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Abstract

We provide new insights that link compensation structure terms to credit spreads by
modeling the dynamic risk choice of a risk-averse manager paid with performance insen-
sitive pay (cash) and performance sensitive pay (stock). The model predicts that credit
spreads are increasing in the ratio of cash-to-stock. When the manager has discretion
to choose debt levels, a tradeoff between tax benefits and utility cost from ex-post asset
substitution arises. The resulting optimal initial leverage is high with safe (risky) debt
when cash-to-stock ratios are low (high), while moderate cash-to-stock ratios are asso-
ciated with low initial leverage. In an empirical exercise using a large cross-section of
608 US based corporate credit default swaps (CDS) covering 2001-2006, we find strong
evidence that CDS rates are high for CEOs with high salaries relative to stock and
option holdings.
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1 Introduction

CEO compensation terms typically include a portion of pay that is performance sensitive
and a portion of pay that is performance insensitive. These two components can be readily
rationalized in a contracting setting (e.g., Holmstrom (1982)). Performance sensitive pay
links a manager’s value enhancing actions to his wealth to provide motivation to act in the
interest of the firm. Performance sensitive pay is risky, however, and in contracts with a
risk-averse manager risk-sharing motives give rise to a role for the performance insensitive
component. Such compensation structures define the manager’s objective and it is natural
to expect it to affect a manager’s choice of firm risk and, as a consequence, the dynamics of
the firm’s security prices. Although aspects of these linkages have been explored empirically,
the structural modeling of the impact of CEO pay structure on risk choice, capital structure
and the pricing of financial securities remains relatively unexplored.

In this paper, we undertake a step toward theoretically linking CEO compensation to
security price dynamics, with a primary focus on credit spreads. We develop a structural
model of a firm run by a manager whose pay includes a performance sensitive component
(stock) and a performance insensitive component (cash). We assume that the manager is
risk averse and can dynamically alter firm asset risk. The main finding of the model is
that credit spreads should relate positively to the ratio of cash-to-stock. As this measure of
compensation structure has not been empirically explored in the credit spread literature,
we undertake an empirical exercise for a sample of US firms where we identify cash as CEO
salary, and stock as the CEO’s effective stock holdings due to stock and option ownership.1

We find evidence that cash-to-stock is a statistically significant and economically impor-
tant positive predictor of credit default swap (CDS) rates.2 This result provides a possible
reconciliation of the mixed results from regressions of credit spreads on managerial stock
ownership that omit proxies for cash,3 since our model predicts that ownership is informa-
tive for spreads only when scaled relative to cash pay levels. Our empirical evidence and
a calibrated version of our theoretical model also suggest that the quantitative failing of
structural model of default sensible securities can be addressed by incorporating plausible
agency costs.4

1Following Core and Guay (2002), we define effective stock holdings as the sensitivity of the dollar change
in the CEO’s portfolio of stock and options to a 1% change in stock price.

2In a CDS agreement, the buyer of default protection pays a fixed quarterly amount until either the
maturity date of the contract or the date a which a default event occurs. If default occurs, the buyer receives
from the seller the difference between the market value and face value of the bond adjusted for accrued
interest. The amount of the quarterly payment is referred to as the CDS rate, typically quoted in basis
points relative to the contract’s notional amount. For a more detailed discussion of CDS contracts see, for
example, Duffie (1999).

3Anderson et al (2002) find that high managerial ownership predicts low spreads while Ortiz-Molina
(2006) finds that high managerial ownership predicts high credit spreads. Bagnani et al (1994) find that
spreads are increasing in ownership when the CEO has a small stake in the company and that spreads are
decreasing in ownership when the CEO has a high stake in the company.

4When early structural models from the prior literature are calibrated to match equity volatility they
predict credit spreads that are counter-factually low, especially when leverage ratios are low (see, for example,
Jones, Mason, and Rosenfeld (1984) and Eom, Helwege and Huang (2003)). Our model relates to a later
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As in Merton (1974), we begin our analysis by considering firms with a positive level
of debt and cast our structural model of credit spreads in continuous time. The manager’s
stock compensation has no value in bankrupt states and, as a result, his pay is convex in
firm value. Under the assumption that compensation terms cannot be undone by trading on
personal account, the cash-and-stock pay structure leads the manager to dynamically alter
firm volatility. We develop analytical formulas to describe the evolution of underlying firm
asset value, stock prices, and bond prices. Our analysis singles out the cash-to-stock ratio in
CEO pay as the key determinant of managerial risk-shifting behavior.5 Our characterization
of credit spreads allows a robust and parameter independent comparative static analysis that
shows, all else equal, high cash-to-stock leads to high spreads. This prediction is opposite
to the prediction from previous models in which the manager is risk-neutral (e.g., Brander
and Poitevin (1992) and John and John (1993)). Cash pay has no impact on risk neutral
managers’ choices in those settings, while adding convex pay in the form of stock induces
more risk taking. The behavior of a risk averse manager in the presence of cash and stock
pay can be very different, however, a point made clear in Ross (2004). In our setting, risk
averse managers compensated with risky stock alone will act to avoid bankruptcy and make
debt safe. Adding cash compensation provides managers with a minimum pay level in all
states and gives rise to behavior that transfers wealth from bondholders in bankrupt states
to stockholders in solvent states. In our model, therefore, it is the level of cash relative to
stock compensation that provides the incentive to risk shift and inflates credit spreads.

Having characterized firm behavior with arbitrary debt levels, we also address the possi-
bility that credit spreads are jointly determined with leverage ratios. We extend our struc-
tural model by assuming that, in addition to firm risk, managers also chose the level of
debt as in Leland (1998). Debt has a direct impact on firm value since we assume that
it gives rise to tax benefits and default costs. Managers, therefore, face a trade-off when
choosing leverage. Their wealth increases when leverage increases, due to the effect of tax
shields on the value of their stock holdings. Firm risk also increases, because of ex-post
asset substitution, and the manager’s optimal leverage choice balances the wealth benefit
of debt against the utility cost associated with higher risk.6 A numerical exploration of

literature that modifies assumptions regarding the economics underlying the firm to address the quantitative
failings of earlier structural models, such as Anderson and Sundaresan (1996), Mella-Barral and Perraudin
(1997), Collin-Dufresne and Goldstein (2001), Francois and Morellec (2004), Morellec (2004), and David
(2007).

5It is interesting to note that many firms explicitly mandate a maximum cash-to-stock ratio through
“target ownership plans” (see, e.g., Core and Larcker (2002)). Boeing provides a specific example in their 2006
proxy statement: “In order to ensure continual alignment with our shareholders, we have stock ownership
requirements for NEOs, other officers and senior executives. The ownership requirements have been in place
since 1998 and are based on a multiple of base salary tied to executive grade. The stock ownership guidelines
require that, within a three-year period, executives should attain and maintain an investment position in
Boeing stock and stock units of the following: CEO - 6x base salary, Executive Vice Presidents and Senior
Vice Presidents - 4x base salary, Vice Presidents - 1x or 2x base salary based on executive grade ...”

6This non-standard trade-off is similar in spirit to that of Berk, Stanton and Zechner (2006). They show
that the human capital risk associated with bankruptcy can give rise to an implicit cost of debt that is
sufficiently large to offset tax benefits even at low debt levels. Unlike in our model, their debt is optimally
riskless, so that credit spreads are always zero, and there is no role for operating flexibility.
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the debt choice model shows a non-monotonic relationship between the choice of initial
leverage and cash-to-stock, where high leverage ratios are associated with very high or very
low cash-to-stock and low leverage ratios are associated with moderate cash-to-stock. The
analysis shows also that the positive association between cash-to-stock and credit spreads
remains intact when leverage is endogenous, with safe debt issued when cash-to-stock is
low and risky debt issued when cash-to-stock is high. This finding highlights that leverage
ratios alone may not be sufficient to determine the value of new debt and that managerial
pay structure can provide information that is of first-order importance for evaluating credit
spreads.

To empirically assess the main prediction of a positive relationship between credit
spreads and cash-to-stock, we make use of a large panel dataset of CDS rates for as many
as 608 US based firms. The CDS market offers an attractive setting in which to examine the
relative performance of default-sensitive security pricing models. First, changes in CDS rates
are mainly driven by changes in default probabilities and default risk premia (see Berndt et
al. (2005), and Longstaff, Mithal, and Neis (2005)). This is in contrast to corporate bond
yields, for which liquidity and tax treatment play a significant role (see Chen, Lesmond,
and Wei (2007), Delianedis and Geske (1998), Elton, Gruber, Agrawal, and Mann (2001),
and Huang and Huang (2003)). Second, structural models relate company fundamentals
(e.g. current market leverage ratios) to the price of default risk, and CDS rates have been
shown to efficiently convey default-relevant information (see Blanco, Brennan and Marsh
(2005), Acharya and Johnson (2006), and Norden and Weber (2004)). Finally, CDS markets
are themselves economically important, with notional single-name CDS contract amounts
at 2006 year end of roughly US 6.6 trillion (British Bankers Association). To the best of
our knowledge, no previous work has examined the relationship between CDS rates and
compensation terms.

Guided by our theoretical model, we consider a number of regression specifications that
explain firm-year CDS rates with annually observable CEO pay terms from Compustat’s
ExecuComp database. When using CEO salary to proxy for performance insensitive pay
and CEO effective stock ownership to proxy for performance sensitive pay, we confirm
the model’s prediction of a significantly positive coefficient on cash-to-stock. Our empirical
model suggests that CEO compensation terms provide economically important informa-
tion on the cross-section of CDS rates, even after controlling for the traditional structural
determinants of spreads such as leverage and stock volatility. To illustrate this point, our
estimated coefficients indicate that an increase in the cash-to-stock ratio from the 10th to
90th percentile can produce CDS rates that are up to 21% higher.

To ensure robustness of our empirical finding we control for potential endogeneity in our
regression by including numerous economically motivated controls, industry fixed effects,
and year fixed effects. The finding is also robust to a broader interpretation of the cash
variable. Cash in our model is a component of managerial wealth that cannot be traded
and is unrelated to firm performance. We consider two additional economic forces that have
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been shown to play an important role in executive labor markets that may also satisfy these
criteria. CEO pensions are a significant component of overall compensation, especially when
retirement is near (Bebchuk and Jackson (2005), Sundaram and Yermack (2007)), and the
implicit compensation associated with investment in human capital has been shown to be
an important consideration, especially in the early stages of a career (Gibbons and Murphy
(1992)). We find that proxies for pension benefits are significant predictors of CDS rates for
managers aged 60 years and older, while proxies for implicit compensation are significant
for managers aged 59 years and younger.

With the predictions of our structural model of leverage choice in mind, we also em-
pirically explore the relationship between CEO pay structure and leverage ratios in our
sample. Coles, Daniel, and Naveen (2006) and Lewellen (2006) address the linkage from
executive compensation to leverage but without the guidance of a structural model of man-
ager choice. Convexity of compensation with respect to firm value plays a key role in their
papers, and intuitive but ad hoc arguments are used to support their hypothesis that lever-
age should be increasing in the sensitivity of managerial wealth to stock volatility (vega).
These papers find a positive relationship between vega and leverage, but a negative rela-
tionship between pay-performance sensitivity and leverage. In the context of our leverage
choice model, however, these regressions would be misspecified. We instead regress leverage
ratios on cash-to-stock and standard controls and find that cash-to-stock is a strong positive
predictor of leverage ratios in our data. When we further allow for convexity of leverage
ratios in cash-to-stock, a feature present in the parameterized version of our leverage choice
model, we find statistical support but observe that the vast majority compensation terms
are associated with the domain of the function where leverage ratios are increasing.

Our theoretical model builds on prior structural models of credit spreads (e.g., Merton
(1974)) and of debt choice (e.g., Fisher, Heinkel and Zechner (1989)).7 We follow Morellec
(2004) by explicitly modeling a manager-shareholder conflict, but our managerial objective
function and choice set is different.8 The dynamic risk choice of managers in our model is
closely related to the portfolio choice decision of fund managers in Carpenter (2000). Unlike
in that paper, when our managers choose the initial leverage level they endogenously alter
the terms of their contract. Cadenillas, Cvitanic, and Zapatero (2004) also allow a risk-
averse manager to make a dynamic risk choice. Their manager is only paid with stock and
shareholders, rather than managers, make the debt choice. Their model has no implications

7More recent structural models include Leland (1994), Leland and Toft (1996), Goldstein, Ju and Leland
(2001), Collin-Dufresne and Goldstein (2001) and Titman and Tsyplakov (2003). Managers in these models
are assumed to maximize value, either of the firm or of the firm’s shareholders, and their decisions are
typically restricted to choosing the debt amount, when to refinance, and when to default. Mauer and Triantis
(1994), Leland (1998), Hennessy and Whited (2005), and Lambrecht and Myers (2006) allow managers to
also make operating decisions and therefore incorporate elements of both the trade-off theory of capital
structure (Modigliani and Miller (1963)) and of the agency costs of debt (Jensen and Meckling (1976)) in a
dynamic setting.

8Several papers examine the quantitative impact of agency costs resulting from stockholder-bondholder
conflicts, including Mello and Parsons (1992), Leland (1998), Parrino and Weisbach (1999), Ericsson (2000),
Moyen (2000) and Hennessy (2004).
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for credit spreads, since in their setting debt is endogenously risk free.
Our empirical work contributes to the extensive literature on the determinants of credit

spreads (e.g., Campbell and Taksler (2003), Collin-Dufresne, Goldstein, and Martin (2001),
and Elton, Gruber, Agrawal, and Mann (2001)). Our focus on CEO cash-to-stock is new in
the credit spread literature, but relates to recent empirical studies on the impact of CEO
pay structure, rather than CEO pay levels. Mehran (1992), Guay (1999), Coles, Daniel, and
Naveen (2006), and Lewellen (2006) show that alternative measures of managerial com-
pensation structure impact risk taking, project selection, and debt choice. Following Coles,
Daniel, and Naveen (2006), Daniel, Martin, and Naveen (2005) find that credit spreads are
high for firms in which CEO pay is more sensitive to stock volatility.

The remainder of the paper is structured as follows. Section 2 introduces the model.
Section 3 develops closed-form expressions for the asset substitution behavior and security
values. Section 4 characterizes the optimal leverage choice and links this choice to the
manager’s compensation terms. Section 5 examines several regressions that relate CDS
rates to leverage and compensation terms. Section 6 concludes. Proofs of all propositions
and other technical details can be found in the Appendix.

2 The Model

This section describes our assumptions and formally specifies the manager’s optimization
problems.

2.1 Market and Firm Value Dynamics

Our model is developed in a partial equilibrium, complete markets setting. We specify a
pricing kernel with dynamics

dξt

ξt
= −rdt− αdzt (1)

where r > 0 is the instantaneous risk-free rate, α > 0 is the market price of risk, z is a
standard Brownian motion, and where ξ0 = 1.

We consider a firm endowed with assets whose finite life is T . The firm’s manager
operates this asset to generate a liquidating pre-tax payment (LPP) of VT , representing the
resale value of the asset, earnings before interest and taxes accumulated up to time T , or
their sum. The LPP is shared among the firm’s equity and debt claimants and also funds
the payment of taxes and bankruptcy costs. We assume that the firm operates in a legal
environment with limited liability for debt and equity claimants, so that VT ≥ 0.

The firm’s manager generates the LPP by continuously controlling the instantaneous
volatility of a diffusion process. We assume that all risks in the model are systematic and
that the manager’s actions are fully observable. As a result, the present value of the LPP
will evolve according to

dVt

Vt
= (r + ανt)dt + νtdzt (2)
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where νt is the manager’s time-t choice of firm risk and V0 > 0 is the initial value. The
controlled process ν must be based on the realized path of the unique source of risk z and,
to ensure the process Vt is well defined, satisfy an integrability condition (see, for example,
Karatzas, Lehoczky, and Shreve (1987)). The restriction VT ≥ 0 further limits the set of
admissible policies νt. For example, νt = 1/Vt is not a valid choice since it gives rise to an
Ornstein-Uhlenbeck process for Vt which can generate negative terminal LPP.

2.2 Taxes and Bankruptcy Costs

Taxes are assumed to be paid only at the corporate level and only at date T . To focus our
attention exclusively on the tax effect of leverage, we suppose that the firm’s assets are fully
depreciated and that their acquisition cost has no further tax consequences. Thus in the
absence of leverage taxes are proportional to LPP, i.e. T = τVT where τ ∈ [0, 1) is the firm’s
tax rate.9 If debt is issued, the taxable amount (LPP) can be reduced by the interest paid.
We assume the firm’s managers set debt levels by issuing a zero-coupon claim with face
value L and price B0 at the initial date. The proceeds from the issue are used exclusively to
redeem outstanding shares, so that the only motivation for debt is to generate a tax shield.

Tax shields are assumed to accrue at maturity and only in states where the firm is
solvent. The firm is considered solvent if bondholders and tax obligations can be paid in
full, in which case the tax amount is

T = τ(VT − (L−B0)).

The expression L−B0 represents interest paid to bondholders and leads to a tax shield of
τ(L−B0). The tax shields are thus income based, as in Kim (1978), and are consistent with
the US tax code which does not allow deduction of debt principal. In case of insolvency,
taxes are

T = τVT ,

again consistent with Kim (1978) who specifies that the tax claim is senior to the debt
claim and that partial payments of interest do not reduce taxable income when the firm
is bankrupt. This assumption is also consistent with the “principal-first doctrine” as is
mandated by the US tax code (see, e.g., Talmor, Haugen, and Barnea (1985) and Zechner
and Swoboda (1986)).

Having specified the tax payments, we can define the bankruptcy threshold, Vb, by the
equality Vb = L + τ(Vb − (L − B0)) which states that the LPP is just sufficient to cover

9It is possible to incorporate the effect of non-debt tax shields in our framework. For example, if V0 is
the undepreciated purchase cost of the asset that produces the LPP, then it would be natural to assume
that the tax bill of an unlevered firm is T = τ(VT − V0). The modified analysis would produce closed-form
solutions that are qualitatively similar to those we report, but this framework would make it more difficult
to isolate the pure impact of debt and its associated tax shields.
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payments to bondholders and the tax authority. Rearranging the equation yields

Vb = L +
τ

1− τ
B0. (3)

Solvent states are defined by VT ≥ Vb and insolvent states by VT < Vb. Note that when tax
rates are non-zero the bankruptcy threshold is strictly above the debt face value.

We adopt the common assumption that insolvency has a direct negative impact on
terminal cashflows due to a proportional deadweight bankruptcy cost δf (1− τ)VT (see, e.g.,
Leland (1994)).

To summarize this subsection we express the terminal state-contingent cashflows of the
firm net of taxes and bankruptcy costs as

CT =

{
(1− τ)VT + τ(L−B0) if VT ≥ Vb,

(1− δf )(1− τ)VT otherwise.
(4)

This quantity is commonly referred to as free cashflow and represents funds available to pay
the firm’s debt and equity claimants. Under our assumptions, free cashflow is an increasing
function of VT , and it is discontinuous at VT = Vb due to bankruptcy costs and the loss of
the interest tax shield in insolvent states.

2.3 Stock and Bond Pricing

We seek to derive values at any date t prior to T for the firm’s terminal cashflows, equity
claims and debt claims. These claims are all non-linear functions of VT and we price them
using the pricing kernel ξ. In this subsection, we take as given an arbitrary VT satisfying
the condition V0 = E (ξT VT ) where E is the expectation at t = 0.

We first value the firm’s debt. A circularity arises because the bankruptcy threshold, Vb,
depends on the initial debt value, B0, and the initial debt value depends on the bankruptcy
threshold. To formalize this joint dependency we begin by expressing the payoff to bond-
holders at maturity assuming Vb is known:

BT =

{
L if VT ≥ Vb,

(1− δf )(1− τ)VT otherwise.

This follows from the definition of solvency in equation (3). When VT is above Vb funds
sufficient to fully repay the face value of debt are available. On the other hand, if VT is
below Vb funds are insufficient to repay the face value of debt since (1 − δf )(1 − τ)VT ≤
(1 − δf )(1 − τ)Vb and from equation (3) and the observation that B0 ≤ L, we have (1 −
δf )(1 − τ)Vb ≤ (1 − δf )L < L. As a result, in the bankruptcy states bondholders recover
only the cashflows available after taxes and bankruptcy costs have been incurred. The time
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t bond price Bt = Et

(
ξT
ξt

BT

)
can then be expressed as

Bt = Et

[
ξT

ξt
L1VT≥Vb

+ (1− δf )(1− τ)
ξT

ξt
VT1VT <Vb

]
(5)

where the notation 1S is an indicator function for the event S and Et is the date-t conditional
expectation. The bankruptcy threshold is determined at time t = 0 when the debt choice is
made. Consistency with the initial bond price requires that Vb solve the non-linear equation
(3) which can be restated as

Vb = L +
τ

1− τ
E [ξT L1VT≥Vb

+ (1− δf )(1− τ)ξT VT1VT <Vb
] . (6)

It can be shown that this condition identifies a unique Vb ∈
[
L, L

(1−τ)(1−δf )

]
given any

non-negative LPP, VT , and promised debt payment, L.
Another consequence of the definition of the bankruptcy threshold is that equity claimants

receive payment only in the solvent states. To verify this, substitute definition (3) of Vb into
the free cashflow equation (4) to see that CT = L when VT = Vb. Thus, equity value ST at
maturity is given by

ST =

{
CT − L if VT ≥ Vb,

0 otherwise.
(7)

This payoff can be recognized as that of a call option on terminal free cashflow with strike
price equal to the face value of the bond, i.e. ST = (CT − L)+. Alternatively, by using the
same equations (3) and (4) it can be shown that terminal equity value is equivalently given
by

ST = (1− τ)(VT − Vb)+. (8)

This equation shows that the equity payoff can be expressed as the payoff on (1− τ) units
of a call option on LPP with strike price Vb. Time-t equity value is thus given by

St = (1− τ)Et

[
ξT

ξt
(VT − Vb)+

]
. (9)

2.4 Managerial Compensation

Managerial compensation is assumed to have two components and is given by

WT = pST + A,

where p ∈ [0, 1] is the proportion of equity granted to the manager and A > 0 is the
riskless cash component of pay. The terminal payment pST is performance sensitive, while
the payment A is performance insensitive. Without changing our qualitative conclusions,
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performance sensitive pay such as options or bonuses could be included in the model.10

The performance insensitive cash compensation A is assumed to be external to the firm
and represents the manager’s minimum pay since since stockholders have limited liabil-
ity.11 Performance insensitive pay takes on many forms in practice, for example salary,
defined benefit pension payments, and life and health insurance benefits (Smith and Watts
(1982)).12 In practice, these payments may not be fully guaranteed, but our qualitative re-
sults will remain as long as managers receive some positive portion of the promised payments
in all states.

Consistent with the view that moral hazard issues preclude borrowing against one’s
future income, we impose the strong restriction that managers cannot undo their compen-
sation by trading bonds or the index.13 This friction will play a primary role in driving the
managers choices and serves to model the agency costs associated with their inability to
allocate wealth without restriction. We further assume that managers are risk averse and
derive utility from terminal wealth given by

U(WT ) =
W 1−γ

T

1− γ

where γ > 0 is the coefficient of relative risk aversion. Although this utility function is
concave in wealth, derived utility is not a globally concave function of VT unless debt levels
are zero. In fact, when debt is present and a firm is near its bankruptcy threshold the
manager’s derived utility is locally convex. Therefore, as in other models of risk-shifting
behavior, there will be an incentive to increase LPP risk in these states. Concavity in high
payoff states will mitigate this incentive, however, so, unlike in the case where the manager
maximizes shareholder value, an infinite volatility choice will be suboptimal.14

10With stock options in the model terminal wealth would be given by WT = pST + q(ST −K)+ +A where
q is the number of executive stock options with strike price K. This modification adds complexity and does
not qualitatively affect the manager’s incentives since stock of a levered firm alone makes the manager’s pay
convex in firm value.

11Without changing the solution to the model, we could alternatively view the firm’s assets as segregated
into two accounts: one that the manager can control and to which he is an equity holder with proportion p,
worth V0, and another that he cannot control, to which he is the most senior claimant, and is riskless with
value e−rT A.

12Many CEOs negotiate explicit employment agreements that stipulate minimum salaries and provide
protection to this amount in the case of dismissal (Gillan, Hartzell, and Parrino (2008)). Firms are also able
to fully guarantee executive pension assets using various legal means (Bebchuk and Fried (2004)).

13This restriction can be weakened if we work in a more realistic setting where the manager can undo
some, but not all, of his compensation. This would hold if firm risk has an idiosyncratic component that
the managers cannot hedge or if partial borrowing against their terminal payout is permitted. The economic
intuition from our model will hold in such a setting but the added complexity would obscure the results.

14In a seminal paper, Green (1984) analyzes the risk choice of stockholders when both debt and convertible
stock are present. The conversion feature reverses the convexity in levered equity when earnings are high
which, as in our setting, mitigates the incentive to take risk. Although we utilize risk aversion to make the
manager’s objective concave for high values of LPP, Green (1984) shows that similar objective functions can
arise in settings where managers maximize shareholder value and there are explicit or implicit options on
LPP embedded in this value. We postulate that our qualitative findings are robust to such interpretations.
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2.5 The Manager’s Choices

We assume that self-interested managers commit to a leverage level and then alter project
risk to maximize their derived utility from compensation. It is convenient to consider these
choices as occurring in two distinct stages. Figure 1 summarizes the sequence of events.

In the second stage of the problem the manager has pre-committed to a fixed level of
debt L, which has been sold for its fair market value B0, leaving him with a proportion p

of the firm’s equity. He now controls the volatility ν of the LPP process. This problem is
formally stated as

J(L) ≡ sup
ν

E
[
U(A + p(1− τ)(VT − Vb)+)

]
, (10)

where VT is the non-negative LPP generated by (2) and where Vb is given by (6).
In the first stage of the decision problem managers announce the face value of debt

(which cannot be later changed), sell it to outside investors, and repurchase outstanding
equity with the proceeds. Managers cannot sell their own stock, so an increase in debt levels
will be accompanied by an increase in their proportion of the firm’s outstanding equity. We
assume that investors have full information about the manager and his compensation, and
impose rational expectations so that investors correctly forecast the second stage volatility
choice. Debt and equity are thus fairly priced, and the value of the firm after the leverage
announcement L is given by C0 = E(ξT CT ) where CT is defined by equation (4) and
VT in that equation is the correctly anticipated outcome of the manager’s second stage
optimization.

We assume that the manager is endowed with an initial equity proportion in the un-
levered firm, p0. He credibly announces his intent to issue debt with face value L which
immediately causes the valuation impact of tax shields, bankruptcy costs, and agency ef-
fects of debt to be incorporated into C0. The manager’s initial dollar holdings of equity are
then equal to p0C0. To identify the manager’s proportional holdings of the levered firm,
p > p0, notice that debt proceeds of B0 replace outside equity worth the same amount.
After recapitalizing, the total value of the firm’s equity decreases to S0 = C0 −B0 and the
value of the manager’s stock-holdings can be expressed as p(C0 − B0). This logic defines p

through the equation
p0C0 = p(C0 −B0). (11)

The manager’s first stage problem can now be defined formally as

sup
L

J(L) (12)

subject to the non-linear constraint (11) relating p and L. Two opposing forces are at play in
this problem. Risk averse managers wish to trade-off risk and return so as to optimize their
terminal wealth. Since they are precluded from undoing their compensation, managers alter
their wealth by controlling initial leverage and firm volatility. Increasing leverage provides
a tax benefit that directly increases firm value and, because managers hold a proportion p0
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of the firm, this increases their wealth. Compensation is convex, however, and will provide
an incentive to increase risk in certain states. Risk averse managers anticipate these actions
and so they have an incentive to choose low leverage in the first stage. These trade-offs give
rise to predictions relating the manager’s compensation to leverage choice, risk choice and
credit spreads that we explore in the next sections.

3 The Effects of Managerial Compensation and Asset Sub-

stitution on Security Valuation

In this section, we take as given a fixed level of debt and analyze the impact of the manager’s
compensation package on his risk choice in the second stage optimization problem (10). Our
problem admits a closed-form solution, and we explicitly demonstrate how managers engage
in asset substitution by choosing instantaneous firm risks contingent on current firm value.
This action affects all asset values and we focus our analysis on the implications for credit
spread dynamics.

3.1 Characterizing Asset Substitution

The manager has no ability to alter the present value V0 of the LPP but has complete
freedom to allocate the LPP across states summarized by ξT . He accomplishes this task in
a complete market by continuously controlling the instantaneous volatility ν. This mirrors
the technique by which derivative payoffs are synthesized by changing the exposure of the
replicating portfolio to the underlying assets.

Following Karatzas, Lehoczky, and Shreve (1987) and Cox and Huang (1989), the man-
ager’s dynamic second stage problem (10) is equivalent to the static choice problem

sup
VT

E

[
(A + p(1− τ)(VT − Vb)+)1−γ

1− γ

]
, (13)

subject to the budget constraint E (ξT VT ) ≤ V0, the Vb definition in equation (6), and the
non-negativity constraint VT ≥ 0.15 This is the risk shifting (R) model and we denote its
solution by V R

T . This solution will generate a bankruptcy threshold V R
b as well as LPP

(V R
t ), equity (SR

t ), and bond (BR
t ) processes.

If Vb in problem (13) is an exogenous constant then the presence of the kink in utility
derived from VT at Vb induces a local convexity in the objective function. Carpenter (2000)
shows that the optimal choice under this restriction can be obtained by maximizing the

15This formulation of the second stage problem clarifies that if no lower bound on VT is imposed, the
manager can short-sell an arbitrarily high amount of LPP in one state to finance the acquisition of a large
positive amount of LPP in another state. This will increase utility, since the manager’s derived utility will
be A1−γ/(1 − γ) in the negative LPP state and can be made arbitrarily large in the other state. The
maximization problem (13) is then not well defined. Although we can solve for the optimal choice given any
constraint VT ≥ V for any constant V , we focus on V = 0 which has the natural interpretation of a limited
liability constraint.
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concavified objective function, defined as the smallest concave function dominating the
utility derived from compensation in problem (13) (see Aumann and Perles (1965)). The
bankruptcy threshold Vb is not exogenous in our setting, however, since its value depends
on the manager’s choice VT . This circularity between problem (13) and equation (6) is not
present in the Carpenter (2000) model and is addressed by the following proposition.

Proposition 1 Given any (L, p) ∈ (0,∞)×[0, 1], there exists a unique rational expectations
equilibrium in which bondholders correctly anticipate the manager’s risk choice ν. In this
equilibrium the bankruptcy threshold V R

b is consistent with (3) and the optimization problem
(13) yields firm LPP

V R
T =

[
V +

(
V − V R

b +
A

p(1− τ)

)((
ξT

ξ

)− 1
γ

− 1

)]
1{ξT≤ξ}, (14)

where V ∈ (V R
b ,∞) is the unique solution to the nonlinear equation

[
[A + p(1− τ)(V − V R

b )]1−γ

1− γ
− A1−γ

1− γ

]
V

−1

= p(1− τ)
[
A + p(1− τ)(V − V R

b )
]−γ

, (15)

and where ξ ∈ (0,∞) is the unique scalar for which the optimal LPP defined by equation
(14) satisfies the budget constraint E

(
ξT V R

T

)
= V0.

This proposition characterizes the manager’s second-stage behavior. The quantity V has
a natural geometric interpretation. As shown in the proof of Proposition 1, the concavified
objective is linear and greater than the derived utility for VT < V and coincides with the
derived utility function for VT ≥ V . The requirement that the concavified utility function is
the smallest concave function dominating the derived utility imposes equation (15) which
ensures tangency of the two functions at V . Managers therefore behave as if they are risk
neutral over terminal payoffs in the range [0, V ] and, as a result, any LPP lying within this
region is dominated by an LPP with the same present value but divided between a zero
payoff state and states with payoffs larger than V . This implies that the optimal LPP will
never lie in the interval (0, V ) since, by equation (14), V R

T is decreasing in ξT , equal to V at
ξT = ξ, and zero for ξT > ξ. This also shows that the manager sells payments from states
where the pricing kernel is larger than the critical value ξ and uses the proceeds to buy
payments in states where the pricing kernel is lower than ξ. The probability of a zero payoff
is, therefore, strictly positive and equals the probability of the event ξT > ξ.

Proportional bankruptcy costs δf do not play a role in Proposition 1 since the manager’s
optimal behavior leads to zero recovery for bondholders in bankruptcy. This follows from the
fact that the smooth pasting condition in equation (15) yields a solution V that is above the
bankruptcy threshold V R

b . The counterfactual absence of bondholder recovery in bankruptcy
is due to the assumption that the manager can perfectly control the instantaneous volatility
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νt of Vt. Relaxing this assumption, for example by limiting the possible choices of νt, will
give rise to partial recovery for bondholders but the qualitative nature of the optimal LPP in
Proposition 1 will remain.16 A robust economic consequence of risk shifting is that value is
transferred from bankrupt into solvent states, so despite the fact that the exact form of the
optimal LPP in equation (14) is not realistic, it highlights in a qualitative way an important
aspect of this class of models. Another possibility for incorporating partial recovery in a
structural way is to include in managerial compensation a bankruptcy penalty of the form
δm(Vb − VT )+ where δm is a positive constant. This generalization of the model would
produce a set of insolvent states where firm value is positive and another set of insolvent
states where firm value is zero. We do not further examine either of these modifications of
our model in order to maintain clarity in the exposition of our main economic findings.

To provide a benchmark terminal LPP we now consider the manager’s choice if given
compensation comprised solely of a proportion p̂ in the stock of an unlevered firm, that is
if the manager solves

sup
VT

E [U(p̂(1− τ)VT )] (16)

subject to V0 = E(ξT VT ). We refer to this problem as the “Unlevered Benchmark” and, to
ensure that the present values of compensation in problems (13) and (16) are the same, we
set the equity proportion p̂ to solve p̂(1−τ)V0 = pSR

0 +e−rT A. The optimal state-contingent
LPP can be written as V M

T = (λξT )−1/γ where λ is identified by solving V0 = E(ξT V M
T ).

The value function from the Unlevered Benchmark is at least as high as in the second stage
problem (13) because it is possible to run the unlevered firm so that the manager’s stake
p̂(1 − τ)VT exactly matches the optimal terminal compensation A + p(1 − τ)(V R

T − V R
b )+

from the R model.
Figure 2 contrasts the manager’s behavior in the second stage problem to that in the

Unlevered Benchmark by plotting terminal compensation against the terminal value of the
pricing kernel. The two compensation schedules cross twice, at the points ξ and ξ∗ > ξ

(not displayed), consistent with the fact that they have the same present value. The figure
shows that since the manager optimally sets V R

T = 0 when ξT > ξ, he receives the minimal
compensation A in those states. To achieve the higher utility associated with the Unlevered
Benchmark solution he would like to sell claims from states in which the pricing kernel is
high (i.e. when ξT > ξ∗), but this would require him to sell the fixed component of his pay
which is not permitted. Figure 2 thus highlights that the important friction generating asset
substitution derives from the assumption that the manager cannot borrow against the cash
component of his compensation using stocks or bonds.

16We have analyzed the simple class of policies where the manager can choose between only two values
of volatility νt ∈ {ν, ν}. Low volatility ν is chosen unless Vt is below a critical value V ∗, in which case the
manager sets volatility to its high level ν. This less flexible control does not allow the manager to achieve the
optimal terminal LPP described in equation (14). Simulations using the restricted policies, however, show
that the probabilities of terminal LPP being in a region near zero or above V ∗ are relatively high, and the
probability of being just below V ∗ is low. This verifies that terminal payouts similar to the optimal LPP
achieved in complete markets can be obtained even if perfect control of volatility is not possible.
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We now explicitly characterize risk taking behavior in the second stage:

Proposition 2 For any time t ∈ [0, T ), the manager’s optimal volatility choice is given by

νR
t =

(
V − V R

b +
A

p(1− τ)

)
e−(r+α2/(2γ))γ∗(T−t)

(
ξt

ξ

)−1/γ

×
[
α

γ
N (d(t, γ∗, ξt/ξ)) +

n(d(t, γ∗, ξt/ξ))√
T − t

]
1

V R
t

+
(

V R
b − A

p(1− τ)

)
e−r(T−t) n(d(t, 1, ξt/ξ))

V R
t

√
T − t

, (17)

where γ∗ = 1− 1/γ,

d(t, x,m) =
(
− lnm + r(T − t)− α2

2
(1− 2(1− x))(T − t)

)
/(α

√
T − t),

N (.) and n(.) are the standard normal cumulative distribution and density functions, and
where the present value at time t of LPP is given by

V R
t =

(
V − V R

b +
A

p(1− τ)

)
e−(r+α2/(2γ))γ∗(T−t)

(
ξt

ξ

)−1/γ

N (d(t, γ∗, ξt/ξ))

+
(

V R
b − A

p(1− τ)

)
e−r(T−t) N (d(t, 1, ξt/ξ)). (18)

Risk choice is illustrated in Figure 3, where time-t LPP volatility νR
t is plotted against

the present value of LPP V R
t /L for two cash-to-stock levels. In the graph, we also plot

the standard deviation chosen in the Unlevered Benchmark which can be shown to be the
constant νM = α/γ. We see that when V R

t /L is low firm volatility is above νM . When
stock is deep out-of-the-money, asset substitution incentives become very strong and the
firm becomes extremely risky. As V R

t /L increases, firm stock moves in-the-money and the
benefit of deviating from the Unlevered Benchmark strategy falls. In the limit when stock
is deep in-the-money, the manager volatility choice converges to the Unlevered Benchmark
volatility. This is intuitive because in these states stock is the dominant component of
compensation and leverage ratios are low. The graph also shows that volatility choice is
not necessarily a monotonic function of V R

t /L. In particular, if the ratio of cash-to-stock
is relatively low we observe a U-shaped function whereby volatility can be reduced below
even the Unlevered Benchmark level. This reflects the fact that compensation can actually
induce conservative behavior when the manager acts to keep his firm’s stock in-the-money
and secure final pay above A.

3.2 Security Valuation in the R Model

To value bonds in the R model, recall that at the terminal date the firm will either be
solvent with V R

T ≥ V > V R
b , or insolvent with V R

T = 0. Bondholders will thus receive the
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face value L when the firm is solvent and zero otherwise, and equation (5) produces the
bond price formula

BR
t = Le−r(T−t) N (d(t, 1, ξt/ξ)) (19)

for any t ∈ [0, T ], where the function d is defined in Proposition 2. The last term in this
expression is the risk-neutral probability that the firm will be solvent and, when discounted,
represents the value of an Arrow-Debreu security paying $1 in the solvent states ξT < ξ.
This observation accounts for the particularly simple form of the pricing function, which
discounts the face value payments bondholders receive in non-bankrupt states. Bond yields
in the model can be immediately deduced from the bond price and are given by

yR
t ≡ − ln

(
BR

t /L
)

T − t
= r − 1

T − t
ln(N (d(t, 1, ξt/ξ))). (20)

The corresponding credit spread is

ρR
t ≡ yR

t − r = − 1
T − t

ln(N (d(t, 1, ξt/ξ))). (21)

In addition to its effect on credit spreads, asset substitution also has a direct impact on
bond return volatility. Using Itô’s Lemma, the instantaneous standard deviation ηt of the
bond return can be shown to be

ηR
t =

1√
T − t

n(d(t, 1, ξt/ξ))
N (d(t, 1, ξt/ξ))

. (22)

To value stock in the R model, recall that stockholders are paid zero in insolvent states
and (1 − τ)(V R

T − V R
b ) in the solvent states (see equation (8)). Proposition 1 shows that

V R
T is zero in insolvent states ξT > ξ and V R

T ≥ V > V R
b in solvent states ξT ≤ ξ, hence

SR
T = (1− τ)(V R

T −V R
b )+ = (1− τ)(V R

T −V R
b 1ξT≤ξ). This implies that the stock payout can

be replicated by a long position in (1 − τ) units of a claim to V R
T and a short position in

(1− τ)V R
b /L units of the firm’s bond. Assuming no arbritage, equity price in the R model

must be given by

SR
t = (1− τ)

(
V R

t − V R
b

BR
t

L

)
. (23)

Application of Itô’s Lemma to this equation identifies the volatility of stock returns, given
by

σR
t =

νR
t V R

t − ηR
t V R

b BR
t /L

V R
t − V R

b BR
t /L

. (24)

3.3 Cross-sectional Implications of the Second Stage Problem

We now describe how, in a cross-section of firms, the R model relates leverage ratio L/(SR
0 +

L) and the model parameters (A, p, L, V0, α, γ, τ, r, T ) to endogenously determined credit
spreads, stock return volatilities, and corporate debt hedge ratios.

We begin with the following proposition.
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Proposition 3 For any admissible parametrization (α, γ, τ, r, T ), credit spreads in the R
model may be expressed as

ρR
0 = f

(
A

pSR
0

,
L

SR
0 + L

,α, γ, τ, r, T

)
(25)

where f is a increasing function of both cash-to-stock A/(pSR
0 ) and leverage ratio L/(SR

0 +L).

This proposition shows that the relevant incentive for risk shifting in the R model is mea-
sured by the level of cash compensation A relative to the managerial stockholdings pSR

0 . As
a result, the impact of the manager’s compensation parameters (A, p) on credit spreads can
be summarized by the single measure cash-to-stock A/(pSR

0 ).17 The proposition also shows
that it is not necessary to directly observe the present value of the LPP process V0 in order
to determine credit spreads. Proposition 3, therefore, makes the clear empirical prediction
that in a cross-section of firms credit spreads should be positively related to cash-to-stock
when controlling for leverage ratio and other characteristics of the firm and its manager.
This prediction forms the main hypothesis in the empirical analysis of Section 5.

In order to understand the economic mechanism driving Proposition 3 we undertake a
simple comparative static exercise. We consider firms that conform to the R model and have
in common the exogenous parameters (α, γ, τ, r, T ). We then analyze two subsamples, the
first with a common high level of cash-to-stock and the second with a common low level of
cash-to-stock. For each subsample, we vary the face value of of debt L and the initial LPP
V0 and, by utilizing the valuation formulas of Section 3.2, numerically depict equation (25)
which relates leverage ratios and credit spreads.

Parameters are calibrated as follows: We consider debt with an initial maturity of T = 5
years. The riskless rate r = 5% p.a. is comparable to its recent level in US markets. The
market price of risk is set to α = 0.33, consistent with a risk premium of 7% p.a. and
market volatility of 21% p.a. The tax rate is set to τ = 30% which approximates the
marginal statutory rate for a fully taxable US corporation. The cash-to-stock ratios are
A/(pSR

0 ) ∈ {0.02, 0.10}, which are the median and 90th percentile levels in our sample of
US-based firms (see Section 5). The risk aversion parameter γ = 1.1 is chosen so that for a
firm run by a manager with the median cash-to-stock A/(pSR

0 ) = 0.02 and with a leverage
ratio equal to the median value of L/(SR

0 + L) = 26.8%, the stock volatility approximately
equals the sample median value of σR

0 = 30%. A manager with γ = 1.1 is slightly more risk
averse than a manager having logarithmic utility.

Panel A of Figure 4 presents the relationship between credit spreads and leverage ratios
for this cross-section of firms and Panel B shows how leverage ratios of the firms relate to

17In a cross-section of firms, a manager with a fixed cash payment A and a fractional claim p to a large firm
will behave differently from one with the same A and p but employed at a small firm. The proof of Proposition
3 shows that the scaling A/(pSR

0 ) appropriately accounts for the effect of firm size on manager behavior. In
theory, other scalings like A/(pL) or A/(pV0) can also provide sufficient statistics for compensation terms
and a result similar to Proposition 3 also holds when these ratios replace the ratio A/(pSR

0 ). We choose stock
price as a scaling parameter because it is consistent with our interpretation of A/(pSR

0 ) as a cash-to-stock
ratio.

16



equity volatility. The figure shows that given any leverage ratio, increasing cash-to-stock
elevates credit spreads. To understand this result, consider a firm with median cash-to-
stock A/(pSR

0 ) = 0.02, a given leverage ratio L/(SR
0 + L), and the corresponding credit

spread ρR
0 . Assume that cash-to-stock for this manager increases to A/(pSR

0 ) = 0.10, for
example by increasing cash compensation from A to 5A while holding constant p and SR

0 .
If the LPP V0 is held constant, the immediate impact of this change in A is to increase the
manager’s risk shifting incentive, consistent with the intuition that greater insurance against
bad outcomes reduces effective risk aversion.This behavior transfers value from bondholders
to stockholders. Bond prices would thus decrease, causing credit spreads to increase. Stock
prices would also increase, so if we wish to consider the impact of increasing cash-to-stock on
credit spreads holding SR

0 constant a reduction in V0 is necessary. This will further increase
credit spreads, because holding L constant and reducing the time-0 value of the LPP results
in higher bankruptcy probabilities and higher spreads.

Panel A of Figure 4 also illustrates that for each level of cash-to-stock, increasing the
leverage ratio in the R model has a positive impact on credit spreads, as one would expect.
In addition, the figure shows that spreads generated by the R model can be substantially
higher than those from a model where the manager does not risk shift and LPP volatility
is constant. In the appendix, we formally develop an alternative “M model”, which is a
version of the Merton (1974) model incorporating taxes and bankruptcy costs. We set the
proportional bankruptcy cost to its maximal value δf = 100% to generate an upper bond for
the M model’s prediction of credit spreads. Each firm in the R model subsample with median
A/(pSR

0 ) = 0.02 is matched to an M model firm with identical equity volatility σM
0 = σR

0 .
This is achieved by appropriately choosing the M model’s LPP volatility. The curve labeled
“M model” in Panel A of Figure 4 plots credit spreads for this set of matching firms. The
figure shows that, at all leverage levels, spreads in the R model with median cash-to-stock
are larger than spreads in the M model. The R model can, therefore, be parameterized to
address the main shortcoming of traditional structural models pointed out by Eom, Helwege,
and Huang (2004) namely that predicted spreads are too low relative to observed spreads.
Note that the R model does not mechanically increase spreads by simply elevating LPP
and stock risk. In fact, equity volatility for each matched pair from the R and M models
are by construction identical and yet spreads are higher in the R model. For example when
leverage is 50%, the R model’s manager is running the firm so that equity volatility is as in
the M model (about 30%) but spreads are 50 bp larger in anticipation of future risk shifting
that transfers value from bondholders to stockholders. 18

18The basic economic mechanism that inflates credit spreads in the R model is that the manager can
undertake non-contractible activity that decreases bondholder value. In the model of Collin-Dufresne and
Goldstein (2001), managers in a Merton (1974) setting have the option to issue pari-pasu debt at an inter-
mediate date. Bondholders realize that this action may increase the probability of bankruptcy and dilute
their payments in insolvent states. They therefore pay less for debt issued by a firm that can recapitalize in
the future than for the debt of a firm that is restricted from issuing an equal or senior claim. An interesting
extension of our model would allow managers to optimally recapitalize at an intermediate date. Our intuition
is that this activity would serve to further inflate credit spreads in the R model.
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Structural models provide practical guidance for hedging debt and, perhaps more im-
portantly, for hedging credit-sensitive derivative securities like credit default swaps. The
hedge ratio for debt relative to equity is given by the closed form formula ηR

0 BR
0

σR
0 SR

0
. Figure 5

compares bond/stock hedge ratios for our two parameterizations of the R model and for two
parameterizations of the M model. The figure shows that the models produce very different
hedge ratio. Cash-to-stock therefore is an important determinant of hedge ratios and fail-
ing to incorporate information on compensation terms can result in poor quality hedging.
In addition, the figure also highlights that hedge ratios can provide additional informative
empirical moments for tests of structural models.19

4 The Optimal Leverage Choice

In this section, we analyze the manager’s leverage choice in the first stage optimization
problem (12), imposing rational expectations. As in Leland (1998), leverage is chosen with
correct anticipation of future operating decisions, and securities are fairly priced beginning
from the instant the leverage commitment is made.

We begin our study of the manager’s optimal leverage choice by analyzing the objective
function after the manager has pre-committed to an arbitrary debt face value, L. Figure
1 describes the sequence of events that follows the commitment. Debt is sold at its fair
market value and the proceeds are used to repurchase outside stock, a refinancing activity
that increases the manager’s equity share p as given by equation (11) and ultimately alters
his second stage behavior. The manager’s choice of the LPP risk process νR

t thus depends
on debt and equity prices, but since debt and equity prices depend on the managers ex-post
LPP choice we have a feedback loop in our model. We formally address this interdependency
in the following proposition which establishes the existence of a unique rational expectations
equilibrium.

Proposition 4 Fix a leverage level L > 0 and assume that

p0 < 1−
(

BR
0

CR
0

)

p=1

(26)

where the term
(

BR
0

CR
0

)
p=1

is the ratio of bond prices to the firm free cashflow value with

no outside investors. Then there exists a unique rational expectations equilibrium in which
bondholders and outside equity holders correctly anticipate both the manager’s risk choice
νR and the final equity proportion p ∈ [p0, 1] that is consistent with equation (11). In this
equation B0 = BR

0 as specified in equation (19) and C0 = BR
0 + SR

0 where SR
0 is given by

equation (23).

The inequality (26) in the proposition rules out cases where the debt issuance completely
19Schaefer and Strebulaev (2004) compare observed to predicted hedge ratios for bonds and find support

in the data for the Merton (1974) model.
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eliminates the holdings of outside shares. For instance, this condition is satisfied when p0 is
small or T is large.

Besides establishing existence of the equilibrium, the proof of the proposition provides
guidance for constructing a numerical procedure to solve the first-stage optimal capital
structure problem. Given any candidate debt level L, a corresponding manager equity share
p can be found using an iterative process. The derived utility of compensation can then be
calculated. Hence, a simple univariate unconstrained optimization routine can be employed
to determine the optimal debt choice.

Managers trade off two opposing effects when selecting firm leverage. On one hand, their
wealth is increasing in leverage due to the tax shield. Managers are risk averse, however,
and they internalize the fact that their leverage decision will pre-commit them to risk
shift, thereby penalizing their derived utility.20 The purpose of our numerical exercise is to
quantify which of the two forces is dominant under various compensation terms.

The top panel in Figure 6 depicts the relationship between optimal leverage and the cash-
to-stock ratio of the manager’s compensation, A/(pSR

0 ).21 This relationship is U-shaped.
The cash component of compensation provides the manager with insurance, so when A/pSR

0

is high the manager’s effective risk aversion is relatively low. In such cases he perceives the
cost of increasing the face value of debt to be low. Optimal leverage is, therefore, increasing
in A/pSR

0 in this region. The bottom panel in Figure 6 relates credit spreads for newly issued
debt to A/pSR

0 . This function is upward sloping and the magnitude of credit spreads are
large when A/pSR

0 is large. This implies that managers with compensation that is relatively
safe are issuing very risky debt.

An interesting implication of Figure 6 is that when the cash component of compensation
is low, managers choose to issue high levels of safe debt. This behavior can be understood
by considering the special case in which A/pSR

0 = 0. Managers will avoid running their
firm into bankruptcy at all costs, since their marginal utility is infinite at zero wealth. It
seems counterintuitive that they would then add leverage. This intuition does not account,
however, for the fact that they can avoid bankruptcy by controlling volatility to ensure firm
value exceeds a fixed lower bound at the terminal date. Following this logic, when A/pSR

0

is low, the manager’s second stage choice of LPP results in a firm with low risk relative to
the case where A/pSR

0 is high (see Figure 3). This behavior has the effect of weakening the
risk-based disincentives of debt. As a result, these firms will have relatively high leverage
ratios and, simultaneously, low asset risk. Such endogenous substitution between leverage
and risk choice is to be expected in any model with risk-averse managers. The complete

20Bankruptcy costs do not affect optimal leverage choice because risk-shifting causes firm value to be zero
in insolvent states. A more general version of the model that incorporates a bankruptcy penalty for the
manager would give rise to partial recovery, in which case optimal debt would trade off tax shields with
bankruptcy costs and risk aversion.

21The technical appendix shows that the first stage model exhibits an homogeneity property supporting
the approach of Figure 6 which represents leverage ratio and credit spreads as functions of cash-to-stock
after the issuance of debt. The figure is qualitatively unchanged when values of the fixed parameters are
changed within a reasonable range.
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market assumption in the R model, which is analogous to allowing unrestricted choice of
LPP volatility, makes this behavior stark in our model, but the underlying economic forces
will also be present in models where this assumption is relaxed.22

Panel A of Figure 6 also illustrates that optimal leverage ratios vary dramatically when
risk shifting incentives change. This contrasts with the analysis in Leland (1998), where
the impact of asset substitution on optimal leverage is low. Another important empiri-
cal implication of the model is that low optimal leverage ratios can be produced. With a
parametrization similar to Leland (1998) our managers can optimally choose leverage ratios
on the order of 20% or less, while in Leland optimal leverage ratios are more typically in
the 50% range. Panel B shows that at these low leverage levels, credit spreads can vary
significantly. For example, we see that if a manager chooses to issue debt with a face value
around 0.2, implying a debt-to-value ratio for the levered firm on the order of 20%, the
credit spread can be as low as 2% or as high as 15%, depending on the cash-stock mix in
compensation. This highlights that compensation terms interact with the choice of lever-
age and asset substitution, so that the riskiness of debt is not only determined by firm
characteristics but also by observable aspects of the manager’s pay.

5 Does Managerial Compensation Influence CDS Rates?

Figure 7 provides a visual summary of firm-year average CDS rates as a function of prior
year-end leverage ratios for our sample. As predicted by typical structural models (e.g. Mer-
ton (1974)), CDS rates are generally increasing in the leverage ratio proxy. The figure also
shows that significant cross-sectional variation in CDS rates remains even after controlling
for leverage. Our empirical analysis addresses whether cross-sectional variation in risk shift-
ing motives, as made precise in the R model, can provide a plausible economic mechanism
to explain this additional variability.

The main result in this section is the finding of a robust positive association between
cash-to-stock and CDS rates in a sample of US-based firms. This new empirical finding
provides direct support for the R model prediction illustrated in Panel A of Figure 4 and
formalized in Proposition 3.

22For example, we have considered a setting in which the manager chooses debt levels in the first stage
and makes a one-time second stage decision regarding firm risk. The risk choice is limited to be one of two
possible values νl or νh > νl. Managers cannot avoid bankruptcy using this limited set of policies since the
resulting LPP is log-normal, so low debt values are chosen when A/pSR

0 is very small. In an unreported
numerical exercise we verify, however, that managers with low (high) levels of A/pSR

0 issue relatively large
amounts of debt and choose low (high) LPP volatility, resulting in low (high) credit spreads. At moderate
levels of A/pSR

0 low debt levels are chosen. The U-shape in Figure 6 is, therefore, not exactly replicated, but
the qualitative cross-sectional predictions remain unchanged.
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5.1 Data

To construct our sample, we begin with a database of daily CDS rates collected by the
Markit Group during the period January 2, 2001, to December 21, 2006.23 We follow the
common practice of using the five-year maturity contract whose liquidity is high relative
to other maturities (see, for example, Berndt et al. (2005)). In addition, we restrict our
attention to senior unsecured debt of US-based issuers to minimize legal and operating
environment heterogeneity. The database includes companies that default during this time
period (e.g., Enron), thus mitigating the effect of survivorship bias. Using this data, we
calculate a CDS rate for each firm-year by averaging the end-of-month observations.

Accounting, compensation, and financial data is obtained by manually linking the Markit
database to the merged CRSP/Compustat database using company names. All firms in our
sample are required to have outstanding publicly-traded ordinary common shares (CRSP
share code 10 or 11). Compustat’s ExecuComp database provides information for each CEO-
company-year combination on salary, equity holdings, option holdings, and total shares
outstanding. We then divide equity and option holdings by total shares outstanding to
create proportional ownership of stock ps and options q. To create a single measure of a
manager’s effective stock ownership we calculate the proxy p = ps + ∆q, where ∆ is the
hedge ratio of the manager’s option holdings, calculated using the procedures of Core and
Guay (2002). The method of Core and Guay (2002) is also used to calculate average option
exercise prices K for each CEO, from which we calculate the moneyness K/S using end-of-
year stock prices. ExecuComp provides information for most of the CEOs in our dataset on
age, hiring date, and the date when the title CEO first applies. In cases where any of these
three variables were missing, the SEC-edgar or ZoomInfo.com websites were searched using
the CEO and company names from ExecuComp. CEOs are considered newly hired (New
CEO = 1) if they are within one calendar year of their appointment date. Debt proxies
for each sample firm are defined by the sum of debt in current liabilities and total long-
term debt (Compustat industrial annual data items 9+34). This debt proxy is converted to
a market leverage ratio (L/(S + L)) using calendar year-end CRSP market capitalization
values. Sales, return on assets (ROA), and equity returns r for each fiscal year are taken
directly from ExecuComp. Collateral is calculated as the ratio of inventory plus PP&E
to assets (Compustat data items (3+8)/6). Book-to-market B/M is calculated using the
procedure outlined in Daniel and Titman (1997). To measure the current level of stock
volatility we calculate the standard deviation of daily stock returns each year at the firm
level using CRSP returns from the fourth quarter. Also at the firm level, we calculate
the ratio of average monthly CRSP excess returns to their standard deviation during each
calendar year. This proxy for the firm’s Sharpe ratio SR is, in principle, time invariant. To
improve its precision we calculate for each firm-year the lagged moving five-year average.
The Gompers, Ishii, and Metrick (2003) “G-index” is obtained from the website of Andrew

23Other studies that utilize the Markit database include Berndt, Lookman and Obreja (2006), Duarte,
Longstaff and Yu (2007), and Yu (2006).
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Metrick and linked to our database using ticker symbols. The index G is an indicator of
the balance of power in a takeover event between shareholders and managers ranging from
zero for shareholder-friendly firms to 24 for manager-friendly firms.24 Simulated marginal
corporate tax rates before financing are obtained from the website of John Graham.25

Missing simulated tax rates are filled in using the procedure of Graham and Mills (2008).
Our resulting base sample consists of 608 firms.

Panel A of Table I summarizes our raw data on the cross-section of firm characteristics.
Firm average CDS rates have a mean of 153 bp and a median of 70 bp, from which we infer
that the distribution is right skewed. Average market leverage, sales, market capitalization,
book-to-market and return-on-assets are close to comparable figures for S&P 500 firms
during the same period.

Panel B of Table I summarizes the CEO data. Average salary, stock holdings excluding
stock held indirectly through options (ps), and shares underlying option holdings (q) are
approximately equal to the averages for S&P 500 firms. Effective stock ownership p has
a mean that is above that of ps and below that of ps + q as would be expected given its
definition as p = ps + ∆q. Average CEO age, tenure, and time with the company prior to
becoming CEO (“non-CEO tenure”) are almost identical to their counterparts for S&P 500
firms during the same time frame.

5.2 Empirical Approach

Equation (25) predicts a positive relation between cash-to-stock and credit spreads in the
cross-section even after controlling for leverage ratios and other firm-CEO characteristics.
Linearized versions of this equation where CDS rates replace credit spreads are the sub-
ject of our empirical investigation.26 More specifically, we examine the prediction that the
coefficient on cash-to-stock is positive in the linear relation

ln (CDS)it = β0 + β1 ln
(

A

pS

)

it

+ β2

(
L

S + L

)

it

+ β3 (controls)it + εit (27)

where εit is mean zero noise.27

To calculate empirical proxies for our main variable, cash-to-stock, information on each
of its three components (A, p, S) is required. We identify S with the current market capital-
ization of the firm’s outstanding common stock. The variable A represents the minimum pay
of a manager, and a natural proxy for this component of CEO compensation is salary. When

24The G index is calculated using information on 24 antitakeover provisions. We thank Andrew Metrick
for making this data available at the website http://www.som.yale.edu/faculty/am859/.

25We thank John Graham for making this data available at the website http://www.duke.edu/ jgraham.
26Consistent with the fact that a CDS is an insurance against credit risk, it can be shown that the CDS

rate is an increasing function of credit spreads in the context of the R model. As a result, CDS rates can

also be expressed as CDS = g
(

A
pSR

0
, L

SR
0 +L

, α, γ, τ, r, T
)

for a function g whose partial derivatives have the

same sign as the function f in equation (25).
27The logarithmic transforms mitigate the effects of right skewness in the CDS rate and compensation

data.
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CEO compensation does not include options the CEO’s proportional holdings of common
stock provide an appropriate measure of p. When options are present, they are optimally
exercised only when in-the-money. They therefore have no impact on minimum pay A but
can have a significant impact on stock ownership. To account for this effect, we make use
of effective stock ownership p defined in Section 5.1.

The remaining terms in equation (27) are leverage ratio and controls for the parameters
(α, γ, τ, r, T ) in the R model. In all regressions we include year fixed effects, so we do not
proxy for the risk-free rate r which is constant in the cross-section. Controlling for T is
likely not critical since we make use of only five-year CDS rates. The parameter τ in the R
model represents the marginal corporate tax rate. To control for cross-sectional variation in
this parameter, we utilize the simulated marginal before financing tax rate proxy of Graham
(2000).28

In order to proxy for the parameter α in our cross-section of firms it is necessary to
account for the presence of idiosyncratic risk. The technical appendix shows that all pricing
formulas from the R model are valid in the presence of idiosyncratic risk if the market price
of risk α is replaced by the firm specific price of risk αi. The instantaneous Sharpe ratio
of the stock (µR

it − r)/σR
it , where µR

it is the instantaneous expected return, identifies αi. We
therefore utilize the Sharpe ratio SR as a control for heterogeneity in the firm-specific price
of risk.

We do not utilize a direct proxy for the risk aversion γ of the CEO but argue that
omitting risk aversion from regression (27) will bias against finding a positive relationship
between cash-to-stock and CDS rates. It is intuitive that for a given compensation con-
tract, more risk averse managers run safer firms and, as a result, spreads are lower. This
prediction can be made rigorous in the context of the R model. Managerial risk aversion
can also affect compensation terms. In the optimal compensation problem with moral haz-
ard of Garen (1994), more risk averse managers are granted relatively more performance
insensitive pay (i.e., higher cash-to-stock). This is because stock pay is more costly to the
risk-neutral principal than salary pay when managerial risk aversion is high. Summarizing
these two arguments, risk aversion is likely to be positively correlated with cash-to-stock
and negatively correlated with CDS rates. Omitting the parameter γ will, therefore, cause
the coefficient on cash-to-stock to be biased downward.

5.3 Regression Specification

The parameters A and p in the R model are fixed over the tenure of the manager and,
as a result, the empirical predictions from the R model are inherently cross-sectional. To
assess equation (27) we therefore interpret our CEO-firm panel dataset as providing a
large cross-section. To account for the possibility of correlated errors from our pooled OLS

28Before financing marginal rates are relevant in the context of the R model because interest tax shields
are assumed to be deducted from the unlevered LPP.
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regressions we cluster at the CEO-firm level.29 In all regressions, the dependent variable
is the logarithm of the average of month-end CDS rates for each CEO-firm within each
calender year 2001-2006. Our benchmark regression is

ln (CDS)i,t = β0 + β1 ln(A/(pS))i,t + β2(L/(S + L))i,t + β3(SR)i,t + β4τi,t

+ β5 ln(Sales)i,t−1 + β6 ln(1 + ROA)i,t−1 + β7 ln(1 + r)i,t−1

+ β8 ln(B/M)i,t−1 + β9(Div Dummy)i,t−1 + β′10(Year Dummy)i,t + εi,t. (28)

The logarithm of the ratio of CEO salary to effective shareholdings A/(pS)i,t, the leverage
ratio L/(S +L)i,t, the Sharpe ratio SRi,t, and the marginal tax rate τi,t are from the end of
the calendar year preceding the calendar year in which CDS rates are observed. Our timing
convention ensures that this information is available to investors when CDS rates are set.

Regression (28) includes controls for factors outside the R model. Sales, ROA, equity
return, book-to-market, and an indicator for dividend payment represent potential economic
determinants of both compensation terms (e.g., Core et. al. (1999), Fenn and Liang (2001))
and credit spreads (e.g., Campbell and Taksler (2003), Ortiz-Molina (2006)). To isolate the
direct impact of cash-to-stock in our regressions, these variables are lagged by one year
relative to the date at which CEO salary and stock holdings are measured. Year dummy
variables are also included in all regressions to account for, among other effects, time-
variation in default risk premia (Berndt et. al. (2005)) and possible trends in CEO pay
terms (Gabaix and Landier (2008), and Murphy and Zábojńık (2006)).

5.4 Results

Table II presents the results from regression (28) in column (i) and other related specifica-
tions in columns (ii)-(vii). The statistically significant positive coefficient on cash-to-stock
in all regression specifications provides empirical evidence for the positive association be-
tween cash-to-stock and CDS rates formalized in Proposition 3. The economic significance
of cash-to-stock is also strong. The logarithms of both variables are used in the Table II
regressions, so the regression coefficient on ln(A/(pS)) represents the percentage change in
CDS rates that result from a one percent change in cash-to-stock. This coefficient ranges
from 0.038 to 0.060, so a change in A/(pS) from the 10th percentile to the 90th percentile
would result in a change in CDS rates on the order of 13% to 21%.

The coefficient on leverage ratio is also positive in all regressions, consistent with the
prediction of Proposition 3 and with the typical prediction of structural models (e.g., Mer-
ton (1974)). The signs of the coefficients on Sales, ROA, stock return, and book-to-market
in column (i) are consistent with those reported in studies of corporate bond spread de-
terminants (e.g., Campbell and Taksler (2003), Daniel, Martin, and Naveen (2005), and

29Our standard errors therefore allow for the possibility of correlation among the regression errors for each
CEO-firm time-series in our panel. An alternative is to ignore CEO turnover and cluster at the firm level.
Both levels of clustering produce similar standard errors.
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Ortiz-Molina (2006)). The marginal tax rate is negatively related to CDS rates. This find-
ing is inconsistent with the R model (and the M model) where a higher tax rate τ leads
to higher spreads. A possible explanation for the negative sign on the marginal tax rates
is that it is positively correlated with profitability and less noisy than ROA. The negative
coefficient on the dividend dummy variable is consistent with the interpretation that divi-
dend payers are less financially constrained than dividend non-payers (e.g., Hennessy and
Whited (2007)).

Column (ii) reports coefficients from an empirical specification in which the cash-to-
stock variable is replaced by stock volatility. This regression is motivated by the Merton
(1974) model and is similar to specifications considered by Campbell and Taksler (2003). As
expected, the coefficient on stock volatility is positive and significant. Column (iii) presents
a regression that includes both cash-to-stock and stock volatility. The coefficient on cash-to-
stock remains strongly significant in this regression, indicating that the R model provides
incremental insight relative to the Merton model for pricing default sensitive securities.

5.5 Endogeneity

The coefficient on cash-to-stock in regression (28) will be consistently estimated using pooled
OLS only if endogeneity is not an issue, that is only if the error is uncorrelated with
the cash-to-stock measure (i.e., E(ln(A/(pS))itεit) = 0). An important potential source of
endogeneity is the omission of a variable that jointly impacts CDS rates and cash-to-stock.
Although our controls in regression (28) were chosen to minimize the likelihood of bias,
we consider in this subsection endogeneity due to other additional economically motivated
variables.

CEO Turnover. CEO turnover may jointly impact CDS rates and cash-to-stock. Clayton,
Hartzell, and Rosenberg (2005) document that, due to learning of managerial skill, CEO
turnover leads to an increase in a firm’s equity volatility. Turnover should therefore reduce
bond values, a conjecture that is supported by Adams and Mansi (2008) in a sample of US
firms. CEO turnover is also likely to impact our measure of cash-to-stock. Newly hired CEOs
have not accumulated stock or option grants and this will mechanically lower their cash-
to-stock relative to CEO who have been in place for a longer period. Consistent with this
intuition, unreported results show a positive association between turnover and cash-to-stock
in our sample. These arguments show that omitting turnover from regression (28) can lead
to a positive bias in the cash-to-stock coefficient. Column (iv) of Table II shows, however,
that this coefficient remains both statistically and economically positive after including
turnover (New CEO) as a control.

Corporate Governance. Corporate governance in general, and more specifically anti-
takover provisions, may be responsible for the joint determination of CEO pay terms and
credit spreads. Antitakover provisions may mitigate the disciplining function of the labor
market on the risk averse manager. Bertrand and Mullainathan (2003) provide empirical
evidence that such managers can choose to lead a “quiet life” by reducing firm risk, and
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increasing white-collar pay. A reduction in cash flow variability and bankruptcy probability
causes credit spreads and CDS rates to be low. In fact, Klock, Mansi and Maxwell (2005)
provide cross-sectional evidence that increased antitakeover protection leads to lower credit
spreads. CEOs who are sheltered from the market for corporate control may also have the
power to influence CEO pay terms. Fahlenbrach (2008) shows that CEOs at firms that are
relatively more insulated from the threat of takeover have high levels of pay but low frac-
tional ownership (i.e., they have high cash-to-stock). Ignoring the impact of antitakeover
provisions may, thus, lead to a downward bias in the coefficient on cash-to-stock. To address
this possibility, we add to regression (28) the Gompers, Ishii, and Metrick (2003) “G-index”.
Column (iv) of Table II shows that the magnitude of the cash-to-stock coefficient remains
statistically and economically significant in the presence of the G-index.30

Exogenous Firm Risk. In a setting where, unlike in the R model, firm risk is exogenous
and constant, it is conceivable that the volatility of the firm’s underlying assets is related
to both cash-to-stock and CDS rates. Garen (1994) argues that in the context of a simple
optimal contracting model pay-performance sensitivity should be decreasing in firm risk and
salary should be increasing. Aggarwal and Samwick (1999) show empirically that executive
pay-performance sensitivity is decreasing in stock volatility. In unreported results, we verify
that cash-to-stock is positively correlated with equity volatility in our sample. In the Merton
(1974) model credit spreads are an increasing function of underlying asset risk. Campbell
and Taksler (2003) provide empirical support for this relationship in a sample of US firms,
and the regression reported in Column (ii) of Table II showed this to be the case for CDS
rates in our sample. We conclude that omitting proxies for risk can induce an upward bias
in the coefficient on cash-to-stock. This is confirmed by regression (iii) in Table II where we
include stock volatility as a direct proxy for firm risk. The table shows, however, that the
coefficient on cash-to-stock remains positive and significant.

Industry Fixed Effects. In an attempt to control for unobserved omitted variables, we
consider augmenting regression (28) with industry fixed effects. Such specifications account
for potential endogeneity due to industry-specific, time-invariant components in the errors.
As an example, suppose that industries differ with respect to the liquidity of firms’ real
assets in bankruptcy (e.g., Shleifer and Vishny (1992)). All else equal, firms in high liq-
uidity industries are likely to have lower CDS rates, due to the higher recovery rates for
bondholders. Such industries may, for related reasons, also provide CEOs with better out-
side options. An optimal compensation contract that internalizes the benefit to managers of
outside options is likely to include relatively less explicit safe pay and more risky pay, lead-
ing to lower cash-to-stock. In this setting, omission of an asset liquidity proxy would lead
to an upward bias in the coefficient on cash to stock. We make use of industry fixed effects

30In unreported results, we find that in our sample higher levels of the G-index are associated with lower
CDS rates and higher cash-to-stock. This confirms the findings of Klock, Mansi, and Maxwell (2005) and
Fahlenbrach (2008). We find that in the subsample of 2305 CEO-firm-years used to undertake the regression
reported in Column (vi) of Table II, dropping the G-index produces a lower coefficient on cash-to-stock.
This unreported result confirms the economic argument for a downward bias when antitakeover provisions
are ignored.
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to serve this purpose and at the same time control for other unobserved industry-specific
sources of endogeneity.31 Regressions (v) and (vi) in Table II re-estimate the coefficients
reported in columns (i) and (iv) of Table II with the inclusion of industry fixed effects. The
coefficients reported in the first row of the table are generally less positive than their coun-
terparts in columns (i) and (iv) as would be expected if the asset liquidity effect is at play
in our sample. These results show that cash-to-stock nevertheless remains as a significant
positive determinant of CDS rates.

5.6 Robustness

Table III addresses the robustness of our empirical results.

5.6.1 Alternative specifications

As an alternative to pooled OLS, we apply the Fama-Macbeth technique which identifies the
coefficients in regression (28) using the cross-sectional variation in the CEO-firm panel year-
by-year. Column (i) of Table III shows the coefficient on cash-to-stock remains statistically
significant and is comparable to those reported in Table II. This finding suggests that the
coefficient from our pooled OLS regressions are identified by the cross-sectional variation in
our sample.

Column (ii) of Table III presents point estimates for the coefficients from regression (28)
estimated using a standard regression technique that is robust to outliers.32 The coefficient
on cash-to-stock remains positive and of comparable magnitude to the OLS coefficient in
Column (i) of Table II.

In column (iii) of Table III we utilize an alternative method to account for managerial
option holdings q. In many cases, for example when option holdings are high relative to
stock holdings, it can be shown that a version of the R model in which CEOs hold options
is isomorphic to a version of the R model with no options but where the proportional stock
ownership is increased to ps + q. In addition, the R model must be augmented to increase
the bankruptcy threshold Vb by an amount that depends on the ratio q/(ps + q) and on
the (scaled) exercise price of the options K/S. Within this equivalent model, our main
prediction that, ceteris paribus, an increase in cash-to-stock ratio results in an increase
in the CDS rate remains valid. To account for option holdings, we therefore modify our
empirical model to include the measures A/[(ps +q)S]i,t, q/(ps +q)i,t, and (K/S)it. Column
(iii) of Table III shows that with this modified measure of cash-to-stock A/[(ps + q)S], the
positive impact on CDS rates is strengthened.

In column (iv) of Table III we proxy for A using the sum of bonus and salary, rather
31Each CEO-firm in our sample is assigned into one of twelve Fama and French (1997) industry categories

using the four-digit SIC code. We thank Ken French for making the mapping to industry is available on his
website http mba.tuck.dartmouth.edupagesfacultyken.frenchdata library.html.

32We use SAS proc robustreg to implement the standard M estimation introduced by Huber (1973). This
procedure does not allow for clustering of errors, thus the t-statistics from this regression are not comparable
to those from our benchmark regression.
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than salary on its own. The coefficient on A/(pS) becomes both statistically and economi-
cally weaker in this regression. This result shows the importance of excluding performance
sensitive pay from the variable A, consistent with the assumptions of the R model.

We have also considered alternative regression specifications with reasonable variation
in timing conventions (e.g., by using lagged rather than contemporaneous leverage ratio)
and with a variety of subsets of the controls. Such variations have no significant impact on
our results.

5.6.2 A broader interpretation of the variable A

Columns (iv)-(vi) present results from regressions that permit an economic interpretation
of minimum pay A in the R model that is broader than CEO salary used in regression (28).
This interpretation is motivated by economically important mechanisms in the CEO labor
markets that suggest a role for CEO age, tenure, and non-CEO tenure to measure A.

First, Bebchuk and Jackson (2005) consider CEO pensions to be like holdings of treasury
bonds, emphasizing cases in which CEO pensions are treated as senior claims in bankruptcy
or are made inaccessible to the firm’s outside security holders using various legal means
(see also Bebchuk and Fried (2004) pp. 101-102).33 The CEOs pension can, therefore, be
interpreted as a lower bound on pay. The variable A would then ideally be extracted from
information on the value of the pension payments; however, pension disclosure is limited and
standard sources (e.g., ExecuComp) do not report this information for our sample. Pension
payments are typically calculated using firm-specific formulas based on years of service and
cash compensation, so in addition to cash-to-stock we add to regression (28) the CEO’s
tenure to capture its impact on pension value. Age is also included in this regression since
for any given tenure and cash-to-stock the value of the pension is higher when retirement
is nearer.

Second, earnings generated outside the firm after date T may be an important compo-
nent of CEO wealth. Human capital can, therefore, be interpreted as contributing to the
variable A. This consideration generates two testable predictions linking two CEO charac-
teristics to CDS rates: (i) All else equal, the variable A is likely to be relatively high for
young CEOs, since they have longer labor income duration at date T than old CEOs. (ii)
All else equal, managers who invest relatively more in general managerial skill, as opposed
to firm-specific skill, will have human capital that is more valuable outside the firm (Mur-
phy and Zábojńık (2004)) and, hence, higher A. Following Murphy and Zábojńık (2006),
we proxy for investment in firm specific skill using the time spent with the firm prior to
becoming CEO.

The pension and human capital hypotheses suggest that, in addition to salary, the
variables CEO age, tenure, and non-CEO tenure should affect A in the cross-section and, in
turn, CDS rates. The pension hypothesis predicts that when added to regression (28), CEO
age and tenure should have positive coefficients. The human capital hypothesis predicts that

33Similarly, Sundaram and Yermack (2007) consider defined benefit pensions to be “inside debt”.
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CEO age and non-CEO tenure should have negative coefficients. Table III presents results
from such regressions in our overall sample (column (v) - all), in a subsample of CEOs
whose age is 60 or higher (column (vi) - old), and in a subsample of CEOs whose age is
below 60 years (column (vii) - young). Comparing columns (i) of Table II and (v) of Table
III shows that including CEO age, tenure, and non-CEO tenure as predictive variables leads
to an increase in the magnitude of the cash-to-stock coefficient. Consistent with the pension
hypothesis, tenure has a positive and significant coefficient. Age has a significant negative
sign, however, which might indicate that for the entire sample human capital considerations
are more important to CEOs than pensions. This interpretation is further supported by the
significantly negative coefficient on non-CEO tenure.

The old and young CEO subsamples allow us to examine whether the pension hypothesis
is more relevant than the human capital hypothesis for CEOs that are near retirement. In
the old CEO sample (column (vi)), the coefficient on cash-to-stock increases relative to its
estimate in the full sample and the coefficient on non-CEO tenure is less negative. Notably,
the coefficient on age changes sign to become weakly positive. Although the coefficient
on tenure is only weakly positive, the regression coefficients in column (vi) suggest a link
between the value of pensions and CDS rates for firms employing CEOs aged 60 and higher.
In the young CEO sample (column (vii)), the coefficient on cash-to-stock is slightly lower
than in the full sample, the coefficient on age is more significantly negative, the coefficient
on tenure is more positive, and the coefficient on non-CEO tenure is more negative. Overall,
these coefficients indicate that human capital may play an important role in determining
CDS rates at firms run by younger CEOs.

5.7 Joint determination of leverage and CDS rates.

Section 4 describes the optimal leverage choice in the first stage problem. As Panel B of
Figure 6 illustrates, this model predicts that in a cross-section of firms that are optimally
levered, there is a positive relationship between cash-to-stock and CDS rates. In this rela-
tionship leverage is not held constant across firms, but is also determined by the manager’s
cash-to-stock. This suggests that cash-to-stock and leverage ratios may be collinear, in which
case including both variables in the covariate set will bias the coefficient on cash-to-stock.
In column (vii) of Table II we report the coefficients from a model which drops the lever-
age ratio control from regression (28). This change causes the coefficient on cash-to-stock
to increase relative to its value in column (i), suggesting a positive correlation between
cash-to-stock and leverage ratios.

In Table IV we present direct evidence on the relationship between cash-to-stock and
leverage ratios in our sample. We utilize the same controls as in Graham and Mills (2008),
which are similar to those used in Coles, Daniel, and Naveen (2006) and Lewellen (2006).
In all regressions, the coefficients on these controls have signs similar to those reported
in Coles, Daniel, and Naveen (2006) and Lewellen (2006). Consistent with the first stage
model, the regressions in Columns (i)-(iv) of Table IV show that cash-to-stock is a strong
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positive predictor of leverage ratios. The regressions in columns (v)-(viii) allow leverage
ratios to be quadratic in cash-to-stock. The signs on both the cash-to-stock and its square
are significantly positive in these regressions, indicating that leverage ratios are convex in
cash-to-stock. The downward sloping portion of the quadratic occurs only at very low, and
empirically rare, cash-to-stock levels. Thus, there is not strong evidence in our data for
the U-shaped relationship between cash-to-stock and leverage ratios depicted in Panel A of
Figure 6. This raises the possibility that forces outside the model are at play. One possibility
is that the assumption that managers can perfectly control risk is not valid for firms run
by managers having low cash-to-stock ratios. Another possibility that in selecting optimal
compensation terms, only high level of cash-to-stock are optimal.

6 Conclusion

In this paper, we demonstrate the relevance of the agency costs of Jensen and Meckling
(1976) for structural models of leverage choice and credit spreads. Assuming a realistic
compensation structure for risk-averse managers, consisting of cash and stock, we show
that managers will optimally choose to lever the firm and that their resulting pay will
be convex in the firm’s terminal liquidating pre-tax payout. This convexity induces asset
substitution, leading to riskier payouts and higher credit spreads than predicted by the
prior literature. We also demonstrate that optimal leverage choice is the result of a balance
between tax benefits and the utility cost of ex-post risk shifting. Our work thus highlights
that operating behavior induced by compensation terms can be of first-order importance
for understanding debt levels and credit spreads.

To empirically evaluate our model, we use a large cross-section of 608 US based corporate
credit default swaps covering 2001-2006. We confirm the model’s prediction of a significantly
positive relationship between cash-to-stock ratios and CDS rates when CEO salary is used
as a proxy for cash pay and CEO stock holdings are used as proxies for stock pay. This
result is robust to including option-based pay and to alternative interpretations of cash as
pension or implicit compensation. Reasonable variation in proxies for cash-to-stock result
in variation in CDS rates of up to 21% even after controlling for the traditional structural
determinants of spreads such as leverage and stock volatility. We further find that CEO
cash-to-stock is informative for leverage choice. We interpret our findings as supportive of
prediction that cross-sectional differences in CEO compensation terms provide economically
important information for pricing default-sensitive securities and predicting leverage ratios.
Because cash-to-stock and capital structure can be jointly determined as an outcome of
an optimization process of the firm value and its allocation among various claimants, our
empirical results are not necessarily causal. The exploratory empirical associations that we
document in this paper should, however, help guide further empirical research that more
directly addresses potential endogeniety in the data.

Our model can be extended in many interesting directions. One possibility is to consider
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the optimal contract from the shareholders’ perspective. This would require that we consider
one more prior optimization problem in which the amount of cash compensation and the
number of unlevered shares are determined, subject to a participation constraint. Addressing
this problem may shed light on our empirical finding that cash-to-stock in the data is set
to levels where leverage is an increasing, rather than U-shaped function.

A more ambitious extension would place our model in a dynamic context. The model
in this paper could be considered one stage of a multi-period problem in which periodic
capital structure and default decisions could be made. Dynamic contracting as in DeMarzo
and Sannikov (2006) could also be incorporated. These changes, if analytically tractable,
would add significant realism and allow for empirical tests of a dynamic capital structure
model in which risk shifting plays an important role.
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Appendix

Proofs of Propositions 1, 2 and 3

Before proceeding with the proofs, we give a preliminary lemma.

Lemma 5 Fix the parameters (A, p, γ, τ), and define the tangency point V ∈ (Vb,∞) for
any Vb > 0 as the unique solution to the nonlinear equation (15) where V R

b is replaced by Vb.

The variable V may be expressed as a function of two variables V = V
(

A
p(1−τ) , Vb

)
where

∂V

∂Vb
> 1,

∂V

∂A
> 0,

∂V

∂p
< 0.

Proof. Dividing equation (15) by (p(1 − τ))1−γ shows that only the variables A/p(1 − τ)
and Vb are relevant for defining the tangency point V . Multiplying equation (15) by V and
differentiating it with respect to Vb gives

A + p(1− τ)(V − Vb) = γp(1− τ)V (
∂V

∂Vb
− 1).

Recalling that V > Vb, we therefore have ∂V
∂Vb

> 1.

Given that V depends on the ratio A/(p(1 − τ)) we see that ∂V
∂A > 0 is equivalent to

∂V
∂p < 0. We shall prove that ∂V

∂p < 0. Without loss of generality, we assume that A = 1 and
τ = 0 and rewrite equation (15) as

[
1 + p(V − Vb)

]γ − [
1 + γp(V − Vb)

]
= p(γ − 1)V . (29)

Notice that when γ = 2

V = Vb +

√
Vb

p

which is decreasing in p. To proceed for an arbitrary γ > 0, differentiate equation (29) with
respect to p, holding Vb constant, and substitute again from equation (29) to arrive at

C +
∂V

∂p
B = 0 (30)

where
B = γ

(
[1 + p(V − Vb)]γ−1 − 1

)
,

and
C =

1
p2

(
1− [1 + p(V − Vb)]γ + γp(V − Vb)[1 + p(V − Vb)]γ−1

)
.

It can be checked that B is non-negative when γ ≥ 1 and non-positive when γ ≤ 1. To
determine the sign of C, we may rewrite C = F (p(V − Vb))/p2, where the function F is
defined by

F (x) = γx(1 + x)γ−1 + 1− (1 + x)γ .

Since F (0) = 0 and F ′(x) = γ(γ − 1)x(1 + x)γ−2, we conclude that C ≥ 0 if γ ≥ 1 and
C ≤ 0 if γ ≤ 1. Referring to equation (30) we conclude that ∂V

∂p < 0 for all values of γ.
Proof of Proposition 1: The proof proceeds in three steps. In the first, we define the

Legendre-Fenchel (L-F) transform, a useful tool from convex analysis, and provide some
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simple geometric intuition that helps to understand the basic principles underlying this
operator. Readers familiar with convex analysis can skip this step. Second, using the L-F
transform, we characterize the manager’s choice of LPP, VT , when he takes any bankruptcy
threshold Vb as given. In the third step, we prove the existence of a unique V R

b which solves
the bankruptcy threshold condition (6) and is simultaneously consistent with the optimal
LPP choice, V R

T .

Step 1: The function h∗ : lR −→ lR ∪ {∞} denotes the L-F transform of h defined by

h∗(x∗) = sup
x∈lR

(xx∗ − h(x)) . (31)

For additional mathematical detail see Chapter 3 of Ekeland and Turnbull (1983) or, for a
more abstract treatment, Rockafellar (1970). Similarly, the function h∗∗ : lR −→ lR ∪ {∞}
denotes the double Legendre-Fenchel transform of h defined as

h∗∗(x) = sup
x∗∈lR

(x∗x− h∗(x∗)) . (32)

We will use two basic results from convex analysis.

R1 The function h∗∗ is the convex envelope of h; that is, the function h∗∗ is the largest
convex function dominated by h.

R2 If h∗ admits a supporting line34 at x∗ ∈ lR with slope k, then h∗∗ admits a supporting
line at k with a slope x∗.

For a geometric intuition supporting these results, see the technical appendix that accom-
panies this paper.

Step 2: In this step, we reformulate Theorem 1 of Carpenter (2000) when Vb is fixed.
Here, we provide a new proof that applies the L-F transform techniques and generalizes
Carpenter’s Theorem to a larger class of compensation schedules. This may be useful, for
example, if the compensation function depends on more than one variable.

Let us first, define the function ϕ : lR −→ lR ∪ {∞} by

ϕ(x) =

{
−(A+p(1−τ)(x−Vb)

+)1−γ

1−γ if x ≥ 0,

+∞ otherwise.

Define also the tangency point V ∈ (Vb,∞) as the unique solution to the nonlinear equation
[
[A + p(1− τ)(V − Vb)]1−γ

1− γ
− A1−γ

1− γ

]
V

−1

= p(1− τ)
[
A + p(1− τ)(V − Vb)

]−γ ≡ −ϕ′(V ). (33)

34The function h∗ admits a supporting line at x∗ if there exists k ∈ lR such that

h∗(z) ≥ h∗(x∗) + k(z − x∗),

for all z ∈ lR. We will say then that h∗ admits a supporting line at x∗ with slope k. The geometric meaning
of a supporting line is intuitive: the supporting line must be uniformly below the graph of the function h∗.
For instance, a convex and differentiable function admits a supporting line at any point and the supporting
line, in this case, is just the familiar tangent line. Supporting lines are also called subdifferentials.
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Direct computations give the analytical formula for the L-F transform of ϕ

ϕ∗(x∗) =





+∞ if x∗ > 0,

x∗
(
Vb − A

p(1−τ)

)
+ γ

1−γ

(
−x∗

p(1−τ)

)− 1−γ
γ if x∗ ∈ [ϕ′(V ), 0],

−ϕ(0) = A1−γ

1−γ if x∗ ≤ ϕ′(V ).

The function ϕ∗ is differentiable on (−∞, ϕ′(V )) ∪ (ϕ′(V ), 0) with a derivative

∇ϕ∗(x∗) =





(
Vb − A

p(1−τ)

)
+ 1

p(1−τ)

(
−x∗

p(1−τ)

)− 1
γ if x∗ ∈ (ϕ′(V ), 0),

0 if x∗ < ϕ′(V ).

Furthermore, at the point x∗ = ϕ′(V ), the function ϕ∗ has many supporting lines with
slopes in the interval [0, V ] since V is the right derivative of ϕ∗ at ϕ′(V ).

Finally, the double L-F transform ϕ∗∗ can also be derived and is given by

ϕ∗∗(x) =





+∞ if x < 0,

−A1−γ

1−γ − p(1− τ)
(
A + p(1− τ)(V − Vb)

)−γ
x if x ∈ [0, V ]

ϕ(x) otherwise.

Now, the second stage optimization problem (13) may be equivalently formulated as35

P :
infVT

E [ϕ(VT )] ,
subject to E(ξT VT ) ≤ V0.

The problem P is not standard because we minimize a non-convex function. The strategy
of the proof is as follows: We first solve a ”convexified” version of problem P defined as

P̃ :
infVT

E [ϕ∗∗(VT )] ,
subject to E(ξT VT ) ≤ V0,

and then show that the optimum for P̃ is actually an optimum for P.
The problem P̃ is convex since the function ϕ∗∗ is convex (this is an implication of the

result R1). So, by standard results from optimization (Luenberger (1969)) the first order
conditions

∇ϕ∗∗(VT ) = −λξT , λ > 0 is such that E(ξT VT ) = V0,

are both necessary and sufficient. We see then that the first order conditions for problem P̃
stipulate that ϕ∗∗ admits a supporting line at VT with slope −λξT (almost surely). Given
the supporting line duality result R2, we see that the first order conditions for problem P̃
may be restated by saying that ϕ∗ admits a supporting line at −λξT with slope VT (almost
surely). Given the closed form expression of ϕ∗ we see that the first order conditions for P̃
can be expressed as36

VT =





(
Vb − A

p(1−τ)

)
+ 1

p(1−τ)

(
λξT

p(1−τ)

)− 1
γ if − λξT > ϕ′(V ),

0 if − λξT ≤ ϕ′(V ),

35Note that the positivity constraint is now incorporated in the definition of ϕ and that the maximization
has been replaced with a minimization because ϕ reverses the sign of the utility function.

36When −λξT = ϕ′(V ) the first order conditions mandate that VT could take any value in the interval [0, V ]
because ϕ∗ has multiple supporting lines at ϕ′(V ). We selected the value 0 for VT in the state −λξT = ϕ′(V ).
This choice will have no impact on the final utility since the probability of the event {−λξT = ϕ′(V )} is just
0 given the lognormal distribution of ξT .
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with the budget restriction E(ξT VT ) = V0. Substituting ξ = −ϕ′(V )
λ in the above expression

gives the optimal LPP for problem P̃

VT =

[
V +

(
V − Vb +

A

p(1− τ)

) ((
ξT

ξ

)− 1
γ

− 1

)]
1{ξT≤ξ}. (34)

The last step is to establish that the optimal VT for P̃ is also optimal for P. To see this,
observe first that ϕ and ϕ∗∗ take on the same value on the set {0} ∪ [V , +∞]. Therefore,
since VT takes values only on the set {0} ∪ [V , +∞], we have

E [ϕ(X)− ϕ(VT )] = E [ϕ(X)− ϕ∗∗(VT )] ≥ E [ϕ∗∗(X)− ϕ∗∗(VT )]

for any feasible X satisfying E(ξT X) = V0. Now, from the first order conditions of Problem
P̃, we know that ϕ∗∗ admits a supporting line at VT with slope −λξT . Consequently, from
the definition of supporting lines,

E [ϕ∗∗(X)− ϕ∗∗(VT )] ≥ −E [λξT (X − VT )] = 0

thereby proving the optimality of VT , defined by equation (34), for Problem P.

Step 3: We now show that there exists a unique V R
b ∈ (L,∞) such that equation (6) is

satisfied with VT given by (34). For any Vb ∈ [L,∞) define the continuous function

ζ : Vb → ζ(Vb) = L +
τ

1− τ
B0

where B0 is defined by (5) and where VT in this formula is given by (34)-(33). Observe that,
by definition, ζ(L) > L. We now show that the function ζ is non increasing with respect to
Vb and therefore, there exists a unique V R

b ∈ (L,∞) such that ζ(V R
b ) = V R

b .
It can be shown (see the discussion in Section 3.2) that the special form of VT given in

(34) implies that bond values are given by

B0 = Le−rTN (d(0, 1, 1/ξ))

where the function d is defined by

d(t, x,m) =
(
− lnm + r(T − t)− α2

2
(1− 2(1− x))(T − t)

)
/(α

√
T − t).

The function d is non increasing with respect to m and, therefore, B0 is non decreasing with
respect to ξ. As a result, to establish that ζ is decreasing in Vb we need to prove that ξ is
non increasing with respect to Vb. To this end, one can explicitly compute the expectation
in the constraint V0 = E(ξT VT ) which defines ξ to obtain

V0 =
(

V − Vb +
A

p(1− τ)

)
e−(r+α2/(2γ))γ∗T ξ

1/γ N (d(0, γ∗, 1/ξ))

+
(

Vb − A

p(1− τ)

)
e−rT N (d(0, 1, 1/ξ)). (35)
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The proof of Proposition 2 gives more detail on this computation. Differentiate the above
equation with respect to Vb to get the following expression (after some long but straight-
forward calculations)

0 = (
∂V

∂Vb
− 1)e−(r+α2

2γ
)γ∗T

ξ
1
γN (d(0, γ∗, 1/ξ)) + erTN (d(0, 1, 1/ξ))

+
(

V − Vb +
A

p(1− τ)

)
e
−(r+α2

2γ
)γ∗T ∂ξ

1
γ

∂Vb
N (d(0, γ∗, 1/ξ))

+V
∂ξ

1
γ

∂Vb
e−rT γ

α
√

T

1

ξ
1
γ

1√
2π

e−
d2(0,1,1/ξ)

2 .

This, in turn, allows us to sign the term

∂ξ
1
γ

∂Vb

[(
V − Vb + A

p(1−τ)

)
e
−(r+α2

2γ
)γ∗TN (d(0, γ∗, 1/ξ)) + V e−rT γ

α
√

T
1

ξ
1
γ

1√
2π

e−
d2(0,1,1/ξ)

2

]

= −( ∂V
∂Vb

− 1)e−(r+α2

2γ
)γ∗T

ξ
1
γN (d(0, γ∗, 1/ξ))− erTN (d(0, 1, 1/ξ)) < 0,

and recalling that ∂V
∂Vb

> 1 > (see Lemma 5), we deduce that ∂ξ
1
γ

∂Vb
< 0. Since γ > 0 we

conclude that
∂ξ

∂Vb
< 0.

Proof of Proposition 2: The valuation formula

Vt = Et

[
ξT

ξt
VT

]

together with the dynamic equation for the state price density and the optimal firm value
given in (14) give the expression for time t firm value, Vt, in Proposition 2. To see this, ob-
serve that conditional on Ft, ln(ξT ) is normally distributed with mean ln(ξt)−(r+α2/2)(T−
t) and variance α2(T − t). Substituting the expression for VT in (14), and computing the ex-
pectation in the relevant regions yields the expression for Vt as a function of ξt. Application
of Itô’s Lemma to Vt results in equation (17) for time-t volatility.

Proof of Proposition 3:
We fix the R model’s parameters (α, γ, τ, r, t, T ) and shorten notation by ignoring the

dependency upon these variables. We begin this proof with two preliminary lemmas.

Lemma 6 In the context of the R model, credit spreads and the equity value can be repre-
sented as

ρR
0 = ρR

0 (A, p, L, V0) , SR
0 = SR

0 (A, p, L, V0) (36)

with
∂ρR

0

∂A
≥ 0,

∂ρR
0

∂V0
≤ 0,

∂SR
0

∂A
≥ 0,

∂SR
0

∂V0
≥ 0.

Furthermore, for any x > 0, the R model exhibits the homogeneity property

ρR
0

(
A

px
, 1,

L

x
,
V0

x

)
= ρR

0 (A, p, L, V0) , SR
0

(
A

px
, 1,

L

x
,
V0

x

)
=

SR
0 (A, p, L, V0)

x
. (37)
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Proof of Lemma 6: Equation (21), (23) and (19) show that the endogenous variables
ρR
0 and SR

0 depend on the variables (ξ, V R
b , V , V0). The variables (ξ, V R

b , V ) are jointly
determined as the solution of a system of three non-linear equations consisting of

0 = E

(
ξT

[
V +

(
V − V R

b +
A

p(1− τ)

) ((
ξT

ξ

)− 1
γ

− 1

)]
1{ξT≤ξ}

)
− V0, (38)

0 = L +
τ

1− τ
E

[
ξT L1ξT≤ξ

]
− V R

b , (39)



[ A
p(1−τ) + (V − V R

b )]1−γ

1− γ
−

(
A

p(1−τ)

)1−γ

1− γ


V

−1 =
[

A

p(1− τ)
+ (V − V R

b )
]−γ

. (40)

The equity price and credit spreads can be expressed as in equation (36) since the input
variables of the system (38), (39) and (40) are (A, p.L, V0).

In order to analyze the impact of increasing A on credit spreads and equity price,
holding (p, L, V0) constant, observe that if (A, ξ) are known, equation (39) can be used to
determine the variable V R

b and the variable V can be calculated from equation (40). Thus,
equation (38) may be written as F (ξ,A) = 0 for a given function F . Using the implicit
function theorem shows that there exists a differentiable function % such that ξ = %(A) with
%′(A) = −∂F/∂A

∂F/∂ξ
. If we increase A and keep ξ constant in equation (38), V R

b is unchanged

and, from Lemma 5, V will increase. Therefore, ∂F/∂A > 0. If we increase ξ and keep A
constant, equation (39) shows that V R

b increases. Recalling that ∂V /∂Vb > 1 (e.g, Lemma
5), both V and V − V R

b increase as a result of the increase in V R
b . Using this result, an

inspection of equation (38) shows that ∂F/∂ξ > 0. The function % is thus decreasing and
when A is increased holding constant (p, L, V0), the variable ξ is smaller. Credit spreads
are decreasing with ξ (e.g., equation (21)) and as a result, ∂ρR

0 /∂A ≥ 0. Notice also that
when the variable A is increased holding constant (p, L, V0), the variable ξ is smaller, and
as result, bond price BR

0 and the threshold V R
b is decreased (see equation (39)). Inspecting

equation (23) at time t = 0, shows that the equity price increases as a result of an increase
in A because bond prices and the threshold V R

b are decreased.
In order to analyze the impact of increasing V0 on the spreads, holding (A, p, L) constant,

observe that equation (38) may be written as G(ξ, V0) = 0 for a given function G. Using
the implicit function theorem shows that there exists a differentiable function ς such that
ξ = ς(V0) with ς ′(V0) = −∂G/∂V0

∂G/∂ξ
. We have ∂G/∂V0 = −1 and, using the same argument as

for F we can establish that ∂G/∂ξ > 0. We conclude that the function ς is increasing and,
because spreads are decreasing in the variable ξ, they are lower when V0 is elevated holding
constant the variables (A, p, L) which results in ∂ρR

0 /∂V0 ≤ 0. To asses the impact of an
increase in V0 on equity price, we take the expectation of equation (8) to get the valuation
formula

SR
0 = E

(
ξT

[
V − V R

b +
(

V − V R
b +

A

p(1− τ)

)((
ξT

ξ

)− 1
γ

− 1

)]
1{ξT≤ξ}

)
. (41)

When the LPP V0 is elevated holding (A, p, L) constant, the variable ξ increases, the
threshold V R

b also increases (see equation (39)) and because ∂V /∂Vb > 1 (e.g, Lemma
5), (V − V R

b ) increases as a result of the increase in V R
b . Inspecting equation (41) shows

then that ∂SR
0 /∂V0 ≥ 0.

We turn to the proof of the homogeneity property (37). Inspecting the system (38), (39)
and (40) shows that the variables (A, p) are only relevant through the ratio A

p (recall that
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the variable (1 − τ) is fixed). It can also be checked that the solution of the system (38),
(39) and (40) where the input parameters (A, p.L, V0) are replaced by

(
A
px , 1, L

x , V0
x

)
is given

by
(
ξ,

V R
b
x , V

x

)
. Substituting these values in the pricing equations (21) and (23) gives the

homogeneity properties (37) .

Lemma 7 Credit spreads from the R model can be expressed as

ρR
0 = m(A, p, L, SR

0 ) (42)

where m is a function that is increasing in its first argument, A, and its third argument L.

Proof of Lemma 7: Spreads are given by equation (21), and the inspection of this
equation shows that in order to establish Lemma 7, we need to establish that ξ is decreasing
in A and in L. We make the dependence of the credit spread upon the variable SR

0 explicit
by observing the variables (V R

b , V , ξ) can be determined as the solution of the alternative
system of equations (41), (39) and (40). The representation (42) can be justified by observing
that the input variables for this system are (A, p, L, SR

0 ) (instead of (A, p, L, V0)).
Duplicating the proof of Lemma 6, it can be shown that spreads increase when A is

increased with the variables (p, L, SR
0 ) held constant.

In order to analyze the impact of increasing A on credit spreads, holding (p, L, SR
0 )

constant, observe that if (A, ξ) are known, equation (39) can be used to determine the
variable V R

b and the variable V can be calculated from equation (40). Thus, equation (41)
may be written as F (ξ,A) = 0 for a given function F . Using the implicit function theorem
shows that there exists a differentiable function % such that ξ = %(A) with %′(A) = −∂F/∂A

∂F/∂ξ
.

If we increase A and keep ξ constant in equation (41), V R
b is unchanged and, from Lemma 5,

V will increase. Therefore, ∂F/∂A > 0. If we increase ξ and keep A constant, equation (39)
shows that V R

b increases. Recalling that ∂V /∂Vb > 1 (e.g, Lemma 5), both V and V − V R
b

increase as a result of the increase in V R
b . Using this result, an inspection of equation (41)

shows that ∂F/∂ξ > 0. We conclude that the function % is decreasing and, as a result
spreads are larger when A is larger, holding constant the variable (p, L, SR

0 ).
In order to analyze the impact of increasing L on the spreads, holding (A, p, SR

0 ) con-
stant, observe that equation (41) may be written as H(ξ, L) = 0 for a given function H.
Using the implicit function theorem shows that there exists a differentiable function υ such
that ξ = υ(L) with υ′(L) = −∂H/∂L

∂H/∂ξ
. If we increase L and keep ξ constant in equation (39),

the variable V R
b is elevated. Lemma 5 shows that V will increase by more than V R

b and as
a result, ∂H/∂L > 0. If we increase ξ and keep L constant, equation (39) shows that V R

b

increases. Lemma 5 shows then that V − V R
b increases. Using this result, an inspection of

equation (41) shows that ∂H/∂ξ > 0. We conclude that the function υ is decreasing and,
as a result spreads are larger when L is larger, holding constant the variables (A, p, SR

0 ).

Turning now to the proof of Proposition 3, we use the homogeneity property (37) in
Lemma 6 with x = SR

0 and the result in Lemma 7 to get

ρR
t = m(A, p, L, SR

0 ) = m

(
A

pSR
0

, 1,
L

SR
0

, 1,

)
= f

(
A

pSR
0

,
L

SR
0 + L

)
.

We conclude the proof by observing that the function f is increasing in its first (resp. second)
argument, A

pSR
0

(resp. L
SR

0 +L
), because Lemma 7 shows that the function m is increasing in

A (resp. in L).
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Proof of Proposition 4: Given any p ∈ [p0, 1], we know from Proposition 1 that there
exist a unique bankruptcy threshold V R

b (call it V R
b (p)) associated with the solution V R

T of
the R model (13). Equation (11) may be written as

p = ψ(p)

where the function ψ is defined by

ψ(p) = p0


1 +

1(
CR

0

BR
0

)
p
− 1




and where
(

CR
0

BR
0

)
p

is the ratio of bond price to the firm cash flow when the manager’s

compensation includes a proportion p of the firm’s equity. Note that by combining these
equations, the term

(
CR

0

BR
0

)
p

may be written

(
CR

0

BR
0

)

p

= (1− τ)
V0

BR
0

+ τ(L−BR
0 )

1
L

= τ
V0

V R
b (p)− L

+ τ − (1− τ)(V R
b (p)− L)

1
L

.

To establish the monotonicity of the function ψ, we must establish the monotonicity of the
function p → V R

b (p). To this end, we shall analyze how the graph of the function ζ defined
in the proof of Proposition 1 changes when p is changed. We will establish in a Lemma at
the end of this proof that when p increases, the graph of the function ζ is shifted up and
therefore, V R

b (p) increases (since it is the unique fixed point of ζ). Hence, the function ψ is
non-decreasing with respect to p.

To conclude, let us notice that the function ζ is continuous in p since it involves only
smooth transformations. Therefore its fixed point (V R

b (p)) is also continuous in p, which
in turn implies that the function ψ is continuous in p. Given that the function ψ is non
decreasing in p with

ψ(p0) > p0

and

ψ(1) = p0


1 +

1

(CR
0

BR
0

)p=1 − 1


 < 1 (43)

we see that there must exist a unique p ∈ (p0, 1) such that

ψ(p) = p.

Lemma 8 The graph of the function ζ shifts up when the equity share parameter p in-
creases.

Proof of Lemma 8: Recall that the function ζ can be expressed as

ζ(Vb) = L +
τ

1− τ
Le−rTN (d(0, 1, 1/ξ)).
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Notice that equation (35) which defines ξ can alternatively be written as

V0 =
(

V − Vb +
A

p(1− τ)

)
D + V e−rTN (d(0, 1, 1/ξ)) (44)

where

D = E

[
ξT

((
ξT

M

)−1/γ

− 1

)
1ξT≤ξ

]

= e−(r+α2/(2γ))γ∗T ξ
1/γ N (d(0, γ∗, 1/ξ))− e−rTN (d(0, 1, 1/ξ))

> 0.

We begin by differentiating (44) with respect to p while holding Vb constant. After some
long but straightforward computation, one can show that

∂ξ

∂p
D̃ =

A

p2(1− τ)
D − ∂V

∂p

[
D + e−rTN (d(0, 1, 1/ξ)

]

where

D̃ =
[

1
γ

ξ
1
γ
−1

e−(r+α2/(2γ))γ∗T
(

V − Vb +
A

p(1− τ)

)
N (d(0, γ∗, 1/ξ))

+V e−rT 1
ξ

1
α
√

T
n(d(0, 1, 1/ξ))

]
> 0.

Lemma 5 establishes that ∂V
∂p < 0 and therefore we can conclude that ∂ξ

∂p > 0.
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Table I
Summary Statistics

Our sample of 608 US firms is required to have executive compensation and financial information from
the Compustat, ExecuComp, and CRSP databases as well as CDS rates from the Markit Group database
during the time period January 2001-December 2006. Annual CDS rates are the average of month-end CDS
rates within each calendar year. Leverage ratios (L/(S + L)) are the most recently reported debt book
value (Compustat data items 9+34) divided by debt book value plus CRSP year-end market capitalization.
Equity standard deviation σ is calculated each year at the firm level from daily CRSP returns during the
fourth quarter. The Sharpe ratio is the five-year moving average of the calendar year ratios of average
monthly CRSP excess returns to standard deviations. Sales, return on assets (ROA), stock returns (r),
and CEO salary are the ExecuComp data items SALES, ROA, TRS1YR, and SALARY. Book-to-Market
is calculated from CRSP and Compustat using the procedure of Daniel and Titman (1997). Div Dummy
is one (zero) if dividends per share (Compustat data item 26) in the prior year are non-zero. The tax rate
τ is the simulated corporate tax rates before financing from the website of John Graham, with missing
values filled in using the procedure of Graham and Mills (2008). The ”G” variable is the Gompers, Ishii, and
Metrick (2003) index of strength of takeover provisions from the website of Andrew Metrick. Collateral is the
ratio of inventories and property, plant, and equipment to the book value of assets (Compustat data items
(3+8)/6). CEO age, tenure, and non-CEO tenure (the number of year that a CEO spent as a firm’s employe
prior to becoming a CEO) are from ExecuComp or, if that data is missing, from the websites sec.edgar.gov
and zoominfo.com. Stock holdings ps are obtained by dividing stock owned by the CEO excluding options
(ExecuComp variable SHROWN EXCL OPTS) by the number of shares outstanding (ExecuComp variable
SHRSOUT). Option holdings q are the sum of exercisable and non exercisable options (ExecuComp variables
OPT UNEX EXER NUM and OPT UNEX UNEXER NUM) divided by the number of shares outstanding.
The effective stock ownership p is calculated at the CEO-firm-year level using the method of Core and Guay
(2002). The option moneyness K/S is defined as the ratio of the average option strike, calculated by using
the Core and Guay (2002) method, to the end of year stock price. The variable New CEO is a dummy
variable equal to unity when the CEO is appointed for less than one calendar year.
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10th 90th

Variable N Mean Std %ile Median %ile

A. Firm Characteristics

CDS rate (bp) 608 153 274 26 70 311
Leverage ratio L/(S + L) (%) 608 31.6 20.8 8.0 26.8 62.4
Stock return r (%) 598 15.9 21.6 -3.9 12.8 38.7
Sharpe Ratio SR (monthly) 608 0.110 0.099 0.000 0.101 0.224
Equity Std Dev σ (%/year) 608 33.4 13.1 19.8 30.3 49.9
Sales (millions) 600 11,083 20,081 1,321 4,970 25,718
Market cap (millions) 608 16,057 33,107 1,379 6,093 36,640
ROA (%) 600 3.65 5.33 -0.97 3.32 9.85
Book-to-Market 587 0.6 0.5 0.2 0.5 1.2
Div Dummy 608 0.69 0.43 0 1 1
Tax rate τ (%) 608 32.0 5.8 24.5 35.0 35.5
G 568 9.8 2.4 7 10 13
Collateral (%) 587 40.8 24.4 4.2 41.1 73.7

B. CEO Characteristics

Salary A (thousands) 608 931 375 601 900 1,269
Stock holdings ps (%) 601 1.37 4.50 0.03 0.19 1.93
Option holdings q (%) 608 0.96 0.96 0.17 0.67 2.09
p = ps + ∆q (%) 601 2.14 4.70 0.21 0.85 4.12
Cash-to-Stock A

pS 601 0.108 1.412 0.004 0.021 0.101
Age (years) 608 56 6 49 57 63
Tenure (years) 606 19 11 5 18 34
Non-CEO tenure (years) 606 11 10 0 9 26
K/S 608 0.73 0.21 0.47 0.77 0.94
New CEO 608 0.08 0.16 0 0 0.25
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Table II
CDS rates and compensation terms.

Coefficients from pooled OLS regressions of annual CDS rates on firm and CEO characteristics for 608 firms
during the time period 2001-2006. The dependent variable is the logarithm of the average of firms’ month-
end CDS rates within each calendar year. Cash-to-stock, ln (A/(pS)) is the logarithm of the ratio of CEO
Salary A (ExecuComp SALARY) to the product of the effective fractional stock holding p, defined following
the method of Core and Guay (2002), and CRSP market capitalization S. Equity standard deviation σ is
calculated each year at the firm level from daily CRSP returns during the fourth quarter. Leverage ratios
L/(L + S)) are debt book values (Compustat data items 9+34) divided by the sum of the debt book value
and the year-end CRSP market capitalization. The Sharpe ratio SR is the five-year moving average of the
calendar year ratio of average monthly CRSP excess returns to standard deviation. The tax rate τ is the
simulated corporate tax rates before financing from the website of John Graham, with missing values filled
in using the procedure of Graham and Mills (2008). The variables ln (A/(pS)), σ, L/(S + L), SR and τ are
measured at the end of the calendar year preceding the year in which CDS rates are observed. Sales, return
on assets (ROA), and stock returns (r) are the logarithm of the ExecuComp data items SALES, 1+ROA,
and 1+TRS1YR. The logarithm of Book-to-Market ln(B/M) is calculated from CRSP and Compustat using
the procedure of Daniel and Titman (1997). Div Dummy is one (zero) if dividends per share (Compustat
data item 26) in the prior year are non-zero. The variables ln(Sales), ln(1+ROA), ln(1+r), ln(B/M) and Div
Dummy are lagged by one year relative to the date at which CEO Salary and stock holdings are measured.
The variable New CEO is a dummy variable equal to unity when the CEO is appointed for less than one
calendar year. The ”G” variable is the Gompers, Ishii, and Metrick (2003) index of strength of takeover
provisions from the website of Andrew Metrick. All regressions include an intercept and year dummies (not
reported). Industry fixed effects (not reported) are based on four digit-SIC codes following Fama and French
(1997). T-statistics are based on standard errors that adjusted for the clustering of observations at the
CEO-firm level.
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Variable (i) (ii) (iii) (iv) (v) (vi) (vii)

ln
(

A
pS

)
0.053a 0.042a 0.054a 0.038b 0.039b 0.060a

(3.27) (2.83) (3.02) (2.38) (2.16) (3.02)

σ 0.023a 0.023a

(15.56) (15.25)

(
L

S+L

)
1.288a 1.199a 1.141a 1.369a 1.764a 1.802a

(8.22) (8.23) (8.16) (8.09) (11.12) (10.70)

SR -0.211 -0.462a -0.317c -0.231 0.037 -0.009 -0.395b

(-1.15) (-2.72) (-1.87) (-1.22) (0.21) (-0.05) (-2.15)

τ -1.444a -1.040a -0.952a -1.211a -1.179a -0.986a -1.325a

(-5.27) (-4.54) (-4.18) (-4.48) (-4.71) (-3.99) (-4.57)

ln(Sales) -0.187a -0.183a -0.184a -0.181a -0.211a -0.207a -0.189a

(-8.52) (-9.60) (-9.39) (-7.74) (-10.06) (-9.10) (-7.64)

ln(1 + ROA) -1.912a -1.138a -1.080a -1.926a -1.986a -2.043a -2.989a

(-6.23) (-4.13) (-3.87) (-5.03) (-6.63) (-5.49) (-7.66)

ln(1 + r) 0.000 0.049 0.038 -0.008 0.043 0.035 0.064
(0.01) (1.32) (1.02) (-0.20) (1.13) (0.89) (1.46)

ln(B/M) 0.146a 0.179a 0.164a 0.130a 0.158a 0.142a 0.295a

(4.40) (5.85) (5.45) (3.62) (4.88) (4.08) (7.57)

Div Dummy -0.771a -0.545a -0.560a -0.784a -0.585a -0.586a -0.673a

(-14.68) (-11.40) (-11.45) (-13.97) (-10.74) (-10.26) (-10.27)

New CEO -0.016 0.003
(-0.28) (0.06)

G -0.002 -0.006
(-0.22) (-0.60)

Ind FE no no no no yes yes yes

N 2441 2543 2441 2305 2441 2305 2441
R2 0.52 0.61 0.62 0.53 0.58 0.59 0.51

Significant at 1% (a), 5% (b), and 10% (c) levels.
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Table III
Robustness

Coefficients from regressions of annual CDS rates on firm and CEO characteristics for 608 firms during the
time period 2001-2006. Regression (i) uses the Fama-McBeth technique, regression (ii) uses a regression
technique that is robust to outliers (SAS Proc robustreg), and regressions (iii)-(vii) are pooled OLS. The
dependent variable in all regressions is the logarithm of the average of firms’ month-end CDS rates within
each calendar year. Cash-to-stock, ln (A/(pS)) is the logarithm of the ratio of CEO Salary A (ExecuComp
SALARY) to the product of the effective fractional stock holding p, defined following the method of Core
and Guay (2002), and CRSP market capitalization S. The variable ln(A/((ps + q)S) is an alternative proxy
of cash-to-stock where the sum of fractional stock and option holding (ps + q) replaces the effective stock
holding p. Fractional stock holding ps is the stock owned by the CEO excluding options (ExecuComp variable
SHROWN EXCL OPTS) divided by the number of shares outstanding (ExecuComp variable SHRSOUT).
Fractional option holding q is the sum of exercisable and non-exercisable options (ExecuComp variables
OPT UNEX EXER NUM and OPT UNEX UNEXER NUM) divided by the number of shares outstanding.
The variable ln ((A + bonus)/(pS)) is another alternative proxy for cash-to-stock where cash is calculated
by adding to the CEO salary A the CEO bonus (ExecuComp variable BONUS). The variable q/(ps + q) is
the ratio of fractional option holdings to the sum of fractional stock and option holdings. Option moneyness
K/S is the ratio of the CEO’s average option strike, calculated using the Core and Guay (2002) method, to
the end of year stock price. CEO age, tenure, and non-CEO tenure (the number of year that a CEO spent
as a firm’s employe prior to becoming a CEO) are from ExecuComp or, if that data is missing, from the
websites sec.edgar.gov and zoominfo.com. Leverage ratio L/(L + S)) is debt book value (Compustat data
items 9+34) divided by the sum of the debt book value and year-end CRSP market capitalization. The
Sharpe ratio SR is the five-year moving average of the calendar year ratio of average monthly CRSP excess
returns to standard deviation. The tax rate τ is the simulated corporate tax rate before financing from the
website of John Graham, with missing values filled using the procedure of Graham and Mills (2008). The
variables ln (A/(pS)), ln(A/((ps + q)S), ln ((A + bonus)/(pS)) , L/(S + L), SR and τ are measured at the
end of the calendar year preceding the year in which CDS rates are observed. Sales, return on assets (ROA),
and stock returns (r) are the logarithm of the ExecuComp data items SALES, 1+ROA, 1+TRS1YR. The
logarithm of Book-to-Market ln(B/M) is calculated from CRSP and Compustat using the procedure of
Daniel and Titman (1997). Div Dummy is one (zero) if dividends per share (Compustat data item 26) in
the prior year are non-zero. The variables ln(Sales), ln(1 + ROA), ln(1 + r), ln(B/M) and Div Dummy are
lagged by one year relative to the date at which CEO Salary and stock holding are measured. All regressions
include an intercept and year dummies (not reported). T-statistics are based on standard errors and for
regressions (iii)-(vii) standard errors are adjusted for the clustering of observations at the CEO-firm level.
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Variable (i) (ii) (iii) (iv) (v) (vi) (vii)
FM Robust Options Bonus All Old Young

ln
(

A
pS

)
0.047a 0.047a 0.064a 0.088a 0.056a

(4.19) (5.19) (3.25) (2.70) (3.00)

ln
(

A
(ps+q)S

)
0.073a

(3.77)

ln
(

A+bonus
pS

)
0.034a

(2.67)

q
ps+q -0.146

(-1.52)

K/S -0.214b

(-2.18)

Age -0.006c 0.014 -0.020a

(-1.74) (1.56) (-3.78)

Tenure 0.007c -0.001 0.014a

(1.79) (-0.21) (2.80)

Non-CEO tenure -0.017a -0.010c -0.024a

(-4.23) (-1.73) (-4.51)

(
L

S+L

)
1.202a 1.170a 1.277a 1.294a 1.295a 0.866a 1.437a

(10.10) (14.41) (8.11) (7.93) (8.58) (3.88) (8.15)

SR -0.548b -0.202 -0.401b -0.326c -0.191 -0.173 -0.177
(-2.04) (-1.45) (-2.06) (-1.75) (-1.05) (-0.60) (-0.81)

τ -1.574a -1.318a -1.427a -1.492a -1.401a -1.036b -1.506a

(-3.81) (-6.29) (-5.12) (-5.41) (-5.26) (-2.48) (-4.59)

ln(Sales) -0.178a -0.217a -0.181a -0.195a -0.162a -0.226a -0.125a

(-7.175) (-16.82) (-8.05) (-9.09) (-7.28) (-6.29) (-4.79)

ln(1 + ROA) -1.928a -1.985a -1.958a -1.909a -1.912a -2.356a -1.727a

(-3.112) (-8.14) (-6.53) (-6.20) (-6.30) (-4.57) (-4.96)

ln(1 + r) 0.067 -0.032 -0.012 -0.003 0.008 0.007 0.015
(0.674) (-0.80) (-0.32) (-0.08) (0.20) (0.10) (0.34)

ln(B/M) 0.139a 0.157a 0.136a 0.154a 0.140a 0.145b 0.141a

(4.534) (7.16) (4.05) (4.59) (4.16) (2.45) (3.73)

Div Dummy -0.737a -0.799a -0.745a -0.763a -0.705a -0.674a -0.687a

(-18.189) (-23.09) (-14.17) (-14.58) (-13.36) (-7.17) (-11.54)

N 407 2441 2441 2443 2428 741 1687
R2 0.49 0.46 0.53 0.52 0.54 0.57 0.54

Significant at 1% (a), 5% (b), and 10% (c) levels.
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Table IV
Leverage Choice

Coefficients from pooled OLS regressions of leverage ratio on firm and CEO characteristics for 608 firms
during the time period 2001-2006. The dependent variable is the leverage ratio L/(L + S)) calculated by
dividing the debt book value (Compustat data items 9+34) by the sum of the debt book value and the
year-end CRSP market capitalization. Cash-to-stock, A/(pS) is the logarithm of the ratio of CEO Salary
A (ExecuComp SALARY) to the product of the effective fractional stock holding p, defined following the
method of Core and Guay (2002), and CRSP market capitalization S. The Sharpe ratio SR is the five-year
moving average of the calendar year ratio of average monthly CRSP excess returns to standard deviation. The
tax rate τ is the simulated corporate tax rates before financing from the website of John Graham, with missing
values filled in using the procedure of Graham and Mills (2008). The variables ln (A/(pS)), ln (A/(pS))2,
SR and τ are measured in the same year that leverage ratio is measured. Sales and return on assets (ROA)
are the the ExecuComp data items SALES and 1+ROA. The logarithm of Book-to-Market ln(B/M) is
calculated from CRSP and Compustat using the procedure of Daniel and Titman (1997). Collateral is the
ratio of inventories and property, plant, and equipment to the book value of assets (Compustat data items
(3+8)/6). Div Dummy is one (zero) if dividends per share (Compustat data item 26) in the prior year are
non-zero. The variables ln(Sales), ln(1+ROA), ln(B/M), Collateral and Div Dummy are lagged by one year
relative to the date at which leverage is measured. All regressions include an intercept and year dummies
(not reported). Industry fixed effects (not reported) are based on four digit-SIC codes following Fama and
French (1997). T-statistics are based on standard errors that adjusted for the clustering of observations at
the CEO-firm level.
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Variable (i) (ii) (iii) (iv) (v) (vi) (vii) (viii)
ln(A/(pS)) 0.013b 0.016a 0.010b 0.012a 0.036a 0.037a 0.030a 0.028a

(2.38) (3.65) (1.96) (3.06) (3.71) (4.53) (3.23) (3.51)

ln(A/(pS))2 0.001a 0.001a 0.001a 0.001a

(3.73) (3.78) (3.36) (2.98)

SR -0.177a -0.258a -0.154a -0.239a

(-3.70) (-6.15) (-3.29) (-5.72)

τ -0.081 -0.121b -0.058 -0.090c -0.063 -0.111b -0.045 -0.084
(-1.26) (-2.17) (-0.92) (-1.67) (-1.03) (-2.03) (-0.75) (-1.60)

ln(Sales) 0.013b 0.014b 0.011c 0.011c 0.016a 0.016a 0.014b 0.012b

(2.07) (2.21) (1.72) (1.69) (2.59) (2.58) (2.19) (1.99)

ln(1 + ROA) -0.625a -0.603a -0.593a -0.552a -0.610a -0.583a -0.584a -0.540a

(-5.25) (-6.10) (-5.02) (-5.81) (-5.14) (-5.94) (-4.94) (-5.70)

ln(B/M) 0.116a 0.083a 0.114a 0.078a 0.111a 0.079a 0.109a 0.075a

(10.83) (8.64) (10.61) (8.12) (10.17) (8.18) (10.01) (7.77)

Collateral -0.017 0.051 -0.013 0.060 -0.027 0.053 -0.022 0.060
(-0.59) (1.34) (-0.44) (1.56) (-0.96) (1.38) (-0.78) (1.57)

Div Dummy -0.005 -0.048a -0.005 -0.049a -0.009 -0.050a -0.008 -0.051a

(-0.29) (-3.12) (-0.28) (-3.24) (-0.55) (-3.24) (-0.52) (-3.32)

Ind FE n y n y n y n y

N 2384 2384 2384 2384 2384 2384 2384 2384
R2 0.36 0.47 0.37 0.49 0.37 0.48 0.37 0.49

Significant at 1% (a), 5% (b), and 10% (c) levels.
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Figure 1: Timeline describing the manager’s decision problems.
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Figure 2: The manager’s optimal terminal wealth as a function of the pricing ker-
nel ξT . The solid line represents the manager’s terminal compensation from cash and stock
of a levered firm in each terminal state as summarized by ξT . The dashed line represents
the manager’s terminal compensation if given an equally valued initial stake in the stock of
an unlevered firm and no cash compensation. The figure is generated using the parameters
r = 0.05, τ = 0.3, α = 0.33, A = 0.001, p = 0.01, L = 1.0, γ = 1.1, and T = 5. To set the
initial stock price S0 = 1.0 we choose V0 = 2.2.
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Figure 3: Volatility choice as a function of the present value of LPP and the
cash-to-stock ratio A/(pSR

0 ). The solid and dashed lines show the LPP volatility at date
t = 0.25 as a function of the present value of LPP for a manager compensated with cash and
stock in a levered firm. The dash-dotted line gives the LPP volatility of an unlevered firm
run by a manager with no cash compensation. The figure is generated using the parameters
r = 0.05, τ = 0.3, α = 0.33, A = 0.0002 (solid line), A = 0.001 (dashed line), p = 0.01,
L = 1.0, γ = 1.1, and T = 5. To set the initial stock price S0 = 1.0 we choose V0 = 2.4
(solid line) and V0 = 2.2 (dashed line).
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Figure 4: Credit spreads and stock volatility as a function of the leverage ratio
and the cash-to-stock ratio A/(pSR

0 ). In Panel A the solid (dashed) line represents
the initial credit spreads for debt of firms run by a managers compensated with cash-to-
stock A/(pSR

0 ) = 0.02 (A/(pSR
0 ) = 0.01) at various leverage ratios. The dash-dotted line

represents the credit spreads of firms with LPP volatility νM that is constant over the firm’s
life. The parameters νM are chosen to match the initial instantaneous stock volatility of
a firm with identical leverage that is run according to the R model with A/(pSR

0 ) = 0.02.
Panel B shows equity volatilities as a function of the stock-debt ratio. The figure is generated
using the parameters r = 0.05, τ = 0.3, α = 0.33, A = 0.0002 (solid line), A = 0.001 (dashed
line), p = 0.01, L = 1.0, γ = 1.1, and T = 5. Levels of V0 are chosen to set the initial stock
price S0 = 1.0.
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Figure 5: Hedge ratios as a function of the leverage ratio. The solid and dashed lines
give the number of units of stock required to hedge the return on a bond issued by a firm
run by a manager compensated with cash and stock. The dotted and dash-dotted lines give
the equivalent hedge ratios for a firm with constant LPP volatility. The figure is generated
using the parameters r = 0.05, τ = 0.3, α = 0.33, A = 0.0002 (solid line), A = 0.001
(dashed line), p = 0.01, L = 1.0, γ = 1.1, and T = 5. To set the initial stock price S0 = 1.0
we choose V0 = 2.4 (solid line) and V0 = 2.2 (dashed line).
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Figure 6: The optimal choice of leverage (top panel) and the credit spread at
issuance (bottom panel) as functions of the initial cash-to-stock ratio A/(pS0).
The top panel shows how optimal leverage choice depends on the manager’s compensation
terms as summarized by the cash-to-stock ratio A/(pSR

0 ). The bottom panel shows how
at-issue credit spreads depend on compensation terms. The figure is generated using the
parameters r = 0.05, τ = 0.3, α = 0.33, V0 = 1, γ = 1.1, and T = 5.
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Figure 7: CDS rates vs leverage in the sample (log-linear scale). Each datapoint
represents an observation of a leverage/CDS rate pair from our sample of 608 US firms
during the period 2001-2006. Details on data sources and construction are in Table I.
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For Supplements and Dataset Section of www.afajof.org:

Technical Appendix to Leverage Choice and Credit Spreads
when Managers Risk Shift.

Outline

This Technical Appendix includes material of a technical nature relevant to the “Leverage
Choice and Credit Spreads when Managers Risk Shift” and is organized as follows. Section
B1 generalizes the R model to permit firm’s LPP to have an exposure to idiosyncratic risk.
Section B2 provides the pricing formulas for a version of the Merton (1974) model with
taxes and bankruptcy cost. Section B3 presents an homogeneity property of the first stage
model. Section B4 provides some geometric intuition supporting the results R1 and R2 from
the proof of Proposition 1.

B1. Incorporating Idiosyncratic Risk

In this appendix we describe how our model can be modified to incorporate a non-systematic
risk in the unlevered firm value V .

Assume that the firm cash payment has a systematic risk component (represented by the
Brownian process z) as well as an idiosyncratic risk component driven by an independent
Brownian process zi. Assume also that the manager has the ability to control the total risk
ν of the cash payment so that the resulting process for V becomes

dVt

Vt
= (r + αρνt)dt + νt

(
ρdzt +

√
1− ρ2dzi

t

)
, (45)

where ρ ∈ [−1, 1] represents the exposure to market risk. Notice that increases and decreases
in νt have the same effect on both the systematic and idiosyncratic sources of risk z and
zi and, therefore, the manager does not have the ability to control either source of risk in
isolation. The case ρ = 1 nests the benchmark model (2). Further, define a new Brownian
motion

ẑt = ρzt +
√

1− ρ2zi
t

and the exponential martingale process

dNt

Nt
= −rdt− αρdẑt, N0 = 1. (46)

The following lemma establishes that the exponential martingale N is the projection of
the state price density ξ on the Gaussian subspace generated by the Brownian process ẑ.

Lemma 9 Let F̂t = σ(ẑs, s ≤ t) denote the σ-algebra generated by the observation of the
path (ẑs)s≤t. Then

Nt = E
[
ξt | F̂t

]

for all 0 ≤ t ≤ T .

Proof. We define the new Brownian motion ẑ∗ by

ẑ∗t = −
√

1− ρ2zt + ρzi
t.
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Note that, by construction, ẑ∗ is independent from ẑ. Furthermore,

zt = ρẑt +
√

1− ρ2z∗t , zi
t =

√
1− ρ2ẑt − ρz∗t .

Now,

E
[
ξt | F̂t

]
= E

[
e−rT e−

α2

2
T−αzt | F̂t

]

= E

[
e−rte

−α2

2
t−α

(
ρẑt+

√
1−ρ2z∗t

)
| F̂t

]

= e−rte−
α2

2
t−αρẑtE

[
e−α

√
1−ρ2z∗t | F̂t

]

= e−rte−
α2

2
t−αρẑtE

[
e−α

√
1−ρ2z∗t

]

= e−rte−
α2

2
t−αρẑte

α2(1−ρ2)
2

t

= e−rte−
α2ρ2

2
t−αρẑt = Nt,

where the fourth equality follows from the fact that ẑ∗ is independent from ẑ.
One implication of the above lemma is that any payoff which is exclusively determined

by the paths of ẑ (i.e. measurable with respect to F̂t for a given t > 0) can be priced either
using the state price density ξ or its projection N . To see this, consider any F̂t measurable
payoff χ. It follows from the law of iterated expectations and Lemma 9 that

E [ξtχ] = E
[
E

[
ξtχ | F̂t

]]
= E

[
χE

[
ξt | F̂t

]]
= E [Ntχ] .

The above result is critical for our extension because it says that the exponential mar-
tingale N is an effective state price density for all payoffs which are solely contingent on
the paths ẑ. It turns out that under optimal behavior for the R model, the optimal LPP,
VT , depends only on the path of ẑ and we can consequently price any firm security by using
N instead of the original state price density ξ. The following proposition substantiates this
claim

Proposition 10 In presence of idiosyncratic risk, Given any (L, p) ∈ (0,∞)× [0, 1], there
exists a unique rational expectations equilibrium in which bondholders correctly anticipate
the manager’s risk choice ν. In this equilibrium the bankruptcy threshold V R

b is consistent
with (3) and the optimization problem (13) yields LPP value

V R
T =

[
V +

(
V − V R

b +
A

p(1− τ)

) ((
NT

N

)− 1
γ

− 1

)]
1{NT≤N}, (47)

where N ∈ (0,∞) is the unique scalar such that E (NT VT ) = V0 and wher V is defined by
(15).

Proof. The proof of Proposition 10 is identical to the proof of Proposition 1. This is due to
the fact that the R model problem under the state variables dynamic (1)-(2) is isomorphic
to the R model with the state variable dynamic (45)-(46) with (α, ξ, z) substituted for
(αρ, N, ẑ).

Therefore, all the pricing results for the benchmark model will also hold with a simple
change in notation. For example, the bond price formula (19) becomes

BR
t = Le−r(T−t) N (d̂(t, 1, Nt/N))

2



where the function d̂ is defined by

d̂(t, x, n) =
(
− ln n + r(T − t)− α2ρ2

2
(1− 2(1− x))(T − t)

)
/(αρ

√
T − t).

Similarly, the first stage problem can be solved using the same numerical procedures as for
the benchmark model where the parameters are appropriately redefined.

B2. The M Model

In this appendix we derive valuation equations for a version of the Merton (1974) model,
generalized to include taxes and bankruptcy costs (the M model).

In the M model the process Vt, defined in equation (2), has constant volatility ν. Stock
and bond price dynamics from the M and R models can be made to converge at high equity
values by setting ν = νM ≡ α/γ, and we denote the resulting LPP process by V M

t . In
order to compute security prices that account for taxes and bankruptcy costs, the valuation
formulas in Section 2 can be applied with VT = V M

T .
Bond prices are given by

BM
t = Le−r(T−t)N (

γd(t, γ̃1, V
M
b /V M

t )
)

+ V M
t (1− δf )(1− τ)N (−γd(t, γ̃2, V

M
b /V M

t )
)
, (48)

where

γ̃1 =
1
2

(
1 +

1
γ2

)
, γ̃2 = 1− γ̃1, V M

t = V0
e
−

(
1−γ

γ
r+α2

γ2

)
t

ξ
1/γ
t

, (49)

and V M
b solves equation (3) with B0 = BM

0 . This is similar to the formula provided in
Merton (1974) where the risky bond can be replicated by a long position in a riskless bond
with face value L and a short put. In our context, two option contracts are required for
the bond’s replicating portfolio. The first is (1 − δf )(1 − τ) units of a put on LPP, V M

T ,
with strike price V M

b . Due to the discontinuity in free cashflow at V M
b a binary option is

also required, paying the foregone tax shield τ(L − BM
0 ) and the lump sum δf (1 − τ)V M

b

when the firm is insolvent. The net payoff from shorting these options accounts for the fact
that bondholders are residual claimants to non-zero firm value in the insolvent states, but
themselves incur the costs of bankruptcy. Of course, they anticipate this payoff structure,
as reflected in the pricing function (48). Yields in the M model are given by

yM
t = r −

ln
(
N (

γd(t, γ̃1, V
M
b /V M

t )
)

+ (1−τ)(1−δf )V M
t

Le−r(T−t) N (−γd(t, γ̃2, V
M
b /V M

t )
))

T − t
(50)

and credit spreads are given by ρM
t = yM

t − r. Bond return volatility is given by

ηM
t =

α

γ

V M
t

BM
t

(1− δf )(1− τ)N (−γd(t, γ̃2, V
M
b /V M

t )
)
. (51)

Stock payouts can be replicated by (1− τ) units of a call option on the LPP with strike
price V M

b . The equity price is given by

SM
t = (1− τ)

[
V M

t N (
γd(t, γ̃1, V

M
b /V M

t )
)− V M

b e−r(T−t)N (
γd(t, γ̃2, V

M
b /V M

t )
)]

(52)

and equity volatility is

σM
t = (1− τ)

α

γ

V M
t

SM
t

N (
γd(t, γ̃1, Vb/V M

t )
)
. (53)
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B3. Homogeneity Property of the First Stage Model

In this section, the model parameters (τ, γ, T, α, r) are fixed. We will show that the first
stage model inherits an homogeneity property from the R model described in Lemma 6. As
a result, we prove (see Proposition 12) that the leverage ratio can be expressed as a function
of cash-to-stock immediately after the optimal amount of debt is issued. Using numerical
approximations, we depict the relationship between optimal leverage and cash-to-stock in
Figure 6.

Recalling the R model’s parameters (A, p, L, V0), we denote by J (A, p, L, V0) the man-
ager’s expected utility (the value function) under optimal behavior for a firm run as in the
R model. Using the explicit form of optimal LPP in Proposition 1, it can be shown that for
any x > 0 and (p, p′) ∈ (0, 1)2,

J
(

A

px
, p′,

L

x
,
V0

x

)
=

(
1
px

)1−γ

J (A, pp′, L, V0). (54)

In the first stage problem, the firm/manager’s exogenous parameters are now (A, p0, V0).
Recalling that J is the value function for the R model, the managers first stage problem is
to maximize

W(A, p0, V0) = supL,p J (A, p, L, V0) (55)

s.t. p0(SR
0 + BR

0 ) = pSR
0 ,

and p ≤ 1,

where (SR
0 , BR

0 ) are the stock and bond price for a firm with parameters (A, p, L, V0) when
the manager behave according to the R model. To make the dependency on the model’s
parameters explicit, we will use the notation (SR

0 , BR
0 ) = Ξ(A, p, L, V0). We also denote the

solution of the optimization problem (55) by (L(A, p0, V0), p(A, p0, V0)).

Proposition 11 Consider a firm with exogenous parameters (A, p0, V0) and assume that
the associated first stage model admits an interior solution (L(A, p0, V0), p(A, p0, V0)). For
any x > 0, we have

L

(
A

x
, p0,

V0

x

)
=

1
x

L(A, p0, V0), p

(
A

x
, p0,

V0

x

)
= p(A, p0, V0). (56)

Furthermore, for any p′0 < 1 and x > 0 such that the first stage problem with parameters(
A
x

p′0
p0

, p′0,
V0
x

)
admits an interior solution, we have

L

(
A

x

p′0
p0

, p′0,
V0

x

)
=

1
x

L(A, p0, V0), p

(
A

x

p′0
p0

, p′0,
V0

x

)
=

p′0
p0

p(A, p0, V0). (57)

Proof. We will show simultaneously equation (56) and (57) by considering a firm with
parameters

(
A
x

p′0
p0

, p′0,
V0
x

)
. The first stage problem of the firm under consideration is

W
(

A

x

p′0
p0

, p′0,
V0

x

)
= supL̃,p̃ J

(
A

x

p′0
p0

, p̃, L̃,
V0

x

)
(58)

s.t. p′0(S
R,x
0 + BR,x

0 ) = p̃SR,x
0

where (SR,x
0 , BR,x

0 ) = Ξ
(

A
x

p′0
p0

, p̃, L̃, V0
x

)
. Notice that the constraint p̃ ≤ 1 has been ignored

because we assume that the problem admits an interior solution.
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Using the homogeneity property of the R model formulated in equation (37) gives
(xSR,x

0 , xBR,x
0 ) = Ξ

(
A, p0

p′0
p̃, xL̃, V0

)
. On the other hand, the constraint of the problem

(58) can be rewritten as p0(xSR,x
0 +xBR,x

0 ) = p0

p′0
p̃xSR

0 . Using the property (54), we see that
the optimization problem may be rewritten

W
(

A

x

p′0
p0

, p′0,
V0

x

)
=

(
p′0
xp0

)1−γ

supL̃,p̃ J
(

A,
p0

p′0
p̃, xL̃, V0

)
(59)

s.t. p0(xSR,x
0 + xBR,x

0 ) =
p0

p′0
p̃xSR,x

0

where we recall that (xSR,x
0 , xBR,x

0 ) = Ξ
(
A, p0

p′0
p̃, xL̃, V0

)
. Comparing the structure of prob-

lem (59) and the problem (55), we see that their solutions are related. Specifically, if the
control L̃ is replaced by L

x and the control p̃ is replaced by p′0
p0

p in the problem (59),
then the problem (59) becomes identical to problem (55). This observation shows that
L

(
A
x

p′0
p0

, p′0,
V0
x

)
= 1

xL(A, p0, V0) and p
(

A
x

p′0
p0

, p′0,
V0
x

)
= p′0

p0
p(A, p0, V0) which proves both

equation (56) and equation (57).
Proposition 11 implies that optimal leverage is a function of the after issuance cash-to-

stock. The next proposition formalizes this relationship between endogenous variables in
the first stage model. In order to shorten notation we use the symbol L (resp. p) instead of
L(A, p0, V0) (resp. p(A, p0, V0)) when no confusion can arise.

Proposition 12 In the context of the manager’s first stage problem, the optimal leverage
can be expressed as a function of the cash-to-stock ratio and the model’s exogenous param-
eters, that is, there exists a function Θ such that

L

SR
0 + L

= Θ
(

A

pSR
0

, α, γ, τ, r, T

)
. (60)

Proof. Fixing p′0 and choosing x = V0 in (57) shows that the endogenous variables
(V0/L, p/p0) only depend on the variable A/(p0V0). Using the notation SR

0 = SR
0 (A, p, L, V0),

we can choose x = V0 in equation (37) and observe that SR
0 /V0 is a function of A/(pV0) and

V0/L. Noticing that A/(pV0) = A/(p0V0) ∗ (p/p0)−1 and that both p/p0 and V0/L depend
only on A/(p0V0) shows that

SR
0

V0
= Γ1

(
A

p0V0

)

for some function Γ1.
Now, the after issuance cash-to-stock ratio may be rewritten as A/(pSR

0 ) = [A/(p0V0)]∗
[p0/p]∗[S0/V0]−1 and since each of the three terms of this product depends on only A/(p0V0)
we see that A/(pSR

0 ) only depends on A/(p0V0). On the other hand the stock to debt ratio
may be rewritten as SR

0 /L = (SR
0 /V0) ∗ (V0/L) and the two terms of this product only

depend on A/(p0V0). As a result, equation (60) holds.

B4. Geometry of the L-F Transform

To build intuition for the basic principles underlying the results R1 and R2 from the proof
of proposition 1, it is useful to consider the geometry behind the L-F transform in one
dimension. To this end, it may be helpful to refer to Panel A of Figure A.1 when working
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through the following logic. Begin by assuming that h is a differentiable and convex function
and notice that in this case the L-F transform can be defined as

h∗(x∗) = − inf
x∈lR

(h(x)− xx∗) .

This alternative definition of the L-F transform shows that the problem consists of min-
imizing the distance between the function h and a line with slope x∗ crossing the origin.
If this line is translated by −h∗(x∗) it will touch the graph of h only at x. We can thus
equivalently define the L-F transform in terms of finding the highest line with slope x∗ that
lies below the function h. The equation of this line is

y = xx∗ − h∗(x∗).

To build intuition for the results R1 and R2, observe that the first order conditions for (31)

−2 0 2
−4

0

4
Panel A

−2 0 2
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−2 0 2
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g
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 x
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Figure A.1

are h′(x) = x∗ and the resulting L-F transform is given by h∗(x∗) = xx∗ − h(x). Totally
differentiating this last expression with respect to x∗ shows that we also have the symmetric
condition h∗′(x∗) = x. The L-F transform (31) is therefore characterized by

h∗(x∗) + h(x) = xx∗, h′(x) = x∗, h∗
′
(x∗) = x. (61)

This formula reveals a fundamental symmetry between a convex differentiable function and
its L-F transform. In particular, we see that if h∗ is the L-F transform of h, then h must be
the L-F transform of h∗. To see this, consider Panel B of Figure A.1 where we wish to find
the solution to equation (32) at the point x∗. We now know that at this point the tangent
to h∗ has slope x and, by the first equation in (61), intercept −h(x). Thus h∗∗ = h and the
result R1 is obvious in this simple setting. Result R2 is directly implied by the relationship
(61) since the supporting lines are just the tangents.

Panel C in Figure A.1 illustrates how a function is convexified by applying the L-F
transform twice. Consider first the function g1. Visual inspection shows that given any
slope, the highest line lying below it cannot touch the graph in the non convex region
[xl, xh]. Therefore, g∗1 cannot capture the variation in g1 within this region. In particular,
the functions g1 and g2 and, for that matter, any function lying above g3 in the region
[xl, xh] will have the same L-F transform g∗3. Hence, the double L-F transforms of g1, g2,
and g3 are the same and must equal g3, the convex envelope of all of these functions.
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