0. We model

Ω(Zt−1) = [B(Zt−1)
′ΣuB(Zt−1) + Σv] + µ(Zt−1)µ(Zt−1)

′, (50)

where Σu and Σv are covariance matrices for ut and vt, respectively, and µj(Zt−1) =

ξ′Zt−1Z
′
t−1π

j.

Modeling conditional heteroskedasticity improves the performance of the UTE

portfolios substantially. Table IV shows that, when no portfolio risk constraint is

imposed, the UTE portfolios have information ratios of 0.859 in sample, almost twice

as good as the CTE portfolios and ten times better than the NITE portfolios. Out

of sample, UTE portfolios produce information ratios of 0.240, which is 36% better

than the CTE portfolios and 107% better than the NITE portfolios.

33We also implement multivariate ARCH-type specifications but they are numerically unstable.
34We use the index “for major currencies,” available from Federal Reserve Bank of St. Louis

website.
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Similarly, UTE tends to have higher incentives and only generate positive man-

agement fees when clients have higher risk aversion and aim at higher alphas. NITE

has higher Sharpe ratios out of sample.

5.6.3 An Equity Market Example

It is interesting to examine how our optimal UTE portfolios fare in other financial

markets. We present a small exercise using US equity data. We consider an active

manager using four portfolios, including a large cap portfolio, a mid- and small-cap

portfolio, a value stock portfolio, and a growth stock portfolio35, to beat the Standard

and Poor 500 index. We use the predictive variables in Ferson and Harvey (1999) to

proxy the conditioning information available to the active manager.

Table V uses data for the sample period February 1979 to December 1998 for

the in-sample analysis and leaves the post-1998 data for out-of-sample evaluation36.

Without imposing portfolio risk constraints and without modeling conditional het-

eroskedasticity, Panels A and B of Table V shows that the UTE portfolios are still

the preferred portfolios. The UTE portfolios have the highest information ratios, in

and out of sample. The advantage of the UTE portfolios over the NITE portfolios

is not very large, however. Modeling conditional heteroskedasticity may improve the

performance of the UTE portfolios. For example, using CRSP index return as a fac-

tor in the single factor model setting, the UTE portfolios have information ratios 5%

better than those of the NITE portfolios. The results are summarized in Panels C

and D of Table V.

In all cases, UTE portfolios have the highest incentives and positive management

fees, and CTE portfolios have the highest Sharpe ratios.

35They are proxied by the Standard and Poor 500, Russell 2500, Russell 1000 (Value), and Russell

1000 (Growth), respectively. The data are from Datastream.
36The sample period is subject to data availability, while we make the division of in and out of

sample consistent with our currency portfolio example.
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5.6.4 Alternative Estimation and Evaluation Schemes

So far we focus on the fixed window evaluation scheme for out-of-sample study. We

have used the pre-Euro sample period for initial estimation and do not allow for

re-estimation of statistical moments.

This section considers various sizes of initial estimation periods and also inves-

tigates alternative out-of-sample evaluation schemes. The active manager may use

60, 120, 180, or 240 months of data for initial estimation37. As new information ar-

rives, he may maintain all historical data (recursive scheme) or drop the most distant

observation (rolling window scheme), and then re-estimate the statistical moments.

Table VI reports the information ratios of active currency portfolios when con-

ditional homoskedasticity is assumed and no portfolio risk constraint is imposed38.

We find the following patterns consistent across different sizes of initial samples. The

UTE portfolios clearly dominate the CTE and the NITE portfolios in sample. Out

of sample, UTE portfolios beat the NITE portfolios in 10 of the 12 occasions. UTE

portfolios are preferred to the CTE portfolios under the fixed window and recursive

schemes, but the CTE portfolios perform better than the UTE portfolios under the

rolling window scheme.

5.6.5 Naive Equal-Weighted Portfolio (“1/N”)

We compare our portfolio performance with that of a naive equal-weighted port-

folio. DeMiguel, Garlappi, and Uppal (2007) compare this naive strategy with 14

sample-based mean-variance portfolios, and find that none of the 14 portfolios can

consistently beat the naive equal-weighted strategy in terms of out-of-sample mean-

variance performance measures.

We assess the performance of this naive strategy using the currency dataset and

report the results in Table VII. We consider several ways to split the sample such that

37The numbers of observations out of sample are then 256, 196, 136, and 76, respectively.
38In this case, information ratio is neutral to the target alphas as long as they are non-negative.
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the results are directly comparable to Tables II and VI. Interestingly, we find that

UTE portfolio is able to outperform the naive strategy most of the time. Indeed 1/N

strategy might occasionally outperform the other tracking portfolios when we vary

in-sample estimation window, but generally speaking, the UTE portfolio has robust

out-of-sample performance.39 UTE portfolio remains the better one when we switch

to equity dataset.40

5.6.6 Robustness Check: A Simulation Analysis

Our empirical evidence has shown that the UTE portfolios have outstanding ability

to optimize the trade-off between alpha and tracking error volatility. A few concerns

should be addressed here, however. First, the UTE portfolios tend to have poor

alphas out of sample. Second, the UTE portfolios are inferior to the CTE portfolios

when rolling window evaluation scheme is used. Third, although the advantage of

the UTE portfolios is economically significant, its statistical significance remains an

open question. It is possible that the above patterns are sample specific, given the

possible model misspecification and estimation errors.

We examine the robustness of our results by a simulation of 1,000 paths, allowing

39However, the advantage of dynamic portfolios may be eroded as the number of assets under

management increases and misspecification and estimation errors are amplified. DeMiguel, Garlappi,

and Uppal (2007) consider as many as 24 assets when studying actual data.
40For example, the 1/N strategy delivers an out-of-sample information ratio of 0.088, while the

UTE strategy delivers 0.386 when a constat covariance structure is imposed (see Table V, Panel B).
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for misspecification and estimation errors.41,42 Panel A of Table VIII shows that, in

sample, the NITE and the UTE portfolios on average produce precise alphas for every

given target alpha, while the CTE portfolios produce alphas slightly higher than the

target alphas.43 The average information ratios of the UTE portfolios (0.531) are 1.6

times as good as CTE portfolios (0.339), and 3.8 times as good as NITE portfolios

(0.141). Out of the 1,000 trials, the NITE portfolios never have higher information

ratios than do the UTE portfolios, while the CTE portfolios beat the UTE portfolios

for only six times. Overall the in-sample simulation evidence is consistent with the

evidence from actual data.

Our simulation results illustrate the statistical significance of the out-of-sample

dominance of the UTE portfolios. Panels B to D of Table VIII shows that the UTE

portfolios have substantial advantage out of sample, whatever the evaluation scheme

is. While none of the average alphas achieves the target alphas, the UTE portfolios

have alphas closest to the targets. Out of the 1,000 simulation paths, the NITE

portfolios produce alphas closer to the targets than do the UTE portfolios in fewer

than 24.3% of the times, and the CTE portfolios have alphas closer to the targets

than do the UTE portfolios in fewer than 49.8% of the times. In addition, the average

41We block bootstrap the individual currency returns, all of the instruments, the factor, and the

growth rate of equity market values, and get the same number of observations as our empirical data.

We divide the data into “in-sample” and “out-of-sample,” both matching the number of observations

in Table II. We implement a new model selection, re-estimate the first and second moments assuming

conditional homoskedasticity, and form the active portfolios without imposing portfolio constraints.

The out-of-sample performance is evaluated by fixed window, recursive, and rolling window schemes.

The procedure is repeated 1,000 times. Since neither a known return-generating process is assumed

nor a large data set is available for estimation purpose, this simulation allows for misspecification

and estimation errors.
42Note a parametric bootstrap is not appropriate here due to the dimension of the instruments.
43Although in sample, the NITE portfolios have alphas closer to the target alphas than the UTE

portfolios in every path, the difference is very tiny and indistinguishable (around 2% of the target

alpha). This result is a numerical issue: The alphas of the UTE portfolios are calculated by averaging

products of conditional moments and rounding errors may occur in floating point computation.
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alphas for UTE portfolios are at least threefold as the numbers in Table II. These

results reverse the evidence of poor alphas in the actual data.

On average the UTE portfolios produce clearly better out-of-sample information

ratios than those of the NITE and the CTE portfolios. Out of the 1,0000 simulation

paths, the NITE portfolios produce higher out-of-sample information ratios than do

the UTE portfolios for no more than 45 instances. Indeed, under the rolling window

scheme, the CTE portfolios may have better chance to beat the UTE portfolios, but

the probability is only 19.9%.

6 Concluding Remarks

We study models in which an active portfolio manager may use conditioning infor-

mation, i.e., the information about security returns that is unavailable to his clients.

Uninformed clients delegate their investment decisions to active managers, inducing

them try to beat a benchmark and minimize tracking error variance. The active

manager uses conditioning information to optimize the unconditional performance

measures, which are observable by the uninformed client. The resulting optimal

strategy is “unconditionally tracking efficient” (UTE).

We provide solutions for the UTE portfolios and study their properties and perfor-

mance. From practitioners’ standpoint, the UTE solutions show how to use condition-

ing information efficiently. From academic perspective, the UTE problem suggests

a specific interpretation of hedging demand in an economy with delegated portfolio

management.

We find the portfolio risk constraints are crucial to the active manager’s response

to conditioning information. Without portfolio risk constraints, the manager is con-

servative in the face of strong signals and his limiting behavior is to hold the bench-

mark. When there are portfolio risk constraints the manager holds more or less in the

benchmark portfolios, depending on the shadow price of the portfolio risk constraint.
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We also briefly discuss the equilibrium implications of the presence of UTE in-

vestors in an economy with delegated portfolio management. The implied asset pric-

ing model features testability in the stochastic discount factor representation and

time-varying factor loadings and premiums in the multibeta representation.

The economic significance of the advantages of the UTE portfolios is illustrated by

a realistic international financial market example. When implementing the strategies

with data for the pre-Euro period, we find the UTE portfolios outperform the NITE

and the CTE portfolios dramatically. The advantage of the UTE portfolios remains

robust to alternative model specifications, financial market data, estimation periods

and out-of-sample evaluation schemes.
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A Appendix

A.1 Specific Solutions

To develop the UTE version of the solutions, define the following parameters for

convenience,

ψ1 = IE[ψ1(Z)], ψ1(Z) ≡ µ(Z)′Φ(Z)µ(Z),

ψ2 = IE[ψ2(Z)], ψ2(Z) ≡ µ(Z)′Φ(Z)γ(Z),

ψ3 = IE[ψ3(Z)], ψ3(Z) ≡ γ(Z)′Φ(Z)γ(Z).

(51)

Let R0 = x0(Z)′R denote the global minimum conditional second moment port-

folio return. It has expected value of,

µ0 = IE[µ0(Z)], µ0(Z) = µ(Z)′x0(Z), (52)

and covariance with the benchmark return of,

σb0 = IE

[

1
′Ω(Z)−1γ(Z)

1′Ω(Z)−11

]

. (53)

R0 has unconditional second moment of Ω0 with any portfolio y(Z) with weights that

sum to 1,44

IE[y(Z)′Ω(Z)x0(Z)] = IE

[

y(Z)′Ω(Z)Ω(Z)−1
1

1′Ω(Z)−11

]

= IE

[

1

1′Ω(Z)−11

]

≡ Ω0. (54)

Or to be more general IE[y(Z)′Ω(Z)x0(Z)] = cΩ0 if 1′y(Z) = c.45

Let I{·} denote an indicator function, taking value of 1 when the statement inside

{·} is true and 0 otherwise.

44Note this corresponds to the result IE(RiRn) = IE(R2

n) of Hansen and Richard (1987).
45Thus for a zero net investment portfolio, its conditional second moment (and hence unconditional

second moment) with the global minimum conditional second moment portfolio is 0.
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A.1.1 No Risk Free Asset, Constraints on Portfolio Risk

Proposition 2 The unique solution to the problem in (11) is determined by the

weight function (2) where

λ1 =
[(ᾱp + µb) − µ0]ψ3 − (β̄pσ

2
b − σb0)ψ2

ψ1ψ3 − ψ2
2

,

λ2 =
(β̄pσ

2
b − σb0)ψ1 − [(ᾱp + µb) − µ0]ψ2

ψ1ψ3 − ψ2
2

,

λ3 = 1.

(55)

Proposition 3 The unique solution to the problem in (12) is determined by the

weight function (2) where

λ1 =
ᾱp + µb − µ0

ψ1

− ψ2

ψ1

λ2,

λ2 = (−1)I{ψ1(ψ2

2
−ψ1ψ3)>0}

√
κ,

κ =
[σ̄2
p + (ᾱp + µb)

2 − Ω0]ψ1 − (ᾱp + µb − µ0)
2

ψ1ψ3 − ψ2
2

≥ 0,

λ3 = 1.

(56)

For λ2 a real number, we require κ to be nonnegative. The non-negativity restriction

constrains the feasible set of target alphas.

A.1.2 No Risk Free Asset and No Portfolio Risk Constraint

Proposition 4 The unique solution to the problem in (13) is determined by the

weight function (2) where

λ1 =
[(ᾱp + µb) − µ0] − ψ2

ψ1
,

λ2 = λ3 = 1.

(57)

Lemma 1 For random variables X and Y , and X/Y also stochastic,

IE

(

X2

Y 2

)

>

[

IE

(

X

Y

)]2

≥ IE(X2)IE

(

1

Y 2

)

>
[IE(X)]2

[IE(Y )]2
>

[IE(X)]2

IE(Y 2)
, (58)
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by Cauchy-Schwartz and Jensen’s inequalities.

Corollary 1 The solution in Proposition 4 yields ex ante unconditional tracking error

variance46

var(RUTE −Rb) =
(ᾱp + µb − µ0 − ψ2)

2

ψ1

− ψ3 + Ω0 − 2σb0. (59)

Given the same ᾱp, the CTE counterpart has ex ante unconditional tracking error

variance of

var(RCTE−Rb) = IE

(

[ᾱp + IE(Rb|Z) − IE(R0|Z) − ψ2(Z)]2

ψ1(Z)

)

−ψ3+Ω0−2σb0. (60)

Recognizing that ψ1(Z) is a quadratic form, var(RCTE − Rb) > var(RUTE − Rb) by

Lemma 1.

A.1.3 Solutions with Fixed Exogenous Benchmark Portfolio Weights

Propositions 5–7 provide the solutions to the optimization problem (11), (12), and

(13), respectively, with fixed exogenous benchmark portfolio weights. All moments

in Propositions 5–7 are defined in (4), (5), and (51).

Proposition 5 The unique solution to the problem in (11), given fixed exogenous

benchmark portfolio weights xb, is determined by the portfolio weight function (15),

where

λ1 =
ᾱpψ3 − (β̄p − 1)σ2

bψ2

ψ1ψ3 − ψ2
2

, λ2 =
(β̄p − 1)σ2

bψ1 − ᾱpψ2

ψ1ψ3 − ψ2
2

, λ3 = 0. (61)

Proposition 6 The unique solution to the problem in (12), given fixed exogenous

benchmark portfolio weights xb, is determined by the portfolio weight function (15),

46It follows from Φ(Z)′Ω(Z)Φ(Z) = 0 and Φ(Z)Ω(Z)x0(Z) = 0.
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where

λ1 =
ᾱp
ψ1

− ψ2

ψ1

λ2,

λ2 = (−1)I{ψ1(ψ2−ψ1ψ3)>0}

[

1 −
ᾱ2
p − 2ᾱpψ2 − (σ̄2

p + ᾱ2
p − σ2

b )ψ1

ψ1ψ3 − ψ2
2

]0.5

− 1 ∈ R,

λ3 = 0.

(62)

Proposition 7 The unique solution to the problem in (13), given fixed exogenous

benchmark portfolio weights xb, is determined by the portfolio weight function (15),

where

λ1 =
ᾱp
ψ1

, λ2 = λ3 = 0. (63)

Corollary 2 The solution in Proposition 7 yields ex ante unconditional tracking error

variance quadratic in ᾱp,

var(RUTE −Rb) = ᾱ2
p

(

1

ψ1
− 1

)

. (64)

As a result, the ex ante information ratio is,

(

1

ψ1
− 1

)− 1

2

(−1)I{ᾱp<0}, (65)

i.e., given the sign of ᾱp, ex ante information ratio is invariant to ᾱp.

Corollary 3 Given the same ᾱp,

var(RCTE −Rb) = ᾱ2
pIE

(

1

µ(Z)′Φ(Z)µ(Z)
− 1

)

≥ var(RUTE − Rb), (66)

by Jensen’s inequality.
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A.1.4 Solutions with a Risk Free Asset

To save notation, re-define

µb = IE(rb), µ(Z) = IE(r|Z),

σ2
b = var(rb), Ω(Z) = IE(rr′|Z), (67)

Φ(Z) = [IE(rr′|Z)]−1, γ(Z) = IE[r(rb − µb)|Z],

where Ω(Z) is non-singular and positive definite. Also define

η1 = IE[µ(Z)′Ω(Z)−1µ(Z)],

η2 = IE[µ(Z)′Ω(Z)−1γ(Z)],

η3 = IE[γ(Z)′Ω(Z)−1γ(Z)],

(68)

where the conditional moments are defined in (67). The solutions to the UTE problem

in (16) when there are N risky assets and a risk free asset, with or without portfolio

risk constraints, are provided in Proposition 8. When there are fixed exogenous

benchmark portfolio weights, the solutions to the problem in (16) are summarized in

Proposition 9, in which all moments are defined in (67) and (68).

Proposition 8 (i) The unique solution to the problem in (16), given constraint on

portfolio beta β̄p, is determined by the weight function (2) where

λ1 =
(ᾱp + µb)η3 − β̄pσ

2
bη2

η1η3 − η2
2

, λ2 =
β̄pσ

2
bη1 − (ᾱp + µb)η2

η1η3 − η2
2

, λ3 = 0. (69)

(ii) The unique solution to the problem in (16), given constraint on portfolio vari-

ance σ̄2
p, is determined by the weight function (2) where

λ1 =
ᾱp + µb
η1

− η2

η1

λ2,

λ2 = (−1)I{η
2

2
>η1η3}

[

[σ̄2
p + (ᾱp + µb)

2]η1 − (ᾱp + µb)
2

η1η3 − η2
2

]0.5

∈ R,

λ3 = 0.

(70)
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(iii) The unique solution to the problem in (16), without constraint on portfolio

risk, is determined by the weight function (2) where

λ1 =
(ᾱp + µb) − η2

η1
, λ2 = 1, λ3 = 0. (71)

Proposition 9 (i) The unique solution to the problem in (16), given fixed exogenous

benchmark portfolio weights xb and constraint on portfolio beta β̄p, is determined by

the weight function (15) where

λ1 =
ᾱpη3 − (β̄p − 1)σ2

bη2

η1η3 − η2
2

, λ2 =
(β̄p − 1)σ2

bη1 − ᾱpη2

η1η3 − η2
2

, λ3 = 0. (72)

(ii) The unique solution to the problem in (16), given fixed exogenous benchmark

portfolio weights xb and constraint on portfolio variance σ̄2
p, is determined by the

weight function (15) where

λ1 =
ᾱp
η1

− η2

η1
λ2,

λ2 = (−1)I{η
2

2
>η1η3}

[

1 −
ᾱ2
p − 2ᾱpη2 − (σ̄2

p + ᾱ2
p − σ2

b )η1

η1η3 − η2
2

]0.5

− 1 ∈ R,

λ3 = 0.

(73)

(iii) The unique solution to the problem in (16), given fixed exogenous benchmark

portfolio weights xb and without constraint on portfolio risk, is determined by the

weight function (15) where

λ1 =
ᾱp
η1

, λ2 = λ3 = 0. (74)

Corollary 4 The solution in Proposition 9(iii) yields unconditional tracking error

variance of

var(RUTE −Rb) = var(rUTE − rb) = ᾱ2
p

(

1

IE[µ(Z)′Ω(Z)−1µ(Z)]
− 1

)

, (75)
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while a CTE counterpart, subject to the same ᾱp but minimizing the conditional track-

ing error variance, yields unconditional tracking error variance of

var(RCTE −Rb) = var(rCTE − rb) = ᾱ2
p

(

IE

[

1

µ(Z)′Ω(Z)−1µ(Z)

]

− 1

)

, (76)

which is greater than var(RUTE −Rb) by Jensen’s inequality.

A.2 Proof of Propositions 1–4

A.2.1 Generic Form of the Solutions

The agent’s optimization problem is (1). With the conditional moments defined in

(4), we can rewrite the portfolio alpha and tracking error variance as

IE(Rp − Rb) = IE[x(Z)′µ(Z)] − µb, (77)

var(Rp − Rb) = IE[x(Z)′Ω(Z)x(Z)] − {IE[x(Z)′µ(Z)]}2 + σ2
b − 2IE[x(Z)′γ(Z)].

(78)

First we consider the constraint cov(Rp, Rb) = σ̄bp. Given the restrictions on port-

folio alpha and covariance with the benchmark, the agent’s optimization problem is

equivalent to

min
x(Z)

IE[x(Z)′Ω(Z)x(Z)],

s.t. IE[x(Z)′µ(Z)] = ᾱp + µb, IE[x(Z)′γ(Z)] = σ̄bp, x(Z)′1 = 1.

(79)

Set the Lagrangian as

L[x(Z)] = IE[x(Z)′Ω(Z)x(Z)] − 2λ1{IE[x(Z)′µ(Z) − (ᾱp + µb)]}

− 2λ2{IE[x(Z)′γ(Z)] − σ̄bp} − 2IE{λ3(Z)[x(Z)′1− 1]}.
(80)

Consider a perturbation x̂(Z) = x(Z)+εy(Z), where x(Z) is the optimal solution,

y(Z) is any other portfolio weight function, and ε is a constant. If the weight x(Z)

is optimal, the derivative of the Lagrangian for x̂(Z) with respect to ε must be zero

when evaluated at ε = 0, i.e.,

∂L[x̂(Z)]

∂ε
= 2IE[y(Z)′{Ω(Z)x(Z) − λ1µ(Z) − λ2γ(Z) − λ3(Z)1}] = 0, (81)
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when evaluated at ε = 0. Since it must hold for all y(Z), it implies that the term in

{·} must be zero, almost surely in Z. Then we have,

x(Z) = Ω(Z)−1[λ1µ(Z) + λ2γ(Z) + λ3(Z)1]. (82)

Imposing the restriction 1
′x(Z) = 1, we get the following expression for λ3(Z),

λ3(Z) = −λ1
1
′Ω(Z)−1

1′Ω(Z)−11
µ(Z) − λ2

1
′Ω(Z)−1

1′Ω(Z)−11
γ(Z) +

1

1′Ω(Z)−11
. (83)

Plug (83) in (82) and the optimal portfolio is

x(Z) = Ω(Z)−1

[

λ1µ(Z) + λ2γ(Z) − λ1
11

′Ω(Z)−1

1′Ω(Z)−11
µ(Z) − λ2

11
′Ω(Z)−1

1′Ω(Z)−11
γ(Z) +

1

1′Ω(Z)−11

]

= λ1Φ(Z)µ(Z) + λ2Φ(Z)γ(Z) + x0(Z),

(84)

where Φ(Z) and x0(Z) are defined in (5) and (6), respectively. It has the form of (2)

if we reinterpret λ3 = 1.

Now we consider another portfolio risk constraint var(Rp) = σ̄2
p . Using the per-

turbation argument, we have the optimal solution

x(Z) = −λ̂−1
2 Ω(Z)−1[λ̂1µ(Z) + γ(Z) + λ̂3(Z)1]

≡ Ω(Z)−1[λ1µ(Z) + λ2γ(Z) + λ3(Z)1].
(85)

where λ1 = −λ̂1/λ̂2, λ2 = −1/λ̂2, and λ3(Z) = −λ̂3(Z)/λ̂2. Imposing 1
′x(Z) = 1

allows us to express λ3(Z) as in (83). The optimal portfolio weights function becomes

x(Z) = λ1Φ(Z)µ(Z) + λ2Φ(Z)γ(Z) + x0(Z). (86)

It has the form of (2) if we reinterpret λ3 = 1.

Now we consider the case where no portfolio risk constraint is imposed. Using the

perturbation argument, we have the first order condition

Ω(Z)x(Z) = λ1µ(Z) + γ(Z) + λ3(Z)1, (87)
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almost surely, and the optimal solution

x(Z) = Ω(Z)−1[λ1µ(Z) + γ(Z) + λ3(Z)1]. (88)

Impose the restriction 1
′x(Z) = 1 and express λ3(Z) as in (83). The optimal portfolio

is then

x(Z) = λ1Φ(Z)µ(Z) + Φ(Z)γ(Z) + x0(Z), (89)

where Φ(Z) and x0(Z) are defined in (51). It has the form of (2) if we reinterpret

λ2 = λ3 = 1.

From (84), (86) and (89), we conclude that the UTE solution has generic form of

(2).

A.2.2 Proof of Proposition 2

The agent’s optimization problem is equivalent to (79) if σ̄bp = β̄pσ
2
b . The opti-

mal solution has the form of (84). To find the values for λ1 and λ2, impose that

IE[µ(Z)′x(Z)] = ᾱp + µb,

IE[µ(Z)′x(Z)] = λ1ψ1 + λ2ψ2 + µ0 = (ᾱp + µb), (90)

where ψ’s are also defined in (51). Rearrange,

ψ1λ1 + ψ2λ2 = (ᾱp + µb) − µ0. (91)

Similarly, imposing IE[γ(Z)′x(Z)] = β̄pσ
2
b yields

ψ2λ1 + ψ3λ2 = β̄pσ
2
b − σb0. (92)

Now we have the two-equation system (91) and (92), and we solve for λ1 and λ2 by

Cramer’s Rule,

λ1 =
[(ᾱp + µb) − µ0]ψ3 − (β̄pσ

2
b − σb0)ψ2

ψ1ψ3 − ψ2
2

,

λ2 =
(β̄pσ

2
b − σb0)ψ1 − [(ᾱp + µb) − µ0]ψ2

ψ1ψ3 − ψ2
2

.

(93)
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A.2.3 Proof of Proposition 3

The agent’s optimization problem is equivalent to (12), whose optimal solution is

(86). Imposing IE[x(Z)′µ(Z)] = ᾱp + µb produces,

ψ1λ1 + ψ2λ2 = ᾱp + µb − µ0. (94)

Similarly, imposing IE[x(Z)′Ω(Z)x(Z)] = σ̄2
p + (ᾱp + µb)

2 yields

λ1(ᾱp + µb − µ0) + λ1λ2ψ2 + λ2
2ψ3 + Ω0 = σ̄2

p + (ᾱp + µb)
2. (95)

Rearrange (94) to express λ1 in terms of λ2

λ1 =
ᾱp + µb − µ0

ψ1
− ψ2

ψ1
λ2. (96)

Plug in (95) and solve for λ2,

λ2 = ±
[

[σ̄2
p + (ᾱp + µb)

2 − Ω0]ψ1 − (ᾱp + µb − µ0)
2

ψ1ψ3 − ψ2
2

]1/2

. (97)

The resulting tracking error variance is

var(Rp − Rb) = σ̄2
p + σ2

b − 2IE[γ(Z)′x(Z)]

= σ̄2
p + σ2

b − 2[λ1ψ2 + λ2ψ3] − 2σb0

= σ̄2
p + σ2

b − 2σb0 − 2

[

(ᾱp + µb − µ0)ψ2

ψ1
+ λ2

ψ1ψ3 − ψ2
2

ψ1

]

.

(98)

To minimize tracking error variance, we pick positive root for λ2 when (ψ1ψ3 −
ψ2

2)/ψ1 > 0 and negative root for λ2 when (ψ1ψ3 − ψ2
2)/ψ1 < 0. Imposing such a

selection rule yields the optimal solution in Proposition 3.

A.2.4 Proof of Proposition 4

The agent’s optimization problem is equivalent to (13) and the optimal solution is

(89). Impose that IE[µ(Z)′x(Z)] = ᾱp + µb,

IE[µ(Z)′x(Z)] = λ1ψ1 + ψ2 + µ0 = (ᾱp + µb). (99)

Solving for λ1,

λ1 =
(ᾱp + µb) − µ0 − ψ2

ψ1
. (100)
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A.3 Relation to Portable Alpha

Consider an active manager with information set Z is assigned a benchmark portfolio

b and uses other N assets with return vector R to form a zero net investment portfolio

with portfolio weight vector w(Z) in order to beat the benchmark while minimizing

tracking error variance. His optimization problem can be reinterpreted as the problem

(1) with an (N +1) weight vector x(Z) with the last element being the weight on the

benchmark portfolio, which is restricted to be one. We can rewrite x(Z) = w̃(Z)+ x̃b,

w̃(Z) = (w(Z)′, 0)′, and x̃b = (0′N , 1)′, and treat x̃b as a “benchmark weight vector.”

Since we can rewrite

IE[x̃(Z)′µN+1(Z)] = IE[w(Z)′µN(Z)] + µb, (101)

IE[x̃(Z)′ΩN+1(Z)x̃(Z)] = IE[w(Z)′ΩN (Z)w(Z)] + IE(R2
b), (102)

IE[x̃(Z)′γN+1(Z)] = IE[w(Z)′γN(Z)] + σ2
b , (103)

the portable alpha problem reduces to (14).

A.4 Relation to Utility Maximization

Fama (1996) shows how agents in Merton’s (1973) economy choose multifactor min-

imum variance portfolios under normality. Ferson, Siegel, and Xu (2006) extend the

results to incorporate conditioning information. If we treat the benchmark return

as a state variable, and use Ferson, Siegel, and Xu’s (2006) results, we know the in-

tertemporal optimization problem with wealth W, consumption C, and indirect utility

function J(., .), has the form

max
x(Zt−1),Ct−1

u(Ct−1) + IE[J(Wt, Rb,t)|Zt−1]

s.t. Wt = (Wt−1 − Ct−1)x(Zt−1)
′Rt, x(Zt−1)

′
1 = 1,

(104)

which has the same solution x(Z) as the minimization problem

min
x(Z)

var(Rp|Z),

s.t. IE(Rp|Z) = m(Z), IE(RpRb|Z) = n(Z), x(Z)′1 = 1.

(105)
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Notice that the problem (105) is equivalent to

min
x(Z)

var(Rp −Rb|Z),

s.t. ᾱp(Z) = ap(Z), β̄p(Z) = bp(Z), x(Z)′1 = 1,

(106)

if the conditional mean and variance of Rb are given. This problem is the CTE

version of the modern portfolio management problem with a beta constraint. Since

unconditional efficiency is nested in conditional efficiency as a special case, an active

portfolio manager may solve the unconditional version optimization problem of (106).

We then try to answer what kind of preference will induce the manager to solve the

UTE problems.

Ferson and Siegel (2001) have shown that unconditional mean-variance portfo-

lios are optimal for agents with quadratic utility functions in a single period model.

Motivated by their result, we consider the following active manager’s utility function,

u(Rp −Rb) = (Rp − Rb) − ζ(Rp − Rb)
2, (107)

where ζ > 0 is a constant characterizing the concavity of the utility function. The

absolute risk aversion (ARA) is

ARA = −u(Rp −Rb)
′′

u(Rp − Rb)′
=

2ζ

1 − 2ζ(Rp −Rb)
. (108)

When (Rp−Rb) is higher, the agent becomes more risk averse. We can use the results

of Ferson, Siegel, and Xu (2006) directly and show the utility function of the active

managers for whom our UTE solution is optimal, when a beta constraint is imposed.

In the intertemporal setting, managers with the indirect utility function

J(W, Rb) = (1 − νRb)W − θW2. (109)

where ν and θ are constants, and who observe conditioning information, choose port-

folio weights minimizing unconditional tracking error variance for a given pair of

portfolio alpha and beta. This model is a good description for managers under pos-

sible portfolio risk constraints.
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A.5 Equilibrium Implications of UTE Portfolios

With the rapid growth of delegated portfolio management it is natural to conjecture

that tracking error investing behavior may affect asset prices in equilibrium. Brennan

(1993), Stutzer (2003), Gómez and Zapatero (2003), and Cornell and Roll (2005) de-

rive equilibrium implications of tracking error investing. They show that equilibrium

expected asset returns display a multibeta representation47 in the presence of track-

ing error investors. However, these models do not explicitly incorporate conditioning

information.

This section presents an asset pricing model with tracking error investors who are

assumed to optimally hold UTE portfolios. The model features explicit considera-

tion of asymmetric information. We explore two representations. In the stochastic

discount factor representation the stochastic discount factor does not depend on the

conditioning information. This feature largely mitigates the testability problem raised

by Hansen and Richard (1987)48. In the multibeta representation, the factor loadings

and premiums are both functions of conditioning information.

Consider a market with N risky assets and one risk free asset. The economy has

two agents: an uninformed representative client and an informed active manager with

conditioning information Z. The client possesses all of the wealth in the economy.

She optimally delegates wa portion of her wealth to the manager, invests wb in an

unmanaged benchmark portfolio with weight xb, and puts the rest of her wealth in

the risk free asset. The active portfolio manager’s task is to outperform the bench-

47Cornell and Roll (2005) show that expected asset returns are linear in market portfolio return

and an additional adjustment term that is a function of betas. With some more algebra, one can

show an equivalent multibeta representation.
48Hansen and Richard (1987) show that, an econometrician can make inferences about an asset

pricing model without using the full information set as long as the stochastic discount factor is a

measurable function of the coarser information set or observable variables. If the stochastic discount

factor depends on unobserved information it is not generally possible to test the model on a subset

of the information.
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mark, while minimizing tracking error variance. The manager is assumed to take the

benchmark portfolio as exogenously specified. His optimization problem leads to the

UTE strategy:

x(Z) = λ1Ω(Z)−1µ(Z) + λ2Ω(Z)−1γ(Z) + xb, (110)

where the conditional moments are defined in (67) and the parameters are defined in

Proposition 9 in the Appendix.

In equilibrium, the market portfolio weight is:

xm(Z) = wa[λ1Ω(Z)−1µ(Z) + λ2Ω(Z)−1γ(Z) + xb] + wbxb. (111)

Let rm ≡ xm(Z)′r denote the excess return on market portfolio. Premultiplying

xm(Z) by Ω(Z) and rearranging terms yields the equilibrium conditional expected

return vector,

µ(Z) = IE(r|Z) = λmIE(rmr|Z) + λbIE(rbr|Z), (112)

where λm ≡ 1/wa(λ1 − µbλ2) and λb ≡ −(waλ2 + wa + wb)/wa(λ1 − µbλ2) are scalar

constants. Equation (112) is the asset pricing model with UTE investors. It says

the conditional expected excess return of any asset rj is a linear function of the

conditional comoment of rj with the market excess return, rm, and the conditional

comoment of rj with the benchmark excess return, rb. It is characterized by only two

parameters, λm and λb, which are constants across different assets. It is important

to recognize that the model implies λm and λb are constants that depend on uncon-

ditional moments, but not on the conditioning information, Z. It is this feature that

allows the model to escape the “Hansen and Richard (1987) critique.” For example,

if the conditioning information held by the active portfolio managers is finer than the

information available to the econometrician, Equation (112) can still be tested, after

taking iterated expectations using the coarser information.

A stochastic discount factor representation of the asset pricing model can be ob-
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tained by subtracting the right-hand-side of Equation (112) from its left-hand-side,

IE(Mr|Z) ≡ IE[(1 − λmrm − λbrb)r|Z] = IE(e|Z) = 0, (113)

where e is an N -vector of the “pricing errors,” orthogonal to the conditioning infor-

mation Z held by the active manager. Intuitively, the active manager exploits Z in

his trading until (113) holds. If his information can predict pricing errors then his

portfolio is not yet optimal. The scalar random variable M ≡ (1 − λmrm − λbrb) is

the “stochastic discount factor.” Again, because λm and λb do not depend on unob-

servable conditioning information, the model is empirically testable on subsets of the

information.

Equation (113) is an empirically appealing representation of the model, as argued

above. Of course, the model can also be expressed in the more familiar multibeta

presentation49,

IE(rj|Z) ≡ B(m, j, b;Z)IE(rm|Z) + B(b, j,m;Z)IE(rb|Z), (114)

where

B(i, j, k;Z) =
βi,k(Z)βk,j(Z) − βi,j(Z)

βi,k(Z)βk,i(Z) − 1
, (115)

βi,j(Z) =
IE(rirj|Z)

IE(r2
i |Z)

. (116)

The multibeta representation shows that conditional expected asset returns are linear

in their conditional betas. The conditional betas are time-varying and nonlinear

functions of the conditioning information. This version of the model generalizes the

models of Brennan (1993), Stutzer (2003), Gómez and Zapatero (2003), and Cornell

and Roll (2005), if we interpret the moments in their models as conditional moments

given Z. Equations (112) and (113), however, are empirically more appealing.

49The proof is available by request.
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Table I: Potential Benefit of the Unconditionally Tracking Efficient Portfolios

This table reports the potential benefit of using the unconditionally tracking efficient (UTE)
portfolios, compared with the no-information tracking efficient (NITE) portfolios and the
conditionally tracking efficient (CTE) portfolios. For each portfolio, we compute the dif-
ference between the portfolio return and the benchmark return, and then calculate the
following metrics: (1) the average difference between the two returns, “alpha,” (2) the stan-
dard error of the difference, “tracking error volatility,” and (3) the ratio of alpha to tracking
error volatility, “information ratio.” The alphas and tracking error volatilities are annual-
ized and in percentage points. The alphas, tracking error volatilities, and information ratios
are the average numbers across 1,000 simulation paths. Each of the paths contains 12,000
simulated observations. The data generating process features the parsimonious regression
specification and constant covariance structure. It is correctly specified in estimation.

Target Tracking Error Information
Alpha Alpha Volatility Ratio

NITE CTE UTE NITE CTE UTE NITE CTE UTE

1.000 1.000 0.999 1.000 14.209 5.241 2.793 0.072 0.192 0.358
3.000 3.000 2.996 3.001 42.627 15.723 8.379 0.072 0.192 0.358
5.000 5.000 4.994 5.001 71.045 26.205 13.965 0.072 0.192 0.358
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Table II: In-Sample and Out-of-Sample Performance

This table reports the in-sample (October 1978 to December 1998) and out-of-sample (January 1999 to January 2005) performance of the no-information tracking
efficient (NITE) portfolios, the conditionally tracking efficient (CTE) portfolios, and the unconditionally tracking efficient (UTE) portfolios. For each portfolio, we
compute the difference between the active portfolio return and the benchmark return. We report the sample average of the difference between the two returns,
“alpha,” the standard error of the difference, “tracking error volatility,” and the ratio of alpha to tracking error volatility, “information ratio.” “Incentive” represents
the maximum fee a NITE investor is willing to pay to achieve UTE performance. “Management Fee (RRA=x)” represents a fee charged on a dynamic portfolio so
that an investor with relative risk aversion of x is indifferent between the dynamic portfolio and the NITE portfolio. The alphas, tracking error volatilities, incentives,
and management fees are annualized and in percentage points.

Panel A: In-Sample Performance

Target Tracking Error Information Incentive Management Management Sharpe
Alpha Alpha Volatility Ratio Fee (RRA=1) Fee (RRA=10) Ratio

NITE CTE UTE NITE CTE UTE NITE CTE UTE CTE UTE CTE UTE CTE UTE NITE CTE UTE
1.000 1.000 1.342 1.023 12.583 4.878 2.463 0.079 0.275 0.415 2.462 4.227 0.678 0.404 1.010 0.778 0.047 0.070 0.057
3.000 3.000 4.026 3.069 37.748 14.633 7.388 0.079 0.275 0.415 7.386 12.682 4.063 3.503 6.996 6.801 0.071 0.160 0.141
5.000 5.000 6.711 5.115 62.913 24.389 12.313 0.079 0.275 0.415 12.311 21.137 10.117 9.604 17.806 18.162 0.076 0.209 0.208

Panel B: Out-of-Sample Performance

Target Tracking Error Information Incentive Management Management Sharpe
Alpha Alpha Volatility Ratio Fee (RRA=1) Fee (RRA=10) Ratio

NITE CTE UTE NITE CTE UTE NITE CTE UTE CTE UTE CTE UTE CTE UTE NITE CTE UTE
1.000 1.070 0.393 0.199 9.244 3.179 1.127 0.116 0.124 0.177 0.073 0.564 -0.490 -0.662 -0.306 -0.456 0.145 0.106 0.094
3.000 3.210 1.180 0.598 27.731 9.537 3.382 0.116 0.124 0.177 0.220 1.692 -0.338 -0.723 1.331 1.137 0.154 0.137 0.120
5.000 5.350 1.966 0.997 46.219 15.895 5.637 0.116 0.124 0.177 0.367 2.820 1.331 0.907 5.879 5.942 0.143 0.148 0.141
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Table III: Portfolio Risk Constraints

This table reports the in-sample (October 1978 to December 1998) and out-of-sample (January 1999 to January 2005) performance of the no-information tracking
efficient (NITE) portfolios, the conditionally tracking efficient (CTE) portfolios, and the unconditionally tracking efficient (UTE) portfolios, with a portfolio risk
constraint. Panels A and B considers a beta constraint β̄p = 1. Panels C and D considers a total risk constraint σ̄2

p = σ2

b
. For each portfolio, we compute the difference

between the active portfolio return and the benchmark return. We report the sample average of the difference between the two returns, “alpha,” the standard error
of the difference, “tracking error volatility,” and the ratio of alpha to tracking error volatility, “information ratio.” “Incentive” represents the maximum fee a NITE
investor is willing to pay to achieve UTE performance. “Management Fee (RRA=x)” represents a fee charged on a dynamic portfolio so that an investor with relative
risk aversion of x is indifferent between the dynamic portfolio and the NITE portfolio. The alphas, tracking error volatilities, incentives, and management fees are
annualized and in percentage points.

Panel A: In-Sample Performance: With Beta Constraint β̄p = 1

Target Tracking Error Information Incentive Management Management Sharpe
Alpha Alpha Volatility Ratio Fee (RRA=1) Fee (RRA=10) Ratio

NITE CTE UTE NITE CTE UTE NITE CTE UTE CTE UTE CTE UTE CTE UTE NITE CTE UTE
1.000 1.000 1.482 1.025 12.652 9.927 2.468 0.079 0.149 0.415 0.888 4.255 0.636 0.410 0.788 0.789 0.049 0.074 0.058
3.000 3.000 4.445 3.075 37.957 29.782 7.404 0.079 0.149 0.415 2.665 12.765 2.840 3.547 4.220 6.880 0.074 0.133 0.144
5.000 5.000 7.409 5.125 63.261 49.637 12.339 0.079 0.149 0.415 4.442 21.274 6.298 9.719 10.081 18.361 0.078 0.146 0.215

Panel B: Out-of-Sample Performance: With Beta Constraint β̄p = 1

Target Tracking Error Information Incentive Management Management Sharpe
Alpha Alpha Volatility Ratio Fee (RRA=1) Fee (RRA=10) Ratio

NITE CTE UTE NITE CTE UTE NITE CTE UTE CTE UTE CTE UTE CTE UTE NITE CTE UTE
1.000 1.015 -1.296 0.191 9.665 13.363 1.144 0.105 -0.097 0.167 -1.952 0.599 -2.522 -0.595 -2.731 -0.370 0.148 -0.006 0.095
3.000 3.044 -3.888 0.573 28.996 40.090 3.431 0.105 -0.097 0.167 -5.856 1.798 -8.860 -0.406 -10.869 1.617 0.149 -0.063 0.121
5.000 5.073 -6.480 0.955 48.327 66.817 5.719 0.105 -0.097 0.167 -9.760 2.996 -17.016 1.623 -23.205 7.068 0.136 -0.077 0.143
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Panel C: In-Sample Performance: With Total Risk Constraint σ̄2
p = σ2

b

Target Tracking Error Information Incentive Management Management Sharpe
Alpha Alpha Volatility Ratio Fee (RRA=1) Fee (RRA=10) Ratio

NITE CTE UTE NITE CTE UTE NITE CTE UTE CTE UTE CTE UTE CTE UTE NITE CTE UTE
1.000 1.000 3.452 1.023 14.983 19.281 2.463 0.067 0.179 0.415 1.683 5.222 2.083 0.569 1.716 1.105 0.056 0.095 0.057

Panel D: Out-of-Sample Performance: With Total Risk Constraint σ̄2
p = σ2

b

Target Tracking Error Information Incentive Management Management Sharpe
Alpha Alpha Volatility Ratio Fee (RRA=1) Fee (RRA=10) Ratio

NITE CTE UTE NITE CTE UTE NITE CTE UTE CTE UTE CTE UTE CTE UTE NITE CTE UTE
1.000 0.790 2.023 0.201 10.858 19.514 1.126 0.073 0.104 0.178 0.335 1.145 0.581 -0.301 -0.070 -0.017 0.143 0.096 0.094

58



Table IV: Conditional Heteroskedasticity

This table reports the in-sample (October 1978 to December 1998) and out-of-sample (January 1999 to January 2005) performance of the no-information tracking
efficient (NITE) portfolios, the conditionally tracking efficient (CTE) portfolios, and the unconditionally tracking efficient (UTE) portfolios, when the conditional
covariance matrix of returns is time-varying. For each portfolio, we compute the difference between the active portfolio return and the benchmark return. We report
the sample average of the difference between the two returns, “alpha,” the standard error of the difference, “tracking error volatility,” and the ratio of alpha to
tracking error volatility, “information ratio.” “Incentive” represents the maximum fee a NITE investor is willing to pay to achieve UTE performance. “Management
Fee (RRA=x)” represents a fee charged on a dynamic portfolio so that an investor with relative risk aversion of x is indifferent between the dynamic portfolio and
the NITE portfolio. The alphas, tracking error volatilities, incentives, and management fees are annualized and in percentage points.

Panel A: In-Sample Performance

Target Tracking Error Information Incentive Management Management Sharpe
Alpha Alpha Volatility Ratio Fee (RRA=1) Fee (RRA=10) Ratio

NITE CTE UTE NITE CTE UTE NITE CTE UTE CTE UTE CTE UTE CTE UTE NITE CTE UTE
1.000 1.000 0.949 1.043 12.583 1.970 1.214 0.079 0.482 0.859 5.063 9.807 0.335 0.435 0.715 0.821 0.047 0.054 0.059
3.000 3.000 2.848 3.128 37.748 5.909 3.642 0.079 0.482 0.859 15.190 29.420 3.330 3.664 6.672 7.055 0.071 0.139 0.154
5.000 5.000 4.746 5.213 62.913 9.849 6.069 0.079 0.482 0.859 25.317 49.034 9.368 9.981 18.031 18.760 0.076 0.213 0.245

Panel B: Out-of-Sample Performance

Target Tracking Error Information Incentive Management Management Sharpe
Alpha Alpha Volatility Ratio Fee (RRA=1) Fee (RRA=10) Ratio

NITE CTE UTE NITE CTE UTE NITE CTE UTE CTE UTE CTE UTE CTE UTE NITE CTE UTE
1.000 1.070 0.635 0.126 9.244 3.597 0.526 0.116 0.176 0.240 0.562 1.146 -0.255 -0.733 -0.078 -0.525 0.145 0.121 0.089
3.000 3.210 1.905 0.378 27.731 10.792 1.577 0.116 0.176 0.240 1.685 3.437 0.323 -0.920 1.932 0.960 0.154 0.171 0.106
5.000 5.350 3.175 0.630 46.219 17.987 2.628 0.116 0.176 0.240 2.808 5.728 2.364 0.602 6.754 5.691 0.143 0.189 0.123
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Table V: An Equity Market Example

This table reports the in-sample (February 1979 to December 1998) and out-of-sample (January 1999 to October 2004) performance of the no-information tracking
efficient (NITE) portfolios, the conditionally tracking efficient (CTE) portfolios, and the unconditionally tracking efficient (UTE) portfolios without a portfolio risk
constraint. Panels A and B assume conditional homoskedasticity, and Panels C and D assume conditional heteroskedasticity. The portfolios are formed by Standard
and Poor 500, Russell 2500, Russell 1000 (Value), and Russell 1000 (Growth) portfolios. We compute the difference between the active portfolio return and the
benchmark return. We report the sample average of the difference between the two returns, “alpha,” the standard error of the difference, “tracking error volatility,”
and the ratio of alpha to tracking error volatility, “information ratio.” “Incentive” represents the maximum fee a NITE investor is willing to pay to achieve UTE
performance. “Management Fee (RRA=x)” represents a fee charged on a dynamic portfolio so that an investor with relative risk aversion of x is indifferent between
the dynamic portfolio and the NITE portfolio. The alphas, tracking error volatilities, incentives, and management fees are annualized and in percentage points.

Panel A: In-Sample Performance: Constant Covariance Structure

Target Tracking Error Information Incentive Management Management Sharpe
Alpha Alpha Volatility Ratio Fee (RRA=1) Fee (RRA=10) Ratio

NITE CTE UTE NITE CTE UTE NITE CTE UTE CTE UTE CTE UTE CTE UTE NITE CTE UTE
1.000 1.000 1.031 1.022 0.885 0.909 0.888 1.130 1.134 1.151 0.004 0.019 0.031 0.022 0.031 0.022 0.216 0.217 0.217
3.000 3.000 3.093 3.066 2.656 2.728 2.664 1.130 1.134 1.151 0.011 0.056 0.092 0.066 0.091 0.066 0.253 0.255 0.254
5.000 5.000 5.154 5.110 4.426 4.547 4.440 1.130 1.134 1.151 0.018 0.094 0.152 0.109 0.149 0.109 0.289 0.292 0.291

Panel B: Out-of-Sample Performance: Constant Covariance Structure

Target Tracking Error Information Incentive Management Management Sharpe
Alpha Alpha Volatility Ratio Fee (RRA=1) Fee (RRA=10) Ratio

NITE CTE UTE NITE CTE UTE NITE CTE UTE CTE UTE CTE UTE CTE UTE NITE CTE UTE
1.000 0.588 0.825 0.703 1.570 2.579 1.818 0.374 0.320 0.386 -0.086 0.019 0.227 0.113 0.217 0.111 0.001 0.005 0.003
3.000 1.763 2.475 2.108 4.709 7.736 5.454 0.374 0.320 0.386 -0.257 0.057 0.618 0.326 0.524 0.307 0.022 0.035 0.028
5.000 2.938 4.125 3.513 7.849 12.893 9.091 0.374 0.320 0.386 -0.428 0.095 0.924 0.522 0.659 0.468 0.043 0.064 0.053
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Panel C: Out-of-Sample Performance: Common Factor Structure

Target Tracking Error Information Incentive Management Management Sharpe
Alpha Alpha Volatility Ratio Fee (RRA=1) Fee (RRA=10) Ratio

NITE CTE UTE NITE CTE UTE NITE CTE UTE CTE UTE CTE UTE CTE UTE NITE CTE UTE
1.000 1.000 1.063 1.046 0.885 0.895 0.842 1.130 1.188 1.242 0.051 0.100 0.063 0.046 0.063 0.046 0.216 0.218 0.217
3.000 3.000 3.190 3.137 2.656 2.686 2.526 1.130 1.188 1.242 0.154 0.299 0.189 0.139 0.189 0.141 0.253 0.258 0.257
5.000 5.000 5.316 5.229 4.426 4.476 4.209 1.130 1.188 1.242 0.257 0.498 0.315 0.233 0.314 0.238 0.289 0.297 0.296

Panel D: Out-of-Sample Performance: Common Factor Structure

Target Tracking Error Information Incentive Management Management Sharpe
Alpha Alpha Volatility Ratio Fee (RRA=1) Fee (RRA=10) Ratio

NITE CTE UTE NITE CTE UTE NITE CTE UTE CTE UTE CTE UTE CTE UTE NITE CTE UTE
1.000 0.588 1.309 0.596 1.570 5.003 1.414 0.374 0.262 0.422 -0.177 0.074 0.666 0.010 0.610 0.011 0.001 0.014 0.001
3.000 1.763 3.927 1.789 4.709 15.010 4.241 0.374 0.262 0.422 -0.531 0.223 1.658 0.036 1.150 0.046 0.022 0.060 0.022
5.000 2.938 6.545 2.981 7.849 25.016 7.069 0.374 0.262 0.422 -0.885 0.372 2.190 0.072 0.728 0.101 0.043 0.103 0.044
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Table VI: Estimation Periods and Evaluation Schemes

This table reports the in-sample and out-of-sample information ratios of the no-information
tracking efficient (NITE) portfolios, the conditionally tracking efficient (CTE) portfolios,
and the unconditionally tracking efficient (UTE) portfolios. The out-of-sample evaluation
scheme is fixed-window (Fixed), recursive (Recursive), or rolling-window (Rolling). The
number of observations in the initial window is 60, 120, 180, or 240. For each portfolio, we
report the information ratio.

NITE CTE UTE

Number of Initial Observations: 60

In-Sample 0.312 0.547 0.828
Fixed -0.059 0.166 0.232

Recursive 0.014 0.111 0.145
Rolling -0.016 0.137 0.097

Number of Initial Observations: 120

In-Sample 0.100 0.528 0.586
Fixed -0.013 0.056 0.155

Recursive 0.040 0.085 0.117
Rolling 0.007 0.125 0.103

Number of Initial Observations: 180

In-Sample 0.075 0.413 0.510
Fixed 0.007 0.054 0.057

Recursive 0.070 0.056 0.093
Rolling -0.126 0.107 0.080

Number of Initial Observations: 240

In-Sample 0.092 0.322 0.456
Fixed 0.055 0.055 0.014

Recursive 0.043 0.022 0.054
Rolling 0.096 0.050 0.038

62



Table VII: Naive Strategy

This table reports the in-sample and out-of-sample performance of the naive (1/N) portfo-
lios. We split the sample of currency data (February 1979 to October 2004) by using the
initial 243, 60, 120, 180, or 240 observations as “in-sample” and the rest as “out-of-sample,”
such that the results are directly comparable to Tables II and VI. We report the sample
average of the portfolio return in excess of benchmark return, “alpha,” the standard error,
“tracking error volatility,” the ratio of alpha to tracking error volatility, “information ratio,”
and the Sharpe ratio.

Tracking Error Information Sharpe
Obs. Alpha Volatility Ratio Ratio

In-Sample 243.000 0.277 8.058 0.034 0.019
Out-of-Sample 73.000 0.554 6.443 0.086 0.086

In-Sample 60.000 -1.195 8.933 -0.134 -0.234
Out-of-Sample 256.000 0.701 7.363 0.095 0.097

In-Sample 120.000 -0.195 9.187 -0.021 -0.013
Out-of-Sample 196.000 0.669 6.643 0.101 0.066

In-Sample 180.000 0.227 8.623 0.026 0.031
Out-of-Sample 136.000 0.491 6.319 0.078 0.033

In-Sample 240.000 0.211 7.878 0.027 0.012
Out-of-Sample 76.000 0.750 7.171 0.105 0.107
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Table VIII: Robustness Check: Simulation Evidence

This table reports the simulation results for the in-sample (Panel A) and out-of-sample
(Panels B to D) performance of the no-information tracking efficient portfolios (NITE), the
conditionally tracking efficient (CTE) portfolios, and the unconditionally tracking efficient
(UTE) portfolios. For each portfolio, we compute the difference between the active portfolio
return and the benchmark return and the following metrics: (1) the average difference
between the two returns, “alpha,” (2) the standard error of the difference, “tracking error
volatility,” and (3) the ratio of alpha to tracking error volatility, “information ratio.” The
alphas and tracking error volatilities are annualized and in percentage points. We take
averages of the above three metrics from 1,000 simulation paths, each of the paths contains
the same number of observations as the actual data. The out-of-sample evaluation scheme
is fixed-window (Panel B), recursive (Panel C), or rolling-window (Panel D). The numbers
in the parentheses are the probabilities of the NITE or the CTE portfolios with (1) alphas
closer to the target alphas, or (2) smaller tracking error volatilities, or (3) larger information
ratios, than those of the UTE portfolios.

Panel A: In-Sample Performance

Target Tracking Error Information
Alpha Alpha Volatility Ratio

NITE CTE UTE NITE CTE UTE NITE CTE UTE

1.000 1.000 1.062 1.021 8.972 3.390 1.978 0.141 0.339 0.531
(1.000) (0.119) (0.000) (0.000) (0.000) (0.006)

3.000 3.000 3.186 3.062 26.917 10.171 5.934 0.141 0.339 0.531
(1.000) (0.119) (0.000) (0.000) (0.000) (0.006)

5.000 5.000 5.310 5.103 44.862 16.952 9.890 0.141 0.339 0.531
(1.000) (0.119) (0.000) (0.000) (0.000) (0.006)

Panel B: Out-of-Sample Performance: Fixed Window

Target Tracking Error Information
Alpha Alpha Volatility Ratio

NITE CTE UTE NITE CTE UTE NITE CTE UTE

1.000 0.393 0.703 0.637 9.024 3.520 1.997 0.057 0.227 0.329
(0.217) (0.467) (0.000) (0.026) (0.038) (0.187)

3.000 1.179 2.109 1.910 27.072 10.561 5.992 0.057 0.227 0.329
(0.217) (0.467) (0.000) (0.026) (0.038) (0.187)

5.000 1.965 3.515 3.183 45.120 17.602 9.987 0.057 0.227 0.329
(0.217) (0.467) (0.000) (0.026) (0.038) (0.187)
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Panel C: Out-of-Sample Performance: Recursive

Target Tracking Error Information
Alpha Alpha Volatility Ratio

NITE CTE UTE NITE CTE UTE NITE CTE UTE

1.000 0.557 0.741 0.665 9.268 3.565 2.060 0.083 0.235 0.336
(0.243) (0.452) (0.000) (0.017) (0.045) (0.189)

3.000 1.670 2.223 1.995 27.805 10.695 6.180 0.083 0.235 0.336
(0.243) (0.452) (0.000) (0.017) (0.045) (0.189)

5.000 2.783 3.706 3.324 46.341 17.824 10.299 0.083 0.235 0.336
(0.243) (0.452) (0.000) (0.017) (0.045) (0.189)

Panel D: Out-of-Sample Performance: Rolling Window

Target Tracking Error Information
Alpha Alpha Volatility Ratio

NITE CTE UTE NITE CTE UTE NITE CTE UTE

1.000 0.347 0.716 0.623 9.758 3.463 2.034 0.063 0.229 0.320
(0.238) (0.498) (0.000) (0.016) (0.045) (0.199)

3.000 1.042 2.147 1.870 29.274 10.390 6.102 0.063 0.229 0.320
(0.238) (0.498) (0.000) (0.016) (0.045) (0.199)

5.000 1.737 3.579 3.117 48.790 17.317 10.170 0.063 0.229 0.320
(0.238) (0.498) (0.000) (0.016) (0.045) (0.199)
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Figure 1: Unconditionally Tracking Efficient Portfolio Weights in Response to Con-
ditioning Information

The dashed curve depicts the unconditionally tracking efficient (UTE) portfolio weights
in asset a, and the solid curve depicts the UTE portfolio weights in asset b, both in excess
of the benchmark portfolio weights, for various outcomes of conditioning information (sig-
nal). Signal is pre-standardized. It is positively correlated with the return of asset a and
negatively correlated with the return of asset b. The target alpha is 5%.
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Figure 2: Unconditionally Tracking Efficient Portfolio Weights in Response to Con-
ditioning Information: With Beta Constraint

The dashed curve depicts the unconditionally tracking efficient (UTE) portfolio weights
in asset a, and the solid curve depicts the UTE portfolio weights in asset b, both in excess
of the benchmark portfolio weights, for various outcomes of conditioning information (sig-
nal). Signal is pre-standardized. It is positively correlated with the return of asset a and
negatively correlated with the return of asset b. The target alpha is 5%, and the target beta
is 1.5.
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Figure 3: Tracking Efficiency Frontiers

The dashed curve is the tracking efficiency frontier for the no-information tracking
efficient (NITE) portfolios, the dotted curve is the tracking efficiency frontier for the con-
ditionally tracking efficient (CTE) portfolios, and the solid curve is the tracking efficiency
frontier for the unconditionally tracking efficient (UTE) portfolios. The portfolios are con-
structed by conditional or unconditional moments based on 12,000 simulated observations.
All of the conditional moments are constructed by the true data generating process used to
calibrate the simulation.

68



Figure 4: Portfolio Weights in Excess of Benchmark Weights: Japanese Yen

Dashed, dotted, and solid curves are out-of-sample NITE, CTE, and UTE portfolio
weights on Japanese Yen, respectively, in excess of the weight in the benchmark portfolio.
The target alpha is 5%.
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Figure 5: Portfolio Weights in Excess of Benchmark Weights: UK Pounds

Dashed, dotted, and solid curves are out-of-sample NITE, CTE, and UTE portfolio
weights on UK Pounds, respectively, in excess of the weight in the benchmark portfolio.
The target alpha is 5%.

70



Figure 6: Portfolio Weights in Excess of Benchmark Weights: Euro

Dashed, dotted, and solid curves are out-of-sample NITE, CTE, and UTE portfolio
weights on Euro, respectively, in excess of the weight in the benchmark portfolio. The
target alpha is 5%.

71



Figure 7: Portfolio Weights in Excess of Benchmark Weights: US Dollars

Dashed, dotted, and solid curves are out-of-sample NITE, CTE, and UTE portfolio
weights on US Dollars, respectively, in excess of the weight in the benchmark portfolio.
The target alpha is 5%.
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