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Abstract

Asset prices we observe in the financial markets combine two unobservable components:

equilibrium prices and market microstructure noise. In this paper, we study how to tell apart

large shifts in underlying equilibrium prices from noise using high frequency data. We propose

a new nonparametric test which allows us to asymptotically remove the noise from observable

price data and to discover jumps in fundamental asset values. We provide its asymptotic

distribution to decide when such jumps occur. In finite samples, our test offers reasonable

power for distinguishing between noise and jumps. Empirical evidence found from tick-by-tick

stock trades indicates that it is necessary to incorporate the presence of jumps in equilibrium

prices.
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1 Introduction

Asset prices we observe in financial markets are determined by two important, unobservable

components. One is equilibrium prices, which reflect demand and supply of assets, and they

are also called as efficient prices, incorporating investors’ thoughts on market information. The

other is market microstructure noise induced by frictions with which actual trades take place.

Examples of such frictions are tick size, discrete observation, bid-ask spread, and other trading

mechanics.1 Given that both components are essential ingredients for trading, as also indicated

in Black (1986), researchers have sought a better understanding of both and of their interactions.

In particular, in recent years, with the availability of databases consisting of observations sampled

at ultra-high frequency up to every second, extensive research that takes advantage of such data

for better volatility and noise estimation has appeared, and their economic implications have also

been investigated in many studies.2

In this paper, we are motivated to question the assumptions imposed by most of the afore-

mentioned studies for log equilibrium prices to follow diffusion processes. Although it is simpler

to study this issue under such assumptions, it is widely known in the asset pricing literature that

financial markets experience jumps in prices that are too large to be explained by pure diffu-

sion processes, and their presence has been incorporated in numerous theoretical and empirical

studies.3 Obviously, one can argue that all the evidence of jumps documented in the previous
1Other examples include institutional structure, transaction costs, adverse selection due to asymmetric infor-

mation for different traders, trading size, volume, liquidity, dealer’s inventory control, among others. [See O’Hara

(1995) and Hasbrouck (2004) and the reference therein.]
2See Andersen, Bollerslev, and Diebold (2003), Bai, Russell, and Tiao (2000), Aı̈t-Sahalia, Mykland, and Zhang

(2006), Barndorff-Nielsen and Shephard (2003), Bandi and Russell (2005), Zhang, Mykland, and Aı̈t-Sahalia (2005),

and Hansen and Lunde (2006).
3See Bates (1996), Bakshi, Cao, and Chen (1997), Aı̈t-Sahalia (2002), Andersen, Benzoni, and Lund (2002), Pan
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asset pricing literature based on discretely sampled data are due to noise and hence, a diffusion

assumption for efficient prices would be valid since noise indeed creates discreteness in recorded

prices and it is difficult to tell through existing empirical methods if there are fundamental shifts

in underlying asset values.4 Nonetheless, distinguishing jumps in efficient prices from noise is

important, first because, if there were in fact dramatic changes (jumps) in the fundamental values

of underlying assets but these were neglected, as noted in various studies, their implications for

financial management such as pricing and hedging would be significant. Secondly, we believe that

discovering jumps in efficient prices apart from noise and understanding their interactions should

give us a better tool for event studies, which we often employ in empirical investigations of market

trading behavior.

Specifically, we propose a new empirical test that suggests preprocessing price level data for

the purpose of de-noising and makes a distinction between jumps in efficient prices and noise.

Assuming that noise has an additive effect on equilibrium prices, we first take local averages of

observed prices over an upcoming local window in the preprocessing. This local averaging allows

us to asymptotically remove the noise and approximate the true underlying prices. (The device

has earlier been studied by Jacod, Li, Mykland, Podolskij, and Vetter (2008) and Podolskij and

Vetter (2008) for estimating volatility). Therefore, evidence based on this test becomes about the

efficient prices. In order for econometricians to determine the rejection regions for claiming jump

arrivals, we offer a limiting distribution of our test statistics. To execute the test, noise variance is

needed as an input. We also suggest a noise variance estimator, which is asymptotically immune

(2002), Chernov, Gallant, Ghysels, and Tauchen (2003), Eraker, Johannes, and Polson (2003), Johannes (2004),

Barndorff-Nielsen and Shephard (2005a).
4Many empirical methods to test jumps in asset prices using high frequency observations do not take into

consideration the presence of market microstructure noise. See Barndorff-Nielsen and Shephard (2005a), Aı̈t-Sahalia

and Jacod (2006), Mancini (2001), and Lee and Mykland (2006), among others.

2



to the presence of jumps in efficient prices. Our test is designed to take full advantage of a ultra-

high frequency database. Hence, as long as high frequency price data are available for analysis, it

can be used to find the behavior of both unobservable price processes and noise processes for any

kind of asset price series. In addition, the outcome of our test is robust to model specification,

because the suggested procedure is nonparametric.

After presenting asymptotic theories of inference, we discuss finite sample performance using

Monte Carlo simulation. We first show that when there are jumps in equilibrium prices, the noise

variance can be estimated better by multi-power variations than other existing estimators such

as quadratic power variations or bi-power variations studied by Bandi and Russell (2005), Zhang,

Mykland, and Aı̈t-Sahalia (2005), and Oomen (2002), among others. Then, we present the size

and power properties of our test and show that detectable jumps tend to depend on magnitude

of noise variance. When the noise variance level is high, the test tends to detect jumps that

are greater in size. For a given jump size, however, we can maximize the power of the test by

increasing the frequency of observations.

Finally, we apply our new test of jumps in equilibrium prices and estimation procedure for

noise variance to August 2007 IBM stock trade data from the TAQ database. In order for the

asymptotic results of theoretical inference to be most effective in data analysis, we use all tick-by-

tick data available sampled at the highest frequencies. Noise variance estimates for IBM trades

are around 0.01% and found to be greater at opening time (09:30-10:00) and closing time (15:00-

16:00) on trading days. Based on our new jump test that takes into account the general form

of dependent noise in the market, we strongly reject the null hypothesis of no jump models for

equilibrium prices, which suggests evidence in favor of pricing models with jumps.

The rest of the paper is organized as follows. We start in Section 2 by setting up a theoretical
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framework for equilibrium prices and specify a model of microstructure noise due to market

imperfection. In Section 3, we explain the intuition behind the development of our test and

introduce the definition of our test. In Section 4, we discuss the asymptotic behavior of our test

and the noise estimator. Section 5 illustrates the finite sample performance of noise estimator and

of our test under general assumptions on noise. After our empirical study is discussed in Section

6, we conclude in Section 7. All the proofs are in the Appendix.

2 Theoretical Model

This section sets up a theoretical framework to test the presence of jumps in equilibrium prices,

using market price data which include noise from market microstructure. We first fix a complete

probability space (Ω,Ft,P), where Ω is the set of events in a financial market, {Ft : t ∈ [0, T ]}

is right-continuous information filtration for market participants, and P is a data-generating

measure.

We denote as P (t) the unobservable log-equilibrium price at t, in which we test the presence

of jumps. Under the null hypothesis, the continuously compounded return dP (t) is represented

as

dP (t) = µ(t)dt + σ(t)dW (t), (1)

where W (t) is an Ft-adapted standard Brownian Motion, and the drift µ(t) and diffusion σ(t)

coefficients are Ft-adapted random processes, so that the underlying process is an Itô process that

has continuous sample paths. Under the alternative hypothesis with the presence of jumps, the

return is characterized by a jump diffusion process as

dP (t) = µ(t)dt + σ(t)dW (t) + Y (t)dJ(t), (2)

where dJ(t) is a jump counting process with a stochastic intensity of λ(t) independent of W (t), and
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Y (t) is its jump size. The dJ(t) term is an indicator of jump arrival. Jump size Y (t), independent

and identically distributed, has its mean µy(t) and standard deviation σy(t). This P (t) describes

the asset price evolution under a perfectly frictionless market, where there is costless trading or

an infinitely liquid market.

For simplicity but without loss of generality, we set the drift µ(t) to 0 and do our econometric

analysis, following the Girsanov’s Theorem, as in Karatzas and Shreve (1991). It allows us to carry

out our econometric analysis under a measure-theoretically equivalent probability space, which

shares the same null sets with the original space P. Analysis with and without the drift gives us

asymptotically identical empirical results.5 Hence, for now, we consider the null hypothesis as

dP (t) = σ(t)dW (t), (3)

and the alternative hypothesis as

dP (t) = σ(t)dW (t) + Y (t)dJ(t). (4)

Econometricians observe market data for the above process through either quoted or transac-

tion prices under market friction due to physical limits on observing data only at discrete times

or to various types of other market noise. The transaction or quote price observed at ti, denoted

as P̃ (ti) in this paper, is determined by the efficient price P (ti) as well as market microstructure

noise U(ti). As in most of the empirical and theoretical market microstructure literature including

Black (1986) and Stoll (2000), among others, we take a model with additive effect of noise on log

equilibrium prices, so that

P̃ (ti) = P (ti) + U(ti). (5)

Now, we impose the following assumptions on observation times, latent price processes, and noise,
5See Mykland and Zhang (2007) for a more detailed justification.
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throughout this paper.

Assumption A

A.1: Ultra High Frequency Observation Times

We set the grids Gn over the fixed time horizon [0, T ]. Each observation time is set as ti = tn,i

and belongs to Gn = {0 = tn,0 < tn,1 < ... < tn,n = T}. The distance between two successive

observations, ∆tn,i = tn,i− tn,i−1, is not necessarily fixed and can change over time depending on

i. We assume

max
1≤i≤n

|∆tn,i| = Op(n−β) for any β > 0, (6)

so that the grid becomes dense in [0, T ] as n →∞. The subscript n is normally suppressed in our

discussion.6

A.2: Equilibrium Price Process

The volatility σ(t) is càdlàg (right continuous with left limit), bounded away from zero and

maxt∈[0,T ] σ(t) < ∞. Moreover, for any β and ε such that 0 < ε < β/2,

max
ti∈Gn

|
∫ ti

ti−1

σ(u)dW (u)| = Op(nε−β
2 ). (7)

A.3: Market Microstructure Noise

The noise distribution is given by

U(ti) ∼ S(0, q2), (8)
6We use Op notation throughout this paper to mean that for random vectors {Xn} and non-negative random

variable {dn}, Xn = Op(dn) if for each ε > 0, there exists a finite constant Mε such that P (|Xn| > Mεdn) < ε

eventually.
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where S denotes a stationary Gaussian process with its mean 0 and standard deviation q, which

is also called as market quality parameter and U(ti) = Op(1).7

Assumption A.1 implies that the distance between two successive observations can be irregular,

which is the usual characteristic of ultra high frequency data, for example, data available in the

TAQ database. Assumption A.2 implies that the spot volatility can be stochastic, display jumps,

and have high persistence, nonstationarity, and leverage effect. Furthermore, it can depend on

the price process P (t). The motivation for imposing Assumption A.2 is to cover most of the

continuous-time assets pricing models existing in the literature that incorporate jumps in financial

markets. The motivation for imposing Assumption A.3 is to allow a dependent structure for noise

by stationarity so that we cover most of the models exiting in the market microstructure literature.

We call q in Assumption A.3 a market quality parameter to describe how noisy the market is.

q = 0 is equivalent to a frictionless market where equilibrium prices P (t) can be observed. Thus,

q represents the degree of market imperfection or quality of trading exchange. Approximately, if

we use a mid point quote as the observed price, we can interpret the magnitude of noise as the

difference between the mid-point quote and the corresponding equilibrium price. Its justification

can also be found in Hasbrouck (2004) and the reference therein.

In this paper, we perform our analysis with a locally fixed market quality parameter q. We

carry out our formal study with this simplified assumption on the noise parameter as a first step

to theoretically refine our understanding on the impact of the noise. This assumption can be
7Barndorff-Nielsen and Shephard (2005b), on the other hand, assume a component model for noise with U(ti) =

U1(ti)+U2(ti) where U1(ti) = op(
√

∆ti) and U2(ti) = Op(1). Since U2(ti) will dominate as ∆ti → 0, this assumption

is asymptotically equivalent to ours. Gloter and Jacod (2000) allows the variance of noise to decrease with n, hence,

U(ti) = Op(
√

∆ti).
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easily relaxed to accommodate the seasonality or time-variation of the noise process. We further

study more general cases using simulation in a later section.

3 Intuition and Definition of Test

This section explains the intuition behind the development of our test and its definition. In

order to understand the interaction between jump in equilibrium prices and microstructure noise,

we first consider the null hypothesis, where there is no jump in equilibrium price process as in

Equation (3) and we observe its data with noise. If econometricians calculate the log returns using

recorded prices at high frequency, as the distance between two successive observation time stamps

gets smaller so that our observation time becomes closer to continuous time: max0≤i≤n |∆n,i| →

0, the statistics based on these observed log returns will be about noise, not about the latent

price process. This is because noise, for example bid-ask spread, does not disappear in observed

prices, even if max0≤i≤n |∆n,i| → 0, but the effect of the Brownian motion process disappears

theoretically. In other words, noise plays a dominant role at such highest frequencies.8

Now, how about the alternative hypothesis where there are jumps in equilibrium prices as

in Equation (4) and we observe data from it with noise? As before, the effect of the Brownian

motion disappears, as max0≤i≤n |∆tn,i| → 0. But this time, two kinds of discreteness remains in

the observed returns. One is noise as explained above, and the other is jump in latent equilibrium

prices. Even if max0≤i≤n |∆n,i| → 0, these two will not disappear both theoretically and empiri-

cally. This is where the distinction becomes difficult because when we have very large changes in
8This is noted in Zhang, Mykland, and Aı̈t-Sahalia (2005) and Bandi and Russell (2005), suggesting not using

most frequently observed returns but using less frequently observed returns in order to make better volatility σ(t)

estimation. They also offer optimal sampling frequency for sample selection. But these studies assume that there

is no jump in equilibrium prices.

8



observed prices, this could be due to noise or to jumps in efficient prices.

In order to tell apart jumps in equilibrium prices from noise, we suggest preprocessing the raw

price level data. Instead of using observed prices directly for return calculation, we first average

observed prices over an upcoming block of size M . This technique of averaging observed prices

with an appropriate M allows us to asymptotically remove the noise from the price data which

are contaminated by the noise while keeping information about underlying prices.9 Formally,

we write the preprocessing procedure and the test statistic for jumps in equilibrium prices as in

Definition 1.

Definition 1. Let M be the block size such that M → ∞ as n → ∞, and M = Op(nγ) with

0 < 3γ < β − δ for some positive δ. The preprocessed price for de-noising, P̂ (tj), is the averaged

log price over the block of size M such that P̂ (tj) = 1
M

∑j+M−1
i=j P̃ (ti), where P̃ (ti) is the log price

observed at time ti. The statistic Lj, to test the presence of jumps in equilibrium price between

tj+M to tj, is defined as

Lj ≡ P̂ (tj+M )− P̂ (tj) (9)

with the observation time tj ∈ Gn for all j.

4 Theory of Inference for Equilibrium Price with Noise

This section explains how the preprocessing of local averaging prices can asymptotically remove

noise. Also, we discuss how to estimate noise variance when there are jumps in equilibrium prices.
9This pre-averaging technique has been proposed for volatility estimation for diffusion processes in the presence

of noise. [See Jacod, Li, Mykland, Podolskij, and Vetter (2008) and the references therein.]
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4.1 Asymptotic Behavior of Test

In this subsection, we discuss the asymptotic behavior of our test statistic and how to set up the

rejection region to detect jumps in equilibrium prices. We first study in Lemma 1 the asymptotic

behavior of changes in averaged log prices, which converge to zero under the null hypothesis of

the no jump model. This specifically states that its limiting distribution is Gaussian, given that

the noise process is Gaussian as well.

Lemma 1. If there is no jump in efficient prices under the null hypothesis as in Equation (3),

for a given j and M → ∞ as n → ∞ such that M = Op(nγ) with 0 < 3γ < β − δ for some

positive δ,

|P̂ (tj+M )− P̂ (tj)| P−→ 0, (10)

as n →∞. More precisely, if we set

X (j) =
1√
2q

1√
M




j+2M−1∑

i=j+M

U(ti)−
j+M−1∑

i=j

U(ti)


 , (11)

then, X (j) is a stationary Gaussian process with EX (j) = 0 and EX 2(j) = 1 for all j, and for

some η > 0,

sup
j
|
√

M
(
P̂ (tj+M )− P̂ (tj)

)
−
√

2qX (j)| = Op(n−η). (12)

In particular,

√
M

(
P̂ (tj+M )− P̂ (tj)

) D−→ N (0, 2q2), (13)

as n →∞.

Given the Lemma 1, the following Lemma 2 suggests that in the presence of a stationary
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Gaussian noise process, we can use our test to detect jump arrivals in efficient prices by considering

the limiting distribution of its extremes.

Lemma 2. Let X (j) be a stationary Gaussian process, so that EX (j) = 0 and EX 2(j) = 1 for

all j = 0, 1, .., n. Furthermore, its covariance sequence ρk = EX (0)X (k) with
∑∞

k=1 ρ2
k < ∞, or

limk→∞ ρk log k = 0. Then, as n →∞,

max0≤j≤n |X (j)| −An

Bn

D−→ ξ, (14)

where ξ follows a standard Gumbel distribution whose cumulative distribution function P (ξ ≤

x) = exp(−e−x)10,

An = (2 log n)1/2 − log π + log(log n)
2(2 log n)1/2

and Bn =
1

(2 log n)1/2
. (15)

Specifically, the above Lemma 2 implies that in the presence of dependent noise, one can find

maximums for the absolute differences in averages of log prices sampled at the highest frequencies

available and use the Gumbel variable for the purpose of testing. A similar lemma without the

general stationarity assumption on the noise process was used in Lee and Mykland (2006), which

does not take the presence of noise into account for jump detection. We state this more formally

in Theorem 1 as follows.

Theorem 1. Let Lj be as in Definition 1 and Assumption A is satisfied. Suppose there are

no jumps in equilibrium price processes in [0, T ] under the null hypothesis as in Equation (3) and
10This standard Gumbel distribution has its probability density function P (ξ = x) = e−x exp(−e−x) with the

mean Euler-Mascheroni constant approximately 0.577 and standard deviation π/
√

6 ≈ 1.2825. The generalized

version of Gumbel distribution is called Fisher-Tippett distribution and also known as log-Weibull distribution.
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observed prices are from Equation (5). Then, as n →∞,

ξ̂n = B−1
n

(√
M√
2q

max
ti∈Gn

|Lj | −An

)
D−→ ξ, (16)

where ξ follows the standard Gumbel distribution in (14) and An and Bn are as in (15). In other

words,

max
tj∈Gn

|Lj | D∼
√

2q√
M

(Bnξ + An). (17)

This Theorem 1 provides us with the threshold to reject the null hypothesis of no jumps in

equilibrium prices. For example, if we choose the significance level at 1%, then the threshold

becomes the 99th percentile of the Gumbel distribution after relocating and scaling. Now, we

study in the following Theorem 2 how this test would react to jumps in equilibrium prices.

Theorem 2. Let Lj be as in Definition 1 and Assumption 1 is satisfied. Also suppose that

An√
M
→ 0. If there are jumps at times τk ∈ [0, T ] for a finite k, then,

max
j
|Lj | ≈ max

k
|Y (τk)|, (18)

where Y (τk) is the jump size at the jump time τk.

As stated in Theorem 2, the test statistic would be close to the maximum jump size over the

interval within which we would like to test the jumps in equilibrium prices. Therefore, this

test will detect the presence of jumps (which can be single or multiple) in the interval under

consideration.

4.2 Consistent Estimation of Noise Variance in the Presence of Jumps

One can notice in Theorem 1 that in order to apply our test, we need a consistent estimator for

q. The following proposition suggests using multi-power variation to estimate it, regardless of the
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presence of jumps in efficient prices.

Proposition 1. Suppose the noise follows a k-dependent stationary Gaussian process with 0 ≤

k < ∞. Its variance estimator over the interval [0, T ], Q̂, is defined as

Q̂ ≡

 1

(n− 2g + 2)
1
cg
r

n∑

j=2g−1

(
g∏

m=1

|P̃ (tj−k(2m−2))− P̃ (tj−k(2m−1))|r
)


1/gr

, (19)

for any r > 0 and any integer g ≥ 1, and cr is defined as in

cr = E|u|r = π−1/22r/2Γ
(

r + 1
2

)
, (20)

where u is a standard normal variable. Then, regardless of the presence of jump, as ∆t goes to 0,

Q̂ P−→
√

2q. (21)

Therefore, q can be estimated by q̂ = Q̂/
√

2.

Under both hypotheses on the presence of jumps, the realized (second or higher lagged, de-

pending on the order of autocorrelation of the noise process) multi-power variation estimator does

not converge in probability to the integrated variance itself. Rather, it converges to a quantity

that explains variance of noise. In this paper, we assume that q is locally constant and can be

estimated by this estimator and plugged into the calculation of ξ̂n.

5 Simulation for Finite Sample Behavior

Our asymptotic arguments require infinite sampling, which is not completely achieved in practice,

though we have enough high frequency data available. In this section, we examine by Monte Carlo
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simulation the finite sample performance of our test in terms of both size and power of the test.

We first show the superior performance of multipower variation as a noise variance estimator.

We consider various levels of market quality parameter q reported in previous empirical studies,

and present the impact of magnitude of noise. For all series generation, we used the Euler-

Maruyama Stochastic Differential Equation (SDE) discretization scheme in Kloeden and Platen

(1992), an explicit order 0.5 strong and order 1.0 weak scheme. We discard the burn-in period –

the first part of the whole series – to avoid the starting value effect every time we generate each

series. As shown, overall simulation results consistently support our theory.

5.1 Performance of Noise Variance Estimator

The limiting distribution of our test depends on the performance of the noise variance estimator,

for which we suggest using multi-power variation. As a nonparametric estimator for noise variance,

the quadratic variation has been suggested in Zhang, Mykland, and Aı̈t-Sahalia (2005) and Bandi

and Russell (2005), among others, assuming that there are no jumps in efficient price processes.

In this subsection, we study by simulation how the quadratic variation (QV) as a noise variance

estimator performs in the the presence of jumps in efficient prices. We also compare this to the

performance of bi-power variation (BPV) and multi-power variation (MPV).

We simulate 500 series of efficient prices from a jump diffusion process over a day with 5 second

frequency for both Figure 1 and Table 1. We set the market quality parameter q at 0.01%.11 The

jump intensity is set at 5% and 10% per year, and we consider two jump size standard deviations

σy at 3 and 5 times σ. U(ti) is assumed to be normal with its standard deviation q. In Figure

1, we show the noise variance estimates, according to QV, BPV, and three kinds of MPV with
11We also perform the same analysis for q at different levels such as q = 0.001%, 0.01%, and 0.1% and reach

similar results.
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Table 1: RMSEs of Noise Variance Estimator†

σy 1× σ 2× σ 3× σ 4× σ 5× σ

RMSE λ = 5% and σ = 30%

QV 5.5956e-005 0.0023 0.00141 0.0472 0.1190

BPV 7.8630e-006 1.4791e-004 8.0697e-004 0.0026 0.0064

MPV(6,1/3) 1.9458e-006 1.0359e-005 2.4583e-005 4.4288e-005 6.5475e-005

MPV(8,1/4) 1.6430e-006 7.5720e-006 1.6280e-005 2.6530e-005 3.7450e-005

MPV(10,1/5) 1.4909e-006 6.2853e-006 1.2827e-005 1.9635e-005 2.7141e-005

RMSE λ = 10% and σ = 30%

QV 1.5567e-004 0.0051 0.0296 0.0975 0.2438

BPV 2.9241e-005 5.9403e-004 0.0031 0.0103 0.0248

MPV(6,1/3) 7.7429e-006 4.9734e-005 1.2660e-004 2.4127e-004 3.8672e-004

MPV(8,1/4) 6.5969e-006 3.6343e-005 8.2744e-005 1.4336e-004 2.1484e-004

MPV(10,1/5) 5.9916e-006 3.0225e-005 6.4407e-005 1.0623e-004 1.5276e-004

† This table presents the Root Mean Squared Error of the noise variance estimators. Estimators based

on power variation (PV), bipower variation (BPV), and three kinds of multi-power variations (MPV) are

considered. g and r denotes the number of products and power of absolute values used in the MPVs. Five

different levels of jump sizes relative to volatility level have been considered.

r = 1
5 , 1

4 , and 1
3 and g = 10, 8, and 6, respectively. The upper, middle, and lower panels of Figure

1 present results for cases with diffusion price processes without jumps and jump diffusion price

processes with σy at 3 and 5 times σ, respectively. Table 1 explicitly shows numerical values for

Root Mean Squared Error of the three estimators for noise variance. Simulation evidence in both

Figure 1 and Table 1 shows that if there are jumps, the bias gets increased most in quadratic

variation and least in multi-power variation. Hence, we conclude that multi-power variation is

most desirable as an estimator for q for our purpose.
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Figure 1: Noise Variance Estimates Based on Power Variations
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The upper, middle, and lower panels include the time series of the noise variance estimates calculated according to estimators

based on quadratic variation (QV), bi-power variation (BPV), and multi-power variation (MPV). The model for the upper

panel is d log S(t) = σ(t)dW (t) and the models used for the middle and lower panel are d log S(t) = σ(t)dW (t)+Y dJ(t) where

W (t) is a Brownian motion process, J(t) is a Poisson-type counting process with its intensity, and Y is a jump size with its

standard deviation σy. Constant volatility is set at σ(t) at 30%. q is chosen at 0.01%, which is the averaged estimates for

hourly q we found for IBM stocks (see Section 6 for more details).
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Table 2: Size Properties of Test†

Nominal size of test = 0.01

Independent Noise

Frequency n q = 0.001% q = 0.01% q = 0.1%

5 second 720 0.0067 0.0167 0.0200

3 second 1200 0.0033 0.0100 0.0100

2 second 1800 0.0033 0.0033 0.0067

1 second 3600 0.0033 0.0033 0.0040

Dependent Noise

Frequency n q = 0.001% q = 0.01% q = 0.1%

5 second 720 0.0040 0.0133 0.0130

3 second 1200 0.0033 0.0100 0.0100

2 second 1800 0.0033 0.0033 0.0067

1 second 3600 0.0033 0.0100 0.0033

† This table presents the size of our test under both independent and de-

pendent noise. For independent noise, we generate U(ti) from a normal

distribution, N (0, q2). For dependent noise, we generate U(ti) from a

model studied by Engle and Sun (2006), who estimate the model using

tick-by-tick data on an individual equity, and we use their parame-

ter estimates reported as significant at 5%. Specifically, we simulate

noise series from U(ti) = θ0

R ti
ti−1

σdW (s) + θ1

R ti
ti−2

σdW (s) + X(ti),

where X(ti) is a normal variable with mean 0 and standard devia-

tion q and θ0 and θ1 are 0.0861 and 0.06, respectively. Instead of

using their q estimate, we use the market quality parameter q’s chosen

at three different levels for both independent and dependent noise, fol-

lowing Aı̈t-Sahalia, Mykland, and Zhang (2005) and Bandi and Russell

(2005). The equilibrium prices are generated from a diffusion process

dP (t) = σ(t)dW (t) with a fixed σ(t) at 20% per a year. The sig-

nificance level α used is 1%. n is number of observations over one

trading hour, in this study chosen at n = 720, 1200, 1800, 3600, which

are equivalent to sample observations at every 5 second, 3 second, 2

second, and 1 second frequency. For q = 0.001%, q = 0.01%, and

q = 0.1%, we choose M = A2
n/8, A2

n/4, and A2
n, respectively.
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5.2 Independent and Dependent Noise Specifications

In this subsection, we discuss specifications for both independent and dependent noise. For

independent noise, we generate U(ti) from a normal distribution, N (0, q2). However, as discussed

in Engle and Sun (2006), a more realistic noise model should incorporate its various characteristic

such as stationarity and cross-correlation between noise and equilibrium prices. Because the

information flow affect both components of transactions, for example, it is likely that market

microstructure noise is correlated with market equilibrium price changes. Price determination by

adverse selection under asymmetric information can also create various type of dependence [see

O’Hara (1995)].

In order to incorporate such general properties of noise, we use the general noise model em-

ployed by Engle and Sun (2006). We use their parameter estimates for an individual U.S. equity

reported as significant at 5%. Specifically, the cross-correlated model which we employ for our

simulation, relating current and lagged innovation in equilibrium prices to noise, is

U(ti) = θ0

∫ ti

ti−1

σ(t)dW (s) + θ1

∫ ti

ti−2

σ(t)dW (s) + X(ti), (22)

where X(ti) is a normal variable with standard deviation q and θ0 and θ1 are set at 0.0861 and

0.06, respectively. Though they also have estimates for q, we consider q at three different levels in

order to see the impact of noise magnitude on the performance of our test. These q’s are chosen

around the estimates reported by Aı̈t-Sahalia, Mykland, and Zhang (2005) and Bandi and Russell

(2005). To study size and power properties in the following subsections, we add these two types

of noise both under the null and alternative hypotheses for price processes.
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5.3 Size of Test

To calculate size, we generate the equilibrium prices from a diffusion process dP (t) = σ(t)dW (t)

with a fixed σ(t) at 20% per a year. The significance level α used is 1%. n is number of observations

over one trading hour, in this study chosen at n = 720, 1200, 1800, 3600, which are equivalent to

sample observations at every 5 second, 3 second, 2 second, and 1 second intervals. The number of

simulations is 300. It is important in application of our test to choose proper block size M . This

simulation study shows that users can choose block size M using a function M = f(A2
n, q). For

Table 1, q = 0.001%, q = 0.01%, and q = 0.1%, we choose M = A2
n/8, A2

n/4, and A2
n, respectively.

We report in Table 2 the probability of rejecting the null hypothesis of no jump in price

processes, when there is actually no jump. In the empirical applications using ultra high frequency

data, it is important to check first whether any test detects the presence of jumps spuriously and

does not detect microstructure noise as jumps, because as explained in our introduction and in

the intuition behind our test, asymptotically, both noise and jumps can be regarded similarly in

that both of them are Op(1). As long as M is chosen properly, our test does not present spurious

detection problems.

5.4 Power of Test

In order to examine the power of the test, the equilibrium prices are generated from a jump

diffusion process dP (t) = σ(t)dW (t) + Y (t)dJ(t) with a fixed volatility σ(t) at 20% per year and

a standard deviation σy of jump size distribution relative to volatility level. The significance level

α used for detection is 1%, and we choose the same block size M we choose in Table 2 for size

to be close to the significance level under the null hypothesis. Table 3 and 4 includes results
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Table 3: Power of Test under Independent Noise with

Finite Variance Op(1)†

Market quality parameter (q = 0.001%)

Jump Size σy relative to σ 0.06σ 0.07σ 0.08σ 0.09σ

5 second (720) 0.1533 0.4400 0.8200 0.9767

3 second (1200) 0.5133 0.9033 1.000 1.000

2 second (1800) 0.8768 1.000 1.000 1.000

1 second (3600) 1.000 1.000 1.000 1.000

Market quality parameter (q = 0.01%)

Jump Size σy relative to σ 0.07σ 0.08σ 0.09σ 0.10σ

5 second (720) 0.3100 0.5833 0.8400 0.9600

3 second (1200) 0.3667 0.7067 0.9400 1.0000

2 second (1800) 0.3933 0.8267 0.9867 1.0000

1 second (3600) 0.9633 1.0000 1.0000 1.0000

Market quality parameter (q = 0.1%)

Jump Size σy relative to σ 0.10σ 0.12σ 0.14σ 0.16σ

5 second (720) 0.3460 0.6380 0.9040 0.9740

3 second (1200) 0.4600 0.8440 0.9840 0.9980

2 second (1800) 0.5480 0.9200 1.0000 1.0000

1 second (3600) 0.7840 0.9980 1.0000 1.0000

† This table reports the finite sample performance of our test in terms of detecting

power for jumps in equilibrium prices in the presence of independent noise U(ti)

with finite variance. Noise are generated from a normal distribution, N (0, q2).

The market quality parameter q’s are chosen at various levels around values

shown in Aı̈t-Sahalia, Mykland, and Zhang (2005) and Bandi and Russell (2005)

based on U.S. equity markets. The equilibrium prices are generated from a jump

diffusion process dP (t) = σ(t)dW (t) + Y (t)dJ(t). The number of simulations

was 300. We consider fixed σ(t) at 20% per a year. σy denotes the standard

deviation of jump size distribution, and we choose the levels relative to volatility

level σ of the underlying price process. The significance level α used is 1%. We

use the same M ’s as in Table 2.
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Table 4: Power of Test under Dependent Noise†

Market quality parameter (q = 0.001%)

Jump Size σy relative to σ 0.06σ 0.07σ 0.08σ 0.09σ

5 second (720) 0.1357 0.4100 0.7933 0.9600

3 second (1200) 0.4967 0.9200 0.9667 1.000

2 second (1800) 0.8733 1.000 1.000 1.000

1 second (3600) 1.0000 1.000 1.000 1.000

Market quality parameter (q = 0.01%)

Jump Size σy relative to σ 0.07σ 0.08σ 0.09σ 0.10σ

5 second (720) 0.2967 0.6000 0.8700 0.9700

3 second (1200) 0.3400 0.7833 0.9633 0.9967

2 second (1800) 0.5067 0.9067 1.0000 1.0000

1 second (3600) 0.9767 1.0000 1.0000 1.0000

Market quality parameter (q = 0.1%)

Jump Size σy relative to σ 0.10σ 0.12σ 0.14σ 0.16σ

5 second (720) 0.2900 0.6433 0.8867 0.9700

3 second (1200) 0.4667 0.8367 0.9800 1.0000

2 second (1800) 0.5433 0.9267 1.0000 1.0000

1 second (3600) 0.7933 1.0000 1.0000 1.0000

† This table reports performance of our test for jumps in equilibrium prices in the

presence of noise U(ti) generated from the dependent model studied by Engle

and Sun (2006). They estimated the model using tick-by-tick data on ran-

domly picked U.S. individual equities, and we use their parameter estimates

reported as significant at 5%. In particular, we simulate noise series from

U(ti) = θ0

R ti
ti−1

σdW (s) + θ1

R ti
ti−2

σdW (s) + X(ti), where X(ti) is a normal

variable with mean 0 and variance q, and θ0 and θ1 are set at their estimates,

which are 0.0861 and 0.06, respectively. The equilibrium prices are generated

from a jump diffusion process dP (t) = σ(t)dW (t) + Y (t)dJ(t). The number of

simulations was 300. We both consider fixed σ(t) at 20% per a year. σy in

the table denotes the standard deviation of the jump size distribution, and we

choose the levels relative to volatility level σ of the underlying price process.

The significance level α used for detection is 1%. We use the same M ’s as in

Table 2.
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for independent noise with finite variation and dependent noise, respectively, as specified in the

previous subsection. The overall results regarding the power of the test indicate that detectable

jumps in equilibrium prices depends on noise level. If the magnitude of noise is greater, detectable

jump sizes in equilibrium prices are greater, and hence, the detecting power for small sized jumps

gets decreased. And as in our asymptotic argument in Lemma 2, dependence through stationarity

does not appear to lower the power of the test. However, increasing frequency helps to improve

it.

6 Empirical Analysis for IBM Stock Trades

We apply our new test of jumps in equilibrium prices and an estimation procedure for noise

variance to actual stock trades. In order to make our asymptotic result most effective in our

analysis, it is best using tick-by-tick transaction data sampled at the highest frequency.

6.1 Data

Data are collected from the TAQ database, and we only consider transactions on the New York

Stock Exchange (NYSE) to be consistent in terms of trading mechanism for all trades under

investigation. The sample period is August in 2007. Due to interrupted trading in the NYSE

overnight, all trades before 9:30am or after 4:00pm are discarded. We also exclude the first trade

after 9:30am for each trading day, which is the usual way of avoiding the overnight effect [see

Engle and Sun (2006), for example]. For trades that happen at the same time and hence have

multiple prices at one time, we take averaged observed price, which removes all transactions with

zero duration. We discard all recording errors such as zero prices (if any). In order to eliminate

bounce-back type data errors as noted in Aı̈t-Sahalia, Mykland, and Zhang (2006), we remove

22



obvious outliers and only keep data with log returns within the range of its 7 standard deviation

around its mean. Therefore, the total number of tick-by-tick observations used in our analysis is

167,595.

In Table 5, we include summary statistics for the number of trades, durations in seconds,

log returns in basis points, and prices in dollars. We have 23 trading days for August 2007

and 6.5 trading hours for each trading day. We take the time horizon for our test T to be

an hour after 10am till 4pm and 30 minutes for opening half hours every day. Columns in

Table 5, for example 11-12, include information about trades after 11am (inclusive) and before

12pm (exclusive). Though there is seasonality of number of trades, we have enough number

of trades within all horizons for our asymptotic results to be effective. Durations between two

consecutive trades ∆ti have averages below 5 second which makes our simulation study in the

previous section informative. ∆ log P̃ (ti) is the first difference of observed log prices sampled at

the highest frequencies available.

6.2 Empirical Results

As noted in both Section 2 and 3, our test needs the input of market quality parameter q, which

is the standard deviation of the market microstructure noise process in Equation (8). For the

application of the noise variance estimator in Equation (19), we need to determine k for the serial

dependence of noise. Given that observed log returns sampled at the highest frequency would

give us information about noise dependence, we first calculate their serial correlation functions

for every horizon and apply the usual significance test at 5%, as in Figure 2, to determine the

number of dependent lags. Figure 2 shows one representative sample autocorrelation function of

most frequently sampled log returns on August 1, 2007. The two solid horizontal lines in the graph

for the lags of 2 and beyond make the 95% confidence band. If the dot is inside the band, it means
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that the corresponding lag is insignificant. We obtain similar patterns in the autocorrelations for

other time horizons as well.

Using k’s selected according to autocorrelation functions, we estimate the noise variance and

report its summary statistics in Table 6. Results indicate that q̂’s are greater in the opening

hours such as 9:30-10 and closing hours of 15-16, though the magnitudes are similar in other

hours. Based on the estimates of q found in each horizon, we also calculate ξ̂n in Equation (16).

Using the significance level of 1%, we count how many times we reject the null hypothesis of

no jumps in equilibrium prices and determine whether there are jumps in each corresponding

trading hour of the day, and calculate the annualized λ estimates. With the significance level of

1%, the threshold for ξ is 4.6001. We found that likelihoods of jump arrivals are in the similar

magnitude across different trading hours a day, when we take market noise into consideration. As

in simulation section, we choose the size of blocks over which we take the averaging of prices. We

use the same method we used in the simulation section, in order to ensure that we do not have

over or under detection problems.

In Figure 3, we also graph the empirical distribution of IBM trade noise variance estimates

q̂’s. For each trading day, we have 7 different time horizons and we calculate the time-varying

noise variance by separately estimating the quantities over different time horizons. Different colors

for each bin in Figure 3 indicate different trading hours. In particular, dark blue, regular blue,

light blue, green, yellow, orange, and red represent trading hours of 09:30-10, 10-11, 11-12, 12-13,

13-14, 14-15, and 15-16, respectively. As also reported in Table 6, estimates of q̂ are centered

around 0.01%. Figure 3 also graphically shows that we tend to have higher values in the 9:30-10

interval with the dark blue bars and lower values in the 11-12 and 12-13 intervals with light blue

and green bars.
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Figure 2: Sample Autocorrelation of IBM Stock Returns during August 2007
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The figure includes a representative sample autocorrelation function of returns from IBM stocks traded on the New York

Stock Exchange (NYSE). This graph is for August 1, 2007 and we have qualitatively similar figures for other days and hours

during the whole month of August 2007. We calculate this sample autocorrelation of returns sampled at the highest frequency

and employ the significant lag number for k in a multi-power variation calculation in Equation (19). The two solid horizontal

lines in this graph for the lags of 2 and beyond make the 95% confidence band. If the dot is inside the band, it means that

the corresponding lag is insignificant.

Finally, in Figure 4, we compare graphically the asymptotic distribution and empirical dis-

tribution of ξ̂n. The asymptotic distribution is graphed with simulated data under the null

hypothesis of no jump in equilibrium according to Equation (16) in Theorem 1. The left panel in

Figure 4 includes the histogram of simulated ξ, which we would expect to see from data if there

is no jumps in equilibrium prices. The number of simulations is 300. The right panel includes the

histogram of ξ̂n using our sample. As can be seen, we have different ranges in the distribution,

which indicates strong rejection of models for no jump in equilibrium prices. Therefore, one could

conclude from this case study that models with jumps in the underlying prices can capture better

intra-day dynamics of asset market behavior.
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Table 5: Descriptive Statistics of IBM Stock Trades during August 2007†

Trading Hour 9:30-10 10-11 11-12 12-13 13-14 14-15 15-16

Min No. of trades 494 884 622 553 556 626 1052

Max No. of trades 1107 1783 1510 1750 1505 1814 2323

Ave No. of trades 677 1184 1024 875 848 1056 1622

Std No. of trades 147 274 257 268 228 283 352

Min ∆ti (second) 1 1 1 1 1 1 1

Max ∆ti (second) 35 60 59 61 63 69 41

Ave ∆ti (second) 2.701 3.180 3.729 4.397 4.512 3.646 2.324

Std ∆ti (second) 2.865 3.636 4.253 5.236 5.313 4.245 2.433

Min ∆ log P̃ (ti) (1.0e-004) -0.17 -0.15 -0.14 -0.12 -0.15 -0.17 -0.18

Max ∆ log P̃ (ti) (1.0e-004) 0.18 0.16 0.14 0.12 0.17 0.13 0.16

Ave ∆ log P̃ (ti) (1.0e-004) 0.0105 0.0030 0.0019 -0.0018 -0.0013 -0.0020 -0.0033

Std ∆ log P̃ (ti) (1.0e-004) 0.0278 0.0197 0.0168 0.0165 0.0168 0.0172 0.0175

Min P̃ (ti) 108.76 108.08 108.18 107.44 106.94 107.50 106.58

Max P̃ (ti) 116.27 116.47 116.63 116.94 116.76 116.93 117.34

Ave P̃ (ti) 112.11 112.21 112.32 112.45 112.38 112.32 112.30

Std P̃ (ti) 1.002 1.001 1.001 1.001 1.001 1.001 1.002

† The table contains summary statistics for the number of trades, durations in seconds, log returns in basis points, and

prices in dollars for IBM stock during the whole month of August 2007. The total number of tick-by-tick observations

used is 167,595. Data are collected from the TAQ database and for transactions on the New York Stock Exchange

(NYSE). All trades before 9:30am or after 4pm and the first trade after 9:30am are discarded due to NYSE trading

hours and mechanism. Each trading hour column, for example 11-12, includes information about trades after 11am

(inclusive) and before 12pm(exclusive). All trades that have multiple prices at the same time are counted once and the

averaged price over the multiple trades is used.
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Table 6: Empirical Evidence on IBM Stock Trades during August 2007†

Trading Hour 9:30-10 10-11 11-12 12-13 13-14 14-15 15-16

Min q̂(%) 0.0085 0.0066 0.0050 0.0054 0.0056 0.0051 0.0047

Max q̂(%) 0.0267 0.0173 0.0143 0.0154 0.0166 0.0176 0.0162

Ave q̂(%) 0.0159 0.0108 0.0089 0.0090 0.0093 0.0094 0.0096

Std q̂(%) 0.0047 0.0030 0.0023 0.0025 0.0027 0.0032 0.0033

Min ξ̂ 1.0000 0.6097 0.5165 0.3403 -0.9288 0.8723 3.7936

Max ξ̂ 22.5160 12.9025 19.4117 12.6851 20.3557 13.5240 28.6731

Ave ξ̂ 8.8887 6.5714 7.1562 5.6440 5.6228 6.1350 11.4127

Std ξ̂ 6.2424 3.4036 4.8278 2.9327 4.6326 3.5974 7.2727

Annualized λ̂(t) 0.0543 0.0616 0.0543 0.0543 0.0471 0.0543 0.0761

† The table contains summary statistics for estimated market quality parameter q, which is the dispersion

measure of market microstructure noise as in Equation (8), and estimated Gumbel variables ξ as in Equation

(16), and the annualized λ estimates over the time horizon indicated in the top row. For λ calculation, we

choose the significance level of 1%, which makes the threshold for jump counting 4.6001. We use IBM stock

data during the whole month of August 2007 and the total number of tick-by-tick observations used is 167,595.

Data are collected from the TAQ database and for transactions on the New York Stock Exchange (NYSE). All

trades before 9:30am or after 4pm and the first trade after 9:30am are discarded due to NYSE trading hours

and mechanism. Each trading hour column, for example 11-12, includes information about trades after 11am

(inclusive) and before 12pm(exclusive). All trades that have multiple prices at the same time are counted once

and the averaged price over the multiple trades is used.
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Figure 3: Empirical Distribution of Hourly q for IBM Trades during August 2007
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This figure includes histograms of hourly q estimated according to the multipower variation as in Equation (19). For each

calculation during every horizon, we calculate the sample autocorrelation to determine the lag k in Equation (19), using the

highest available frequency. We use IBM stock data during the whole month of August 2007 and he total number of tick-

by-tick observations used is 167,595. Data are collected from the TAQ database and for transactions on the New York Stock

Exchange (NYSE). All trades before 9:30am or after 4pm and the first trade after 9:30am are discarded due to NYSE trading

hours and mechanism. Different colors for each bin indicate different trading hours. Dark blue, regular blue, light blue,

green, yellow, orange, and red represent trading hours of 09:30-10, 10-11, 11-12, 12-13, 13-14, 14-15, and 15-16, respectively.

Each trading hour, for example 11-12, includes information about trades after 11am (inclusive) and before 12pm (exclusive).

Trades that have multiple prices at the same time are counted once and the averaged price over the multiple trades is used.
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Figure 4: Comparison of Limiting and Empirical Distributions
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The left panel includes the histogram of simulated Gumbel variables ξ, which is expected under the null hypothesis of no

jumps in equilibrium prices. The number of simulations is 300. The right panel includes the histogram of ξ̂n for IBM stock

trades during the whole month of August 2007. The total number of tick-by-tick observations used is 167,595. Descriptions

of data such as time horizon T used, number of observations n during [0, T ], durations ∆ti over each hour, and price P̃ (ti)

and log return ∆ log P̃ (ti) levels are reported in Table 5. Data are collected from the TAQ database and for transactions on

the New York Stock Exchange (NYSE). All trades before 9:30am or after 4pm and the first trade after 9:30am are discarded

due to NYSE trading hours and mechanism. Trades that have multiple prices at the same time are counted once and the

averaged price over the multiple trades is used.
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7 Conclusion

Despite the empirical evidence of jumps documented in the asset pricing literature and the popu-

larity of jump diffusion models to accommodate such evidence, the empirical market microstruc-

ture literature often ignores their presence in studies using high frequency data. This can be

due to the difficulty of distinguishing two unobservable components of observable data: noise and

jumps in efficient prices. In this paper, we contribute to the literature by proposing new empirical

methods which allow us to find evidence of jumps in underlying efficient price processes which is

immune to the presence of noise and to offer new empirical evidence. The evidence produced by

our test and estimation for noise variance is expected to be used in various context such as event

studies and arbitrage trading strategies as well as portfolio and risk managements, among others.

Since we design this test to take full advantage of ultra high frequency price data, the test can

be applied to all sorts of price level data for local averaging as long as high frequency observations

are available, so that our asymptotic arguments with a large number of observations in fixed

time intervals are valid in the application. We suggest nonparametric methods, which would

give evidence robust to model specification. It is important to note that we can investigate the

equilibrium price jumps in the presence of general dependent noise processes, which is a crucial

feature of noise patterns in financial markets. This general assumption on dependence in noise

process distinguishes our test from other existing jump tests.

In finite samples, our suggested noise variance estimator reduces bias due to the presence of

jumps more than other existing estimators. Our test has reasonable finite sample properties as

long as block size for preprocessing is appropriately chosen. Our empirical study using IBM stock

trades on the New York Stock Exchange indicates that there is need to incorporate the presence

of jumps in underlying pricing models.
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Finally, in this paper, we only study how to identify jumps with finite activity in the presence

of noise using high frequency data. It would be interesting to investigate the case of Lévy type

jumps with infinite activity to determine whether evidence of Lévy jumps is due to the presence

of noise or not.

8 Appendix

8.1 Proof of Lemma 1

Let P̂ (tj) = P̌ (tj) + Ǔ(tj). Then, with P̌ (tj) = 1
M

∑j+M−1
i=j P (ti) and Ǔ(tj) = 1

M

∑j+M−1
i=j U(ti),

P̂ (tj+M )−P̂ (tj) =
(
P̌ (tj+M ) + Ǔ(tj+M )

)−(
P̌ (tj) + Ǔ(tj)

)
=

(
P̌ (tj+M )− P̌ (tj)

)
+

(
Ǔ(tj+M )− Ǔ(tj)

)
.

With X (j) defined in (11),

|
√

M
(
P̂ (tj+M )− P̂ (tj)

)
−
√

2qX (j)| = | 1√
M

j+M−1∑

i=j

(P (ti+M )− P (ti))|

= | 1√
M

j+M−1∑

i=j

∫ ti+M

ti

σ(u)dW (u)|

Since
j+M−1∑

i=j

∫ ti+M

ti

σ(u)dW (u) =
∫ t

0
σ(u)

j+M−1∑

i=j

I(ti < u < ti+M )dW (u) ≡ Hj

and we know that its quadratic variation

< Hj ,Hj >t=
∫ t

0
σ2(u)

j+M−1∑

i=j

(I(ti < u < ti+M ))2 du ≤ M2 max
ti∈Gn

|∆ti| max
0≤u≤t

σ2(u) = M2×Op(n−β)

And according to Lemma 1 in Mykland and Zhang (2006), we have that for any 0 < ε < β/2,

1√
M

sup
j
|Hj | = 1√

M
M2 ×Op(n−β/2+δ) = Op(n

3γ−β
2

+ε) = Op(n−η) P−→ 0,

if η = −(3γ−β
2 + ε) > 0. Therefore, γ needs to satisfy 0 < 3γ < β − δ for some positive δ. This

proves the convergence of probability, which implies the convergence in law as stated.
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8.2 Proof of Lemma 2

Proof is in Berman (1964) under the general asymptotic mixing condition as stated. As also

mentioned in Ljung (1993).

8.3 Proof of Theorem 1

Under the null hypothesis, as n →∞,

maxL|null = max
0≤j≤n−2M

√
M |P̂ (tj+M )− P̂ (tj)| ∼ max

0≤j≤n−2M

√
M |U(tj+M )− U(tj)|

D∼ max
0≤j≤n−2M

|N (0, 2q2)| =
√

2q2 max
0≤j≤n−2M

|N (0, 1)|

D−→
√

2q2 (Bnξ + An) (23)

The first convergence in law follows from Lemma 1 and the second convergence in law follows

from Lemma 2.

8.4 Proof of Theorem 2

Under the alternative when the jump time is τ ∈ (tj , tj+M−1) for some j, we have

maxL|alternative = max
0≤j≤n−2M

|P̂ (tj+M )− P̂ (tj)|

= max
0≤j≤n−2M

|Op(nε−β/2+3γ/2) + Op(n−γ/2) +
1
M

j+M−1∑

i=j

∫ ti+M

ti

Y (s)dJ(s)|

= |Y (τ)| × Number of times(ti ∈ (tj , tj+M−1), ti ≤ τ)
M

. (24)

8.5 Proof of Proposition 1 under the null

Denote ui, u, and ni are all normal variables with a mean of 0 and a variance of 1. Using

P (tj−k(2m−2))− P (tj−k(2m−1)) = σ
√

k∆tni and

U(tj−k(2m−2)))− U(tj−k(2m−1)) = q
(
uj−k(2m−2) − uj−k(2m−1)

)
,
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plim∆t→0Q̂
gr = plim∆t→0


 1

n− 2g + 2
1
cg
r

n∑

j=2g−1

g∏

m=1

|P̃ (tj−k(2m−2))− P̃ (tj−k(2m−1))|r



= plim∆t→0

1
n− 2g + 2

1
cg
r

n∑

j=2g−1

g∏

m=1

|P (tj−k(2m−2))− P (tj−k(2m−1)) + U(tj−k(2m−2))− U(tj−k(2m−1))|r

= plim∆t→0

1
n− 2g + 2

n∑

j=2g−1

1
cg
r

g∏

m=1

|σ
√

k∆tni + q
(
uj−k(2m−2) − uj−k(2m−1)

) |r

=
qgr

cg
r

E

g∏

m=1

|(uj−k(2m−2) − uj−k(2m−1))|r =
qgr

cg
r

g∏

m=1

E|
√

2u|r = (
√

2q)gr

8.6 Proof of Proposition 1 under the alternative

We assume there are N number of rare jumps in the efficient price process with N being fi-

nite over any fixed time horizon. The presence of jumps now comes into our efficient prices as

P (tj−k(2m−2)) − P (tj−k(2m−1)) = σ
√

k∆tni + Op(1)Iτ∈[tj−k(2m−2),tj−k(2m−1)], where τ is the jump

arrival time. Then,

plim∆t→0Q̂
gr = plim∆t→0


 1

n− 2g + 2
1
cg
r

n∑

j=2g−1

g∏

m=1

|P̃ (tj−k(2m−2))− P̃ (tj−k(2m−1))|r



= plim∆t→0

1
n− 2g + 2

n∑

j=2g−1

1
cg
r

g∏

m=1

|Op(1)Iτ + q
(
uj−k(2m−2) − uj−k(2m−1)

) |r

= plim∆t→0

1
n− 2g + 2

∑

with jump

1
cg
r

g∏

m=1

|Op(1)Iτ + q
(
uj−k(2m−2) − uj−k(2m−1)

) |r

︸ ︷︷ ︸
= N

n−2g+2
Op(1) gets smaller →0 as n→∞ and N is fixed.

+plim∆t→0

1
n− 2g + 2

∑

without jump

1
cg
r

g∏

m=1

q
(
uj−k(2m−2) − uj−k(2m−1)

) |r

≈ qgr

cg
r

E

g∏

m=1

|(uj−k(2m−2) − uj−k(2m−1))|r =
qgr

cg
r

g∏

m=1

E|
√

2u|r = (
√

2q)gr

We assume the jump arrival rate is low enough so that the number of terms that include jumps

is much less than n that satisfies n →∞ as ∆t → 0.
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