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ABSTRACT 

In this paper we raise a question on the theoretical foundation of option 

implied risk neutral density.   We prove that given any number of options, 

there exist numerous risk neutral densities which  are piecewise constant, 

have only two values, either a lower bound or an upper bound on the true 

risk neutral density, and price all these options correctly.  Similar results 

are proved with respect to the true risk neutral density's derivatives. 

These results show how difficult it is to ensure that the risk neutral 

density we extract from option prices is the true one and how large 

estimation errors can be.  
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Introduction

There is an extensive literature on option implied risk neutral densities. Ross

(1976) is the first to show that we can recover the risk neutral density (hereafter

RND) from a complete set of European option prices. Breeden and Litzenberger

(1978) are the first to put this idea into practice and show that the RND is

equal to the second derivative of option prices with respect to the strike price.

Following their seminal work, there have developed a large collection of studies

on this topic.1

The estimated RNDs have been used in many ways. For example, they are

used to price derivatives with the same time to expiration. They are also used

to assess the market beliefs about important political and economic events (see,

for example, Campa and Chang (1996, 1998), Brenner et al. (1996), McCauley

and Melick (1996), Malz (1997), Melick and Thomas (1997), Söderlind (2000),

Jondeau and Rockinger (2000), Coutant et al. (2001)). Some authors use

them to test market rationality (see, for example, Bondarenko (1997, 2002)).

1See, for example, Jarrow and Rudd (1982), Shimko (1993), Rubinstein (1994), Longstaff

(1995), Corrado and Su (1996), Jackwerth and Rubinstein (1996), Melick and Thomas (1997),

Ait-Sahalia and Lo (1998), Campa et al. (1998), Rosenberg (1998), Rubinstein (1998), Jackw-

erth (1999), Jondeau and Rockinger (2001), Rosenberg and Engle (2002), Panigirtzoglou and

Skiadopoulos (2004), Yatchew and Härdle (2006)). Jackwerth (1999), Jondeau and Rockinger

(2000), and Bliss and Panigirtzoglou (2002) provide excellent reviews over different methods

used to extract RNDs from option prices.
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Some others use them to manage risk (see, for example, Äıt-Sahalia and Lo

(2000) and Berkowitz (2001)). Many other authors use option implied RNDs to

estimate investors’ risk preferences (see, for example, Äıt-Sahalia and Lo (2000),

Jackwerth (2000), Rosenberg and Engle (2002), Bliss and Panigirtzoglou (2004),

Bakshi et al. (2003), and Liu et al. (2007)).

As option implied RNDs are ever more widely used in finance, there is a

danger that enough caution is not taken about the limit on what option prices

can tell us about the true RND. Although the true RND can be recovered from

a complete set of (European) option prices, we can never really have such a

complete set of option prices. After all, strike prices are set at discrete intervals.

For example, strikes for the S&P 500 Index options are usually spaced $5 apart.2

Thus the uniqueness of option implied RNDs can never be guaranteed. It is

surprising that this flaw in the theoretical foundation of option implied RNDs

has been largely ignored in the literature.3

In this paper we raise this issue and ask the following question: can we

really extract the true RND and its derivatives from option prices? We prove

that given any number of options, there exist an uncountable number of different

RNDs which are piecewise constant, have only two values, either a lower bound
2In fact, as is pointed out by Bondarenko (2003), “in a typical application, the conditional

RND is estimated from a cross-section of 10 to 30 option prices (for a given maturity).”
3An exception is Kargin (2004) who points out that the problem of extracting RND from

option prices is ill-posed. Bondarenko (2003) briefly mentions the ill-posedness of option

implied RND while discussing issues in estimating option implied RND. Jackwerth (1999) also

cautions against “reading too much information into the graphs of risk-neutral distributions,”

however, his concern is more about simple estimation errors.
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or an upper bound on the true RND, and price all these options correctly.

This shows that however many options we have in the market, there are always

numerous RNDs which are consistent with the prices of all these options and

the differences between these RNDs and the true RND can be arbitrarily large.

We also prove that given any number of options, there exist an uncountable

number of different RNDs consistent with the prices of all these options whose

first derivatives are piecewise constant and have only two values, either a lower

bound or an upper bound on the true RND’s first derivative. This shows that

however many options we have in the market, there are always numerous RNDs

which price all these options correctly and the differences between the first

derivatives of these RNDs and the true RND can be arbitrarily large.

Moreover, define the 0th order elasticity of an RND as itself and its N th order

elasticity as the elasticity of its (N − 1)th order elasticity. We prove that given

any number of options, there exist an uncountable number of different RNDs

consistent with the prices of all these options whose N th order elasticities are

piecewise constant and have only two values, either a lower bound or an upper

bound on the true RND’s N th order elasticity.

These results show how difficult it is to ensure that the risk neutral density

we extract from option prices is the true one and how large estimation errors

can be. The implications of these results for the literature on option implied

RNDs can not be ignored. The key point raised by these results is that we must

justify why a single RND which is estimated from a set of option prices using a

particular method should be the true RND while it is only one of the numerous
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RNDs consistent with these option prices.

The structure of the paper is as follows: In Section 1 we introduce the

theoretical foundation of option implied RNDs laid by Ross (1976) and Breeden

and Litzenberger (1978). In Section 2 we show the existence of RNDs which

have extreme forms and price any number of options correctly when the true

RND is bounded. In Section 3 we show the existence of RNDs which have

extreme forms and price any number of options correctly when the true RND’s

first derivative is bounded. In Section 4 we show the existence of RNDs which

have extreme forms and price any number of options correctly when the true

RND’s elasticity is bounded. In Section 5 we show the existence of RNDs which

have extreme forms and price any number of options correctly when the true

RND’s N th order elasticity is bounded. The final section concludes the paper.

1 RNDs and Option Prices

Let current time be 0 and a time in the future be t. Assume the risk free

interest rate for this period is rt. Then the time zero price of a risk-free unit

zero coupon bond (hereafter unit bond) matures at t is B0 = 1
1+r

. Assume

there is a stock in the economy with no dividend.4 The stock’s time 0 and time

t prices are denoted by S0 and S respectively. Assume there are a complete

set of (European) options written on the stock which are traded in the market.

Denote the time 0 price and time t payoff of the option with strike price K by

c0(K) and c(S; K) respectively.
4The model can be routinely extended to the case with dividends
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Assume there are no arbitrage opportunities in the market. Then according

to the well-known option pricing theory, there exists a unique risk neutral prob-

ability measure (or equivalent Martingale measure) Q such that S0 = B0E
Q(S)

and

c0(K) = B0E
Q(c(S; K)).

Assume risk neutral probability measure Q is represented by a RND q(S). We

call it the true RND in this paper. Then we have

c0(K) = B0

∫

Ω

q(S)c(S; K)dS, (1)

where Ω is the support of the underlying stock price distribution.

According to Ross (1976), we can recover the true RND if we have a complete

set of option prices. Let c0(K) denote the time-zero price of the option with

strike price K. Breeden and Litzenberger (1978) show that

q(S) =a.s.
d2c0(K)

dK2
|K=S , (2)

where q(S) is unique up to a zero-measure set. In applied mathematics, problem

(1) is usually called the original problem while problem (2) is usually called the

inverse problem. It is well known that the original problem (1) is well-posed

while the inverse problem (2) is ill-posed.5

In reality it is impossible to have a complete set of option prices. Strike

prices of options are set at discrete intervals. Thus the problem we want to

solve in the literature on option implied RNDs is to extract the true RND q(S)

from the prices of a series of options. Now suppose we observe the prices of
5See, for example, Engl et al. (2000).
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a series of options with strike prices Ki, i = 1, 2, .... These strike price are

numbered so that Ki is increasing in i. We denote the time 0 price and time

t payoff of the ith option by ci
0 and ci(S) respectively. The question we ask in

this paper is: can we extract the true RND and its derivatives from a series of

option prices?

2 RND is Bounded

In most models of option implied RNDs, the estimated RNDs usually have an

upper bound. Now assume that it is true that as in these models the true RND is

bounded above by a constant q > 0 and below by 0. Assume the support of the

true RND is [s0, sM ] ⊂ R+. Given the prices of the unit bond, the underlying

stock, and n options, B0, S0, c1
0, ..., cn

0 respectively, for any admissible pricing

kernel φ(S) because it prices the stock and the n observed options correctly, it

must satisfy the following admissibility conditions.

E(φ(S)) = 1,

B0E(Sφ(S)) = S0,

B0E(ci(S)φ(S)) = ci
0, i = 1, ..., n.

We first introduce three lemmas.

Lemma 1 Assume two RNDs intersect once, then the RND with fatter left tail

gives lower stock price.

Proof: Let q1(S) and q2(S) be the two RNDs which intersect once. Without
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loss of generality assume q2(S) has fatter left tail. Thus there exists s1, which

is an interior point of the common support of the two RNDs, such that

q1(S) − q2(S) ≤ 0, S < s1

q1(S) − q2(S) ≥ 0, S > s1

We have

∫ sM

s0

[S(q1(S) − q2(S))]dS =
∫ sM

s0

[(S − s1)(q1(S) − q2(S))]dS ≥ 0.

Hence q2(S), which has fatter left tail than q1(S), gives lower stock price. Q.E.D.

Lemma 2 Assume two pricing kernels give the same stock price. If they inter-

sect twice, then the pricing kernel with fatter tails gives higher prices of convex-

payoff contingent claims written on the stock.

Proof: See Huang (2004a) or Franke et al. (1999).

Lemma 3 Assume two RNDs give the same prices of the underlying stock and

options with strike prices K1, K2, ..., Kn, where K1 < K2 < ... < Kn. Let

K0 = s0 and Kn+1 = sM . If the two RNDs intersect n + 2 times then the

one with fatter left tail will give higher (lower) prices for all options with strike

prices between (K2i−2, K2i−1) ((K2i−1, K2i)), i = 1, 2, ....

Proof: See Huang (2004a).

Let q∗∗n (S) be a RND which is (n + 3)-segment and piecewise constant, has

value q at odd segments and minimum value zero at even segments, and prices

the stock and n observed options correctly. Thus we have q∗∗n (S) = q, for
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S ∈ (s∗∗n,j , s
∗∗
n,j+1) and j is even, and q∗∗n (S) = 0, for S ∈ (s∗∗n,j, s

∗∗
n,j+1) and j is

odd, where 0 ≤ j ≤ n + 3, s∗∗n,0 = s0, s∗∗n,n+3 = sM , and s∗∗n,j, j = 1, ..., n+ 2, are

determined by the n + 2 equations for admissibility.

Let q∗n(S) be a RND which is (n + 3)-segment and piecewise constant, has

value zero at odd segments and value q at even segments, and prices the stock

and n observed options correctly. Thus we have q∗n(S) = 0, for S ∈ (s∗n,j , s
∗
n,j+1)

and j is even, and q∗n(S) = q, for S ∈ (s∗n,j, s
∗
n,j+1) and j is odd, where 0 ≤ j ≤

n + 3, s∗n,0 = s0, s∗n,n+3 = sM , and s∗n,j , j = 1, ..., n + 2, are determined by the

n + 2 equations for admissibility.

Let q+
n (S, a) be a RND which has the same form as q∗∗n+1(S), satisfies s∗∗n+1,n+3 =

a ∈ [s∗n,n+2, sM ], and prices the underlying stock and n options with strikes

K1..., Kn correctly.

Let q−n (S, b) be a RND which has the same form as q∗n+1(S), satisfies s∗n+1,1 =

b ∈ [s0, s
∗
n,1], and prices the underlying stock and n options with strikes K1..., Kn

correctly. We present the following result.

Theorem 1 Assume the support of the stock price distribution is [s0, sM ]. As-

sume the underlying asset and T options with strike prices K1 < K2 < ... < KT ,

T ≥ 1, are priced correctly by a bounded RND. Then for all T = 0, 1, ..., q∗∗T (S)

and q∗T (S) exist. For all T = 0, 1, ..., all a ∈ [s∗n,n+2, sM ], all b ∈ [s0, s
∗
n,1],

q+
T (S, a) and q−T (S, b) exist. Moreover, q∗∗T (S) ( q∗T (S)) gives the optimal up-

per (lower) bound on options with strike prices between K2i and K2i+1, where

0 ≤ 2i ≤ T , while q∗∗T (S) ( q∗T (S)) gives the optimal lower (upper) bound on

options with strike prices between K2i−1 and K2i, where 0 < 2i − 1 ≤ T .
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Proof: We prove the theorem by induction. Let the price of the unit bond be

B0, the underlying stock price be S0, and the prices of n options with strike

prices K1, K2, ..., Kn be c1
0, c2

0, ..., and cn
0 respectively. When necessary we

write q∗∗T (S) and q∗T (S) which have forms specified in Theorem 1 and price the

underlying stock and the T options correctly explicitly as

q∗∗T (S; s0, sM , K1, ..., KT , S0, c
1
0, ..., c

T
0 ) and

q∗T (S; s0, sM , K1, ..., KT , S0, c
1
0, ..., c

T
0 ).

We first prove that when T = 0 the theorem is true. Let q∗∗00(S) be a RND

such that q∗∗00(S) = q̄, for S < s∗∗0,0,1, and q∗∗00(S) = 0, for S > s∗∗0,0,1. Let q∗00(S)

be a RND such that q∗00(S) = 0, for S < s∗0,0,1, and q∗00(S) = q̄, for S > s∗0,0,1.

The existence of the above two RNDs is obvious. Moreover, as q∗∗00(S) intersect

the true RND once and has fatter left tail, from Lemma 1 we conclude that

it under-prices the stock. Using the same argument we conclude that q∗00(S)

over-prices the stock.

We now show the existence of q∗∗0 (S). It is straightforward that given any

s0,1 ∈ [s0, s
∗∗
0,0,1], there always exists s0,2 ≥ s0,1 such that q̃(S; s0,1) is a RND,

where q̃0(S; s0,1) = q, S < s0,1; q̃0(S; s0,1) = 0, s0,1 < S < s0,2; q̃0(S; s0,1) = q,

S > s0,2.

We have q̃(S; s0) = q∗∗00(S) under-prices the stock while q̃(S; s∗∗0,0,1) = q∗00(S)

over-prices the stock. Hence we conclude that there exists s0,1 ∈ [s0, s
∗∗
0,0,1] such

that q∗∗0 (S) = q̃(S; s0,1) is a RND which prices the stock correctly.

The existence of q∗0(S) can be similarly proved.
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It is obvious that the true RND can only intersect q∗∗0 (S) and q∗0(S) at most

twice. But since they all price the stock correctly, from Lemma 2, q(S) must

intersect q∗∗0 (S) and q∗0(S) at least twice. Thus q(S) must intersect q∗∗0 (S) and

q∗0(S) exactly twice. Now applying Lemma 2, we conclude that q∗0(S) under-

prices all options while q∗∗0 (S) over-prices them.

We now prove the existence of q+
0 (S, a) and q−0 (S, b).

Note q+
0 (S, a) is a RND which has the same form as q∗∗1 (S), satisfies s∗∗1,3 =

a ∈ [s∗0,2, sM ], and prices the underlying stock correctly. Given any decreasing

pricing kernel q(S) which price the underlying stock correctly, we have

∫ sM

s0

q(S)dS = 1,

B0

∫ sM

s0

Sq(S)dS = S0.

Let q(S) ≡ q∗0(S). It follows that

∫ a

s0

q(S)dS = 1,

B0

∫ a

s0

Sq(S)dS = S0.

Now consider the case where the support of the stock price distribution is [s0, a].

Let q̂(S) be the truncated probability density function of q(S) defined on [s0, a],

i.e., q̂(S) ≡ q(S), S ∈ [s0, a]. As the stock price S0 is given by a bounded RND

q̂(S), according to the previously made assumption, we must have a RND which

is defined on [s0, a], has the specified form as

q∗∗0 (S; s0, a, S0),
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and gives the same price for the underlying stock as q̂(S). Now let

q+
0 (S, a) = {

q∗∗0 (S; s0, a, S0), S ≥ a

0, S < a

Straightforward calculations show that this RND has the specified form as

q+
0 (S, a) and price the underlying stock correctly. This proves the existence

of q+
0 (S, a) for all a ∈ [s∗0,2, sM ]. The existence of q−0 (S, b) for all b ∈ [s0, s

∗
0,1]

can be similarly proved.

Assume that given n ≥ 1, the theorem is true for T = n − 1. We need only

to prove that the theorem is true for T = n.

First assume n is odd. First we prove the existence of q∗∗n (S) and q∗n(S).

Note from the assumption we have for all a ∈ [s∗n−1,n+1, sM ], q+
n−1(S, a) exists.

As q+
0 (S, s∗n−1,n+1) = q∗n−1(S), q+

0 (S, sM ) = q∗∗n−1(S), and they give the optimal

lower bound and upper bound on the nth option’s price, we must have a pricing

kernel which has the form as q∗∗n (S) and price the underlying stock and n options

correctly. This proves the existence of q∗∗n (S). The existence of q∗n(S) can be

similarly proved.

Obviously q∗∗n (S) can intersect the true pricing kernel at most n + 2 times.

However from Lemma 3, it must intersect all admissible pricing kernels at least

n+2 times; otherwise they cannot price all the n options correctly. Hence q∗∗n (S)

intersects all admissible pricing kernel exactly n + 2 times. It is obvious that

q∗∗n (S) has fatter left tail. Thus applying Lemma 3, we immediately conclude

that q∗∗n (S) gives the optimal upper bound on options with strike prices between

K2i and K2i+1, where 0 ≤ 2i ≤ n, and it gives the optimal lower bound on
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options with strike prices between K2i−1 and K2i, where 0 < 2i − 1 ≤ n.

Similarly, we can show that q∗n(S) gives the optimal lower bound on options

with strike prices between K2i and K2i+1, where 0 ≤ 2i ≤ T , and it gives

the optimal upper bound on options with strike prices between K2i−1 and K2i,

where 0 < 2i − 1 ≤ n.

We now prove the existence of q+
n (S, a) and q−n (S, b) for all a ∈ [s∗n,n+2, sM ]

and b ∈ [s0, s
∗
n,1].

It is straightforward that K1 > s∗n,1. Moreover, without loss of generality

we can assume all these n options are call options. Furthermore, given any

decreasing pricing kernel q(S) which price the underlying stock and n options

with strikes K1..., Kn correctly, we have

∫ sM

s0

q(S)dS = 1,

B0

∫ sM

s0

Sq(S)dS = S0,

B0

∫ sM

s0

ci(S)q(S)dS = ci
0, i = 1, ..., n.

Let q(S) ≡ q∗n(S). It follows that

∫ sM

b

q(S)dS = 1,

B0

∫ sM

b

Sq(S)dS = S0,

B0

∫ sM

b

ci(S)q(S)dS = ci
0, i = 1, ..., n.

Now consider the case where the support of the stock price distribution is [b, sM ].

Let q̂(S) be the truncated probability density function of q(S) defined on [b, sM ],

i.e., q̂(S) ≡ q(S), S ∈ [b, sM ]. As the prices S0, ci
0, i = 1, ..., n, are given by
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a bounded RND q̂(S), according to the previously made assumption, we must

have a RND which is defined on [b, sM ], has the specified form as

q∗∗n (S; b, sM , K1, ..., Kn, S0, c
1
0, ..., c

n
0),

and gives the same prices for the underlying stock and the n options as q̂(S).

Now let

q−n (S, b) = {
q∗∗n−1(S; b, sM , K1, ..., Kn, S0, c

1
0, ..., c

n
0), S ≥ b

0, S < b

Some straightforward calculations show that this RND has the specified form

as q∗n+1(S), where s∗n+1,1 = b, and price the underlying stock and the n options

correctly. This proves the existence of q−n (S, b) for all b ∈ [s0, s
∗
n,1].

When n is even, the proof is similar. Q.E.D.

From the above theorem if q is a strict upper bound on the true RND,

then q+
n (S, a) and q−n (S, b) will be different from the true RND anywhere in its

support. We may also notice that if q is an upper bound then any value which

is larger than q will also be an upper bound. As we can increase q arbitrarily,

the pointwise differences between these RNDs with extreme forms and the true

RND can be made arbitrarily large.

Moreover, from the theorem we can see that there are always RNDs with

extremely fat tails and RNDs with extremely thin tails which both price the any

number of options correctly. Thus caution must be taken when we interpret the

tails of an estimated RND.
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Furthermore, as estimations of option implied risk preferences rely on esti-

mations of option implied RNDs, this result also has important implications for

the literature on option implied risk preferences.

3 RND’s First Derivative is Bounded

Assume the true RND is continuous and its first derivative is bounded above by

q > 0 and below by q < 0. As in the previous section we assume the support of

the true RND is [s0, sM ] ⊂ R+. Moreover, we assume sM is sufficiently large,

that is, it is as large as we need it to be though it is bounded.

Let Jn = 3n
2 + 3 when n is even or 3(n+1)

2 + 2 when n is odd. Let q∗∗1,n(S) be

a continuous RND which is Jn-segment and piecewise constant, which is zero at

(2 + 3j)th segments, j ≥ 0, whose first derivative is equal to q at at (1 + 3j)th

segments, j ≥ 0, and q at at (3 + 3j)th segments, j ≥ 0, and prices the stock

and n observed options correctly. Denote the domain of the jth (j ≥ 1) segment

by (s∗∗n,j−1, s
∗∗
n,j). Thus we have s∗∗n,0 = s0, s∗∗n,Jn

= sM ,

s∗∗n,3j+3 =
qs∗∗n,3j+2 + qs∗∗n,3(j+1)+1

q + q
, j ≥ 0,

and for j ≥ 0, s∗∗n,3j+1 and s∗∗n,3j+2 are determined by the n + 2 equations for

admissibility.

Let Ln = 3n
2 + 4 when n is even or 3(n+1)

2 + 2 when n is odd. Let q∗1,n(S) be

a continuous RND which is Ln-segment and piecewise constant, which is zero

at (1+3j)th segments, j ≥ 0, whose first derivative is equal to q at at (2+3j)th

segments, j ≥ 0, and q at at (3 + 3j)th segments, j ≥ 0, and prices the stock
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and n observed options correctly. Denote the domain of the jth (j ≥ 1) segment

by (s∗n,j−1, s
∗
n,j). Thus we have s∗n,0 = s0, s∗n,Ln

= sM ,

s∗n,3j+2 =
qs∗n,3j+1 + qs∗n,3(j+1)

q + q
, j ≥ 0,

and for j ≥ 0, s∗n,3j+1 and s∗n,3(j+1) are determined by the n + 2 equations for

admissibility.

Let q+
n (S, a) be a RND which has the same form as q∗∗n+1(S), satisfies s∗∗n+1,1 =

a ∈ [s0, s
∗∗
n,1], and prices the underlying stock and n options with strikes K1..., Kn

correctly.

Let q−n (S, b) be a RND which has the same form as q∗n+1(S), satisfies s∗n+1,2 =

b ∈ [s0, s
∗
n,2], and prices the underlying stock and n options with strikes K1..., Kn

correctly. We now present the following result.

Theorem 2 Assume the support of the stock price distribution is [s0, sM ]. As-

sume the underlying asset and T options with strike prices K1 < K2 < ... < KT ,

T ≥ 1, are priced correctly by a RND with bounded first derivative. Then for

all T = 1, ..., q∗∗T (S) and q∗T (S) exist. For all T = 1, ..., all a ∈ [s0, s
∗∗
n,1],

all b ∈ [s0, s
∗
n,2], q+

T (S, a) and q−T (S, b) exist. Moreover, q∗∗T (S) ( q∗T (S)) gives

the optimal upper (lower) bound on options with strike prices between K2i and

K2i+1, where 0 ≤ 2i ≤ T , while q∗∗T (S) ( q∗T (S)) gives the optimal lower (upper)

bound on options with strike prices between K2i−1 and K2i, where 0 < 2i−1 ≤ T .

Proof: The proof is similar to the proof of Theorem 1; thus it is omitted for

brevity.

From the above theorem if q and q are strict upper bounds on the true RND’s
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first derivative, then the first derivatives of q+
n (S, a) and q−n (S, b) will be different

from the true RND’s first derivative anywhere in its support. Moreover, if q is

an upper bound then any value which is larger than q will also be an upper

bound and if q is a lower bound then any value which is smaller than q will also

be a lower bound. As we can increase q and decrease q arbitrarily, the pointwise

differences between the first derivatives of these RNDs’s with extreme forms and

the true RND can be made arbitrarily large.

Furthermore, as estimations of option implied risk aversion involve estima-

tions of the first derivative of option implied RND, this result also has important

implications for the literature on option implied risk aversion.

4 RND’s Elasticity is Bounded

Assume the true RND is continuous and its elasticity is bounded above by e1

and below by e1. Although in most cases we have e1 > 0 and e1 < 0, we do not

assume that the lower and upper bounds have opposite signs.

Let IO(j) ≡ 1−(−1)j

2 . That is, IO(j) is an indicator function of integers: if

integer j is odd, then IO(j) = 1; if integer j is even, then IO(j) = 0.

Let q∗∗1,n(S) be a continuous RND which is (n + 2)-segment, whose elasticity

is equal to e1 at odd segments and e1 at even segments, and which prices the

stock and n observed options correctly. Denote the domain of the jth (j ≥ 1)

segment by (s∗∗n,j−1, s
∗∗
n,j), where s∗∗n,0 = s0 and s∗∗n,n+2 = sM . We have

q∗∗1,n(S) =
n∑

j=0

a∗∗
1,nSe1(1−IO(j))+e1IO(j)Πj

l=1s
∗∗(e1−e1)(−1)l

n,l I(s∗∗
n,j

,s∗∗
n,j+1)

(S),
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where s∗∗n,j, 1 ≤ j ≤ n + 1, and the normalization factor a∗∗
1,n are determined by

the n + 2 equations for admissibility.

Let q∗1,n(S) be a continuous RND which is (n + 2)-segment, whose elasticity

is equal to e1 at odd segments and e1 at even segments, and which prices the

stock and n observed options correctly. Denote the domain of the jth (j ≥ 1)

segment by (s∗n,j−1, s
∗
n,j), where s∗n,0 = s0 and s∗n,n+2 = sM . We have

q∗1,n(S) =
n∑

j=0

a∗
1,nSe1(1−IO(j))+e1IO(j)Πj

l=1s
∗∗(e1−e1)(−1)l

n,l I(s∗
n,j

,s∗
n,j+1)

(S),

where s∗n,j, 1 ≤ j ≤ n + 1, and the normalization factor a∗
1,n are determined by

the n + 2 equations for admissibility.

Let q+
1,n(S, a) be a RND which has the same form as q∗∗1,n+1(S), satisfies

s∗∗n+1,n+2 = a ∈ [s∗n,n+1, sM ], and prices the underlying stock and n options with

strikes K1..., Kn correctly.

Let q−1,n(S, b) be a RND which has the same form as q∗1,n+1(S), satisfies

s∗n+1,1 = b ∈ [s0, s
∗
n,1], and prices the underlying stock and n options with

strikes K1..., Kn correctly. We have the following result.

Theorem 3 Assume the support of the stock price distribution is [s0, sM ]. As-

sume the underlying asset and T options with strike prices K1 < K2 < ... < KT ,

T ≥ 1, are priced correctly by a RND with bounded elasticity. For all T = 1, ...,

q∗∗1,T (S) and q∗1,T (S) exist. For all T = 1, ..., a ∈ [s∗n,n+1, sM ], b ∈ [s0, s
∗
n,1],

q+
1,T (S, a) and q−1,T (S, b) exist. Moreover, q∗∗1,T (S) ( q∗1,T (S)) gives the optimal

upper (lower) bound on options with strike prices between K2i and K2i+1, where

0 ≤ 2i ≤ T , while q∗∗1,T (S) ( q∗1,T (S)) gives the optimal lower (upper) bound on

18



options with strike prices between K2i−1 and K2i, where 0 < 2i − 1 ≤ T .

Proof: The proof is similar to the proof of Theorem 1; thus it is omitted for

brevity.

From the above theorem if e1 and e1 are strict upper bounds on the true

RND’s elasticity, then the elasticities of q+
n (S, a) and q−n (S, b) will be different

from the true RND’s elasticity anywhere in its support. Moreover, if e1 is an

upper bound then any value which is larger than e1 will also be an upper bound

and if e1 is a lower bound then any value which is smaller than e1 will also be

a lower bound. As we can increase e1 and decrease e1 arbitrarily, the pointwise

differences between the elasticities of these RNDs’s with extreme forms and the

true RND can be made arbitrarily large.

5 RND’s Nth order Elasticity is Bounded

Let a RND’s 0th order elasticity be itself. We define a RND’s N th order

elasticity as the elasticity of its (N − 1)th order elasticity. Given a RND

q(S), its first order elasticity ν1(S) ≡ dq(S)
dS

S
q(S)

. Its second order elasticity

ν2(S) ≡ dν1(S)
dS

S
ν1(S) . Its N th order elasticity νN (S) ≡ dνN−1(S)

dS
S

νN−1(S) .

Assume the true RND’s (N −1)th order elasticity is continuous and its N th

(N ≥ 1) order elasticity is bounded above by eN and below by eN .

Assume n ≥ N − 2. Let q∗∗N,n(S) be a RND which satisfies the following

conditions: it has continuous (N − 1)th order elasticity, it has (n − N + 3)

segments, its N th order elasticity is equal to eN (1− IO(N )) + eN IO(N ) at odd
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segments and eN (1 − IO(N )) + eNIO(N ) at even segments, and it prices the

stock and n observed options correctly. Denote the domain of the jth (j ≥ 1)

segment by (s∗∗N,n,j−1, s
∗∗
N,n,j), where s∗∗N,n,0 = s0 and s∗∗N,n,n−N+3 = sM . We

have

q∗∗N,n(S) =
n∑

j=0

Πj
l=0al exp(fj(S; εj , r

∗∗
N,n,j,1, ..., r

∗∗
N,n,j,N−1))I(s∗∗

N,n,j
,s∗∗

N,n,j+1)
(S),

where for j = 0, ..., n− N + 2,

εj = (eN (1−IO(N ))+eN IO(N ))(1−IO(j))+(eN (1−IO(N ))+eN IO(N ))IO(j),

fj(S; εj , r
∗∗
N,n,j,1, ..., r

∗∗
N,n,j,N−1) = εj(ln S)N +

N−1∑

t=1

r∗∗N,n,j,t(lnS)t,

for j = 1, ..., n− N + 2,

aj =
exp(fj−1(s∗∗N,n,j ; εj−1, r

∗∗
N,n,j−1,1, ..., r

∗∗
N,n,j−1,N−1))

exp(fj(s∗∗N,n,j ; εj, r∗∗N,n,j,1, ..., r
∗∗
N,n,j,N−1))

,

for j = 1, ..., n−N+2, r∗∗N,n,j,1, ..., r
∗∗
N,n,j,N−1 are determined by r∗∗N,n,j−1,1, ..., r

∗∗
N,n,j−1,N−1

such that for all l = 1, ..., N − 1,

εjN...(N − l + 1)(ln s∗∗N,n,j)
N−l +

N−1∑

t=l

t...(t− l + 1)r∗∗N,n,j,t(ln s∗∗N,n,j)
t−l

= εj−1N...(N − l + 1)(ln s∗∗N,n,j−1)
N−l +

N−1∑

t=l

t...(t− l + 1)r∗∗N,n,j−1,t(ln s∗∗N,n,j−1)
t−l,

and a0, r∗∗N,n,0,l, s∗∗N,n,j , l = 1, ..., N − 1, j = 1, ..., n− N + 2, are determined by

the n + 2 equations for admissibility.

Let q∗N,n(S) be a continuous (n − N + 3)-segment RND consistent with the

market prices of the stock and n options whose N th order elasticity is equal to

eN (1−IO(N ))+eN IO(N ) at odd segments and eN (1−IO(N ))+eN IO(N ) at even
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segments. Denote the domain of the jth (j ≥ 1) segment by (s∗N,n,j−1, s
∗
N,n,j),

where s∗N,n,0 = s0 and s∗N,n,n−N+3 = sM . We have

q∗N,n(S) =
n∑

j=0

Πj
l=0blf(S; e2(1 − IO(j)) + e2IO(j), r∗N,n,j)I(s∗

N,n,j
,s∗

N,n,j+1)
(S),

where for j = 1, ..., n,

bj =
f(s∗N,n,j ; e2(1 − IO(j − 1)) + e2IO(j − 1), r∗N,n,j−1)

f(s∗N,n,j ; e2(1 − IO(j)) + e2IO(j), r∗N,n,j)

r∗N,n,j = ln s∗N,n,j − (ln s∗N,n,j − r∗N,n,j−1)
(e2(1 − IO(j)) + e2IO(j))2

(e2(1 − IO(j − 1)) + e2IO(j − 1))2
,

and b0, r∗N,n,0, s∗N,n,j , j = 1, ..., n−N +2, are determined by the n+2 equations

for admissibility.

Let q+
N,n(S, a) be a RND which has the same form as q∗∗N,n+1(S), satisfies

s∗∗N,n+1,n−N+3 = a ∈ [s∗N,n,n−N+2, sM ], and prices the underlying stock and n

options with strikes K1..., Kn correctly.

Let q−N,n(S, b) be a RND which has the same form as q∗N,n+1(S), satisfies

s∗N,n+1,1 = b ∈ [s0, s
∗
N,n,1], and prices the underlying stock and n options with

strikes K1..., Kn correctly. We have the following result.

Theorem 4 Assume the support of the stock price distribution is [s0, sM ]. As-

sume the underlying asset and T options with strike prices K1 < K2 < ... < KT ,

T ≥ 1, are priced correctly by a RND whose elasticity’s elasticity is bounded

. For all T = 1, ..., q∗∗N,T (S) and q∗N,T (S) exist. For all T = 1, ..., all a ∈

[s∗N,n,n−N+2, sM ], all b ∈ [s0, s
∗
N,n,1], q+

N,T (S, a) and q−N,T (S, b) exist. Moreover,

q∗∗N,T (S) ( q∗N,T (S)) gives the optimal upper (lower) bound on options with strike

prices between K2i and K2i+1, where 0 ≤ 2i ≤ T , while q∗∗N,T (S) ( q∗N,T (S)) gives
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the optimal lower (upper) bound on options with strike prices between K2i−1 and

K2i, where 0 < 2i − 1 ≤ T .

Proof: The proof is similar to the proof of Theorem 1; thus it is omitted for

brevity.

From the above theorem if eN and eN are strict upper bounds on the true

RND’s N th order elasticity, then the N th order elasticities of q+
n (S, a) and

q−n (S, b) will be different from the true RND’s N th order elasticity anywhere in

its support. Moreover, if eN is an upper bound then any value which is larger

than eN will also be an upper bound and if eN is a lower bound then any value

which is smaller than eN will also be a lower bound. As we can increase eN

and decrease eN arbitrarily, the pointwise differences between the N th order

elasticities of these RNDs’s with extreme forms and the true RND can be made

arbitrarily large.

6 Conclusions

In this paper we have raised a serious question on the theoretical foundation of

option implied RNDs. We have shown that there always exist numerous RNDs

which have extreme forms and price any number of options correctly. The point-

wise differences between these RNDs and the true RND can be made arbitrarily

large. We have also shown that there always exist numerous continuous RNDs

consistent with the prices of any number of options whose first derivatives have

extreme forms. The pointwise differences between the first derivatives of these
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RNDs and the true RND can be made arbitrarily large. Similar results are

obtained with respect to higher order derivatives. These results not only show

that the RND implied by a given series of option prices is not unique but also

show how different the RNDs consistent with the serie of option prices can be.

Thus caution must be taken when we use estimated RNDs for various purposes.

Of course, we may argue that if we assume that RNDs must have continuous

N th derivatives, then the RNDs given in the theorems in this papers with

discontinuous N th derivatives will simply disappear. But then we have to justify

why RNDs must have continuous N th derivatives. Considering that we even

allow discrete distributions in option pricing models, we may not find such

assumptions easy to justify.
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