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Abstract

We evaluate the joint pricing of market volatility and market liquidity. Combining recent
advances in continuous-time econometrics with no-arbitrage arguments, we extract novel proxies
for market volatility and market illiquidity from a single time-series of high-frequency SPIDERS
transaction prices. When considered individually, illiquidity and volatility shocks are shown to
be strongly negatively correlated with market returns as well as with the returns on the size,
book-to-market, and momentum portfolios. Shocks to illiquidity and shocks to volatility are
found to be individually negatively priced. In joint speci�cations, shocks to volatility drive out
shocks to illiquidity leading to a drastic reduction in the statistical signi�cance of the illiquidity
factor loadings. While innovations in illiquidity and innovations in volatility may still be jointly
negatively priced, as is shown for our data, the factor loadings associated with volatility shocks
provide a more accurate assessment of risk. When interpreting shocks to illiquidity and shocks
to volatility as proxies for a more fundamental distress factor, this result is suggestive of the
superior robustness of the latter.
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Two successful strands of the recent asset pricing literature have emphasized the importance of

market volatility (e.g., Ang et al., 2006, Adrian and Rosenberg, 2006, and Moise, 2006) and market

liquidity (e.g., Acharya and Pedersen, 2005, Pástor and Stambaugh, 2003, and Sadka, 2003) as

systematic risk factors priced in the cross-section of stock returns. The intuition is straightforward.

Aggregate illiquidity and aggregate volatility are high in less favorable states of the world. Assets

whose returns are more positively correlated with their innovations will provide a hedge, thereby

requiring relatively lower expected returns.1

Admittedly, the joint pricing of market volatility and market liquidity has hardly been investi-

gated. Even though they are arguably the result of di¤erent economic phenomena (market volatility

being related with changes in fundamental asset values and market illiquidity being the outcome of

aggregate trading frictions a¤ecting fundamental asset values if priced), volatility and illiquidity

are positively correlated (in terms of innovations) and relatively higher in negative states of the

world. Should one take the view that volatility and illiquidity may be fundamental pricing factors,

as sometimes done in the literature, then it is meaningful to ask whether their individual pricing

ability is preserved, when jointly considered. Should one believe that they may be proxies for a

more fundamental factor (or factors) varying with the state of the economy, an argument we �nd

more convincing, then again it would seem relevant to ask whether their individual explanatory

power is subsumed in a model which allows for the other proxy to be present.

We make two contributions to the literature. The �rst contribution is methodological. By

combining recent advances in the econometrics of high-frequency data with classical no-arbitrage

arguments, we extract novel proxies for market volatility and market illiquidity from a single time-

series of high-frequency SPIDERS transaction prices. The joint evaluation of the cross-sectional

pricing implications of (innovations in) market volatility and (innovations in) market illiquidity

represents our second contribution.

Because SPIDERS represent ownership of a trust invested in the S&P500 index, changes in

SPIDERS fundamental value re�ect changes in the index�s fundamental value. In addition, since

SPIDERS can be redeemed for the underlying portfolio of S&P500 stocks (or created in exchange

for the underlying portfolio of assets), deviations of SPIDERS transaction prices from fundamental

values signal pervasive market frictions rendering arbitrages harder to implement. We provide a

method to separate the volatility of SPIDERS unobserved fundamental values (used as a proxy

1The cross-sectional relation between expected stock returns and idiosyncratic, rather than systematic, liquidity
has been investigated in numerous papers, including Amihud and Mendelson (1986), Brennan and Subrahmanyam
(1996), Datar et al. (1998), and Elaswarapu (1997). Amihud (2002), Jones (2002), and Fujimoto (2003), among others,
study the time-series properties of market excess returns and market liquidity. The related e¤ect of idiosyncratic
asymmetric information in cross-sectional asset pricing is discussed in Easley et al. (2002). Amihud et al. (2006) and
Cochrane (2005) provide discussions of the current state of the literature on liquidity and asset prices.
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for market volatility) from the volatility of the di¤erence between SPIDERS transaction prices

and their fundamental values (used as a proxy for market illiquidity). The method solely requires

the computation of averages of high-frequency SPIDERS transaction prices sampled at di¤erent,

"optimally-selected," frequencies.

When individually considered, we show that shocks to illiquidity and shocks to volatility are

strongly negatively correlated with market returns, as well as with the returns on the size, book-

to-market, and momentum portfolios. Consider the size decile portfolios, for instance. For both

illiquidity and volatility, these individual correlations (and the related factor loadings) increase

monotonically (while remaining negative) when going from small cap stocks to large cap stocks.

Hence, large cap stocks are less (negatively) correlated with both illiquidity and volatility then

small cap stocks, thereby requiring lower expected returns, as empirically found in practice. Not

surprisingly, the individual prices of volatility and illiquidity risk are found to be negative in the

cross-section of monthly 25 size- and value-sorted Fama-French portfolios.

When jointly considered, shocks to volatility largely drive out the statistical signi�cance of

shocks to illiquidity thereby leading to inaccurately estimated factor loadings in the latter case.

Ignoring the precision of the �rst-stage factor loadings, as often done in practice, we �nd that both

of our derived proxies are again negatively priced. This is due to factor loadings (with respect to

volatility and illiquidity, jointly) which are negative but largely increase in the size dimension (when

going from small cap stocks to large cap stocks) while generally decreasing in the book-to-market

dimension (when going from growth stocks to value stocks). For our sample, the performance of a

3-factor model with market returns, (innovations in) market variance, and (innovations in) market

illiquidity is shown to be similar to the performance of the classical Fama-French 3-factor model,

when pricing the Fama-French portfolios.

In sum, when risk is proxied by innovations in market illiquidity and market volatility indi-

vidually or jointly, we �nd statistically signi�cant (negative) prices of risk associated with both

measures. The quantities of risk (the factor loadings) associated with the two proxies are precisely

estimated in individual models. In joint speci�cations, however, only the volatility factor loadings

are estimated accurately thereby leading to a fundamental lack of robustness of illiquidity pricing

(even in the presence of statistically-signi�cant illiquidity risk prices) in models allowing for market

volatility. Conversely, when interpreting volatility and illiquidity as proxies for a more fundamental

distress factor, this result points to an important robustness of market volatility. We stress that

such a robustness is not a by-product of the way market illiquidity and market volatility are mea-

sured in this paper. The result would hold under more classical measures in the literature, as is

shown below.
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The remainder of the paper is structured as follows. In Section 1 we discuss the de�ning

features of SPIDERS. Section 2 proposes a formation mechanism for SPIDERS transaction prices.

This mechanism justi�es our identi�cation procedure for market volatility and market illiquidity.

Section 3 expands on the logic of our illiquidity measure. Section 4 evaluates the empirical properties

of both proxies. Particular emphasis is placed on the negative (roughly monotonic) relation between

size, book-to-market, and momentum portfolio returns and volatility/illiquidity shocks. The cross-

sectional pricing of illiquidity and volatility is discussed in Section 5. Section 6 evaluates robustness.

Section 7 concludes. Technical details, �gures, and tables are in the Appendix.

1 SPIDERS

Standard & Poor�s depository receipts (SPDR or SPIDERS) represent shares in a trust which owns

stocks in the same proportion as that found in the S&P500 index. They trade like a stock (with

the ticker symbol SPY on the Amex) at approximately one-tenth of the level of the S&P500 index,

and are used by large institutions and traders either as bets on the overall direction of the market

or as a means of passive management.

SPIDERS are exchange traded funds (ETFs).2 They can be redeemed for the underlying port-

folio of assets at the end of the trading day. Equivalently, investors have the right to obtain newly

issued SPIDERS shares from the fund company in exchange for a basket of securities that mirrors

the SPIDERS�portfolio. This implies that SPIDERS, like other ETFs, must trade at a value that

is near net asset value (NAV). If they traded above their NAV, arbitrageurs would purchase the

basket of underlying securities for a lower price and force the fund company to issue new shares.

Conversely, if they traded below their NAV, arbitrageurs would buy shares and redeem them for

the underlying portfolio of securities (see Cherkes et al., 2006, for further discussions and compar-

isons between ETFs and closed-end funds). Similarly, SPIDERS�values will not deviate much from

NAVs3 during the day either, since the future convergence of prices would open up the possibility

for simple, immediate investment opportunities. Assume trading prices are higher than NAVs.

An arbitrageur could sell SPIDERS short,4 buy the underlying basket of security, wait for price

convergence, and unwind the position for an initial pro�t.

2A growing academic literature focuses on ETFs. Among other issues, the existing work studies the dynamics of
price deviations from net asset value (Engle and Sarkar, 2002), compares the return from holding ETFs (speci�cally,
SPIDERS) to the return from holding the underlying index (Elton et al., 2002), analyzes the tax implications of
ETFs (Poterba and Shoven, 2002), investigates price discovery (Hasbrouck, 2002) and competition (Boehmer and
Boehmer, 2002) in the ETF market.

3The NAV is computed at market close. During the day, an estimated value of the portfolio called Indicative
Optimized Portfolio Value (IOPV) is posted. The IOPV is provided every 15 seconds using the most recent transaction
price of each component of the portfolio.

4Contrary to individual stocks, SPIDERS can be short-sold on a down tick.
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As Elton et al. (2002) and Engle and Sarkar (2002) point out, the process of share dele-

tion/creation acts as an extremely e¤ective mechanism in keeping prices close to NAV and assuring

that potential di¤erences disappear quickly. Conversely, since arbitrages require acquisition of the

underlying basket of securities, the extent of deviations from NAV should signal pervasive market

frictions rendering arbitrages harder to implement.

Importantly, rather than focusing on deviations of trade prices from NAV or IOPV, we mea-

sure deviations from unobserved fundamental values. Given the basket nature of SPIDERS, the

fundamental value of a SPIDER share should coincide with the fundamental value of the index.

Fundamental values are only approximated by the NAVs at close and by the IOPVs during the day.

Measuring deviations from fundamental values rather than from NAV is important as emphasized,

for example, by Engle and Sarkar (2002). The NAV is evaluated at the closing transaction price

of each of the assets. However, each closing transaction price could be higher or lower than the

individual fundamental value. In addition, the closing transaction could occur earlier in the day,

especially for less frequently-traded stocks.5 Similarly, the IOPVs may be stale in that they are

posted at equispaced intervals of 15 seconds, are evaluated at trade prices and, hence, likely deviate

from fundamental values. More generally, it is well-known from classical market microstructure

theory that transaction prices (and, as said, NAVs and IOPVs are computed at transaction val-

ues) di¤er from fundamental values. The size of these deviations will, again, depend on liquidity.6

Hence, aggregate illiquidity may a¤ect both the size of the deviations between SPIDERS prices and

NAVs (given the previous arbitrage arguments) and the size of the deviations between the trans-

action prices of the underlying securities (which lead to the NAVs and the IOPVs) and unobserved

fundamental values. Lower aggregate liquidity may therefore be expected to lead to larger overall

deviations. In light of these arguments, the next section will discuss a procedure to identify the

size of the deviations between SPIDERS transaction prices and the unobserved fundamental values

of the underlying portfolio of security (and, of course, SPIDERS shares).

We employ high-frequency transaction prices on SPIDERS obtained from the Trade and Quote

(TAQ) database in CRSP for the period February 1993 - March 2005. We use the entire consolidated

market. The cross-sectional asset pricing tests employ monthly return data on the 25 size- and

value-sorted Fama-French portfolios over the same period.

We now formalize our assumed high-frequency SPIDERS price formation mechanism and our

methodology to separate the volatility of SPIDERS fundamental values from the volatility of SPI-

5 In addition, SPIDERS continue to trade 15 minutes after the NYSE closes. This is another source of error for
the posted NAV.

6At the stock level and, by aggregation, at the index level, these deviations might also depend on asymmetric
information (see, e.g., the discussion in Stoll, 2000, and the references therein).
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DERS deviations from fundamental values, i.e., the factor proxies.

2 Extracting the proxies

Building on the intuition laid out above, we express the logarithmic SPIDERS transaction price

prevailing at the end of a trading day t of length h as

epth = pth +  th t = 1; 2; :::; T; (1)

where p is the unobservable fundamental value and  is an equally unobservable price deviation.

As said, higher market liquidity should lead to smaller price deviations  .

Now divide each trading day into M (equispaced, for notational simplicity) sub-periods. The

j-th intra-daily continuously-compounded return between day t� 1 and day t is de�ned as

erj;t = ep(t�1)h+j� � ep(t�1)h+(j�1)� j = 1; 2; :::;M; (2)

where � = h=M is the interval over which the intra-daily returns are computed. Thus,

similarly to the observed price process, the observed return process comprises a fundamental

return component, rj;t = p(t�1)h+j� � p(t�1)h+(j�1)�, as well as a deviation component, �j;t =

 (t�1)h+j� �  (t�1)h+(j�1)�, i.e.,

erj;t = rj;t + �j;t t = 1; 2; :::; T; j = 1; 2; :::;M: (3)

Our objects of interest are the variance of the unobserved daily fundamental returns rt = pth �
p(t�1)h and the variance of the unobserved intra-daily price deviations �j;t. The former will proxy

for daily market-wide variance, the latter will proxy for daily aggregate illiquidity.

To this extent, for each day in our sample, we compute
PMt
j=1 er2j;t
Mt

and
PM�

t
j=1 er2j;t; where �

Mt
is

the highest frequency at which intra-daily returns are observed and �
M�
t
is an appropriately-chosen

optimal frequency. Note thatMt andM�
t have a subscript t to make their dependence on time fully

apparent. Under empirically-reasonable assumptions on the unobservable components r and �, it

can be shown that
PMt
j=1 er2j;t
Mt

estimates consistently the variance of the intra-daily deviations (i.e.,

E(�2)) as Mt ! 1 (i.e., for a large number of intra-daily observations). The quantity
PM�

t
j=1 er2j;t

(realized variance) will, in general, not estimate the variance of the unobserved fundamental returns

consistently for any M�
t choice. Appropriate selection of M

�
t (as described in the Appendix) will,

however, lead to optimization of the estimator�s mean-squared deviations from the object of interest

(i.e., fundamental return variance). The chosen number of intra-daily returns M�
t will, of course,

be larger, the smaller the size of the price deviations �.

6



While we refer the reader to the Appendix for technical details, here we �nd it important to

brie�y emphasize the economic intuition underlying the construction of
PMt
j=1 er2j;t
Mt

and
PM�

t
j=1 er2j;t.

Classical work in market microstructure theory implies that meaningful updates to fundamental

prices should be less frequent than meaningful changes in transaction prices (see, e.g., O�Hara,

1994). The former depend on the way informed agents form expectations about future cash �ows

and hence hinge on potentially infrequent updates to the private information set. The latter de-

pend on the trading process. Because the uninformed agents learn from order �ow, non-negligible

(discrete) changes in transaction prices may occur regardless of the transaction frequency, i.e., even

if trades occur very close in time. This implies that the observed intra-daily returns erj;t are domi-
nated by the deviation component �j;t when the trades are frequent. Conversely, they are largely

dominated by the fundamental return component rj;t when return sampling is performed at low

frequencies. This simple intuition clari�es why sample second moments of observed returns sampled

at the highest available frequency �
Mt
, such as

PMt
j=1 er2j;t
Mt

; identify the second moment of the return

deviations �. This is due to fundamental returns that wash out at high frequencies. By the same

type of reasoning,
PM�

t
j=1 er2j;t will give us information about the (integrated, over the trading day)

volatility of the fundamental return process if observed returns are sampled at appropriately-chosen,

lower frequencies �
M�
t
. Importantly, the selection of �

M�
t
may be conducted "optimally" based, for

example, on a mean-squared error criterion. The Appendix imposes statistical assumptions on rj;t

and �j;t which make this intuition rigorous while fully justifying the adopted estimators. Details

are also provided about the construction of the optimal M�
t . Alternative approaches and potential

extensions are discussed.

In sum, for every day in our sample we use (potentially standardized) sums of observable intra-

daily returns sampled at optimal (time-varying) frequencies to identify the variance components of

the returns�unobservable components, r and �. These daily measures are subsequently aggregated

to the monthly level, as we discuss below.

Importantly, since
PM�

t
j=1 er2j;t is computed over a 6-hour trading period (from 10 a.m. to 4 p.m.),

in order to convert it into a genuinely daily measure, we correct it for lack of overnight returns.

We do so by multiplying it by the constant factor � =
1
T

PT
t=1R

2
t

1
T

PT
t=1

bVt ; where Rt and bVt =PM�
t

j=1 er2j;t are
the daily SPIDERS return and the (6-hour) optimally-sampled realized variance measure over day

t. This correction ensures that the average of the corrected variance estimates coincides with the

variance of the daily returns (see, e.g., Fleming et al., 2001, 2003).
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2.1 Aggregation

We evaluate pricing at the monthly level. We therefore average the deviation variances across days

in a speci�c month k to obtain monthly measures:

bEk(�2) = 1

#Days

#DaysX
t=1

PMt
j=1 er2j;t;k
Mt

: (4)

As for the fundamental return variance, we sum the daily realized variances across days in a month

to, again, obtain the corresponding monthly values:

bVk = #DaysX
t=1

�

M�
tX

j=1

er2j;t;k. (5)

Finally, we compute innovations. In the price deviation case, we have

IFVk = FVk � FVk�1 =
qbEk(�2)�qbEk�1(�2): (6)

In the fundamental return case, we have

IVk =

qbVk �qbVk�1: (7)

To summarize, we hypothesize that (i) innovations in SPIDERS fundamental price variance re�ect

innovations in market variance and (ii) innovations in SPIDERS deviation variance re�ect changes

in aggregate illiquidity. As discussed, both hypothesis are justi�ed by the basket nature of SPI-

DERS. The latter hypothesis also relies on no-arbitrage arguments. Put it di¤erently, even though

SPIDERS trade like any other stock, we expect innovations in SPIDERS price deviations to be

a less noisy measure of innovations in the overall market liquidity than innovations in individual

stocks�price deviations. As generally argued in the industry (see, e.g., Gastineau, 2001, and Spence,

2002), the liquidity properties of an ETF should re�ect the liquidity properties of the underlying

portfolio of securities.7 To this extent, in spite of the elusive nature of liquidity and its various

facets,8 the di¤erence between transaction prices and fundamental values constitutes an extremely

natural liquidity measure (Bandi and Russell, 2005). This is the di¤erence which is quanti�ed in

this work.
7On Yahoo Finance, for example, we read: "Some investors appear to believe that the liquidity of an ETF is

dependent on the fund�s average trading volume, or the number of shares traded per day. However, this is not the
case. Rather, a better measure of ETF liquidity is the liquidity of the underlying stocks in the index."

8 It is typical to de�ne liquidity as "the ability to trade large quantities with small price impacts in a short amount
of time."
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3 More on the logic of the liquidity measure

Using the notation from the previous section, the price deviation (with respect to fundamental

value) for trading a share of stock s in the S&P500 basket at time j on day t can be written as

eps;j � ps;j =  s;j = (1� 2Isell) �s;j ; (8)

where  �s;j � 0 is the cost of buying or selling, the subscript j is short for (t� 1)h+ j�, and Isell is
a sell indicator taking on the value 0 for a buy order and 1 for a sell order.9 The price deviation for

trading the S&P500 portfolio at time j is a (value-weighted) average of price deviations expressed

as

500X
s=1

ws s;j = (1� 2Isell)
500X
s=1

ws 
�
s;j ; (9)

where 0 > ws > 1 and
P500
s=1ws = 1: By the nature of SPIDERS, as discussed earlier, the price

di¤erence for trading a SPIDERS share at time j, i.e.,  spy;j , should approximately be equal toP500
s=1ws s;j .

10 Hence, the variance of  spy, our object of interest, should roughly represent the

variance of the portfolio�s price deviations (associated with buy or sell orders) from the portfolio�s

fundamental value. This variance is small if, of course, individual stocks trade near fundamental

values. More explicitly,

E( 2spy) � E

0@(1� 2Isell)2
 
500X
s=1

ws 
�
s

!21A = E

0@ 500X
s=1

ws 
�
s

!21A =
500X
s;u=1

wswuE(j sj j uj); (10)

if the sell indicator and the individual price deviations  � are independent. Should the price

deviations be cross-sectionally independent and identically distributed, then

E( 2spy) � (E(j sj))
2 ; (11)

and our assumed measure would capture the common (across stocks) squared expected absolute

price deviation from fundamental value. Should the price deviations be cross-sectionally indepen-

dent but not identically distributed, then

9As is customary, we assume that buy orders occur at prices above fundamental values whereas sell orders occur
at prices below fundamental values (see, e.g., Roll, 1984).
10Here we are, of course, assuming that SPIDERS prices roughly coincide with NAVs (computed at buy or sell

prices). Deviations of SPIDERS prices from NAVs would introduce an additional liquidity-related contamination
whose contribution is, as said, measurable given our approach (see our comments in the previous section).
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E( 2spy) �
 
500X
s=1

wsE(j sj)
!2

; (12)

and the measure would be a squared weighted average of expected absolute price deviations from

fundamental values. Finally, should the  s be cross-sectionally dependent (as likely the case in the

presence of aggregate liquidity shocks) and not identically distributed, then

E( 2spy) �
 
500X
s=1

wsE(j sj)
!2
+

500X
s;u=1

wswuCov(j sj j uj): (13)

Generally speaking, the larger the individual price deviations from fundamental values, the larger

the variance of  . Importantly, when the price deviations are cross-sectionally correlated, the pair-

wise correlations (i.e., the second term on the right-hand side of Eq. (13)) ought to be taken into

account. Simply averaging value-weighted �rm-speci�c estimates will underestimate the variance of

the aggregate price deviations (and, therefore, the extent of market illiquidity) if these covariances

are on average positive (as possibly the case in the presence of aggregate liquidity shocks). This

observation, in turn, suggests that �rst applying the methods to individual stocks (rather than to

an index) and subsequently value-weighing the �rm-speci�c estimates might lead to a misleading

measure if the ability to buy and sell a large, diversi�ed portfolio near fundamental values is the

object of interest, as in our case. In this sense, using an index (and straightforward no-arbitrage

reasoning) provides a meaningful solution to the empirical issues that would be posed by the (hardly

tractable) computation of moments and cross-moments of individual price deviations for a broad

array of stocks using high-frequency data.

4 A look at the factors

4.1 Market volatility

Fig. 3 contains 6-hour realized variance estimates (
PM�

t
j=1 er2j;t) obtained by sampling returns opti-

mally for each day in our sample (Panel a), realized variance estimates constructed using 20-minute

intervals (Panel b), and realized variance estimates constructed using 5-minute intervals (Panel c).

The 5- and 20-minute frequencies have been widely used in the literature. They are generally em-

ployed to reduce the impact of market microstructure noise ( , in our notation) on estimates of

the fundamental (integrated, over the trading day) return variance. Choosing �xed intervals is, of

course, ad-hoc and generally sub-optimal from a �nite sample mean-squared-error standpoint (see

the Appendix). Not surprisingly, the optimally-sampled realized estimates appear better behaved
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than the estimates obtained by sampling at �xed intervals. As said, we focus on optimally-sampled

(for each day in the sample) realized variances in what follows.

Fig. 5 plots the monthly realized variance estimates constructed using sums of daily realized

variance estimates (as in Eq. (5) above) and the monthly variance estimates constructed by sum-

ming squared daily returns. The two measures have a correlation of 75%. They both spike during

known �nancial crises such as the Asian crisis (October 1997), the LTCM and Russian debt default

(October/November 1998), and so on.

4.2 Market illiquidity

Fig. 6 plots the monthly illiquidity estimates FV (constructed using Eq. (4)). The graph suggests

a general decline in illiquidity with spikes corresponding, again, to known (il-)liquidity events,

such as the Asian crisis, the LTCM collapse and Russian debt default, the 9/11 terrorist attack,

and so on. In agreement with what is expected from a proper liquidity measure, the documented

decline mirrors well-known downward trends in average bid-ask spreads across stocks. The graph

also re�ects the increase in liquidity associated with the stock market decimalization (i.e., penny

pricing) introduced at the end of 2000, beginning of 2001.

For comparison, in Fig. 7 we report IFV and innovations in the Pástor and Stambaugh liquidity

measure over the same period.11 Pástor and Stambaugh�s measure is a price reversal measure. The

idea underlying it is that less liquid stocks should have larger price reversals following signed order

�ow than more liquid stocks. For stock i in month k, liquidity is de�ned as the least-squares 

estimate from the regression

rei;t+1;k = �i;t + �i;kri;t;k + i;ksign(r
e
i;t;k)vi;t;k + "i;t+1;k; (14)

where r is a stock return, re is an excess stock return, and v is dollar volume. Pástor and Stambaugh

expect  to be negative in general (the price impacts of trades get reversed in the future) and larger

in magnitude for less liquid stocks. To construct innovations in aggregate liquidity, they scale the

di¤erences in the monthly liquidity measures by relative market size at k and average the di¤erences

across stocks with data available in consecutive months, i.e.,

�bk = �mk

m1

�
1

Nk

NkX
i=1

�
i;k � i;k�1

�
: (15)

Subsequently, they run the regression

11Data on Pástor and Stambaugh�s liquidity measure are downloaded from CRSP.
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�bk = a+ b�bk�1 + c�mk�1
mk

�bk�1 + uk: (16)

Finally, innovations in aggregate (il-)liquidity are measured by PSk =
uk
100 . The correlation between

IFV (our illiquidity proxy) and PS is -0.23 (positive innovations signal possible illiquidity events in

our case while negative innovations signal illiquidity events in the case of Pástor and Stambaugh�s

measure).

The correlation between IFV (PS ) and excess market returns is -0.28 (0.23). Similarly, the

correlation between IV (innovations in market variance) and excess market returns is -0.41. Sub-

section 4.3. expands on both observations. Finally, IFV (PS ) and IV have a correlation coe¢ cient

of 0.57 (-0.31). Thus, market illiquidity and market volatility are higher in times of �nancial market

downturns. In addition, they correlate with each other in potentially important ways. Because they

are invariably priced in isolation, both �ndings justify looking more closely at their individual (and

joint) pricing ability.

In our sample, IFV is more highly correlated with SMB (i.e., the di¤erence in returns between

small and large �rms) and HML (i.e., the di¤erence in returns between high and low book-to-market

stocks) than PS (-0.14 and 0.14 versus -0.01 and -0.02). See Table I.

Alternative aggregate liquidity measures have, of course, been proposed. Amihud (2002) recom-

mends using the so-called "illiquidity ratio," ILL. For each stock i and each month k, he computes
1

#Days

P#Days
t=1

jri;t;kj
vi;t;k

, where, again, r and v denote stock return and trading volume, respectively:

An aggregate measure can then be de�ned by averaging across stocks for each month k:

ILLk =
1

Nk

NtX
i=1

 
1

#Days

#DaysX
t=1

jri;t;kj
vi;t;k

!
: (17)

As earlier, this measure can be re-scaled by
�
mk
m1

�
. The "illiquidity ratio" looks directly at price

impacts. Periods of illiquidity are times when small volumes determine large price moves.

Finally, "share turnover" is sometimes used to quantify aggregate liquidity. For each stock i and

each month k, compute 1
#Days

P#Days
t=1 turni;t;k; where turn denotes the ratio between the number

of shares transacted and the number of shares outstanding. Aggregate monthly liquidity is then

measured by

Tk =
1

Nk

NtX
i=1

 
1

#Days

#DaysX
t=1

turni;t;k

!
: (18)

Again, this measure can be re-scaled to achieve stationarity. Eckbo and Norli (2002), for example,

scale it by a factor c1ct with ct de�ned as the 24-month moving average of market turnover (between
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month k�24 and month k�1), and c1 de�ned as market turnover in the �rst month in the sample.
Fujimoto (2003) contains a thorough discussion of these alternative quantities.

The correlations between IFV and PS; innovations in ILL (IILL); and innovations in T

(IT ) are reported in Table II. Using data between April 93 and December 2002,12 we �nd that

IFV; IILL, and IT correlate with each other in an economically meaningful (and statistically

signi�cant) fashion. The correlations between IFV and PS; (un-scaled) IILL; and (un-scaled) IT

are �0:22, 0:24, and 0:28, respectively. The correlations between IFV , (scaled) IILL; and (scaled)
IT are 0:21 and 0:26: In our sample, PS is hardly correlated with IILL and IT . The correlation

between PS and un-scaled IILL (scaled IILL) is �0:06 (�0:02). The correlation between PS and
un-scaled IT (scaled IT ) is �0:02 (0:002).

4.3 Illiquidity and volatility premia

In this subsection we �t simple autoregressive models for V and FV . Subsequently, we regress excess

market returns on lagged V and unexpected V (i.e., the residuals from the volatility autoregression).

We do the same using lagged FV and unexpected FV as regressors. The second-stage regressions

are meant to evaluate the presence of market premia associated with expected and unexpected

volatility (or liquidity) given a straightforward, but empirically reasonable, dynamic model for the

relevant factor proxy.

To this extent, a �rst-order autoregression of Vt on Vt�1 gives us

Vt = 0:011
(4:04)

+ 0:74
(13:18)

Vt�1 + b"Vt ; (19)

with an R2 of 55:7%;while a �rst-order autoregression of FVt on FVt�1 yields

FVt = 0:000242
(4:46)

+ 0:71
(11:77)

FVt�1 + b"FVt ; (20)

with an R2 of 50:1%: Both volatility and illiquidity are, as expected, highly persistent. A regression

of MKTt (the monthly excess return on the market) on Vt�1 and the estimated residuals from the

previous volatility autoregression gives

MKTt = 0:35
(0:43)

+ 6:51
(0:41)

Vt�1 � 131:05
(�5:51)

b"Vt + but; (21)

with an R2 of 18:2%: Similarly, regressing MKTt on FVt�1 and the estimated residuals from the

illiquidity autoregression we obtain

12We thank Akiko Fujimoto for providing the ILL and T data.
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MKTt = � 0:80
(�0:81)

+ 1729
(1:57)

FVt�1 � 4691
(�3:10)

b"FVt + but; (22)

with an R2 of 7:7%: Finally, the joint model yields

MKTt = 0:133
(0:11)

+ 4:56
(0:28)

Vt�1 + 363
(0:33)

FVt�1 � 121:13
(�4:2)

b"Vt � 991
(�0:57)

b"FVt + but; (23)

with an R2 of 18:4%:

The above results show that (i) market returns are a statistically-signi�cant decreasing function

of unexpected volatility and unexpected illiquidity (individually considered), (ii) when volatility

and illiquidity are evaluated jointly, unexpected illiquidity is dominated by unexpected volatility

(i.e., the latter remains strongly statistically-signi�cant), (iii) both expected liquidity and expected

illiquidity hardly a¤ect excess market returns. This last result is of course consistent with the well-

established inability to �nd robust risk-return trade-o¤s for the market at the monthly frequency.

Regressions (20) and (22) are in the spirit of Amihud (2002). He �nds that market returns

are an increasing function of expected illiquidity (measured by virtue of (17)) and a decreasing

function of unexpected illiquidity. These �ndings may be justi�ed. Being persistent, higher current

illiquidity will translate into higher expected illiquidity. If higher expected illiquidity yields higher

expected returns, then higher unexpected illiquidity should lead to a drop in prices and, hence,

lower realized returns.

Our results are qualitatively similar to those in Amihud (2002). However, the statistical signi�-

cance of the positive coe¢ cient on FVt�1 is, in our case, lower indicating that unexpected illiquidity

has a more signi�cant (negative) e¤ect on realized stock market returns than expected illiquidity.

Using several aggregate liquidity measures in the literature, including PS and T , Fujimoto (2003)

argues in favor of the same conclusion.

We show that, when allowing for unexpected volatility, the statistical signi�cance of unexpected

illiquidity decreases drastically. Importantly, this result does not hinge on our assumed illiquidity

measure. If we were to employ PS, the slope coe¢ cient from a regression of MKT on PS would

be 22 (t-stat = 3.3), the sign being positive in light of the interpretation of PS, as discussed above.

If we regressed MKT on PS and unexpected volatility, the coe¢ cient on PS would be 9.8 (t-stat

= 1.44), whereas the coe¢ cient on unexpected volatility would continue to be negative and highly

statistically signi�cant, -115.5 (t-stat = -4.46).

We now run the same regressions using excess returns on the Fama-French size-sorted decile

portfolios. Consider �rst regressions of the excess portfolio returns on expected and unexpected

market volatility (Table III). The coe¢ cients on Vt�1 are positive but insigni�cant across portfolios.
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The coe¢ cients on unexpected volatility, on the other hand, have a negative sign, as in the market

case, and are consistently highly statistically signi�cant. More importantly for our purposes, these

coe¢ cients decrease (in absolute value) monotonically when going from small cap stocks to large

cap stocks. In other words, smaller stocks have more exposure to unexpected volatility risk than

larger stocks. This exposure may of course be priced in equilibrium, as we show in the next section.

Implementing the same regressions on expected and unexpected illiquidity yields similar results

(Table IV). The absolute values of the coe¢ cients on unexpected illiquidity decrease monotonically

in the size dimension (again, going from small stocks to large stocks). As earlier in the market case,

however, joint consideration of unexpected illiquidity and unexpected volatility (in Table V) leads

to parameter estimates on unexpected volatility which remain statistically signi�cant while driving

out the statistical signi�cance of the parameter estimates associated with unexpected illiquidity.

Having made this point, the e¤ect of the latter on excess portfolio returns remains completely

monotonic with smaller stocks being more (negatively) correlated with illiquidity changes than

larger stocks. Thus, while the exposures of the size portfolios�returns with respect to illiquidity

are such that illiquidity may be priced (with a negative sign), these exposures are poorly estimated

in a joint volatility/illiquidity speci�cation.

We conduct the same exercise with the book-to-market decile portfolios. We again �nd that

the loadings of unexpected volatility on excess returns vary roughly monotonically with value, i.e.,

going from low book-to-market stocks to high book-to-market stocks (see Table VI). However,

these loadings decrease (become more negative). In other words, value stocks appear to be more

correlated with unexpected market volatility than growth stocks. This pattern may, of course,

provide a justi�cation for the well-known value premium: value stocks provide higher average

returns since their payo¤s are lower in high volatility states. Di¤erently from unexpected volatility,

the loadings with respect to unexpected illiquidity increase with value (Table VII). Again, joint

consideration of unexpected volatility and unexpected illiquidity tends to drive out the latter in

terms of statistical signi�cance (Table VIII). This said, the loadings on volatility changes remain

decreasing and signi�cant, while the loadings on illiquidity changes are roughly increasing and

insigni�cant.

Implementing the same regressions using momentum decile portfolios would yield similar �nd-

ings.13 Again, when volatility and illiquidity are individually considered, the correlation between

momentum portfolios� returns and the two risk proxies is negative and decreasing with momen-

tum. In a joint speci�cation, the illiquidity and volatility exposures follow the same pattern across

momentum portfolios but only the volatility exposures are statistically signi�cant, thereby again

13These �ndings are not reported for brevity. However, they are available from the authors upon request.
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underlining the superior robustness of the pricing results associated with the volatility proxy. Once

more, while illiquidity and volatility may be priced jointly with a negative sign only the volatility

factor loadings appear to be fully informative about the extent of distress risk (when, of course,

interpreting illiquidity and volatility as proxies for distress risk).

We emphasize that none of these results depends on our proposed illiquidity proxy. Using the

PS measure would again yield factor loadings on illiquidity which lose their statistically signi�cance

when unexpected volatility is added to the model. It would also, again, lead to factor loadings with

respect to unexpected illiquidity which increase with both size and value (thereby calling for a

positive risk premium in the value dimension and a negative risk premium in the size dimension,

which is of course problematic when pricing the size and book-to-market portfolios jointly, as done

in the next section).

In sum, (i) expected illiquidity and expected volatility have a positive, but statistically-insigni�cant,

e¤ect on market and portfolio returns. If there is a premium for expected illiquidity, such a pre-

mium is as hard to detect as the more classical premium for expected volatility risk. However, (ii)

unexpected illiquidity and unexpected volatility are strongly negatively correlated with market and

portfolio returns. These correlations are always highly statistically signi�cant for volatility (i.e.,

in individual and joint models). In the case of illiquidity, they are highly statistically signi�cant

only in individual speci�cations (i.e., when not accounting for volatility). If shocks to volatility

are added to the speci�cation, these shocks tend to subsume the information content of illiquidity

shocks. Importantly, (iii) with the sole exception of the unexpected illiquidity loadings in the book-

to-market case, the exposures (loadings) with respect to illiquidity surprises and volatility surprises

align with the returns on the size and book-to-market portfolios thereby suggesting the potential

for negative illiquidity and volatility risk prices (regardless of whether volatility and illiquidity are

evaluated individually or jointly). We now turn to this issue.

5 Cross-sectional pricing

We consider a traditional intertemporal asset-pricing model as in Merton (1973). Denote excess

returns on a generic asset i by Rei and excess returns on the market by R
e
m: Assume existence

of p state variables Fs. Equilibrium expected excess returns are, as always, expressed as linear

combinations of the beta of the asset returns with the market return, �mi , and the betas of the

asset returns with the state variables, �si , namely

E(Rei ) = �m�
m
i +

pX
s=1

�s�
s
i : (24)
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The lambdas have the usual interpretation in terms of prices of risk. Speci�cally, �m is the price

of market risk and �s is the price of risk associated with the generic factor s.

As typically done in the literature, we employ the Fama-French 25 size- and value-sorted port-

folios as test assets (Fama and French, 1992, 1993) and focus on 2- and 3-factor models. In the

2-factor model case, p = 1 and the two factors are MKT and either volatility measure (IV or IFV ).

In the 3-factor model case, p = 2 and the three factors are MKT, IV and IFV.

The estimation method consists of two steps. In the �rst step, we estimate the betas (the factor

loadings) for each portfolio by �tting a linear regression model with AR(1)-GARCH(1,1) errors to

the time series of each portfolio�s excess returns as in Moise (2006). The model is:

Rei;t = �i + �
m
i R

e
m;t +

Pp
s=1 �

s
iFs;t + �i;t i = 1; :::; 25; t = 1; :::; T

�i;t = "i;t � i�i;t�1;
"i;t =

p
hi;tei;t;

hi;t = !i + �ihi;t�1 + �i"
2
i;t�1;

ei;t � N(0; 1):

(25)

Given the factor loadings, the prices of risk are estimated in the second step by regressing cross-

sectionally the portfolios�average excess returns on the factor loadings, as implied by Eq. (24).

5.1 The pricing of illiquidity and volatility risk

Figs. 8 and 9 plot the monthly average excess returns of the 25 Fama-French portfolios as well as

the factor loadings obtained from 2-factor models (MKT and IV, MKT and IFV ). Fig. 10 gives

the same plots in the 3-factor case (MKT, IV, and IFV ). The average excess returns have a familiar

pattern: they largely increase in the growth-value dimension (i.e., going from low book-to-market

to high book-to-market stocks) and decrease in the size dimension (i.e., going from small cap stocks

to large cap stocks). In the 2-factor models and in the 3-factor model, both the IV and the IFV

factor loadings decrease with value and increase with size, albeit sometimes not monotonically.

The inverse relation between size and factor loadings is generally stronger than the inverse relation

between value and factor loadings. This is, of course, fully consistent with our results in Subsection

4.3.

As discussed earlier, because the relation between excess returns and factor loadings is largely

negative across size- and value-sorted portfolio, risk may be priced with a negative sign. We test

this implication by regressing average excess returns on factor loadings as described in the previous

section. Table IX contains the results. In a 2-factor model with MKT and IV, both variables

have signi�cant risk prices. The corresponding t-stats are 4 and �2:54. The estimated (yearly)
small-minus-big IV risk premia

�b�IV �b�IVSmall � b�IVBig�� for stocks in the 2nd, 3rd, and 4th book-
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to-market quintiles are 2.8%, 1%, and 3.1% (Table XI, Panel a). In a 2-factor model with MKT

and IFV, the prices of risk are again statistically signi�cant with t-stats equal to 4:05 and �3:45.
The estimated (yearly) small-minus-big IFV risk premia

�b�IV �b�IFVSmall � b�IFVBig

��
for stocks in the

2nd, 3rd, and 4th book-to-market quintile are equal to 6.8%, 4.8%, and 8.28% (Table XI, Panel b).

When combining MKT, IV, and IFV in a 3-factor model, we again �nd that all prices of risk are

statistically signi�cant with t-stats equal to 4:05, �2:22, and �2:69, respectively. Across the 2nd,
3rd, and 4th book-to-market quintiles, the IV and IFV small-minus-big risk premia are now equal

to 1.9%, 0.22%, and 0.94%, and 2.15%, 2%, and 5.52%, respectively (Table XI, Panel c). In sum,

for our sample, market illiquidity carries a price of risk which is more statistically signi�cant than

the price of risk associated with market volatility. The corresponding risk premia are also larger.

Having said this, the factor loadings are, again, more accurately estimated in the market volatility

case. Speci�cally, even though controlling for excess market returns (as done when computing the

factor betas in this section) lowers the statistical signi�cant of the loadings associated with both

volatility and illiquidity, the volatility betas are generally statistically signi�cant. The illiquidity

betas are virtually always insigni�cant.

Fig. 11 displays the pricing errors. We plot realized average excess returns versus predicted

average excess returns for three models, i.e., the CAPM, the Fama-French 3-factor model, and

a 3-factor model with MKT, IV, and IFV. As is well-known, the Fama-French 3-factor model

strongly dominates the CAPM. Interestingly, we �nd that a 3-factor model with excess market

returns, market volatility, and market illiquidity compares rather favorably with the Fama-French

3-factor model when pricing the cross-section of size- and value-sorted Fama-French portfolios. Not

surprisingly, some of the growth portfolios (speci�cally, the portfolios in the �rst value quintile and

�rst, second, and third size quintile) are exceptions. This is, of course, easy to explain. The growth

portfolios have realized average excess returns which increase, rather than decreasing, across size

quintiles (see Fig. 10, for instance). The corresponding IV and IFV loadings increase too. In

other words, the become less negative. The combination of negative prices of risk with increasing

loadings leads to a divergence between realized average excess returns and excess returns implied

by the model: the realized excess returns on these portfolios are excessively low relative to average

returns implied by the model.

6 Robustness

We evaluate the robustness of our previous �ndings to (i) the use of an alternative volatility

measure, (ii) the use of an alternative illiquidity measure, and (iii) the use of daily frequencies.
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6.1 Low-frequency variance

We expect monthly volatility measures computed by aggregating intra-daily continuously-compounded

squared returns to be considerably less noisy estimates than monthly measures obtained by aggre-

gating squared daily returns. While this is true, in general, it is meaningful to ask whether the

reported pricing results hinge on the use of a fairly e¢ cient volatility proxy, as in this paper. We

�nd that this is not the case. Put it di¤erently, all of our �ndings having to do with individual

and joint pricing hold in the presence of a more traditional volatility measure. The volatility factor

loadings continue to be accurately estimated (and more accurately estimated than in the illiquidity

case). Volatility continues to be priced with a negative sign whether considered in isolation or

jointly with our assumed liquidity proxy. Similarly, the illiquidity risk price remains signi�cant,

and of comparable magnitude, in the trivariate model.14

6.2 Low-frequency illiquidity

We previously emphasized that the use of PS as an illiquidity proxy would deliver illiquidity factor

loadings for the size- and value-sorted portfolios which fully mimic the behavior of the illiquidity

factor loadings obtained by virtue of IFV . The resulting pricing is consistent with this observation.

In a bivariate model, PS is priced with a positive sign, which is of course coherent with the

interpretation of the measure (Table IX). When controlling for either market volatility or market

illiquidity, proxied by IFV , PS becomes insigni�cant. We do not attribute too much importance

to the superior statistical signi�cance of IFV in comparison with PS. While this �nding may of

course be sample-speci�c, the relative performance of the two illiquidity measures in relation with

market volatility provides further evidence for the importance (and robustness) of market volatility

in a model that allows for illiquidity pricing at the monthly level (see, also, Moise, 2006).

6.3 Daily frequencies

As in the monthly case, the portfolios�excess returns largely increase in the value dimension and

decrease in the size dimension. Interestingly, contrary to the monthly case, the IV factor loadings

increase fairly monotonically with both value and size. The size e¤ect, however, appears stronger,

thereby con�rming the relation between size and volatility loadings documented by Moise (2006).

Table X contains the corresponding prices of risk. The t-stats associated with the market price

of risk and the volatility risk are equal to 1:51 and �2:64. Thus, despite the positive relation
between value and volatility loadings, and in light of the stronger negative relation between size

and volatility loadings, we �nd a negative price of volatility risk at daily frequency.

14For brevity, the corresponding results are not reported. They are available from the authors upon request.
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Turning to a 2-factor model with MKT and IFV, the IFV factor loadings increase with size

and decrease with value, albeit not monotonically. The resulting e¤ect is a strongly signi�cant IFV

price of risk in the daily cross-section of Fama-French portfolios. The t-stat for the illiquidity price

of risk is equal to �3:54 whereas the market price of risk carries a t-stat equal to 1:08.
When combining MKT, IV and IFV in a 3-factor model, illiquidity largely subsumes the

information contained in volatility in terms of resulting pricing. The price of volatility risk becomes

insigni�cant (t-stat of �0:78) while the t-stat associated with the price of illiquidity risk is now
�3:82. As in the monthly case, this result completely ignores estimation accuracy associated with
the illiquidity and volatility risk exposures. In the joint model, the illiquidity factor loadings

nicely align with the portfolios average returns, hence the statistical signi�cance of the resulting

prices of illiquidity risk. However, contrary to the univariate model, the illiquidity loadings lose

their statistical signi�cance when allowing for exposures to volatility shocks. Thus, even at daily

frequencies, the pricing of illiquidity risk is still arguably less robust than the pricing of volatility

risk. In the joint model, the signi�cance of the �nal risk prices is therefore to be taken with caution.

7 Conclusions

Market volatility and market illiquidity have received much attention in recent work on cross-

sectional asset pricing. In spite of the substantial correlation between macro volatility and macro

illiquidity events, their joint pricing has, however, seldom been considered. We investigate the joint

pricing of volatility and illiquidity by using novel proxies extracted from high-frequency SPIDERS

transaction data. In particular, aggregate illiquidity is measured by the volatility of the di¤er-

ence between observed SPIDERS prices and unobserved SPIDERS fundamental values. Market

volatility is measured by the volatility of unobserved SPIDERS fundamental values. Reliance on

high-frequency data makes our market volatility proxy more e¢ cient than proxies �ltered from low

frequency market returns as in the current asset pricing literature. Similarly, using data sampled

at high frequencies and treating equilibrium prices as unobservable has the potential to lead to a

more e¤ective quanti�cation of the extent of market frictions (see, e.g., Bandi and Russell, 2005,

and the references therein).

We show that innovations in our derived illiquidity proxy correlate with macro illiquidity events

in important ways. We also show that, when jointly considered in the context of classical asset

pricing paradigms, market volatility and market illiquidity are negatively priced in the cross-section

of stock returns. In our sample, the performance of a 3-factor model with market returns, (inno-

vations in) market volatility, and (innovations in) market illiquidity appears to be similar to the

performance of the Fama-French 3-factor model when pricing the Fama-French size- and book-to-
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market-sorted portfolios.

This favorable pricing result is due to return exposures with respect to illiquidity and volatility

shocks which align in meaningful ways with observed mean portfolio returns. In particular, port-

folios with higher average returns generally correlate more negatively with innovations in volatility

and illiquidity. These portfolios pay o¤ less in adverse states of the world, thereby requiring com-

pensation for risk.

Liquidity and volatility are admittedly more fundamental economic variables than portfolio

returns, like SMB and HML, routinely used as systematic factors in the literature. However, they

are still likely to be proxies for a more fundamental distress factor. While our results point to

the joint pricing ability of correlated risk proxies previously analyzed in isolation, we emphasize

that exposures to volatility shocks are more robustly estimated than exposures to illiquidity shocks.

Hence, volatility pricing is arguably more robust than liquidity pricing. In particular, as shown, the

information contained in illiquidity shocks is largely subsumed by that contained in volatility shocks

in joint speci�cations. Put it di¤erently, once one controls for volatility shocks, the signi�cance of

the illiquidity exposures decreases substantially. While this result is robust across measures and

does not depend on our assumed illiquidity (or volatility) proxy, it might still hinge on the fact

that current illiquidity measures do not capture all relevant facets of illiquidity. It may also be a

genuine economic fact speaking to the superior ability of market volatility as a proxy for the type

of distress risk investors hedge against.
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8 Appendix

This Appendix provides a discussion of the assumptions imposed on the fundamental return process r and
price deviations � justifying our identi�cation approach.

As in much recent work in high-frequency econometrics (see, e.g., the discussions in the review papers
of Bandi and Russell, 2008b, and Barndor¤-Nielsen and Shephard, 2007), we model the fundamental return
process as a stochastic volatility martingale di¤erence sequence driven by Brownian shocks, i.e.,

rj;t =

Z (t�1)h+j�

(t�1)h+(j�1)�
�sdWs; (26)

where �s is a càdlàg spot volatility process bounded away from zero. Spot volatility can therefore display
jumps, diurnal e¤ects, high-persistence (possibly of the long memory type), and nonstationarities. The
price deviations  are assumed to be independent of the fundamental prices and i.i.d. with a bounded
fourth moment. In consequence, the return deviations � follow an MA(1) model with a negative �rst-order
autocovariance equal to �2E( 2). Since the fundamental returns are uncorrelated, the structure of the return
deviations carries over to the observed high-frequency returns. The empirical autocorrelation properties of
the high-frequency SPIDERS returns strongly supports this simple speci�cation (see Fig. 1).

Importantly, the deviations  are modeled as having a stochastic order of magnitude Op(1). Price dis-
creteness, as well as the existence of di¤erent prices for buyers and sellers, for instance, justify this assumption
(Bandi and Russell, 2006). Thus, the friction returns � do not vanish at high sampling frequencies. Techni-
cally, � = Op(1). Di¤erently from the deviation returns, the fundamental return process r has an order of
magnitude Op(

p
�) over any sub-interval of length �, thereby implying that the magnitude of the fundamental

price changes decreases with the sampling interval. This assumption, which is standard in continuous-time
asset pricing, represents slow accumulation and processing of information leading to negligible fundamental
price updates over small time intervals.

Exploiting the di¤erent stochastic orders of � and r, Bandi and Russell (2006, 2008) show that sample
moments of high-frequency return data sampled at the highest frequencies at which information arrives iden-
tify the deviation moments. Availability of high sampling frequencies is represented here by an asymptotic
design which lets the distance between observations � go to zero in the limit or, equivalently, lets the number
of observations M go o¤ to in�nity for every trading day. In the second moment case, one obtainsPM

j=1 er2j;t
M

p!
M!1

Et(�
2) = 2Et( 

2): (27)

The result in Eq. (27) hinges on the fact that the deviation process dominates the fundamental return
process at high frequencies. More explicitly, when computing sample moments of the observed return data,
the fundamental return component r washes out asymptotically since its stochastic order, Op(

p
�), is smaller

than the stochastic order of the frictions �, Op(1). Hence, the moments of the observed returns consistently
estimate the deviation moments at high frequencies. Importantly, this consistency result would not be
a¤ected by the presence of infrequent news arrivals leading to discrete changes in the fundamental price
process. In other words, one could easily allow for the presence of a Poisson jump component in the
fundamental prices or returns r (see Bandi and Russell, 2005). The estimator, and its consistency properties,
would not change. These arguments justify using the estimator in Eq. (27). Because we employ a large
number of high-frequency returns per trading day (the average number of intra-daily returns is about 3,000)
we expect the consistency result in Eq. (27) to be fairly accurate and the corresponding estimator to be
informative.

We now turn to the variance of the fundamental return process, i.e., Vt =
R t
t�1 �

2
sds. In the absence of

deviations, the sum of the squared intra-daily returns
PM

j=1 er2j;t (realized variance) estimates Vt consistently
as M ! 1 (see, e.g., Andersen et al., 2003, and Barndor¤-Nielsen and Shephard, 2002). The presence of
deviations leads to an important bias-variance trade-o¤. High sampling frequencies may determine substan-
tial noise accumulation and biased estimates. Low sampling frequencies may lead to (fairly) unbiased but
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highly volatile estimates. Bandi and Russell (2006, 2008) provide a simple rule-of-thumb to optimize this
trade-o¤ and choose the optimal sampling frequency � (or, equivalently, the optimal number of observations
M) for every horizon of interest. For each day in our sample, given the assumed price formation mechanism,
the (approximate) optimal number of observations M�

t may be de�ned as

M�
t �

 bQtb�t
!1=3

; (28)

where bQt is equal to fM
3

PfM
j=1 er4j;t, the quarticity estimator of Barndor¤-Nielsen and Shephard (2002) with

returns sampled every 15 minutes, and b�t is equal to �PM
j=1 er2j;t
M

�2
, the friction-in-returns second moment

estimator raised to the second power. The optimal number of observationsM�
t can be interpreted as a signal-

to-noise ratio. The higher the signal coming from the underlying fundamental price process ( bQt estimatesR t
t�1 �

4
sds) relative to the size of the frictions (as represented by b�t), the higher the optimal number of

high-frequency observations needed for realized variance estimation.
Fig. 2 (Panel a) reports a histogram of the optimal sampling intervals and corresponding descriptive

statistics. The average interval is about 29 minutes, the median value is about 14 minutes. Fig. 2 (Panel
b) presents a time-series plot of the optimal sampling intervals. The intervals display an obvious downward
trend. This trend is due to deviation second moment estimates being relatively higher in the �rst part of
the sample (see Fig. 4). According to the ratio in Eq. (28), in order to achieve deviation reduction, a higher
relative deviation component should lead to a smaller optimal number of return observations and, thus, a
lower optimal sampling frequency.

Identi�cation of both the deviations second moments and the return variance can be generalized. We
could allow for virtually unrestricted dependence in the frictions along similar lines as in Bandi and Russell
(2005). As discussed above, this extension is empirically unimportant for our data given its clear MA(1)
structure. Consistent (in the presence of price deviations) estimates of the fundamental return variance may
be obtained by using kernel estimators such as those proposed by Zhang et al. (2005) and Barndor¤-Nielsen
et al. (2008). Experimentation with these alternative estimators did not lead to di¤erent results.
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 Lag   Covariance   Correlation   -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1     Std Error    
                                                                                             
  0   3.26278E-7       1.00000   |                    |********************|            0    
  1   -7.1485E-8       -.21909   |                ****| .                  |     0.044811    
  2   -1.7989E-9       -.00551   |                  . | .                  |     0.046913    
  3   -4.2528E-9       -.01303   |                  . | .                  |     0.046914    
  4   -3.2565E-8       -.09981   |                  **| .                  |     0.046921    
  5   3.18552E-9       0.00976   |                  . | .                  |     0.047346    
  6   1.33231E-8       0.04083   |                  . |*.                  |     0.047350    
  7   -2.3546E-8       -.07216   |                  .*| .                  |     0.047420    
  8   3.62875E-9       0.01112   |                  . | .                  |     0.047640    
  9   -2.1113E-8       -.06471   |                  .*| .                  |     0.047646    
 10   3.64909E-9       0.01118   |                  . | .                  |     0.047822    
 11   5.31233E-9       0.01628   |                  . | .                  |     0.047827    
 12   1.66286E-8       0.05096   |                  . |*.                  |     0.047838    
 13   -2.4186E-9       -.00741   |                  . | .                  |     0.047947    
 14     -9.81E-9       -.03007   |                  .*| .                  |     0.047949    
 15    1.6344E-8       0.05009   |                  . |*.                  |     0.047987    
 16   -3.012E-10       -.00092   |                  . | .                  |     0.048092    
 17   -4.2426E-9       -.01300   |                  . | .                  |     0.048092    
 18   -3.0794E-9       -.00944   |                  . | .                  |     0.048099    
 19   2.92423E-9       0.00896   |                  . | .                  |     0.048103    
 20   -1.3661E-8       -.04187   |                  .*| .                  |     0.048106    
 21   1.65097E-8       0.05060   |                  . |*.                  |     0.048179    
 22   1.56147E-8       0.04786   |                  . |*.                  |     0.048286    
 23   8.77186E-9       0.02688   |                  . |*.                  |     0.048381    
 24   1.17495E-8       0.03601   |                  . |*.                  |     0.048411    
                                                                                             
"." marks two standard errors         

 
Figure 1. Autocorrelation function of the observed SPDR returns. High-frequency transaction prices on the Standard & 

Poor's depository receipts (SPDRs) are downloaded from the Trade and Quote (TAQ) database in CRSP for the period 

February 1993 – March 2005.  The data are collected from the consolidated market which comprises the following 

exchanges:  AMEX, CBOE, NASDAQ, NYSE, Boston, Cincinnati, Midwest, Pacific, and Philadelphia. 
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Figure 2. Optimal sampling frequencies. Panel (a) plots a histogram of daily (MSE-based) optimal sampling frequencies 

for the realized variance estimator  constructed using SPDR return data. The optimal frequencies are estimated as 

δ=1/M*, where , with the numerator representing the 15-minutes quarticity estimator  and the 

denominator being defined as 

*M 2
j

j 1
r

=
∑

( )1/3
* ˆ ˆM Q/α=

M 4
j

j 1
Q̂ r M

=

⎛ ⎞= ∑⎜ ⎟
⎝ ⎠

/ 3

2
M 2

j
j 1

ˆ r / Mα
=

⎛= ∑⎜
⎝ ⎠

. ⎞
⎟ M~ and M denote the number of 15-minute SPDR returns and the number of 

observed SPDR returns over the trading day.  On average, M=3,000. Panel (b) plots the (daily) time series plot of the 

optimal intervals. High-frequency transaction price data on the Standard & Poor's depository receipts (SPDRs) are 

downloaded from the Trade and Quote (TAQ) database in CRSP for the period February 1993 – March 2005.  Trade prices 

on SPDRs are collected for the consolidated market which comprises the following exchanges:  AMEX, CBOE, NASDAQ, 

NYSE, Boston, Cincinnati, Midwest, Pacific and Philadelphia. 
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Panel (a) Optimally-sampled realized variances 
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Figure 3. Daily realized variance estimates. Panel (a) plots the time series of daily realized variance estimates constructed 

using optimally-sampled SPDR returns. Panel (b) plots the time series of daily realized variance estimates constructed using 

20-minute SPDR returns. Panel (c) plots the time series of daily realized variance estimates constructed using 5-minute 

SPDR returns. High-frequency transaction price data on the Standard & Poor's depository receipts (SPDRs) are downloaded 

from the Trade and Quote (TAQ) database in CRSP for the period February 1993 – March 2005. Trade prices on SPDRs are 

collected for the consolidated market, which comprises the following exchanges:  AMEX, CBOE, NASDAQ, NYSE, 

Boston, Cincinnati, Midwest, Pacific and Philadelphia. 
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Figure 4. Price deviation second moment estimates. The figure plots the daily time series of price deviation second 

moment estimates constructed using SPDR returns. For each day in our sample, the estimates are obtained by computing 

un-centered second moments of the SPDR high-frequency tick-by-tick returns. High-frequency transaction price data on the 

Standard & Poor's depository receipts (SPDRs) are downloaded from the Trade and Quote (TAQ) database in CRSP for the 

period February 1993 – March 2005. Trade prices on SPDRs are collected for the consolidated market which comprises the 

following exchanges:  AMEX, CBOE, NASDAQ, NYSE, Boston, Cincinnati, Midwest, Pacific and Philadelphia. 

 30



    

0.000

0.005

0.010

0.015

0.020

0.025

0.030

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

var-low freq var-hi freq  
Figure 5. Monthly market variances. We plot monthly variances computed using sums of daily optimally-sampled 

realized variance estimates over the month (var-hi freq) and monthly variances computed by summing up squared daily 

S&P500 returns (var-low freq). The daily optimally-sampled realized variances sum up squared optimally-sampled intra-

daily SPDR returns. High-frequency transaction price data on the Standard & Poor's depository receipts (SPDRs) are 

downloaded from the Trade and Quote (TAQ) database in CRSP for the period February 1993 – March 2005. Trade prices 

on SPDRs are collected for the consolidated market which comprises the following exchanges:  AMEX, CBOE, NASDAQ, 

NYSE, Boston, Cincinnati, Midwest, Pacific and Philadelphia. 
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Figure 6. Monthly illiquidity. This figure plots the time series of monthly illiquidity measures obtained from high-  

-frequency SPDR returns. For each day in our sample, we compute un-centered second moments of SPDR high-frequency 

tick-by-tick returns. The monthly illiquidity estimates are calculated by taking the square root of the averages of the daily 

estimates over the month. High-frequency transaction price data on the Standard & Poor's depository receipts (SPDRs) are 

downloaded from the Trade and Quote (TAQ) database in CRSP for the period February 1993 – March 2005.  Trade prices 

on SPDRs are collected from the consolidated market which comprises the following exchanges:  AMEX, CBOE, 

NASDAQ, NYSE, Boston, Cincinnati, Midwest, Pacific and Philadelphia. The months highlighted below are: 

 

May 1994: rate hike (The Credit Union Accountant)  

October/November 1994: significant liquidity shortage in the market associated with exacerbated volatile market conditions 

and the Peso crisis (The Financial Post);  

June 1995: Fed announced carrying out weekend system repos since the market needed extra liquidity (AFX News); 

July 1996: weaker-than-expected employment report (Investors Chronicle); 

October 1997: Asian crisis; 

October/November 1998: LTCM crisis and the Russian debt default; 

May 1999: uncertainty over the direction of monetary policy in Argentina and anticipation of a rate hike by US Fed 

 (Emerging Markets Debt Report); 

April 2000: considerable increase in oil price (Financial Director); 

September 2001: 9/11 attack; 

March 2002: worries about the Iraq war (Financial Times); 

August 2004: worries about oil prices and global liquidity (Business Line). 

 

 32



    

Panel (a) Innovations in illiquidity 
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Panel (b) Innovations in the liquidity factor of Pastor and Stambaugh (2003) 
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Figure 7. Two illiquidity proxies. Panel (a) plots innovations in the monthly time series of illiquidity estimates constructed 

using SPDR returns. For each day in our sample, we compute un-centered second moments of the SPDR high-frequency 

tick-by-tick returns. The monthly illiquidity estimates are calculated by taking the square root of the averages of the daily 

estimates over the month. High-frequency transaction price data on the Standard & Poor's depository receipts (SPDRs) are 

downloaded from the Trade and Quote (TAQ) database in CRSP for the period February 1993 – March 2005.  Trade prices 

on SPDRs are collected from the consolidated market which comprises the following exchanges:  AMEX, CBOE, 

NASDAQ, NYSE, Boston, Cincinnati, Midwest, Pacific and Philadelphia.  Panel (b) plots innovations in Pastor and 

Stambaugh’s (2003) liquidity measure over the same period. Pastor and Stambaugh’s measure is downloaded from CRSP. 
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Figure 8. Monthly average returns and optimally-sampled volatility loadings. Panel (a) plots monthly average excess 

returns for the 25 Fama-French size- and value-sorted portfolio. The return data are collected for the period February 1993 – 

March 2005.  Panel (b) plots the volatility factor loadings (with a minus sign) associated with innovations in optimally-

sampled realized variance ( IV ) from the regression: 
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25,...1=i , , where  denotes excess returns on portfolio i and denotes excess returns on the market 
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Panel (a) Average monthly excess returns                                     Panel (b) Illiquidity loadings  IFV
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Figure 9. Monthly average returns and illiquidity loadings. Panel (a) plots monthly average excess returns for the 25 

Fama-French size- and value-sorted portfolio. The return data are collected for the period February 1993 – March 2005.  

Panel (b) plots the illiquidity factor loadings (with a minus sign) associated with innovations in illiquidity ( IFV ) from the 

regression: 
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25,...1=i , , where  denotes excess returns on portfolio i and  denotes excess returns on the market 

portfolio. 
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Panel (c) Volatility loadings  IV
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Figure 10. Monthly average returns and factor loadings. Panel (a) plots monthly average excess returns for the 25 Fama-

French size- and value-sorted portfolio. The return data are collected for the period February 1993 – March 2005.  Panels 

(b) and (c) plot illiquidity factor loadings (with a minus sign) associated with innovations in illiquidity ( IFV ) and market 

volatility factor loadings (with a minus sign) associated with innovations in market volatility ( IV ) from the regression 
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25,...1=i , , where  denotes excess returns on portfolio i and  denotes excess returns on the 

market portfolio. 
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Panel (a) CAPM                                Panel (b) FF-3 Factor model (Rm
e, SMB, HML) 
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Panel (c) 3-Factor model (Rm

e, IV, IFV) 
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Figure 11. Predicted versus realized monthly average excess returns – 25 Fama-French portfolios. Predicted 
mean excess returns are plotted on the vertical axis. Mean realized excess returns are plotted on the horizontal axis. We 
use 3 asset pricing models: the CAPM, a 3-factor model consisting of market excess return, innovations in market 
volatility ( IV ) and innovations in illiquidity ( IFV ), and the Fama-French 3 factor model, FF-3. In Panel (c),  

stands for the portfolio in the  size quintile and in the  value quintile. We use value-weighted portfolios sorted 
on size and book-to-market equity covering the period February 1993 – March 2005. 
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Table I 

Cross-Correlation Matrix of the Risk Factors 

 

IV  represents innovations in market volatility, IFV denotes innovations in illiquidity (as estimated in this paper), 

XMKT  refers to excess market returns, while  and  are the Fama-French size and book-to-market factors. 

 denotes innovations in Pastor and Stambaugh’s illiquidity measure. Data cover the period February 1993 – March 

2005. 

SMB HML
PS

 XMKT  IV  
 

IFV  
 

PS  SMB  HML  
XMKT  1.00      

IV  -0.41 1.00 
  

  

IFV  -0.28 0.57 
 

1.00   

PS  0.23 -0.31 
 

-0.23 
 

1.00   

SMB  0.19 -0.19 
 

-0.14 
 

-0.01 1.00  

HML  -0.54 0.13 
 

0.14 
 

-0.02 -0.51 1.00 
 

 

Table II 

Cross-Correlation Matrix of the Illiquidity Proxies 

 

Panel (a). IFV  denotes innovations in illiquidity (as estimated in this paper). IILL , , and PS IT  denote innovations 

in Amihud’s (2002) illiquidity measure, innovations in Pastor and Stambaugh’s (2003) illiquidity measure, and innovations 

in aggregate turnover. IILL  and IT  are un-scaled. Data cover the period February 1993 – December 2002. 

 IFV  
 

PS  IILL IT
IFV  1.00   
PS  -0.22 1.00   

IILL 0.24 -0.06 1.00  
IT  0.28 -0.02 -0.12 1.00 

 
 

Panel (b). IFV  denotes innovations in illiquidity (as estimated in this paper). IILL , , and PS IT  denote innovations 

in Amihud’s (2002) illiquidity measure, innovations in Pastor and Stambaugh’s (2003) measure, and innovations in 

aggregate turnover. IILL  and IT  are scaled. Data cover the period February 1993 – December 2002. 

 
 

IFV  
 

PS  IILL IT
IFV  1.00   
PS  -0.22 1.00   

IILL 0.21 -0.02 1.00  
IT  0.26 0.00 -0.19 1.00 
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Table III 

Time Series Regressions of Excess Returns on Expected and Unexpected Volatility –  

Size-Sorted Portfolios 

 

We run regressions of excess portfolio returns on lagged market volatility, V ,  and the residuals from an  

regression of V on lagged V , namely 

)1(AR

, 1
e i i i
i t t t tR V uα β λ ε−= + + + , where .  0 1

ˆ ˆ
t t tVε δ δ −= − − 1V tV 1−   and tε  

represent expected and unexpected volatility, respectively. We use monthly value-weighted return data collected for the 

period February 1993 – March 2005 for the 10 Fama-French portfolios sorted on size. We present results for the 2nd, 4th, 6th, 

8th, and 10th decile portfolios. T-statistics are reported in parentheses. 

 
  

2nd 4th 6th 
 

8th 
 

10th 

    
β 19.24 

(0.28) 
15.52 
(0.72) 

11.80 
(0.66) 

18.60 
(1.04) 

5.53 
(0.34) 

      
λ -203.60 

(-5.70) 
-177.20 
(-5.70) 

-159.60 
(-5.90) 

-148.10 
(-5. 50) 

-113.10 
(-4.59) 

 
 
 
 

Table IV 

Time Series Regression of Excess Returns on Expected and Unexpected Illiquidity –  

Size-Sorted Portfolios 

 

We run regressions of excess portfolio returns on lagged illiquidity, FV ,  and the residuals from an  regression of )1(AR

FV on lagged FV , namely, , 1
e i i i
i t t t tR FVα β λ ε−= + + u+ , where 0 1

ˆ ˆ
t 1t tFV Fδ −− V 1−tFVε δ= − .  and 

tε represent expected and unexpected illiquidity, respectively. We use monthly value-weighted return data collected for the 

period February 1993 – March 2005 for the 10 Fama-French portfolios sorted on size. We present results for the 2nd, 4th, 6th, 

8th, and 10th decile portfolios. T-statistics are reported in parentheses. 

 
  

2nd 4th 6th 
 

8th 
 

10th 

      
β 1231 

(0.74) 
1418 
(0.99) 

1302 
(1.03) 

1390 
(1.11) 

2311 
(2.07) 

      
λ -8704 

(-3.70) 
-6710 
(-3.40) 

-5902 
(-3.30) 

-5640 
(-3.70) 

-3709 
(-2.35) 
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Table V 

Time Series Regression of Excess Returns on Expected and Unexpected Volatility and Illiquidity –  

Size-Sorted Portfolios 

 

We run regressions of excess portfolio returns on lagged illiquidity, FV

t

,  lagged market volatility, V , the residuals from 

an  regression of  on lagged  and the residuals from an  regression of V  on lagged V , 

namely 

)1(AR FV

, 1
i
V t

FV
i
FV

)1(AR

1
e i i i
i t V t t FV tR V Fβ+ Vα β λ ε λ−= + + + u 1Vv− + , where 0 1

ˆ ˆ
t t tδVε δ −= − − , and 

.  and 0 1
ˆ ˆ Fδ δ− 1−1tV − tVt tu FV= − tε represent expected and unexpected volatility, respectively. and 

represent expected and unexpected illiquidity, respectively. We use monthly value-weighted return data collected for the 

period February 1993 – March 2005 for the 10 Fama-French portfolios sorted on size. We present results for the 2nd, 4th, 6th, 

8th, and 10th decile portfolios. T-statistics are reported in parentheses. 

1−tFV

tu

 
  

2nd 4th 6th 
 

8th 
 

10th 

Average portfolio returns  
 

1.115 0.762 0.622 0.771 0.608 

βV 12.86 
(0.53) 

12.31 
(0.58) 

 9.30 
 (0.5) 

  16.23 
  (0.87) 

 4.68 
 (0.28) 

      
λV -185.90 

(-4.30) 
-168.62 
(-4.50) 

  -153.05 
 (-4.70) 

 -140.42 
 (-4.30) 

  -101.52 
 (-3.40) 

      
βFV -858 

(-0.53) 
- 475 
(-0.34) 

     - 419 
     (-0.34)  

  -178 
  (-0.14) 

 1167 
 (1.03) 

      
λFV -2919 

(-1.11) 
 -1461 
(-0.65) 

-1163 
(-0.59) 

  -1117 
  (-0.56) 

 -592 
  (-0.33) 
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Table VI 

Time Series Regression of Excess Returns on Expected and Unexpected Volatility –  

BE/ME-Sorted Portfolios 

 

We run regressions of excess portfolio returns on lagged market volatility, V ,  and the residuals from an  

regression of V on lagged V , namely 

)1(AR

, 1
e i i i
i t t t tR V uα β λ ε−= + + + , where .   and 0 1

ˆ ˆ
t t tVε δ δ −= − − 1V 1−tV

tε represent expected and unexpected volatility, respectively. We use monthly value-weighted return data collected for the 

period February 1993 – March 2005 for the 10 Fama-French portfolios sorted on book-to-market. We present results for the 

2nd, 4th, 6th, 8th, and 10th decile portfolios. T-statistics are reported in parentheses. 

 
  

2nd 4th 6th 
 

8th 
 

10th 

    
β 9.84 

(0.59) 
8.18 

(0.52) 
8.25 

(0.54) 
14.00 
(1.0) 

1.75 
(0.10) 

      
λ -115.50 

(-4.60) 
-130.30 
(-5.50) 

-126.60 
(-5.50) 

-131.10 
(-6. 20) 

-135.40 
(-5.30) 

 
 
 
 

Table VII 

Time Series Regression of Excess Returns on Expected and Unexpected Illiquidity –  

BE/ME-Sorted Portfolios 

 

We run regressions of excess portfolio returns on lagged illiquidity, FV ,  and the residuals from an  regression of )1(AR

FV on lagged FV , namely, , 1
e i i i
i t t t tR FVα β λ ε−= + + u+ , where 0 1

ˆ ˆ
t t 1tFV Fε δ= − − Vδ − FV.  and 1−t

tε represent expected and unexpected illiquidity, respectively. We use monthly value-weighted return data collected for the 

period February 1993 – March 2005 for the 10 Fama-French portfolios sorted on book-to-market. We present results for the 

2nd, 4th, 6th, 8th, and 10th decile portfolios. T-statistics are reported in parentheses. 

 
  

2nd 4th 6th 
 

8th 
 

10th 

    
β 1796 

(1.60) 
1116 
(1.01) 

1994 
(1.89) 

977 
(0.98) 

213 
(0.18) 

      
λ -4424 

(-2.70) 
-4098 
(-2.60) 

-4670 
(-3.10) 

-4801 
(-3.40) 

-3592 
(-2.13) 
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Table VIII 

Time Series Regression of Excess Returns on Expected and Unexpected Volatility and Illiquidity –  

BE/ME-Sorted Portfolios 

 

We run a regression of excess portfolio returns on lagged illiquidity, ,  lagged market volatility, V , the residuals from 

an  regression of 

FV
)1(AR FV  on lagged FV

i
FV

 and the residuals from an  regression of V  on lagged V , 

namely 

)1(AR

, 1
i
V t 1

e i i i
i t V t t FV t tR V Fβ+ Vα β λ ε λ− −= + + + u 1Vv+ , where 0 1

ˆ ˆ
t t tδVε δ −= − − , and 

.  and 0 1
ˆ ˆ Fδ δ− 1−1tV − tVt tu FV= − tε represent expected and unexpected volatility, respectively.  and 

represent the expected and unexpected illiquidity, respectively. We use monthly value-weighted return data collected for 

the period February 1993 – March 2005 for the 10 Fama-French portfolios sorted on book-to-market. We present results for 

the 2nd, 4th, 6th, 8th, and 10th  decile portfolios. T-statistics are reported in parentheses. 

1−tFV

tu

 
  

2nd 4th 6th 
 

8th 
 

10th 

Average portfolio returns 0.688 0.862 0.798 0.791 0.962 
      
βV 7.45 

(0.43) 
8.08 

(0.50) 
 6.01 

 (0.38) 
  13.26 
   (0.85) 

 3.4 
 (0.20) 

      
λV -101.93 

(-3.30) 
-132.62 
(-4.60) 

  -113.01 
 (-4.10) 

 -127.88 
 (-5.04) 

  -152.50 
 (-5.03) 

      
βFV 651 

(0.57) 
  -375 
(-0.35) 

     722 
    (0.69)  

  -454 
  (-0.47) 

 -1511 
 (-1.31) 

      
λFV -1245 

(-0.68) 
 9 

 (0.10) 
   -1186 
   (-0.70) 

  -761 
  (-0.50) 

 1025 
   (0.56) 
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Table IX 

Prices of Risk – Monthly Frequency 

We report the estimated factors’ risk prices associated with the asset pricing 

model The left-hand side variable is the vector of mean excess returns on the Fama-

French 25 portfolios sorted on size and book-to-market. The betas represent factors’ risk loadings estimated from the 

corresponding time-series model. The factors of interest are: excess return on the market portfolio,

.)(
1

1, ∑
=

+ +=
p

s

s
is

m
im

e
tiRE βλβλ

IV (innovations in 

market volatility), IFV (innovations in illiquidity),  (the Fama-French size factor),  (the Fama-French 

value factor), and  (innovations in the illiquidity factor of Pastor and Stambaugh, 2003). The time period is February 

1993 – March 2005. Estimation is conducted using GMM. T-statistics are reported in parentheses. 

SMB HML
PS

 

mλ̂  IVλ̂  IFVλ̂  PSλ̂  SMBλ̂  HMLλ̂  TJ  p  df  

0.7397 -0.0111     9.9368 0.9917 23 
(4.00) (-2.54)        

         
0.6999  -0.0003    7.3829 0.9992 23 
(4.05)  (-3.45)       

         
0.8724   0.0519   6.7968 0.9996 23 
(4.97)   (2.23)      

         
0.7691 -0.0100 -0.0003    9.6164 0.9895 22 
(4.05) (-2.22) (-2.69)       

         
0.6698 -0.0118  0.0375   8.6923 0.9948 22 
(3.63) (-2.81)  (1.55)      

         
0.6839  -0.0003 0.0282   8.7111 0.9947 22 
(3.91)  (-2.90) (1.12)      

         
0.6963 -0.0110 -0.0002 0.0322   9.3396 0.9863 21 
(3.62) (-2.57) (-2.39) (1.23)      

         
0.5913    0.2754 0.3740 4.6856 0.9999 22 
(2.69)    (0.80) (1.71)    
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Table X  

Prices of Risk – Daily Frequency 

 

We report the estimated factors’ risk prices associated with the asset pricing 

model  The left-hand side variable is the vector of mean excess returns on the 

Fama-French 25 portfolios sorted on size and book-to-market. The betas represent factors’ risk loadings estimated from 

the corresponding time-series model. The factors of interest are: excess return on the market portfolio, 

.)(
1

1, ∑
=

+ +=
p

s

s
is

m
im

e
tiRE βλβλ

IV (innovations in market volatility), IFV (innovations in illiquidity),  (the Fama-French size factor), and 

 (the Fama-French value factor). The time period is February 1993 – March 2005. Estimation is conducted 

using GMM. T-statistics are reported in parentheses. 

SMB
HML

 

mλ̂  IVλ̂  IFVλ̂  SMBλ̂  HMLλ̂   
TJ  p  df  

         
0.0198 -0.0033     31.977 0.1006 23 
(1.51) (-2.64)        

         
0.0141  -0.0006    22.8503 0.4695 23 
(1.08)  (-3.54)       

         
0.0201 -0.0011 -0.0005    23.8349 0.9863 22 
(1.54) (-0.78) (-3.82)       

         
0.0239   0.0099 0.0240  6.7489 0.9992 22 
(1.80)   (0.55) (2.88)     
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Table XI 

Risk Premia 

 

The differences in risk premia between small-cap and large-cap stocks are estimated as the product between the factors’ risk 

prices and the differences in the factors’ loadings. IV  represents innovations in market volatility. IFV  represents 

innovations in illiquidity. Results are reported in percentages, per month. 

 

Panel (a) The model is  .)( 1,
IV
iIV

m
im

e
tiRE βλβλ +=+

 
 Book-to-Market Equity (BE/ME) Quintiles 
 Low 2 3 4 High 
      

Average Excess Returns 0.5339 0.8708 0.9759 1.0131 1.0215 

)ˆˆ(ˆ IV
Big

IV
SmallIV ββλ −  1.3230 0.2359 0.0791 0.2616 0.3863 

 
 
 
Panel (b) The model Is  .)( 1,

IFV
iIFV

m
im

e
tiRE βλβλ +=+

 
 Book-to-Market Equity (BE/ME) Quintiles 
 Low 2 3 4 High 
      

Average Excess Returns 0.5339 0.8708 0.9759 1.0131 1.0215 

)ˆˆ(ˆ IFV
Big

IFV
SmallIFV ββλ −  0.7979 0.5788 0.4019 0.6941 1.2971 

 
 
 

Panel (c) The model Is   .)( 1,
IFV
iIFV

IV
iIV

m
im

e
tiRE βλβλβλ ++=+

 
 

 Book-to-Market Equity (BE/ME) Quintiles 
 Low 2 3 4 High 
      

Average Excess Returns 0.5339 0.8708 0.9759 1.0131 1.0215 

)ˆˆ(ˆ IV
Big

IV
SmallIV ββλ −  1.1584 0.1580 0.0187 0.0797 0.0461 

)ˆˆ(ˆ IFV
Big

IFV
SmallIFV ββλ −  0.1071 0.1793 0.1730 0.4612 1.2812 

 
 
 

 


