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concave preferences. If the position is divisible, under piecewise exponential functions, the agent
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on the possibility of liquidating at a gain. Finally, the piecewise power specification remains
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In a rational world, agents evaluate risky gambles using expected utility (dating back to von

Neumann and Morgenstern (1944)). However, experimental work has showed substantial viola-

tions of expected utility theory, resulting in a number of alternatives, one of which is the prospect

theory of Kahneman and Tversky (1979) (and Tversky and Kahneman (1992)). Important fea-

tures of prospect theory are as follows. First, utility is defined over gains and losses relative to

a reference point, rather than over final wealth, an idea first proposed by Markowitz (1952).

Second, the utility function (called value function in the prospect theory) exhibits concavity in

the domain of gains and convexity in the domain of losses. The function is steeper for losses than

for gains, a feature known as loss aversion. The final feature is the nonlinear probability trans-

formation whereby small probabilities are overweighted. The theoretical literature on prospect

theory applied to finance1 has treated portfolio choice, see for example, Berkelaar et al (2004),

Gomes (2005), Jin and Zhou (2008); asset pricing, see Benartzi and Thaler (1995), Barberis and

Huang (2001), and Barberis et al (2001); and equilibrium, see De Giorgi et al (2008).

Our focus in this paper is on modeling the behavior of an agent with prospect theory pref-

erences who seeks to liquidate a portfolio of assets, or more generally, contingent claims on an

underlying asset. Our primary interest will be in the situation where the agent is simply choosing

when to sell an asset, for example, her stock holdings, house, or, how to terminate a managerial

project. In general, we will allow the agent to divide up her position and sell over time (but we

will see that for agents with prosect theory preferences, this is in fact, not optimal behavior). At

the chosen liquidation time, the agent compares the payoff to a reference level, which is taken to

be the break-even level. For example, they might compare the sale price received for a stock or

house to the price paid; or the proceeds of a project with the initial outlay. If there is a portfolio

of identical claims, the agent compares each payoff (received a potentially different times) to a

reference level, which is the same for each claim.

We will develop a general continuous-time optimal stopping model which will enable us to

consider alternative specifications of prospect theory preferences, and any time-homogeneous

diffusion asset price process. Specific examples will include the Tversky and Kahneman (1992)

piecewise power functions, the piecewise exponential functions, and prices following both expo-

nential Brownian motion and Brownian motion. This enables us to revisit the model of Kyle,

Ou-Yang and Xiong (2006) as an important example where the asset is indivisible, the price fol-

lows Brownian motion, and the agent has exponential S-shaped preferences. A key contribution

we make is to demonstrate that the qualitative features of the agent’s liquidation behavior are

not robust to changes in either the specification of prospect preferences, or to the assumption

of asset indivisibility versus divisibility. In particular, the break-even level plays a major role in

liquidation strategies under the model of Kyle, Ou-Yang and Xiong (2006), but plays no role

once the asset is divisible, or when preferences are altered to the power S-shaped functions of

Tversky and Kahneman (1992). Thus the behavior of “selling at the break-even level” which is a

major conclusion of Kyle, Ou-Yang and Xiong (2006), is a rather special feature of their precise

choice of model, and is not a typical finding of the general prospect theory setting.

1Barberis and Thaler (2003) present a broad overview of behavioral finance.
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The main application of our prospect theory model will be the disposition effect. Many

empirical studies find that investors are reluctant to sell assets trading at a loss relative to the

price at which they were purchased, a phenomenon labeled the “disposition effect” by Shefrin

and Statman (1985). Phrased differently, the disposition effect is the observation that agent’s

sell winners and hold onto losers. This effect has been found for individual investors in Ferris et

al (1988) and Odean (1998), amongst others, as well as in experimental studies by Weber and

Camerer (1998). Disposition effects have also been found in other settings - the real estate market

(see Genesove and Mayer (2001)), traded options markets (Poteshman and Serbin (2003)) and

executive stock options (Heath, Huddart and Lang (1999)). Whilst it is more difficult to observe

whether corporate managers display behavioral biases such as the disposition effect, there is

anecdotal and empirical evidence to suggest that managers are resistant to terminating losing

projects.2 Recently, Crane and Hartzell (2008) take advantage of the transparency of real estate

investment trusts (REITs) and find results consistent with disposition in the corporate setting.

Prospect theory (together with narrow framing) has long been recognized as one potential

way of understanding the disposition effect. The idea is that a gain (or loss) puts the investor in

the risk-averse (risk-seeking) region and so she prefers to reduce (increase) her position in the

risky asset. We borrow an example from Shefrin and Statman (1985) to illustrate this point.

Consider an investor who bought a stock a month ago for $50 and it is currently trading at

$40. The investor is deciding whether to sell the stock now (for a $10 loss) or to wait another

period. Suppose either the stock will increase to $50 next period or decrease to $30, with equal

probability. Under prospect theory, the investor is choosing between:

A. sell the stock now and make a $10 loss,

B. wait, and have a 50% chance of losing a further $10 but a 50% chance of breaking even.

Shefrin and Statman (1985) conclude that since the choice between the lotteries is associated

with the convex portion of the S-shaped function, the prospect theory investor would choose

option B, thus waiting to gamble on the possibility of breaking even. They also recognize that

this will depend on the odds of breaking even - and that if these were sufficiently unfavorable,

the investor may choose lottery A, and sell for a loss today.

Our continuous-time optimal stopping model allows us to analyze how the behavior of the

prospect theory agent depends upon the expected return and volatility of the asset itself (key in

the intuition above), and importantly, the specification of prospect preferences and price dynam-

ics. This will enable us to explore the ability of a particular model to give predictions consistent

with the disposition effect. Common to all specifications is the structure of the solution - the

agent stops when the asset price reaches some threshold(s) (which may be infinite) and hence

the likelihood of sale is related to the distance between the current price and the threshold(s).

2Statman and Caldwell (1987) and Shefrin (2001) offer several anecdotes concerning major corporate invest-

ments that have the flavor of “throwing good money after bad”, and Statman and Sepe (1989) show announcements

of termination of losing projects are generally associated with positive abnormal returns on the stock of the ter-

minating companies. Related evidence comes from Guedj and Scharfstein (2004) who find managers are reluctant

to abandon their only drug candidates even when the results of clinical trials are not promising.
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However, importantly, we show that whether the agent will in fact sell at a loss relative to

break-even, depends on the specification of prospect theory, and in particular, the nature of the

loss aversion. Clearly this has implications for whether a model can produce results consistent

with the disposition effect.

We first study the situation where the agent’s position is indivisible. Under exponential S-

shaped preferences, we recover the model of Kyle, Ou-Yang and Xiong (2006) in which the agent

never (voluntarily) sells at a loss. Rather, if the asset has extremely poor expected return, the

agent would simply not have held it ex-ante (because the strategy is to liquidate at the break-

even point, and we assume this is the price paid for the asset). However, more interestingly,

the asset can have a relatively poor expected return and still be held ex-ante, with the agent

gambling on the possibility of liquidating at a (small) gain.

The situation changes dramatically for power S-shape preferences of Tversky and Kahneman

(1992), due to the locally infinite loss aversion.3 The most important difference we find is that

under the piecewise power specification of prospect theory preferences, the agent will (voluntar-

ily) liquidate at a loss in some circumstances. The agent will never liquidate at the break-even

point. As a consequence, if the asset has a poor Sharpe ratio, the agent will wait to liquidate

either at a loss, or at a gain. Despite the poor Sharpe ratio, the prospect theory agent will choose

ex-ante to hold the asset. This situation is consistent with the intuition of Shefrin and Statman

(1985) who argue that if the odds are sufficiently bad, the agent will “give-up” and accept a

loss. However, their story does not take into account whether the agent would hold the asset

ex-ante, and indeed, more recent literature has remarked that this consideration would rule out

the behavior we describe (see Hens and Vlcek (2005), Kaustia (2008) and Barberis and Xiong

(2008a)). We demonstrate that the agent does hold the asset ex-ante and that, consistent with

the disposition effect, it is more likely a (small) gain will be realized rather than a (large) loss.

The extension to allow the agent to partially liquidate the position has significant conse-

quences. We find that common to both specifications of prospect preferences, the agent takes

an “all-or-nothing” liquidation strategy, in that if liquidation occurs, the entire position is sold

at once. This is in contrast to the typical strategy of liquidating the risky position over time

which we would expect of an agent with a concave utility function. The “all-or-nothing” strategy

occurs because due to the disposition effect, the majority of the region of interest is where the

prospect function is convex, and hence, the agent behaves as if she has convex utility.

Analysis of the partial liquidation problem for the agent with exponential S-shaped functions

shows that the agent no longer stops at the break-even level, and thus, this feature of the

indivisible model is not robust to the generalization to divisibility. This is pertinent given the

importance of the break-even level in the paper of Kyle, Ou-Yang and Xiong (2006), and as they

note “the issue of partial liquidation is not addressed in the extant literature” (p284). Instead,

there is a wider range of (poor and extremely poor) expected returns over which the agent will

3However, as the survey of Di Giorgi and Hens (2006) (and references therein) highlights, this infinite slope

can also have other less desirable consequences with regard to other applications of prospect theory. In this paper,

we are primarily concerned with applications to the disposition effect.

4



choose to hold two units of asset, and will gamble on the possibility of liquidating (both) assets at

a gain. In fact, when the expected return is extremely poor, an agent with an indivisible position

would not have taken it ex-ante, whilst the agent with a larger stake would choose to take the

gamble. Again, this behavior is consistent with that of an agent with convex utility, and, as we

already noted, this behavior dominates because the sales threshold is typically very close to the

break-even level. The agent with the Tversky and Kahneman (1992) piecewise power functions

will choose to take the divisible position ex-ante, and, for extremely poor Sharpe ratios, sell at

either a loss or a gain. Again, this fits with the intuition of Shefrin and Statman (1985). The

results are again consistent with the disposition effect, since it is more likely the agent liquidates

(all) units at a (small) gain than a (large) loss. Indeed, Odean (1998) shows that the disposition

effect remains strong even when the sample is limited to sales of investor’s entire holdings of

stock.

In addition to the optimal stopping model of Kyle, Ou-Yang and Xiong (2006), the papers of

Kaustia (2008) and Barberis and Xiong (2008b) also treat stopping or liquidation problems for

investors with prospect preferences. However, a stopping model in which agent’s voluntarily sell

at a loss is missing from the extant literature. As in the Shefrin and Statman (1985) example,

the investor in Kaustia (2008) compares the alternatives of holding the position for a fixed

time versus liquidating today at various gain/loss levels relative to break-even. As such, Kaustia

(2008) gives the investor only one decision and the investor is forced to sell at the fixed horizon.

In fact, his model coincides with a one-period version of ours with power S-shaped preferences,

and asset prices following exponential Brownian motion. In contrast, our model is continuous-

time so the agent faces a continuum of decisions and can choose to liquidate at any point in

time.4

Barberis and Xiong (2008b) explore an optimal stopping model where utility is over realized

gains or losses relative to break-even5, together with a linear utility (not S-shaped) and a positive

discount rate.6 They find behavior in this model to be consistent with a number of observations

in financial markets. However, unless forced by a liquidity shock, their investor only sells stock

trading at a gain, never at a loss, and thus, as they acknowledge, their model is consistent only

with a strong version of the disposition effect.

A number of papers consider the prospect theory investor’s portfolio optimization problem

and relate their findings to the disposition effect. Hens and Vlcek (2005) study the behavior of

an prospect theory investor’s optimal position in a risky asset in two-period binomial model.

They find ex-post that the model sometimes predicts disposition type behavior. However ex-

ante, taking initial purchase into account, this disappears. Barberis and Xiong (2008a) extend

to a discrete-time dynamic optimization model and analyze how a prospect theory investor’s

4Relative to our model, Kaustia’s investor will underestimate the value of waiting, as his investor is not given

the opportunity to wait beyond the fixed date.
5The idea of allowing unrealized gains and losses to affect utility was previously used by Barberis, Huang and

Santos (2001).
6We comment further in Remark 3 on the differences between our framework and that of Barberis and Xiong

(2008b).
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optimal holdings vary as the asset price moves over time.7 They also find that the model often

fails to predict a disposition effect. Each of these portfolio optimization models studies the

rebalancing of the prospect theory investor’s portfolio up to a fixed terminal horizon, and relates

this rebalancing to the disposition effect.8 In contrast, our optimal stopping model (and that of

Kyle, Ou-Yang and Xiong (2006)) asks at what time in the future would the prospect theory

investor wish to sell the asset? Our extension to partial liquidation allows the agent to choose to

sell-off her position over time, if she wishes. Since the disposition effect concerns the observation

that investors, executives and managers choose to sell at a gain more readily than at a loss, an

optimal stopping model is capturing both the sale and the timing elements.

Optimal stopping problems are usually formulated as free boundary problems via variational

arguments. In most cases, the free boundary problem can be solved with the smooth-fit or

smooth-pasting principle.9 However, sometimes, smooth-fit does not apply, and this is the case

here due to the non-differentiability of the utility function. Kyle, Ou-Yang and Xiong (2006)

take a variational approach and lack of smooth-fit means that the problem becomes quite in-

volved. Instead, we use a direct approach originating in the work of Dynkin (1965) and Dynkin

and Yushkevich (1969).10 Our approach is not dependent on smooth-fit, and thus is far more

tractable. This is important as it allows us to investigate the robustness of our results, first,

to the precise specification of prospect theory, and second, to the model for the price process.

In particular, Kyle, Ou-Yang and Xiong (2006) comment that “it would be ideal to employ

the power functions as suggested by Kahneman and Tversky (1979) but the agent’s problem

becomes intractable to solve in this case. Nevertheless we believe that our results based on the

exponential functions are still robust” (p278). A key finding of our analysis is that the behavior

is not robust to such a change in the S-shaped function, and in fact, the properties of the func-

tion at the reference level are crucial. An important contribution of our paper is to generalize

to the partial liquidation problem. Again, properties of the function at the reference level are

important - in particular, the important role of the break-even level in the piecewise exponential

specification of the indivisible liquidation model does not extend to the divisible model.

1 General Framework

Let Yt denote the asset price. We work on a filtration (Ω,F , (Ft)t≥0,P) supporting a Brownian

motion W = {Wt, t ≥ 0} and assume Yt follows a time-homogeneous diffusion process with state

7See also Berkelaar, Kouwenberg and Post (2004) for a continuous-time analog.
8However, consideration of the same portfolio optimization problem with standard CRRA preferences (cf.

Samuelson (1969), Merton (1969)) alone gives qualitatively similar rebalancing. (As a CRRA investor keeps a

fixed proportion of wealth in the risky asset, she may reduce the quantity held after a price increase, and increase

quantity after a price fall, although for some parameters, the reverse occurs). Any prospect theory based portfolio

optimization model needs to distinguish their findings from such wealth effects obtainable in non-prospect theory

models.
9See Oksendal (2005) or Shiryaev (1978) for expositions on optimal stopping.

10Direct methods for optimal stopping problems are used and developed by Dayanik and Karatzas (2003), and

also Carmona and Dayanik (2007) in a multiple stopping model of swing options in energy markets.
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space I ⊆ R and

dYt = µ(Yt)dt + σ(Yt)dWt Y0 = y

with Borel functions µ : I → R and σ : I → (0,∞). We assume I is an interval with endpoints

−∞ ≤ aI < bI ≤ ∞ and that Y is regular in (aI , bI).11 Set τY(a,b) = inf{u : Yu /∈ (a, b)}, ie.

the first time that Y leaves the interval (a, b). We will make use of the scale function s(.) of the

diffusion Yt.
12 We recall the following definition (see Revuz and Yor (1999)):

Definition 1 A locally bounded Borel function s is a scale function if and only if the process

s(Yt∧τY
(aI ,bI)

); t ≥ 0 is a local martingale. Furthermore, for arbitrary but fixed c ∈ I, we have

s(y) =
∫ y
c exp

(

−
∫ x
c

2µ(z)
σ2(z)

dz
)

dx; y ∈ I. The function s(y) is real-valued, strictly increasing, and

continuous on I. Finally, we have As(.) = 0 where the second order differential operator

Au(y) :=
1

2
σ2(y)

d2u

dy2
(y) + µ(y)

du

dy
(y), on I

is the infinitesimal generator of Y .

We consider two main examples for the dynamics of Y - exponential Brownian motion, and

Brownian motion. Exponential Brownian motion is by far the most popular choice in finance

(preventing financial asset prices from becoming negative); and our main motivation for also

studying the Brownian motion case is to facilitate comparison with the results of Kyle, Ou-

Yang and Xiong (2006). Assuming Y follows a Brownian motion may be more applicable when

considering project payoffs which can be negative.

If the dynamics of Y are exponential Brownian motion, write dY = Y (µdt + σdW ) for

constants µ and σ > 0. The state space is I = (0,∞). Define the constant parameter β =

1 − 2µ/σ2. This parameter involves the return-for-risk-per-unit-variance µ/σ2 (by slight abuse

of terminology we refer to this as the Sharpe ratio) and thus reflects the expected performance

of the asset. (If β < 0 then Yt grows to ∞ whereas, if β > 0, then Yt tends to zero, almost

surely.) The scale function is s(y) = yβ if β > 0, s(y) = −(y)β if β < 0 and s(y) = ln(y) if

β = 0.1314 If Y follows Brownian motion, we write dY = µdt+ σdW , again for constants µ and

σ > 0. Here I = (−∞,∞). The scale function is given by s(y) = −e−
2µ

σ2 y if µ > 0, s(y) = e−
2µ

σ2 y

if µ < 0 and s(y) = y if µ = 0.

For simplicity, we assume a zero interest or discount rate throughout. This also aids our direct

comparison to results of Kyle, Ou-Yang and Xiong (2006) (and Barberis and Xiong (2008a)) who

11We assume that if Y can reach the endpoints of I then the boundaries are absorbing.
12We assume µ(.) and σ(.) are sufficiently regular so there exists a weak solution to the SDE and for the scale

function s(.) to exist, see Revuz and Yor (1999).
13The scale function is determined up to linear multiplication (ie. if s is a scale function then so is A + Bs for

constants A and B). We choose a convenient version.
14In fact, we can easily cover the case where Y is a Bessel process of dimension 2 − δ, δ > 0, Y hits zero with

probability one, and zero is an absorbing boundary. Then Y follows dY = dW − (δ−1)/2Y dt; X0 = x > 0 and the

scale function is given by s(y) = yδ. Hence results for this process are identical to those for exponential Brownian

motion with β replaced by δ. Since the process in natural scale is a CEV process, this means the results apply

also to a driftless CEV process.

7



again have zero interest rates. In contrast, in Barberis and Xiong (2008b), a positive discount

rate is important in giving the investor an incentive to realize gains today (and thus key in their

paper in leading to a strong disposition effect). We want to abstract from such an incentive and

concentrate on the implications of the presence of the S-shaped function and loss aversion.

The agent has n ≥ 1 units of claim on the asset Y , each individual unit has payoff h(Y ),

where h is a non-decreasing function. The simplest situation, and the one we focus on, is when

h(y) = y so the agent holds n units of the asset itself. This would be appropriate for the payout

from a project, or a sale of stock, and in the situation n = 1, a house sale. The agent can

liquidate or sell her position in the asset at any time of her choosing in the future. She is able

to liquidate the units of asset at different times, if she wishes, so the asset position is (finitely or

partially) divisible. Initially, we will concentrate on a special case whereby the agent is only able

to sell or liquidate her entire position - the position is indivisible - to facilitate comparison with

the existing literature and in particular, Kyle, Ou-Yang and Xiong (2006), who only consider

this case. We return to the extension to partial sales in Section 3.

The agent has prospect theory preferences denoted by the function U(z).15 We consider two

alternate specifications. The first specification is that of Tversky and Kahneman (1992) whereby

power functions are used to build the S-shape. Let

(1) U(z) =

{

zα1 z ≥ 0

−λ(−z)α2 z < 0

where α1, α2 ∈ (0, 1). Here, the parameter λ > 1 governs loss aversion and introduces an

asymmetry about the origin. Note also that this specification of prospect theory has locally

infinite risk aversion, U ′(0−) = U ′(0+) = ∞. Tversky and Kahneman (1992) find experimentally

values of α1 = α2 = 0.88, and λ = 2.25.

Our second specification, as used by Kyle, Ou-Yang and Xiong (2006) and Hens and Vlcek

(2005), amongst others, builds the S-shape from exponential functions. Let

(2) U(z) =

{

φ1(1 − e−γ1z) z ≥ 0

φ2(e
γ2z − 1) z < 0

where φ1, φ2, γ1, γ2 > 0. The assumption φ1γ1 < φ2γ2 corresponds to ensuring loss aversion,

U ′(0−) > U ′(0+) (where now both limits are finite) so the agent is more sensitive to losses than

gains around the reference point. Figure 1 displays both functions (1) and (2) for particular

parameter values.

In the situation where the agent chooses when to liquidate her entire position, it is equivalent

to consider a single unit of asset, so take n = 1, until Section 3. At the liquidation time τ of her

choosing, the agent receives the payoff h(Yτ ), and compares this to her reference level, denoted

15In Kahneman and Tversky (1979) and much of the prospect theory literature, the function U(z) is called the

value function. This conflicts with the standard useage in the stochastic control literature of the terminology value

function to refer to the expected payoff under optimal behavior, which we instead call the “value of the game”.

For this reason, we will refer to U as the S-shaped function or utility function, and avoid using the terminology

of value function altogether.
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Figure 1: The Tversky and Kahneman (1992) S-shaped function U(z)

given in (1) with loss aversion λ = 2.25 and α1 = α2 = 0.88 is given by the

solid line. The piecewise exponential S-shaped function U(z) given in (2)

with φ1 = 1, φ2 = 2.25, γ1 = γ2 = 2 is given by the dashed line.

by hR, where hR > 0. As is often the case in the literature, an appropriate interpretation of hR

is the break-even level, or equivalently, the amount (or price) the agent paid for the claim or

asset itself, and we will assume this is the case throughout. For example, in the case of a stock

or house, this is the price paid, and at the sale time, the agent compares the price received with

the price paid. Similarly, the agent would compare the initial outlay with the eventual proceeds

of a project.16 Thus, the agent’s objective is written as17

(3) V1(y) = sup
τ

E[U(h(Yτ ) − hR)|Y0 = y], y ∈ I

where U(.) is an increasing function.18 (Whilst we have the two specifications of prospect theory

preferences in (1) and (2) in mind, our approach works for general functions.) We will primarily

be interested in the situation where the agent has an asset to sell, so that h(Yτ ) = Yτ and in

this case we denote the corresponding reference level by hR = yR, assumed to be the price paid

for the asset, or break-even level.

Remark 2 Kyle, Ou-Yang and Xiong (2006) (also Barberis and Xiong (2008b)) include an

additional exogenous stopping time at which the project is liquidated automatically, which can

be interpreted in terms of exogenous liquidity needs. In fact, the inclusion of exogenous liquidity

shocks in their model gives an additional incentive for the agent to realize gains because of the

16Kyle, Ou-Yang and Xiong (2006) include accumulated costs Kt where dKt = cdt and compare the price

received upon liquidation to the accumulated costs. As all of their results hold for the case c = 0, we compare to

this case for simplicity. Alternatively, we might instead re-interpret our price Y to be the net profit of the project.
17The supremum is taken over the class of all {Ft}-stopping times.
18We concentrate in this paper on the impact of the S-shaped preferences and loss aversion on liquidation

decisions. In common with most other theoretical models (one exception is the portfolio choice model of Jin and

Zhou (2008)) we do not incorporate the probability weighting aspect of prospect theory. This feature over-weights

low probabilities of large gains, which has most effect when assets have highly skewed returns (see Barberis and

Huang (2008)).
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risk she may be forced to realize losses if an exogenous default occurs. In a similar vein, Kaustia

(2008) remarks that “an exogenous factor such as a liquidity shock is needed to induce a sale.

A changing perception over risk as a function of return is generally not sufficient”. We do not

include an exogenous liquidity shock because we want to demonstrate that in our continuous-

time optimal stopping model an exogenous factor is not necessary to induce sales, and we do not

want to skew the conclusions of our model by building in an extra incentive to liquidate. Finally,

although the shocks complicate the calculations in Kyle, Ou-Yang and Xiong (2006), they are not

needed as their (and our) problem has a well-defined solution for meaningful ranges of parameter

values. Our comparison to their results takes their arrival rate λ = 0.

Remark 3 It is worth clarifying here some similarities and differences with regard to the ‘re-

alization utility’ set-up of Barberis and Xiong (2008b). Barberis and Xiong (2008b) consider a

model where their investor receives “a jolt of utility right then, at the moment of sale, and where

the utility depends on the size of the gain or loss realized”. Note that in the case of an indivisible

liquidation problem (Kyle, Ou-Yang and Xiong (2006) and our problem in (3)), these formula-

tions collapse to become the same (modulo other significant differences in choice of functions,

discounting, etc). In fact, realizing the utility (of wealth) at the time of sale is quite natural

in optimal sale or exercise problems (see Henderson (2007), Carpenter, Stanton and Wallace

(2008), amongst others). The novel feature of Barberis and Xiong’s model is the combination of

the realization utility and that gains and losses are measured relative to a reference level - and

when this becomes substantially different to Kyle, Ou-Yang and Xiong (2006) and (3), is in the

extension to many sales. We will comment further in Section 3. Barberis and Xiong (2008b) are

emphasizing realization utility, together with linear (or piecewise linear) utility and a positive

discount rate can give results consistent with various observed behavior in financial markets,

including a strong version of the disposition effect.

We now develop the general form of the solution to the agent’s problem in (3), which will

enable us to then consider the particular examples of price processes and functions U(.) we have

introduced above. Given the time-homogeneity of the problem, the structure of the solution

must be to stop when the price process Y exits an interval. (A classic application in finance

where this occurs is the exercise of a perpetual call or put option (Samuelson (1965)) and

applied in the real options literature, eg. McDonald and Siegel (1986) and Dixit and Pindyck

(1994).) Thus the approach is to consider stopping times of this form (the proof will show that

this indeed gives the optimal solution) and thus choose the “best” interval. Recall the notation

τY(a,b) = inf{u : Yu /∈ (a, b)}.

The key to simplifying the problem is to transform into natural scale via Θt = s(Yt). Let

Θ0 = θ0 = s(y0). Recall from Definition 1 that the scale function s(.) is such that the transformed

price Θt is a (local) martingale. This will allow us to transform the original stopping problem

into one with a different reward function but for a martingale process. This problem is easier

and more transparent to solve. Once we solve this problem, we can then transform the solution

back to the original co-ordinates.
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Note first that we can map exit times of price Y from an interval to exit times of Θ from a

transformed interval, ie. τY(a,b) := inf{u : Yu /∈ (a, b)} ≡ inf{u : Θu /∈ (s(a), s(b))} = inf{u : Θu /∈

(φ,ψ)} := τΘ
(φ,ψ), where we define the transformed interval by φ = s(a), ψ = s(b). Define the

function f(.) via f(y) = U(h(y) − hR). where U(.) is an increasing function. (The function f(.)

is introduced to simplify future notation and to emphasize the dependence of the reward on the

price Y ). Note since U and h are increasing, f is also increasing in y. Now define the function

g1(.) by

(4) g1(θ) = f(s−1(θ)) := U(h(s−1(θ)) − hR)

and note g1 is necessarily increasing in θ. This function represents the value of the game if the

unit of claim is sold immediately, expressed in terms of the transformed price Θ.

Then, for any fixed interval (a, b) ∈ I such that (s(a), s(b)) is a bounded interval,

E[U(h(YτY
(a,b)

) − hR)|Y0 = y] = E[f(YτY
(a,b)

)|Y0 = y] = E[f(s−1(ΘτΘ
(φ,ψ)

))|Θ0 = θ]

= E[g1(ΘτΘ
(φ,ψ)

)|Θ0 = θ] = g1(φ)
ψ − θ

ψ − φ
+ g1(ψ)

θ − φ

ψ − φ

where we use the probabilities of the (true) martingale Θt hitting each end of the interval.

The final step is to choose the “best” interval (φ,ψ):

(5) sup
φ<θ<ψ

{

g1(φ)
ψ − θ

ψ − φ
+ g1(ψ)

θ − φ

ψ − φ

}

= ḡ1(θ)

to which the solution is given by taking the smallest concave majorant ḡ1(θ) of the function

g1(θ).

Figure 2 gives a stylized representation of g1(θ) as a function of θ. We can use the graph to

explain intuitively that the solution to the “best” interval problem above is indeed the smallest

concave majorant. We want to choose endpoints φ,ψ to maximize the expression in brackets

in (5). If we start at the point θA on the graph, then the expression in the curly brackets in

(5) is maximized by taking φ = ψ = θA (all other endpoints give values beneath g1(θA)). This

corresponds to immediate stopping (recall we stop when we exit the interval (φ,ψ)). However, if

we start at the point θB , the quantity in brackets is maximized if we take φ = φB and ψ = ψB .

In fact, for any starting point in the interval (φB , ψB), the endpoints φB, ψB are best. Thus, for

any θ ∈ (φB , ψB), the solution is to stop when the transformed price Θt reaches either endpoint

of the interval. Outside the interval (φB , ψB), the solution is to stop immediately. The solution

is to take the smallest concave majorant, which is equal to the function g1 itself for θ outside

the interval (φB , ψB) and the dashed straight line joining the endpoints for values of θ inside

the interval. This intuition lies behind the following result, the proof of which is given in an

Appendix.

Proposition 4 On the interval (s(aI), s(bI)), let ḡ1(θ) be the smallest concave majorant of

g1(θ) := f(s−1(θ)).

11



g1(θ)

θ

θA θBφB ψB

Figure 2: Stylized representation of the function g1(θ) as a function of

transformed price θ, where θ = s(y). The function g1(θ) represents the

value of the game to the agent if she sells immediately. The smallest concave

majorant ḡ1(θ) is formed by taking the straight dashed line for θ ∈ (φB , ψB)

and the function g1 itself for θ ≤ φB and θ ≥ ψB.

(i) Suppose s(aI) = −∞. Then V1(y) = f(bI) = U(h(bI) − hR); y ∈ (aI , bI).

(ii) Suppose s(aI) > −∞. Then

V1(y) = ḡ1(s(y)); y ∈ (aI , bI)

This approach allows us to study a variety of examples for the price process and the form of

the S-shaped utility function. We see that the solution will depend purely on the shape of the

function g1 (which determines its smallest concave majorant) which in turn depends only on the

scale function of the diffusion (ie. the choice of price dynamics) and the form of U itself.

2 Two Alternative Specifications of Prospect Theory

2.1 Piecewise Exponential functions

In this section we develop results for the model where the asset price follows Brownian motion,

prospect preferences are constructed via piecewise exponentials, and the agent is choosing when

to sell an indivisible asset. This is a special case of the model of Kyle, Ou-Yang and Xiong

(2006), and we will compare our results to theirs. Depending on the parameter values describing

the asset price, and the preferences, we find four distinct possible liquidation behaviors.

Proposition 5 The solution to problem (3) with h(y) = y, when the asset price Y follows

Brownian motion and U(z) is given by piecewise exponential S-shape in (2) consists of four

cases, depending on relative parameter values:

(I): If µ ≥ 0, the agent waits indefinitely (see Figure 3(a) and 3(b)).
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(II) If µ < 0 and µ/σ2 > −1
2γ2 and |µ|/σ2 < 1

2
φ1

φ2
γ1, the agent stops at and above a level

ȳ
(1)
u > yR which is itself greater than the break-even point. That is, the agent waits until the

price is higher than the break-even level before selling, and sells at a gain. The agent waits below

the level ȳ
(1)
u (see Figure 3(c)). The level ȳ

(1)
u is given by

(6) ȳ(1)
u = yR −

1

γ1
ln

((

2µ

2µ− γ1σ2

)(

φ1 + φ2

φ1

))

(III) If µ < 0 and µ/σ2 > −1
2γ2 and |µ|/σ2 ≥ 1

2
φ1

φ2
γ1, the agent stops everywhere at and above

the break-even point yR, but waits below the break-even point. Thus if the agent sells, she exactly

breaks even (see Figure 3(d)).

(IV) If µ/σ2 ≤ −1
2γ2, the agent sells immediately at all price levels (see Figure 3(e)).

As we would anticipate, the factors influencing the optimal behavior are the Sharpe ratio of

the asset (or more precisely, the return-for-risk-per-unit-variance) and the degree of loss aversion.

Cases (I) and (IV) are the more extreme situations, as the expected return on the asset is either

extremely high or very poor. If it is extremely high, it is optimal to continue indefinitely and

never liquidate the position, regardless of where the price is relative to the break-even point,

and regardless of loss aversion, see Figures 3(a) and 3(b). Conversely, if the asset’s Sharpe ratio

is sufficiently poor, it is optimal to liquidate immediately, again, regardless of where the price

is in relation to the break-even point, and regardless of the degree of loss aversion, see Figure

3(e). Note in this case, given our interpretation of the reference level as the break-even level or

price paid, liquidation will only actually occur at the break-even level. (If the current price is

different to the break-even level, the agent would liquidate. However, the agent would not be in

this position, because she would have liquidated immediately on receipt of the asset, when the

price was yR. Effectively, she never holds the asset.).

In cases (II) and (III) we compare the Sharpe ratio with the agent’s loss aversion. In case

(III), the agent will wait when the price is below the break-even level and will liquidate at

the break-even level itself. This is displayed in Figure 3(d). In this situation, the loss aversion

coupled with the weak Sharpe ratio causes the agent to be unwilling to wait for gains beyond

just breaking even. (Note again given our interpretation of the reference level as the break-even

level or price paid, the agent liquidates immediately at break-even, and thus, again, effectively

does not hold the asset ex-ante.)

The most interesting situation is case (II), where the Sharpe ratio is better than in (III). The

agent is willing to wait beyond the break-even point and will not liquidate until the position is

in gains (see Figure 3(c)). We can also characterize the price at which the agent sells, given in

(6).

We compare our results to those of Kyle, Ou-Yang and Xiong (2006).19 . We see that Kyle,

Ou-Yang and Xiong (2006) obtain our cases (I), (III) and (IV), but do not obtain a situation

19Recall, our models are the same apart from the exogenous stopping and cost parameters, both of which we

set to zero for comparison.

13



−0.05 −0.045 −0.04 −0.035 −0.03 −0.025 −0.02 −0.015 −0.01 −0.005 0
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

φ
1

θs(yR)

g
1
(θ

)

(a) (I). µ = 0.3, s(yR) = −0.0235. Wait at all

values of θ; equivalently at all prices y.
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(b) (I). µ = 0.1, s(yR) = −0.2865. Wait at all

values of θ; equivalently at all prices y.
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(c) (II). µ = −0.03, s(yR) = 1.455. Stop for

θ > 1.54 (where s(yR) < 1.54); or equivalently,

for prices y > s−1(1.54) = 1.15 > yR = 1.
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(d) (III). µ = −0.06, s(yR) = 2.12. Stop for

θ ≥ s(yR), or equivalently, for prices y ≥ yR =

1.
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(e) (IV). µ = −0.1, s(yR) = 3.49. Stop im-

mediately for all θ and equivalently, all y.

Figure 3: Optimal Liquidation of an Indivisible Asset under Exponential S-shaped utility and Brownian

motion price process. Each panel plots the function g1(θ) against the transformed price θ. The transformed

reference level s(yR) is given in each panel and is marked with a dotted vertical line. In panels (c), (d)

and (e), the smallest concave majorant ḡ1(θ) is plotted. In (d), the liquidation threshold is marked by a

dotted line to the right of s(yR). (However, in (e), ḡ1(θ) = g1(θ) and in (a) and (b), ḡ1(θ) = φ1.) Recall,

the agent sells for transformed prices θ such that ḡ1(θ) = g1(θ) and waits for θ such that ḡ1(θ) > g1(θ).

Common parameters are: σ = 0.4, φ1 = 0.2, φ2 = 1, γ1 = 3, γ2 = 1 and reference level, yR = 1.
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analogous to our case (II).20 In their paper, they do not have a situation where the agent

liquidates at a level higher than the break-even point (at a gain). Closer examination of their

model reveals that they have ruled out this case by their assumptions on parameter values,

perhaps because it assisted in the ease of their calculations. Since our method is more tractable,

we do not need to rely on any additional assumptions and can obtain all cases.

We comment now on the applicability of this parameterization of prospect theory to the

disposition effect. In cases (II), (III) and (IV), the asset has negative expected return (since we

have zero interest rates, this can be interpreted as being a worse expected performance than

a riskless investment). Case (II) is the “best” of these, where the expected return is negative,

but smallest in magnitude. Despite the relatively poor expected return, the agent in case (II)

would want to enter the game in the first place, and waits to liquidate at a gain. The fact that

the agent would buy or take on this position ex-ante can be seen by looking at the value of the

game at the reference level (as we assume the reference level is the break-even or the price paid)

V1(yR) = ḡ1(s(yR)) which is positive.21 Thus the agent with exponential S-shaped preferences

would want to have the opportunity to gamble on what appears to be a relatively poor asset,

and in doing so, will wait to liquidate at a gain.

Although we have found that the exponential S-shaped preferences can lead to situations

where the agent will liquidate at a gain relative to break-even, the agent never liquidates at a

loss. Given the disposition effect says gains are realized more often than losses, this model only

captures this in an extreme sense where losses are never actually taken. The piecewise exponential

specification of prospect theory shares this shortcoming of a lack of (voluntary) loss realization

with other theoretical models including Barberis and Xiong (2008b) and Kaustia (2008). These

papers also describe models whereby the agents do not liquidate at a loss relative to break-even,

and as Barberis and Xiong (2008b) acknowledge, are only consistent with a “strong” disposition

effect.

Rather, in this specification, if the asset is very poor (cases (III) and (IV)), the agent sells

at the break-even level, and hence, effectively, did not want to hold the asset in the first place.

(Related remarks have been made albeit in very different styles of models (perhaps with different

specifications of prospect theory) concerning whether the agent would hold a poor asset ex-ante

(see for instance, Hens and Vlcek (2005), Barberis and Xiong (2008a), and Kaustia (2008)).

Recall also the example of Shefrin and Statman (1985), which didn’t consider the possibility

that the asset would not be held in the first place and instead says in scenarios with poor odds,

20More specifically, cases (I) and (IV) correspond to Kyle, Ou-Yang and Xiong (2006)’s cases I, II and IV.

Note that our case (I)(a) splits into two cases when exogenous stopping is introduced, giving Kyle, Ou-Yang

and Xiong (2006) cases I and II. This occurs because waiting indefinitely is not possible once there is exogenous

stopping. Our case (I)(b) is absorbed into other cases in their model with exogenous stopping, again, because

waiting indefinitely is not possible. Finally, and most importantly, are our cases (II) and (III). Our case (III)

corresponds to their case III. However, they rule out our case (II) (where µ/σ2 < 1
2
γ1) by their assumption in

equation (22). This says that for parameters µ/σ2 = 1
2
γ1, (and thus for situations − 1

2
γ2 < µ/σ2 < 1

2
γ1 where the

asset is less favorable) stopping immediately at the break-even level is preferred to never liquidating voluntarily.
21On Figure 3(c), s(yR) = 1.455, and in original co-ordinates, yR = 1. At s(yR), g1(s(yR)) = 0 but ḡ1(s(yR)) > 0

since for transformed prices θ in the waiting region, ḡ1(θ) > g1(θ).
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the agent will “give-up” at a loss. Here, under exponential S-shaped functions, we find two

possible behaviors if an asset has a poor Sharpe ratio. Either it is very poor, and the agent

doesn’t hold it ex-ante, or, more surprisingly, it is poor, but the agent does hold it ex-ante and

gambles on liquidating at a gain versus losing everything.

We will return to this parameterization in Section 3.1 where we extend to consider the partial

liquidation problem. It will be of interest to consider how these results are altered by the ability

to partially liquidate.

2.2 Piecewise Power functions

In this section, we consider the asset sale problem with exponential Brownian motion asset

prices, and power S-shaped preferences, given by (1), and suggested by Tversky and Kahneman

(1992).

Proposition 6 The solution to problem (3) with h(y) = y, when the asset price Y follows

Exponential Brownian motion and U(z) is given by piecewise power S-shape in (1) consists of

three cases, depending on relative parameter values. Recall the notation β = 1 − 2µ
σ2 , so β is

related to the assets’ Sharpe ratio (or risk-reward trade-off).

(I): If β ≤ 0; or if 0 < β < α1 < 1, the agent waits indefinitely and never liquidates (see Figure

4(a) and 4(b)).

(II) If 0 < α1 < β ≤ 1 or α1 = β < 1, the agent stops at a level higher than the break-even

point. That is, the agent waits beyond the break-even point before liquidating. Thus, if the agent

liquidates, she does so at a gain (see Figure 4(c)).

(III) If β > 1, the agent stops when the price reaches either of two levels. These two levels are

on either side of the break-even point. Hence the agent can liquidate either at a gain or at a loss

(see Figure 4(d)).

When α2 = α1, we can give an explicit representation of the selling thresholds in cases (II)

and (III) of Proposition 6 and thus determine their behavior with respect to underlying variables.

Proposition 7 For β > 1 (case (III) of Proposition 6), there are two selling thresholds ȳ
(1)
u >

ȳ
(1)
l either side of the break-even point, hence with ȳ

(1)
u > yR and ȳ

(1)
l < yR. Under the additional

assumption that α2 = α1, the thresholds can be rewritten as:

ȳ
(1)
u = c̄uyR and ȳ

(1)
l = c̄lyR for constants c̄l < c̄u with c̄l < 1, c̄u > 1, where the constants solve

the pair of equations:

α1

β
(c̄u − 1)α1−1c̄1−βu =

(c̄u − 1)α1 + λ(1 − c̄l)
α1

c̄βu − c̄βl
(7)

λα1

β
(1 − c̄l)

α1−1c̄1−βl =
(c̄u − 1)α1 + λ(1 − c̄l)

α1

c̄βu − c̄βl
.(8)

For 0 < α1 < β ≤ 1 (or α1 = β < 1) (case (II) of Proposition 6), there is a single selling

threshold above the break-even point, hence ȳ
(1)
u > yR. If α2 = α1, then ȳ

(1)
u = c̄uyR where c̄u

solves (7) with c̄l = 0.
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(a) (I). β = −0.5, α1 = 0.9, s(yR) = −1. Wait

for all values of θ and equivalently, for all prices

y.
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(b) (I). β = 0.5, α1 = 0.9, s(yR) = 1. Waits for

all values of θ and equivalently, for all prices

y.
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(c) (II). β = 0.75, α1 = 0.5, s(yR) = 1. Stops

for θ ≥ θ̄
(1)
u = 1.06 or equivalently for y ≥=

ȳ
(1)
u = 1.08.
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(d) (III). β = 1.5, α1 = 0.7, s(yR) = 1. Waits

for θ ∈ (θ̄
(1)
l = 0.1723, θ̄

(1)
u = 1.0105) and stops

otherwise. Equivalently, waits for y ∈ (ȳ
(1)
l =

0.31, ȳ
(1)
u = 1.007).

Figure 4: Optimal Liquidation of an Indivisible Asset under Power S-shaped utility and Exponential

Brownian motion price process. Each panel plots the function g1(θ) against the scaled price θ. The

transformed reference level s(yR) is given in each panel and is marked with a dotted vertical line. In

panels (c) and (d), the smallest concave majorant ḡ1(θ) is plotted and the liquidation threshold(s) are

marked by dotted lines. Recall, the agent sells for θ such that ḡ1(θ) = g1(θ). Common parameters are:

λ = 2.2, α2 = α1 and reference level yR = 1.
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The various optimal behaviors depend on the performance of the asset price itself through the

Sharpe ratio (capturing the return-for-risk trade-off) and the coefficient of risk aversion 1 − α1

in the concave region above zero. In case (I), the asset has a very high Sharpe ratio (in fact the

logarithm of asset price is positive in expectation) and regardless of the agent’s risk preference

level, it is always optimal to wait for a higher price level. This case is displayed in Figure 4(a).

Waiting indefinitely is also optimal when the Sharpe ratio is good (the asset price has positive

expected return) and the coefficient of risk aversion (over gains) is relatively low so that the

agent is willing to wait to take advantage of the expected increased price. See Figure 4(b). In

case (II), the risk aversion coefficient is high which induces the agent to sell at a gain, at some

threshold level above the break-even point. Although the Sharpe ratio is good (positive expected

return), the agent’s risk aversion (over gains) acts as a pull against waiting for a higher price,

giving a trade-off. The example shown in Figure 4(c) takes β = 0.75 (equivalently, µ = σ2/8)

and α1 = 0.5 since this gives a visible threshold on the figure. If we were to increase α1, this

threshold would move closer to the break-even point, or equivalently, if a gain were realized, it

would be smaller. We could also increase β (making the asset a worse proposition) so that we

could use α1 = 0.88 as found by Tversky and Kahneman (1992).

In case (III), the Sharpe ratio is very poor (in fact the expected return is negative, relative to

a zero riskless rate) and the agent has a relatively high risk aversion (over gains). As in case (II),

the agent will liquidate at a threshold price above the break-even point, but additionally here,

the agent liquidates at a loss, at a threshold below the break-even point.22 Liquidation occurs

at a loss in this situation because the price is transient to zero almost surely, so, if the price goes

down sufficiently from the break-even level, the agent basically “gives up” and liquidates at a

loss at a low threshold, rather than waiting for even larger losses.

Some of the qualitative behavior we describe here is quite different to those found by Kyle,

Ou-Yang and Xiong (2006) and our re-working of their model with piecewise exponentials in

the previous section. This demonstrates the behavior is not robust to changes in specification of

the S-shape function and asset price process, and in fact, the properties of the function at the

reference level play an important role.23

The most important difference we find is that under the Kahneman and Tversky (1992) spec-

ification of prospect theory preferences, the agent will liquidate at a loss in some circumstances.

As we commented earlier, this has implications for relating prospect theory to the disposition

effect, and is in distinct contrast to the findings of other theoretical models of Barberis and

Xiong (2008b) and Kaustia (2008). This is also able to capture the intuition of Shefrin and

22It is worth observing that the distinction between cases (II) and (III) is solely the performance of the asset

itself, and risk aversion parameters do not play a role in whether or not the agent liquidates at a level below the

break-even point. This is because once the asset price is very low, the associated changes in wealth (losses relative

to break-even) are small, and essentially, over such small changes, utility is approximately linear, and thus the

parameters of the S-shaped function do not arise in distinguishing between the cases.
23However, we do not present the other combinations of exponential Brownian motion and exponential S-shaped

utility, and Brownian motion and power S-shaped utility because our analysis of these show there there are no

additional cases which are qualitatively different to those we have presented in our two examples.
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Statman (1985) - the agent may “give-up” and accept a loss if the odds are bad. In Figure 4(d),

this loss level is at ȳ
(1)
l = 0.31 relative to a break-even level of yR = 1.

Importantly, under all parameter choices under power S-shaped preferences, the agent would

have chosen to hold the asset ex-ante. This is true even in case (III), where the expected return is

negative (worse than the riskless asset).24 Even in this case, the agent is willing to enter the game

and gamble on the chance of selling at a gain. In Figure 4(d), the agent would wait until the price

either reached the upper threshold of ȳ
(1)
u =1.007 (a very small gain), or the lower threshold of

ȳ
(1)
l = 0.31 (a much larger loss). As we commented earlier, the intuition of Shefrin and Statman

(1985) does not take into account whether the agent would hold the asset ex-ante, and indeed,

many papers have remarked that this consideration would rule out scenarios described in the

introduction, where the agent “gives-up” and accepts a loss.

Under the Kahneman and Tversky (1979,1992) power specification, the agent never stops

precisely at the break-even point and as a consequence, there is no situation where the agent

liquidates immediately. This is due to the locally infinite risk aversion of the power specification

at the reference level. However, as we have seen, the solution in Kyle, Ou-Yang and Xiong (2006)

under exponential functions is heavily focussed on liquidation at the break-even level, and under

these functions, there is a finite derivative at the kink.

The model of Kaustia (2008) is essentially a one-period story of our continuous-time model

under piecewise power preferences and exponential Brownian motion price dynamics. They inves-

tigate the investor’s behavior numerically for a limited range of parameters, excluding situations

which would lead to liquidating at a loss, as in case (III). Whilst their analysis shows that for

many parameter values, the agent would have a preference for waiting (in their model, waiting

until the end of the period), we show under what conditions on parameters the agent will wait,

sell at a gain, or sell at a loss.

We already explained that the very existence of a case where the agent sells at a loss relative to

break-even distinguishes this model from others attempting to relate to the observed disposition

effect. However, of interest is the relative likelihood of selling at a gain versus at a loss. The

disposition effect says that agents are more likely to sell at a gain than at a loss. To evaluate

this likelihood in our model is straightforward. Suppose the agent has paid an amount yR for

the asset and the current price is y = yR. Since we scaled the asset price so that the transformed

price Θt is a martingale, the probability of reaching the thresholds is obtained purely from the

relative distance to the threshold. Observe from Figure 4(d) that the upper threshold (above

break-even) is much closer to the break-even level than the lower threshold (below break-even).

This means there is a high probability the agent sells at a gain rather than a loss, consistent

with the disposition effect. We can evaluate this probability in general. In case (III) where there

24As in the exponential specification, this can be seen by noting the value of the game at the reference level is

positive.
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Figure 5: Probability of liquidating at a gain in Case (III), as a function of β and α1, calculated

from (9). The reference level is yR = 1 and the current price is Y0 = y = yR = 1.

are two selling thresholds, the probability the agent sells at a gain is given by 25

(9)
θ − θ∗l
θ∗u − θ∗l

=
1 − (c̄l)

β

c̄βu − c̄βl

Figure 5 displays this probability as a function of α1 and β, and for the case of loss aversion

versus no loss aversion. Observe that as loss aversion λ increases, the probability that the agent

liquidates at a gain increases. For loss aversion of λ = 2.2, the probabilities are very high across

a range of risk aversion levels (1 − α1), and the parameter β capturing the Sharpe ratio of the

asset, see Figure 5(a). Indeed, for the Kahneman and Tversky (1979,1992) value of α1 = 0.88,

we see the probability of selling at a gain is very close to one. Although the probability of

liquidating at a gain is lower when there is no loss aversion λ = 1, it is still relatively high, as

shown in Figure 5(b). These observations seem consistent with the disposition effect. Across a

wide range of parameters, there is a high probability of liquidation at a gain, and a low, but

non-zero probability of liquidating at a loss. These gains tend to be quite small, and the losses,

quite large.

3 Partial Liquidation

We want to extend our study to treat the corresponding partial liquidation problem. Divisibility

and partial liquidation become particularly important in applications to stock portfolios, exec-

utive stock options, and in some real options applications where managerial projects may also

be divisible. First we extend the general optimal stopping model and then we use this to study

the two examples of exponential and power S-shaped preferences.

25In case (II) where there is only a single liquidation threshold (in gains), we can still compare the relative

likelihood of selling at a gain relative to at a loss, albeit now the agent does not liquidate at a loss, but waits till

the price goes to zero. In this case, the above probability simplifies (as c̄l = 0) to give the expression c̄−βu .
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The agent holds n ≥ 1 units of claim with payoff h(Y ), and can liquidate units at possibly

different times of her choosing, τn ≤ ... ≤ τ1. (Our notation is such that the nth remaining

unit is liquidated at time τn so the final unit is liquidated at τ1). In this section, we need

additional notation to keep track of the agent’s wealth (changing due to sales over time) which

was unnecessary in the indivisible model. Denote the initial wealth by x. The agent’s objective

is written as

(10) Vn(y, x) = sup
τn≤...≤τ1

E

[

U

(

x+

n
∑

i=1

h(Yτ i) − nhR

)
∣

∣

∣

∣

∣

Y0 = y

]

The agent compares the total payoff to the total reference level for n units, given by nhR. The

function Vn(y, x) represents the value of the game for an agent with n units of claim, initial

wealth x, initial asset price y and n reference levels, one for each unit of claim. As in earlier

sections, we will be primarily interested in situations where the agent has assets to sell and thus

typically h(y) = y, and denote the reference level by hR = yR. For example, the agent has paid

an amount yR for each of two identical apartments and can choose when to sell each. If she sells

one apartment for amount Yτ1 and the other for Yτ2, she then compares the total (including her

initial fortune x) to the total reference level 2yR and applies prospect preferences.

In the earlier Remark 3 we mentioned the realization utility formulation of Barberis and Xiong

(2008b). As we commented, their formulation becomes dramatically different to other models in

the context of many sales. Their formulation instead sums up various individual “jolts” of utility,

whilst our (more standard) formulation in (10) takes the utility of the sum of the relative gains

and losses. As we will see, our specification leads to the agent selling on an “all-or-nothing” basis.

Whilst we might anticipate the realization utility formulation of Barberis and Xiong (2008b)

to lead to partial sales, in fact, this is not the case and their model is separable over different

stocks, or equivalently, over different units of the same stock.

Using conditioning, the value of the game for the agent with n ≥ 1 units remaining can be

re-expressed as

Vn(y, x) = sup
τn

E[Vn−1(Yτn , x+ h(Yτn) − hR)|Y0 = y]

where define V0(y, x) = U(x). As is usual in dynamic programming, this enables us to build the

solution backwards, starting with the n = 1 solution. Note that taking n = 1 and x = 0 in the

above will recover the problem in (3) hence V1(y, 0) ≡ V1(y).

We will use the same transformation of the price Y to the martingale Θ via the scale function,

Θt = s(Yt), with Θ0 = θ0 = s(y0). Define gn(θ, x) to be the value of the game with n units

remaining, initial wealth x and plan to sell one unit immediately. Then

gn(θ, x) = Vn−1(s
−1(θ), x+ h(s−1(θ)) − hR)

Assuming (s(a), s(b)) is a bounded interval, we have

Vn(y, x) = sup
τn

E[Vn−1(Yτn , x+ h(Yτn) − hR)] = sup
τn

E[gn(Θτn , x)]

= sup
φ<θ<ψ

{

gn(φ, x)
ψ − θ

ψ − φ
+ gn(ψ, x)

θ − φ

ψ − φ

}

= ḡn(θ, x)
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where ḡn(θ, x) is the smallest concave majorant of gn(θ, x). Hence

gn(θ, x) = ḡn−1(θ, x+ h(s−1(θ)) − hR); n ≥ 1

which gives an algorithm for obtaining the value of the game for n units from the solution (ie. the

smallest concave majorant) of the game with n − 1 units. This gives the following proposition,

the proof of which follows similarly to the n = 1 case.

Proposition 8 On the interval (s(aI), s(bI)), let ḡn(θ, x) be the smallest concave majorant of

gn(θ, x) := Vn−1(s
−1(θ), x+ h(s−1(θ)) − hR).

(i) Suppose s(aI) = −∞. Then Vn(y, x) = U(x+ nh(bI) − nhR); y ∈ (aI , bI).

(ii) Suppose s(aI) > −∞. Then

Vn(y, x) = ḡn(s(y), x); y ∈ (aI , bI)

We can use this result to extend the two models in earlier sections to study the partial

liquidation problem. Again, we will see that the different specifications of prospect theory lead

to qualitatively different behavior. In each model we consider n = 2 units of asset. This will

enable us to demonstrate the main findings whilst keeping the results fairly tractable.

3.1 Piecewise Exponential Functions

In this section, we extend the indivisible model of Section 2.1 (and Kyle, Ou-Yang and Xiong

(2006)) to partial liquidation.

Proposition 9 The solution to problem (10) with two units of asset when the asset price Y

follows Brownian motion and U(z) is given by piecewise exponential S-shape in (2) consists of

four cases, depending on relative parameter values:

(I): If µ ≥ 0, the agent waits indefinitely.

(II)/(III): If µ < 0 and µ/σ2 > −1
2γ2, the agent sells both units at and above a level ȳ

(2)
u which

is itself greater than the break-even point, yR. That is, the agent waits until the price is higher

than the break-even level before selling, and sells both units at a gain. The agent waits below the

threshold ȳ
(2)
u (see Figures 6(a) and 6(b)). The threshold level ȳ

(2)
u is given by

(11) ȳ(2)
u =

1

2
(2yR − x) −

1

2γ1
ln

((

2µ

2µ− 2γ1σ2

)(

φ1 + φ2

φ1

))

(IV) If µ/σ2 ≤ −1
2γ2, the agent sells immediately at all price levels.

As we would expect, as in the indivisible model, there are no situations where the agent

liquidates at a loss relative to break-even. However, we immediately notice some major differences

compared with those of the indivisible setting. One change is that parameters leading to very

different behavior in the indivisible model (cases (II) and (III) of Proposition 5) now both lead

to the same behavior (labeled case (II)/(III) above). Recall, in case (III) of Proposition 5, the
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(b) (III). µ = −0.06, σ = 0.4, θ̂
(2)
u = 2.117, θ̄

(2)
u =

2.23, s(yR − x) = 2.117 and ȳ
(2)
u = 1.067.

Figure 6: Optimal Liquidation of Two units of Asset under Exponential S-shaped utility and

Brownian motion price process. Each panel plots the function g2(θ, x) against the scaled price

θ; and its smallest concave majorant ḡ2(θ, x). The vertical dotted lines indicate the liquidation

threshold θ̄
(2)
u . (The vertical dashed lines represent θ̂

(2)
u at which the definition of g2 takes a

different algebraic form). The ordering of these points implies both units are liquidated at the

threshold θ̄
(2)
u and the agent waits below this threshold. Since s(yR) < θ̄

(2)
u , the agent sells both

units at a gain relative to break-even. The equivalent thresholds in terms of the price Y are

given as ȳ
(2)
u and should be compared with yR. Common parameters are: x = 0, φ1 = 0.2, φ2 =

1, γ1 = 3, γ2 = 1, and reference level (per unit) yR = 1.
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expected return was very poor and the agent liquidated at the break-even level, effectively, never

holding the asset ex-ante. We find in the two-unit case, under the same poor expected return, the

agent is willing to hold the position ex-ante, and will gamble on being able to liquidate (both)

at a gain. Thus, when the agent is faced with a larger risky stake (here, two units rather than

a single unit), she becomes willing to “gamble” over a wider range of (poor) expected returns.

Figure 6(b) takes parameters corresponding to case (III) (the same parameters as in Figure 3(d)

earlier) and shows the liquidation threshold ȳ
(2)
u = 1.067 above the break-even level of yR = 1.

In order to explain the finding that prospect theory is not invariant to a change of scale, we

consider an agent who is offered a one-off gamble and for whom the gamble is marginal. If the

agent has standard concave utility, then if she is offered two units of the gamble, she will not

play. However, if the agent has a convex utility, she will accept to play a gamble twice the size.

Since our agent has prospect theory preferences which are convex below the reference level and

concave above it, either of these conclusions may occur. However, since we find that the price at

which the agent sells is very close to the reference/break-even level, the majority of the region

of interest is where the function is convex.

Allowing for divisibility or multiple units has lead to the break-even level losing the important

role it played in the indivisible case. This is particularly important when we recall the emphasis

in Kyle, Ou-Yang and Xiong (2006) on liquidation occurring at the reference or break-even level.

We have shown that this feature of the indivisible model is not robust to the generalization to

divisible assets.

When parameters are slightly better, (corresponding to case (II) in the indivisible model),

qualitatively similar behavior occurs. The agent waits to liquidate (both) units at a gain. Figure

6(a) displays the liquidation threshold ȳ
(2)
u = 1.173 for parameters corresponding to case (II)

(again, the same as in Figure 3(c)).

The second significant finding is that although we allow the agent to partially liquidate, in

fact, the agent chooses to follow an “all-or-nothing” strategy. When the agent liquidates, she

always liquidates both units. We will return to discuss this observation further following the

results of the piecewise power function specification in the next section.

3.2 Piecewise Power functions

In this section we extend the indivisible liquidation model with power S-shaped functions pre-

sented in Section 2.2 to allow for divisible positions.

Proposition 10 The solution to problem (10) with two units of asset when the asset price Y

follows Exponential Brownian motion and U(z) is given by piecewise power S-shape in (1) with

α2 = α1, consists of three cases, depending on relative parameter values. Recall the notation

β = 1 − 2µ
σ2 .

Case (I): If β ≥ 0; or if 0 < β < α1 < 1, the agent waits indefinitely and never liquidates.

Case (II): If 0 < α1 < β ≤ 1 or α1 = β < 1, the agent waits in the region θ < θ̄
(2)
u and sells

both units of asset in the region θ > θ̄
(2)
u (see Figure 7(a) and 7(b)). There are no asset values
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for which the agent sells a single unit of asset.

Case (III): If β > 1, the agent sells both units of asset at either of two levels θ̄
(2)
l , θ̄

(2)
u on either

side of the break-even point (see Figure 7(c) and 7(d)). There are no asset values for which the

agent sells a single unit of asset.

In all parameter regimes, the agent would choose to hold the position and thus would enter

the game ex-ante. Figure 7 depicts the interesting cases described in the Proposition. Figure

7(a) and 7(b) take parameters corresponding to case (II) where there is no liquidation threshold

below the break-even level. Recall the Sharpe ratio is good for these parameters, and the agent

with a single unit of asset waited for a liquidation level above the break-even level (case (II)

of Proposition 6). With two units of asset, the agent will wait for a liquidation level θ̄
(2)
u above

break-even (marked by the dotted vertical line) but at this level, will sell both units of the asset.

That is, as we found in the piecewise exponential model of the previous section, the agent with

piecewise power preferences will never hold a single unit of the asset. We depict this in Figure

7(a) for the situation without loss aversion, and in Figure 7(b) for loss aversion λ = 2.2. The

liquidation threshold is ȳ
(2)
u = 1.32 in Figure 7(a) and ȳ

(2)
u = 1.08 in Figure 7(b), relative to

break-even yR = 1.

Figure 7(c) and 7(d) take parameters corresponding to case (III) where there are liquidation

levels both above and below the break-even level, and so the agent liquidates (both) units either

at a gain or at a loss. This is qualitatively similar to the behavior found in the indivisible model,

in the sense that there are a pair of thresholds above and beneath the break-even level. Recall,

in this scenario, the Sharpe ratio was poor, and the agent may “give-up” and sell at a loss.

Again, we show this in Figure 7(c) for the situation without loss aversion, and in Figure 7(d)

for loss aversion λ = 2.2. The liquidation thresholds are ȳ
(2)
l = 0.65, ȳ

(2)
u = 1.03 in Figure 7(c)

and ȳ
(2)
l = 0.31, ȳ

(2)
u = 1.007 in Figure 7(d), relative to break-even yR = 1.

We could analyze again the relative likelihood of selling at a gain (relative to a loss) in case

(III), however, we can see from Figures 7(c) and 7(d) that the upper theshold is much closer

to the break-even level (note s(yR) = 1) than the lower threshold. Similar arguments to earlier

give that this means there is a high probability that the agent liquidates at a (small) gain.

Given in situations with better Sharpe ratios (case (II)), the agent liquidates only at a gain, our

divisible liquidation model with power S-shaped preferences predicts that sales at gains will be

more likely than sales at losses, consistent again with the disposition effect. In fact, supportive

evidence of Odean (1998) shows that the disposition effect remains strong even when the sample

is limited to sales of investor’s entire holdings of stock.

We return now to the finding that under both specifications of prospect theory, conditional

on liquidating, an agent will choose to liquidate her entire position. This is in contrast to the

behavior usually found under standard concave preferences. In situations where the objective is

the expected utility of wealth with a standard concave utility function (and thus no reference

level), agents tend to liquidate their position gradually over time26 (in the context of executive

26In fact, we can use the same methods to study the problem with, for example, CRRA or CARA preferences.

For reasons of space, we do not report the results here.
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(a) (II). β = 0.75, α1 = 0.5, λ = 1, θ̂
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u = 1.1,
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(b) (II). β = 0.75, α1 = 0.5 < β, λ = 2.2, θ̂
(2)
u =

1.0302, θ̄
(2)
u = 1.06, s(yR) = 1 and ȳ

(2)
u = 1.08.

0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

θ

g
2
(θ

)

(c) (III). β = 1.5, α1 = 0.88, λ = 1, θ̂
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l =

0.6971, θ̂
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u = 1.0252, θ̄

(2)
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(d) (III). β = 1.5 , α1 = 0.7, λ = 2.2, θ̂
(2)
l =

0.3252, θ̂
(2)
u = 1.0052, θ̄

(2)
l = 0.17, θ̄

(2)
u = 1.01, and

s(yR) = 1. Also ȳ
(2)
l = 0.31, ȳ

(2)
u = 1.007

Figure 7: Optimal Liquidation of Two units of Asset under Power S-shaped utility and Ex-

ponential Brownian motion price process. Each panel plots the function g2(θ, x) against the

transformed price θ; and its smallest concave majorant ḡ2(θ, x). Consider panels (c) and (d).

The vertical dotted lines indicate the liquidation thresholds θ̄
(2)
l , θ̄

(2)
u . The vertical dashed lines

represent points θ̂
(2)
l , θ̂

(2)
u at which g2 takes a different algebraic form. The ordering of these

points implies both units are liquidated at the thresholds θ̄
(2)
l , θ̄

(2)
u , and the agent waits for price

levels within this band. Since θ̄
(2)
l < s(yR) < θ̄

(2)
u , the agent either sells both at a gain or at a

loss. In panels (a) and (b), the interpretation is similar, so the agent liquidates both units at

threshold θ̄
(2)
u and waits below this level. Since θ̄

(2)
u > s(yR), the agent sells both at a gain. The

equivalent thresholds in terms of the price Y are given as ȳ
(2)
l , ȳ

(2)
u and should be compared with

yR. Common parameters are: α2 = α1, x = 0, and reference level (per unit) yR = 1.
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stock options: Jain and Subramanian (2004), Grasselli and Henderson (2009), amongst others).

We can give a simple argument for partial liquidation in the situation of a concave utility

over wealth.27 Imagine an agent is holding two units of asset and is indifferent to retaining this

position, and liquidating both units of asset. Each unit of asset is worth random amount Y in

one-period. The agent has preferences described by the utility function U(x) and this will be

applied to total wealth. Indifference implies that EU(x) = EU(x+ 2Y ). Now consider whether

the agent would prefer to liquidate only one unit of risky asset. We see28

EU(x+ Y ) −
1

2
E[U(x) + U(x+ 2Y )]

≈ U(x) + U ′(x)EY +
1

2
U ′′(x)E(Y 2) −

1

2
U(x) −

1

2
[U(x) + 2U ′(x)EY + 2U ′′(x)E(Y 2)]

= −
1

2
U ′′(x)E(Y 2)

which says the agent prefers to sell a single unit if U ′′(x) < 0, ie. if the utility function is

everywhere concave. Conversely, if the utility function were everywhere convex, the agent would

not prefer to sell a single unit of asset. If we consider the S-shaped prospect preferences which are

convex below the reference level and concave above this level, then in principle, either behavior

in terms of selling the assets could occur. However, recall that in both models, the upper sale

threshold was very close to the break-even level (or even at the break-even in some cases) and

therefore very little of the region of interest falls into the concave part of the function. The

majority of the region of interest is where the function is convex, and hence, it is not surprising

that the agent behaves like she has convex utility.

This analysis implies that any situation where agent’s liquidate their entire position (a stock

holding, a managerial project) when they could have retained a stake is consistent with our

prospect theory model but inconsistent with equivalent models under standard concave utilities.

In particular, it is believable that when managers do abandon a losing project, they abandon

the whole project and do not merely scale it back.

4 Further Remarks and Conclusions

We have presented an optimal stopping framework which is used to analyze a liquidation problem

for an agent with prospect theory preferences. Our methodology enables us to highlight the

importance of differences in the piecewise exponential and piecewise power specifications of

prospect theory, in particular, the loss aversion at the reference level leads them to give very

different liquidation strategies. We show the agent will liquidate voluntarily at a loss under power

S-shaped functions but not under the piecewise exponentials of Kyle, Ou-Yang and Xiong (2006).

27Other alternative arguments specific to the utility function can be given. For eg. if U is DARA, the agent

would keep a constant proportion of wealth in the risky asset (Merton (1969)). As the asset price moves, the agent

adjusts his holdings in order to keep this proportion constant, and this involves selling when the asset becomes

more valuable.
28With ≈ denoting taking the first terms of an expansion with Y small.
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Indeed, the extant literature has not provided a model under which voluntary liquidation at a

loss occurs, and instead, often remarks that if the asset’s odds are poor, the agent would not

take the position ex-ante. The agent will be much more likely to liquidate at a small gain than

at a large loss, consistent with the disposition effect. This remains true in our model when we

extend to allow the agent to sell-off assets over time. Under this extension, common to both

specifications is the fact that the prospect theory agent prefers to take an “all-or-nothing” sales

strategy. This is in sharp contrast to the typical behavior of an agent with concave utility who

will liquidate a position gradually over time.

The main application of our model is to the disposition effect. Whilst there is much evidence

across markets and agents that gains are realized more readily than losses, there is less evidence

on whether this effect holds for agent’s sales of entire positions (for stocks, see Odean (1998)), as

predicted by our model. This points to a direction for future empirical research. We also make

a further remark concerning the applicability of our model(s) and others to explaining empiri-

cal findings linking historical price highs and high sales (or option exercise) volumes (Grinblatt

and Keloharju (2001), Heath, Huddart and Lang (1999)). Barberis and Xiong (2008b) observe

that this is consistent with their implementation of realization utility since agent’s sell at price

thresholds above their break-even points, and these sales occur the first time the price reaches

a new high level. Clearly, our model (and that of Kyle, Ou-Yang and Xiong (2006)) also ex-

plains the same phenomena, since in either specification of the S-shaped function, under certain

parameter values, the agent will sell at a threshold level above the break-even point. In fact,

our specification with piecewise power functions will additionally explain the high sales volumes

observed at historical price lows (observed by Grinblatt and Keloharju (2001) for households),

since the agent in this case also sells below the break-even level. This hints at the fact that

the ability of a model to explain sales at new historical highs (or lows) has little to do with

the realization utility formulation of Barberis and Xiong (2008b). Of course, the location of the

threshold above break-even is linked to the reference level of prospect theory. However, the main

driver of the all of these models ability to explain high volume at new price maximia is simply

their time-homogeneous structure.29

Our current model treats the liquidation of a divisible position of identical assets. It would

be interesting to extend to a portfolio of different assets or claims on different assets. This would

involve questions of how agents treat different assets or portfolios in terms of the narrow framing

and more generally, mental accounting (Thaler (1980), Tversky and Kahneman (1981)). Another

potentially fruitful line of future research beyond the scope of the current paper would be to

consider the probability weighting aspect of prospect theory.

29As such, features such as a fixed time horizon, or time-inhomogeneous price process would destroy a model’s

ability to explain activity at new highs or lows.
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6 Appendix

Proofs:

Proof of Proposition 4:

Although this follows from optimal stopping theory (see Oksendal (2005), and specifically Dynkin

(1965), Dynkin and Yushkevich (1969) and more recently, Dayanik and Karatzas (2003)) it is

straightforward to prove the result directly in our problem.

(i) Trivially V1(y) ≤ f(bI). Let bn ↑ bI and let τn = τY(aI ,bn). Then the local martingale Θ always

leaves the interval (s(aI), s(bI)) = (−∞, s(bI)) on the right, and V1(y) ≥ f(bn) ↑ f(bI).

(ii) Let g̃1 be any increasing, concave majorant of g1. By definition,

V1(y) = sup
τ

E[f(Yτ )|Y0 = y] = sup
τ

E[g1(Θτ )|Θ0 = θ]

But

E[g1(Θτ )|Θ0 = θ] ≤ E[g̃1(Θτ )|Θ0 = θ] ≤ g̃1(E[Θτ |Θ0 = θ])

where we use the fact g̃1 is a concave majorant of g1 and Jensen’s inequality. Finally we use that

g̃1 is increasing, and that a local martingale bounded below is a supermartingale to give

g̃1(E[Θτ |Θ0 = θ]) ≤ g̃1(θ)

and hence V1(y) ≤ ḡ1(θ) where ḡ1 is the smallest concave majorant of g1. Thus we have shown

we cannot do better than ḡ1, allowing for general stopping rules. It remains to show that there

is a stopping rule which attains this bound.

Suppose first that lim supψ↑s(bI)
g1(ψ)

ψ−s(aI) = ∞, for instance if s(bI) <∞ and g1(s(bI)) = ∞. In

this case ḡ1(θ) = ∞ for θ ∈ (s(aI), s(bI)). We have there exists bn ↑ bI such that ḡ1(s(bn))
s(bn)−s(aI) ↑ ∞.

Then, for any s(aI) ≤ φ̂ < θ we have for τ∗n = τΘ
(φ̂,s(bn))

= τY
(s−1(φ̂),bn)

E[f(Yτ∗n)|Y0 = s−1(θ)] ≥ ḡ1(φ̂)
s(bn) − θ

s(bn) − φ̂
+ ḡ1(s(bn))

θ − φ̂

s(bn) − φ̂
↑ ∞.

Now suppose lim supψ↑s(bI )
g1(ψ)

ψ−s(aI ) < ∞. In this case ḡ1 is a finite function. Fix θ and let

Υ = {υ : ḡ1(υ) = g1(υ)}. Suppose θ ∈ Υ. Then with τ = 0, E[f(Y0)|Θ0 = θ] = g1(θ) = ḡ1(θ) and

we are done. Otherwise define

φ∗ = sup{ξ < θ : ξ ∈ Υ},

ψ∗ = inf{ξ > θ : ξ ∈ Υ}.

and set φ∗ = s(aI) if the set {ξ < θ : ξ ∈ Υ} is empty, and ψ∗ = ∞ if {ξ > θ : ξ ∈ Υ} is empty.

Suppose ψ∗ < ∞. Then ḡ1(θ) is linear on the interval θ ∈ (φ∗, ψ∗) and Θt∧τ(φ∗,ψ∗)
is a

martingale. Then

E[f(YτΘ
(φ∗,ψ∗)

)|Θ0 = θ] = E[g1(ΘτΘ
(φ∗,ψ∗)

)] = E[ḡ1(ΘτΘ
(φ∗,ψ∗)

)] = ḡ1(θ).
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Conversely, if ψ∗ = ∞, then choose θn > θ so that

ḡ1(φ
∗)
θn − θ

θn − φ∗
+ ḡ1(θn)

θ − φ∗

θn − φ∗
> ḡ1(θ) − ǫ.

Then, for the stopping time τ∗ = τΘ
(φ∗,θn) = τY(s−1(φ∗),s−1(θn)) we get that E[f(Yτ∗)|Y0 = s−1(θ)] ≥

ḡ1(θ) − ǫ.

�

Proof of Proposition 5:

From Proposition 4, we know we just have to identify the smallest concave majorant ḡ1 of g1.

If µ > 0, then s(I) = (−∞, 0) and s−1(θ) = −σ2

2µ ln (−θ); θ ∈ (−∞, 0). Note the transformed

reference level is s(yR) = −e−2µ/σ2yR . Substitution gives

g1(θ) =

{

φ1 − φ1e
γ1yR(−θ)γ1σ

2/2µ; θ ≥ −e−2µ/σ2yR

φ2e
−γ2yR(−θ)−γ2σ

2/2µ − φ2; θ < −e−2µ/σ2yR

Calculations show that g′1(−∞) = 0; and if 2µ/σ2 > γ1 (case (I), Figure 3(a)), then g′1(0) = ∞.

If 2µ/σ2 < γ1 (case (I), Figure 3(b)), then g′1(0) = 0. In both of these situations, s(aI) = −∞, so

by (i) of the Proposition, V1(y) = f(bI) = U(bI − yR) = φ1, since bI = s−1(0) = ∞. Since Y is

drifting Brownian motion, it does not reach infinity in finite time, so the agent waits indefinitely.

The case µ = 0 can be treated similarly.

All remaining cases involve µ < 0. Then s(I) = (0,∞). We have s−1(θ) = −σ2

2µ ln θ; θ ∈ (0,∞)

and s(yR) = e−2µ/σ2yR . Substitution results in

g1(θ) =

{

φ1 − φ1e
γ1yRθγ1σ

2/2µ; θ ≥ e−2µ/σ2yR

φ2e
−γ2yRθ−γ2σ

2/2µ − φ2; θ < e−2µ/σ2yR

Calculations show that g′1(0) = ∞ if 2µ/σ2 < −γ2, g
′
1(0) = φ2e

−γ2yR if 2µ/σ2 = −γ2, whereas

g′1(0) = 0 if 2µ/σ2 > −γ2. In both cases, g′1(∞) = 0. Case (IV) takes 2µ/σ2 ≤ −γ2, see Figure

3(e). In this case, it is clear from the figure that the smallest concave majorant is the function

itself so ḡ1(θ) = g1(θ);∀θ and hence the agent stops immediately at any price level.

The situation where 0 > 2µ/σ2 > −γ2 further divides into two scenarios depending on where

the agent stops relative to the break-even point. In each case, g1(θ) is convex over the range

(0, e−2µ/σ2yR) (to the left of break-even point) and concave to the right of the break-even point.

What remains is to establish the location of the stopping point relative to the break-even point.

Consider the stylized representation of the possibilities in Figure 8. The two (dashed line) curves

represent possible continuations for g1(θ) beyond the point marked with a “B” which represents

the break-even point. Compare the slope of the chord from the origin to point B to the slope

of g1 to the right of point B. There are clearly two possibilities. Either the slope of the chord

is less than g
′

1(B+) (on the higher of the two curves to the right of B) and thus the stopping

point lies to the right of the point B; or the slope of the chord is greater (or equal to) g
′

1(B+)

(on the lower of the two curves), and thus the stopping point lies exactly at the point B. This
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g1(θ)

B θ

Figure 8: The solid curve and its two possible dashed continuations give

a stylized representation of possible functions g1(θ) as a function of scaled

price θ, where θ = s(y). The function g1(θ) represents the value of the

game to the agent if he sells immediately. The point B marks the break-

even point. To decide whether the agent stops at or to the right of point

B involves comparing the slope of the chord from the origin to B with the

slope of the function to the right of B.

comparison of slopes gives that if 2|µ|/σ2 ≥ φ1

φ2
γ1 (case (III)), then the stopping point is at the

break-even point. This is shown in Figure 3(d). Case (II) occurs when 2|µ|/σ2 < φ1

φ2
γ1, so the

stopping point must lie to the right of the break-even point. This is shown in Figure 3(c). In

case (II), the smallest concave majorant ḡ1(θ) is formed by taking the chord from (0,−φ2) to

a point θ̄
(1)
u > e−2µ/σ2yR , where the slope of the chord matches the slope of g1 to the right of

e−2µ/σ2yR . Equating slopes gives θ̄
(1)
u solves

θγ1σ
2/2µ =

(

2µ

2µ− γ1σ2

)(

φ1 + φ2

φ1

)

e−γ1yR

The equivalent price threshold ȳ
(1)
u = s−1(θ̄

(1)
u ) solves (6). The smallest concave majorant ḡ1(θ)

is given by

ḡ1(θ) =







φ1 − φ1e
γ1yRθγ1σ

2/2µ; θ ≥ θ̄
(1)
u

θ

[

e2µ/σ
2yR(φ1)

2µ/(γ1σ2)(−γ1σ
2/2µ)( 2µ

2µ−γ1σ2 )
(1− 2µ

γ1σ
2 )

(φ1 + φ2)
(1− 2µ

γ1σ
2 )
]

− φ2; θ < θ̄
(1)
u

�

Proof of Proposition 6:

Again, from Proposition 4, we simply have to identify the smallest concave majorant ḡ1(θ). If
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β < 0, s−1(θ) = (−θ)1/β ; θ ∈ (−∞, 0) and s(yR) = −(yR)β, giving

g1(θ) =

{

(−yR + (−θ)1/β)α1 ; θ ≥ −(yR)β

−λ(yR − (−θ)1/β)α2 ; θ < −(yR)β

As expected, g′1(−(yR)β−) = g′1(−(yR)β+) = ∞. Calculations show that g′1(−∞) = 0; and

g′1(0) = ∞. This situation is case (I), shown in Figure 4(a). In this case, the agent waits indefi-

nitely. All other cases take β > 0, so s−1(θ) = (θ)1/β; θ ∈ (0,∞) and s(yR) = (yR)β , giving

g1(θ) =

{

(−yR + θ1/β)α1 ; θ ≥ (yR)β

−λ(yR − θ1/β)α2 ; θ < (yR)β

Calculations show g1(0) = −λ(yR)α2 and that g′1(0) = 0 for 0 < β < 1, g′1(0) = ∞ for β > 1.

We can also see that g′1(∞) = 0 for α1 < β and g′1(∞) = ∞ for α1 > β. These result in three

possible shapes for g1(θ). The combination 0 < β < 1 and α1 > β gives a further situation where

the agent waits indefinitely. This is displayed in Figure 4(b). If 0 < β < 1 and α1 < β, then

g1 is convex for θ < (yR)β (left of the break-even level) and concave for θ > (yR)β, resulting

in case (II) displayed in Figure 4(c). The smallest concave majorant ḡ1(θ) is formed by taking

the chord from (0,−λ(yR)α2) to a point on the function g1(θ) for θ > (yR)β (to the right of the

break-even point). Hence the agent stops at a price level above the break-even point. Case (III)

results from the choice β > 1. In this case g1 switches from concave to convex for θ < (yR)β , see

Figure 4(d). The smallest concave majorant will consist of a chord which touches the function

at two points, θ̄
(1)
l ∈ (0, (yR)β) and θ̄

(1)
u ∈ ((yR)β,∞). Hence, the agent stops at two levels -

one which is above the break-even and another which is below the break-even. The special cases

β = 0, β = 1 and α1 = β can be treated similarly. �

Proof of Proposition 7:

The existence of the thresholds as described follows from the proof of Proposition 6. Take β > 1

(Case (III)). To find the smallest concave majorant we solve for pair of critical points, θ̄
(1)
l < θ̄

(1)
u

at which the slope of g1 matches the slope of the chord between them:

g′1(θ̄
(1)
l ) = (g1(θ̄

(1)
u ) − g1(θ̄

(1)
l ))/(θ̄(1)

u − θ̄
(1)
l ) = g′1(θ̄

(1)
u ).

The analysis when α2 = α1 is much simpler as scaling reduces the dimension of the problem.

Then setting θ̄
(1)
l = (c̄l)

β(yR)β , θ̄
(1)
u = (c̄u)

β(yR)β gives the constants c̄l, c̄u solve (7) and (8). The

transformation y = s−1(θ) gives ȳ
(1)
l and ȳ

(1)
u as given. The smallest concave majorant ḡ1(θ) is

given by

ḡ1(θ) =











(θ1/β − yR)α1 ; θ ≥ c̄βu(yR)β

(yR)α1−βδ(θ − c̄βl (yR)β) − λ(1 − c̄l)
α1(yR)α1 ; c̄βl (yR)β < θ < c̄βu(yR)β

−λ(yR − θ1/β)α1 ; θ ≤ c̄βl (yR)β

where the constant δ is given by δ = (c̄u−1)α1+λ(1−c̄l)
α1

c̄βu−c̄
β
l

. Case (II) is obtained from the above

with c̄
(1)
l = 0 and hence θ̄

(1)
l = ȳ

(1)
l = 0. �
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Proof of Proposition 9:

We first need to extend the results of Section 2.1 to include initial wealth x. Replacing the

reference level yR with yR−x in the expressions for g1(θ), ḡ1(θ) (in proof of Proposition 5)) and

in the definition of the thresholds gives the required results. Consider first case (II). We have

g2(θ, x) = ḡ1(θ, x+ s−1(θ) − yR)

=







φ1 − φ1e
γ1(2yR−x)(θ)2(γ1σ

2/2µ); θ ≥ θ̂
(2)
u

(θ)2
[

e−
2µ

σ2 (x−2yR)(φ1 + φ2)
(1− 2µ

γ1σ
2 )

(−γ1σ
2/2µ)(φ1)

( 2µ

γ1σ
2 )

( 2µ
2µ−γ1σ2 )

(1− 2µ

γ1σ
2 )
]

− φ2; θ < θ̂
(2)
u

where θ̂
(2)
u solves

θ2(γ1σ2/2µ) =

(

2µ

2µ− γ1σ2

)(

φ1 + φ2

φ1

)

eγ1(x−2yR)

It is straightforward to show that that g2 is concave to the right of θ̂
(2)
u . To the left of this

point, the function is either convex, or is convex for small θ and concave for larger θ. Thus it

is sufficient to consider again the stylized Figure 8 but re-interpret the figure so that the curves

represent g2(θ, x) and the point marked “B” represents the point θ = θ̂
(2)
u . Again, we see that

to decide whether the smallest concave majorant ḡ2 tangents to g2 to the right or to the left of

this point, we compare the slope of the chord between (0,−φ2) and (θ̂
(2)
u , g2(θ̂

(2)
u )), to the slope

of the tangent to g2 at θ̂
(2)
u . Consider the ratio of the chord slope to the tangent slope. If the

ratio is less than or equal to one, then the smallest concave majorant of g2 must touch at or to

the right of θ̂
(2)
u . This ratio is given by

2µ

2γ1σ2

[

1 −
φ1 + φ2

φ1
e−γ1(2yR−x)(θ̂(2)

u )−2(γ1σ2/2µ)

]

= 1/2

So, we must have θ̂
(2)
u < θ̄

(2)
u . Then for θ < θ̄

(2)
u , ḡ2(θ, x) > g2(θ, x) so the agent waits in this

region. For θ ≥ θ̄
(2)
u , ḡ2 = g2. The agent sells one unit at threshold θ̄

(2)
u . However, given the

ordering θ̂
(2)
u ≤ θ̄

(2)
u , we know for θ ≥ θ̄

(2)
u , we must have θ ≥ θ̄

(1)
u also, and hence the agent sells

the remaining unit at the same threshold θ̄
(2)
u . Both units are sold at the threshold θ̄

(2)
u > s(yR)

at a gain relative to break-even. See Figure 6(a). Equating slopes gives θ̄
(2)
u solves

θ2(γ1σ2/2µ) =

(

2µ

2µ− 2γ1σ2

)(

φ1 + φ2

φ1

)

e−γ1(2yR−x)

and the equivalent price threshold ȳ
(2)
u = s−1(θ̄

(2)
u ) solves (11).

Consider now case (III). In this case, the expression for g2 simplifies to become

g2(θ, x) = ḡ1(θ, x+ s−1(θ) − yR)

=

{

φ1 − φ1e
γ1(2yR−x)(θ)2(γ1σ

2/2µ); θ ≥ θ̂
(2)
u

(θ)2φ2e
−

2µ

σ2 (x−2yR) − φ2; θ < θ̂
(2)
u

where θ̂
(2)
u = e−

µ

σ2 (2yR−x). In this case, the ratio of the chord to the tangent at θ̂
(2)
u can also be

shown to be 1/2, and so we again have the ordering θ̂
(2)
u < θ̄

(2)
u . Equating slopes gives θ̄

(2)
u solves
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(note this is identical to case (II) above)

θ2(γ1σ2/2µ) =

(

2µ

2µ− 2γ1σ2

)(

φ1 + φ2

φ1

)

e−γ1(2yR−x)

and again, the equivalent price threshold ȳ
(2)
u = s−1(θ̄

(2)
u ) solves (11). Both units are sold at the

threshold θ̄
(2)
u > s(yR) at a gain relative to break-even. See Figure 6(b).

�

Proof of Proposition 10:

We first need to extend the results of Section 2.2 to include the initial wealth x. Replacing the

reference level yR with yR − x in the expressions for g1(θ), ḡ1(θ) and in the definition of the

thresholds gives the required results. Assume α2 = α1. Then

g2(θ, x) = ḡ1(θ, x+ s−1(θ) − yR)

=























(x+ 2θ1/β − 2yR)α1 ; θ ≥ θ̂
(2)
u

δ(θ − c̄βl (yR − (θ1/β − yR))β)(yR − (θ1/β − yR))α1−β

−λ(1 − c̄l)
α1(yR − (θ1/β − yR))α1 ; θ̂

(2)
l < θ < θ̂

(2)
u

−λ(2yR − 2θ1/β − x))α1 ; θ ≤ θ̂
(2)
l

where θ̂
(2)
u = ( c̄u

1+c̄u
)β(2yR − x)β and θ̂

(2)
l = ( c̄l

1+c̄l
)β(2yR − x)β; again the constant δ is given by

δ = (c̄u−1)α1+λ(1−c̄l)
α1

c̄βu−c̄
β
l

.

Consider case (II) where 0 < α1 < β ≤ 1. In this case, the expression for g2 simplifies (see

comments in the proof of Proposition 7.) It is straightforward to show that that g2 is concave

to the right of θ̂
(2)
u . To the left of this point, the function is either convex, or is convex for small

θ and concave for larger θ. As in Proposition 9, we compare the slope of the chord between

(0,−λ(yR − (x + θ1/β − yR))α1) and (θ̂
(2)
u , g2(θ̂

(2)
u )), to the slope of the tangent to g2 at θ̂

(2)
u .

Consider the ratio R(c̄u) of the chord slope to the tangent slope. If R(c̄u) ≤ 1 then the smallest

concave majorant of g2 must touch at or to the right of θ̂
(2)
u . After some calculations, the ratio

is found to be

R(c̄u) =
1

2
(1 + c̄u)

α1 +
(1 − 1/c̄u)[1 − (1 + c̄u)

α1 ]

2α1/β

Since R(1) ≤ 1, it is enough to show that R(c̄u) is decreasing in c̄u, which can be shown. Thus

θ̂
(2)
u ≤ θ̄

(2)
u . Then for θ < θ̄

(2)
u , ḡ2(θ, x) > g2(θ, x) so the agent waits in this region. For θ ≥ θ̄

(2)
u ,

ḡ2 = g2 = (x + 2θ1/β − 2yR)α1 . The agent sells one unit at threshold θ̄
(2)
u . However, given the

ordering θ̂
(2)
u ≤ θ̄

(2)
u , we know for θ ≥ θ̄

(2)
u , we must have θ ≥ θ̄

(1)
u also, and hence the agent sells

the remaining unit at the same threshold θ̄
(2)
u . Both units are sold at the threshold θ̄

(2)
u > s(yR)

at a gain relative to break-even. Similar arguments apply in case (III). In this case, (see panels

(c) and (d)), we find ordering θ̂
(2)
u ≤ θ̄

(2)
u and θ̂

(2)
l ≥ θ̄

(2)
l so by similar reasoning, the agent sells

both units at thresholds θ̄
(2)
l , θ̄

(2)
u . Since θ̄

(2)
l < s(yR) < θ̄

(2)
u , the agent sells both units either at

a gain, or at a loss, relative to break-even.

�
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