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1 Introduction

Asset pricing models provide approximations of reality that are useful to explain economic

stylized facts. Hansen and Jagannathan (1997), hereafter HJ, suggested that an appropri-

ate way to compare their performance was to evaluate functions of their implied pricing

errors on corresponding Euler equations. They proposed a useful test for comparisons of

possibly misspecified asset pricing models, based on a least-square projection of a proxy on

a family of admissible stochastic discount factors. This test has been used in a number of

empirical papers as a tool for model diagnostics as well as model selection (see for instance,

Jagannathan and Wang (1996), Hodrick and Zhang (2001), Wang and Zhang (2005), Chen

and Ludvigson (2008), Chen et al. (2008), and Kan and Robotti (2008) among many

others).

The idea of adopting least-square theory to determine admissible discount factors that

are close to asset pricing proxies is intuitive. First, it provides an easy interpretation of

the degree of misspecification of a model as a maximum pricing error measure in the space

of payoffs. It is also easy to implement by using duality theory in convex optimization

problems (see Luemberger (1969)). Nonetheless, the quadratic metric has some important

drawbacks too. It implies that misspecification is provided by a quadratic form on the

pricing errors of the primitive securities that fails to take into account moments of the

payoffs (returns) distributions other than mean and variance.

There is a large body of research indicating the importance of considering skewness

and kurtosis when pricing assets1. There are also several studies showing that the second

moment of certain types of asset returns might not be finite, and advocating the use of

stable Paretian distributions to model returns2. By either suggesting the inclusion of more

moments or by suggesting the adoption of metrics that take into account the inexistence

of some moments, these studies point to the use of alternative metrics that go beyond

the first two moments of distributions. Interestingly, in econometrics, there is also a con-

siderable literature proposing increasingly more sophisticated Empirical Likelihood-type

estimators that are robust against distributional assumptions and that possess good prop-

erties analogous to those of parametric likelihood procedures (see Kitamura (2001, 2006))3.

1See for instance Kraus and Litzenberger (1976), Rubinstein (1973), Baroni-Adesi (1985), Harvey and
Siddique (2000), Dittmar (2002), and Vanden (2006), among many others.

2Mandelbrot (1963), and Fama (1965) suggested the use of stable Paretian distributions to capture
leptokurtic returns of certain assets. Madan et al. (1998) and Carr and Wu (2003) adopt stable processes
for underlying assets in option pricing models. Tokat et al. (2003) analyze the effect of using stable
processes in asset allocation problems. Beaulieu and Dufour (2005) propose linear asset pricing tests
when disturbances follow stable asymmetric distributions. Ibragimov (2004) verifies the validity of several
economic models under heavy-tailed distributions.

3For instance, Owen (1988) proposed the Empirical Likelihood estimator, and Kitamura and Stutzer
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In particular, Stutzer (1995) and Kitamura and Stutzer (2002) have suggested the use of

relative entropy to develop a research program that parallels that of HJ (1991, 1997).

Based on the motivation provided above, we propose alternative methods to measure the

degree of misspecification of asset pricing models that make use of the theory of Minimum

discrepancy (MD) estimators (Corcoran (1998)). The idea is to consider general convex

functions φ to calculate the distance between a certain asset pricing proxy y and the family

M of admissible stochastic discount factors (SDFs) that prices a set of underlying primitive

securities x. We formulate this problem within a Minimum discrepancy framework where

the goal is to obtain a SDF m∗, or a probability measure p∗, that is admissible (i.e.,

satisfies the moment conditions by pricing primitive securities) and that is the closest

possible4 to the asset pricing proxy, by minimizing either φ(1 + m− y) (Additive case) or

φ(|m
y
|) (Multiplicative case). We make use of duality theory (see Kitamura (2006), and

Borwein and Lewis (1991)) to estimate this Minimum discrepancy probability measure and

its distance to the proxy y, by solving finite-dimensional problems with interpretations of

optimal portfolio problems.

When the Minimum discrepancy problems are specialized to the class of Cressie Read

(1984) discrepancies, we show that, under our formulation, the dual optimization problems

reduce to a class of Generalized Empirical Likelihood (GEL) estimators (Smith (1997))

where the proxy model y appears only in the discrepancy function φ and not in the moment

conditions as usual. This formulation makes clear that we are interested, like HJ (1997), in

measuring the degree of misspecification of a model y with respect to a family of admissible

SDFs M that is invariant to changes in the model vector of parameters θ. Moreover, this

family will be also invariant with respect to changes of models and should depend only on

the primitive payoffs x and their prices q.

By looking at the first-order conditions of the dual quadratic problem in HJ (1997), a

nice interpretation for their least-square solution is obtained. They showed that the admis-

sible SDF that is closest to the proxy y is given by y subtracted by a linear combination of

primitive asset payoffs (λ′HJ · x) that is the smallest linear correction (in the least squares

sense) for y to become admissible. It happens that in our MD problems we have similar in-

terpretations of solutions as proxy corrections to become admissible SDFs: The solutions to

our Additive MD problems give additive correction terms to the proxy y that are nonlinear

(1997) the Exponential Tilting Estimator (see also Imbens et al. (1998)). Smith (1997) proposed a
large class of Generalized Empirical Likelihood estimators, later shown to be equivalent to the subset of
Minimum Discrepancy estimators with Cressie Read discrepancies (Newey and Smith (2004)). Recently,
Smith (2007) developed tests for conditional moment restrictions models based on a kernel-weighted version
of the CressieRead power divergence family of discrepancies.

4in the spirit of Csiszar’s I-divergencies (1975, 1991).
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functions of the optimal linear combination of primitive asset’s payoffs (λ′MD,ad · x), which

are the smallest correction (in the φ divergence additive sense) for y to become an admis-

sible SDF. On the other hand, the solutions to our Multiplicative MD problems provide

multiplicative correction terms that are nonlinear on both the proxy y and primitive assets’

payoffs (λ′MD,mu · x), which are the smallest correction (in the φ divergence multiplicative

sense) for y to become an admissible SDF.

Another important issue relates to model choice and parameter estimation. HJ (1997)

suggest, as a first step, the estimation of model parameters by minimizing the HJ distance

between the model and the family of admissible SDFs. Then, assuming the existence of

a set of model candidates whose parameters have been previously estimated using the HJ

distance, HJ suggest selecting the model with smallest distance5. Similarly in our MD

problems, for any fixed discrepancy function φ, our theory, supported by the theory of

GEL estimators (see Newey and Smith (2004); Kitamura (2006)), suggests the estimation

of model parameters by minimizing the discrepancy chosen, and the subsequent use of

minimum discrepancy distances to rank candidate asset pricing models6.

Our empirical application consists in carefully analyzing the Consumption CAPM (Bree-

den (1979)), by testing its ability to price a set of primitive securities (bond and S&P 500)

at different regions of the parametric space. The discrepancy between asset pricing prox-

ies and admissible SDFs is measured by different functions belonging to the Cressie Read

(1984) family, namely: The Pearson’s Chi-Square, EL (Owen (1984)), Hellinger’s distance,

ET (Kitamura and Stutzer (1997)), Euclidean Likelihood or CUE (Hansen et al. (1996))

and two other discrepancies with high positive values of the Cressie Read parameter γ

(CR(γ = 2), and CR(γ = 5)). Based on a grid for the risk aversion parameter of the

CCAPM model, we show that most of the discrepancies agree on the choice of θ but once

we increase too much the Cressie Read parameter γ, the MD problems stop satisfying the

moment conditions (introducing pricing errors), and end up optimally choosing different

θ’s. We discuss the empirical findings across Cressie Read discrepancies relating them to

5Hodrick and Zhang (2001) use the HJ (1997) distance to compare ten different asset pricing models
based on the 25 Fama and French (1997) test assets. Recently, Kan and Robotti (2008) suggest a more
formal selection by developing a test to compare the HJ distance between models, and obtain the asymptotic
distribution of this test, for any combination of correclty specified, misspecified, and /or nested /non-nested
model candidates.

6Formal statistical comparison tests are not developed in this paper. In that matter, we refer the
reader to a recent literature developing formal tests for model choice with empirical likelihood estimators
(see Kitamura (2000), Ramalho and Smith (2002), Hong et al. (2003), Kitamura (2006a), and Chen et
al. (2007), among others). In particular, Kitamura (2000) proposes nonparametric likelihood ratio tests
based on the Exponential Tilting estimator to compare (possibly misspecified) moment-based econometric
models. Hong et al. (2003) extend Kitamura’s model selection tests to the whole family of GEL estimators.
The framework in these two papers can be adapted to our above-mentioned GEL problems to derive formal
statistical tests.
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the size of the pricing errors, and to the magnitude of the admissible SDFs.

After analyzing the CCAPM model based on calibrations of the risk aversion parameter,

we perform estimation of the model using both our additive and multiplicative formulations

of the MD problems. For all adopted discrepancy functions and under the two formulations

the estimated risk aversion parameters are high. Additive estimators obtain values around

37, while multiplicative estimators obtain values around 64. For each CR discrepancy

and risk-aversion coefficient estimated, we also obtain the closest admissible SDFs to the

CCAPM model. We show that these SDFs vary across Cressie read discrepancies, and

specially across the type of estimation problem (additive and multiplicative). Multiplicative

estimators present a better goodness of fit with admissible SDFs very close to their CCAPM

counterparts. In addition, multiplicative estimators with high gamma values in general

achieve pricing errors smaller than their additive counterparts.

The rest of the paper is organized as follows. Section 2 introduces the market structure,

defines admissible SDFs, and presents the original Hansen and Jagannathan framework

for model estimation and selection. Section 3 formulates our generalization to the HJ

methodology that considers minimum discrepancy optimization problems. It presents the

main theorem that provides a family of metrics that contains HJ (1997) as a particular

case. It also defines implied probabilities, presents their relation to admissible stochastic

discount factors, and provides some particular model selection procedures based on known

discrepancy functions belonging to the Cressie Read family. Section 4 is empirical. It

explains the adopted asset pricing model, the consumption CAPM, introduces the dataset

adopted and provides estimation results. Section 5 presents a discussion on the results,

analyzing the relation between implied admissible SDFs, pricing errors, and discrepancies

adopted. Section 6 concludes.

2 Stochastic Discount Factors and Asset Pricing Proxies

Following the lead of Harrison and Kreps (1979), Chamberlein and Rothschild (1983), and

Hansen and Jagannathan (1997) we model portfolio payoffs as elements of a Hilbert space,

and use a continuous linear functional on that space to represent prices assigned to those

payoffs.

We assume that assets are purchased at a certain time t and that the payoffs are received

at a time T > t. Let ΓT represent the sigma-algebra that represents the conditioning

information at date T , and L2 denote the space of all square integrable (i.e., finite second

moments) random variables that are measurable with respect to ΓT . Assume there exists a

set of n primitive securities whose payoffs are represented by a vector x ∈ <n, with x ∈ L2
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and in addition having a nonsingular second moment matrix Exx′7. A payoff p will be any

square integrable variable which is obtained as a linear combination of the payoffs of the n

primitive securities:

P ≡ {x · c : c ∈ <n} (1)

We further assume that the payoffs in P satisfy the Law of One Price and that the pricing

functional π is continuous and linear on P.

An admissible SDF will be any square-integrable random variable m that correctly

prices all asset payoffs p ∈ P
π(p) = E(mp) (2)

An asset pricing model y will be an approximation for an admissible SDF, and will

possibly price some payoffs in P with error:

πy(p) = E(yp) (3)

where the error is measured by the difference π(p)− πy(p).

2.1 Hansen and Jagannathan’s (1997) Least-Squares Approximation of Prox-
ies

Given a a proxy asset pricing model y(θ), parameterized by a vector of parameters θ ∈ <k,
HJ (1997) suggest to measure its degree of misspecification by obtaining the least-squares

projection of this proxy into the space of admissible SDFs M :

δHJ(θ)2 = min
m∈M

‖m− y(θ)‖2 = min
m∈M

E{(m− y(θ))2} (4)

This problem can be rewritten by noticing that m ∈ M can be reexpressed as m ∈ L2

satisfying the moment condition (2) for the particular set of primitive securities:

δHJ(θ)2 = min
m∈L2

E{(m− y(θ))2} subject to E(mx) = π(x) = q (5)

Making use of Lagrange multipliers the problem becomes:

δHJ(θ)2 = min
m∈L2

sup
λ∈<n

E{(m− y(θ))2 − 2λ′(mx− q)} (6)

7We assume the existence of the second moments to be able to work in a Hilbert space. For a treatment
of the case with inexistent moments (not performed here), the payoffs should be in a Banach (Lj) space
(see Royden (1988)), and, in principle, the existence of a linear pricing functional could be questioned.
However, we refer to Araujo and Monteiro (1989) who provide a proof of existence of equilibrium in Lj

spaces, therefore guaranteeing the existence of a linear pricing functional in such spaces. In this case, our
methodology would also work and we conjecture that the interpretations provided in Section 3 would still
be valid.
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By fixing the Lagrange multipliers and solving the minimization on the variable m Hansen

and Jagannathan (1997) obtained the following dual optimization problem:

δHJ(θ)2 = max
λ∈<n

E{y2 − (y − λ′x)2 − 2λ′q} (7)

whose solution is given by the (square of) Hansen and Jagannathan’s distance:

δHJ(θ)2 = E{(Exy − q)′Exx′−1(Exy − q)}
1
2 (8)

2.1.1 Interpreting the Primal and Dual Problems

The dual optimization problem (7) is nicely interpreted by HJ (1997) as an optimal portfolio

problem with a quadratic utility function. The Lagrange multipliers represent the portfolio

weights on the different primitive securities payoffs. Stutzer (1995) explores this portfolio

interpretation in a nonparametric setting based on ET obtaining a CARA (exponential)

utility function, and Almeida and Garcia (2008) generalize Stutzer’s interpretation in a

nonparametric setting with general Cressie Read discrepancy functions providing a portfolio

interpretation with HARA (Hyperbolic Absolute Risk Aversion) utility functions. In the

present paper, we will also obtain portfolio interpretations to our dual MD problems as we

shall see in Section 3.4.

The first-order conditions from problem (7) also give an interesting interpretation, this

time for the solution of the primal problem:

q = E{(y − λ′HJ · x)x} (9)

Equation (9) shows that the optimal Lagrange multipliers λHJ that solve this problem

find the smallest correction in the mean square sense to the proxy y such that it becomes

an admissible SDF. Under what we call our additive Minimum Discrepancy problems, we

will observe results that will paralell this one but where the correction to the proxy will be

non-linear in the primitive payoffs x.

HJ (1997) also interpret the primal problem (4) as a maximum pricing error problem

per unit norm. A linear functional πa = π−πy representing the approximate pricing errors

is defined. They show that δHJ is the norm of this functional, and moreover that this norm

is achieved by a special payoff p̃ obtained with the application of the Riezs representation

theorem to the functional πa.
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2.1.2 Model Estimation Based on the HJ Distance

HJ (1997) suggest estimating the parameter vector θ by minimizing the HJ distance:

argmin
θ∈<k

δHJ(θ) (10)

as an estimator alternative to the GMM (Hansen (1982)):

argmin
θ∈<k

g(θ)′ ·W · g(θ) (11)

where g(θ) = E(y(θ).x) represents the moment conditions, and W is an n × n symmetric

positive definite matrix that might depend on the sample observations. Note that the HJ

estimator in equation (10) as well as the GMM estimator in (11) are special cases of the

minimum distance estimators with a quadratic norm. In an asset pricing context, HJ (1997)

showed that the main difference between these two estimators is that in general the optimal

matrix W in Equation (11) (see Hansen and Singleton (1982)) will depend on the particular

model proxy y adopted, while this normalizing matrix is fixed at (Exx′)−1 in the case of the

HJ estimator. This apparently small distinction is in fact very important. For instance,

suppose we decided to adopt the GMM criterion to select among possibly misspecified

models. The metric adopted to measure misspecification in this case would be given by

Equation (11) with g(θ) being the pricing errors. As the weighting matrix changes with

each asset pricing model y, this GMM metric will weight pricing errors differently across

models. In this case, the HJ distance should be preferable since it gives weights to the

pricing errors that are invariant to the asset pricing proxy y.

3 Minimum Discrepancy Approximation of Proxies

3.1 The Additive Minimum Discrepancy Problem

Given a proxy asset pricing model y, and a convex discrepancy function φ, similarly to HJ

(1997), the idea posed by the Minimum Discrepancy problem is to find an admissible SDF

which is as close as possible to y in the φ discrepancy sense:

δadMD(θ) = min
m∈L2

E{φ(1 +m− y(θ))} subject to E(mx) = q (12)

This problem should be of interest when the underlying primitive securities include assets

with non-Gaussian returns. In such cases it is not clear that the penalty for a proxy asset

pricing model y should only depend on the second moments of the pricing errors. Looking

at more general discrepancies will probably be more appropriate when looking at assets
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with nonlinear or asymmetric payoffs such as options, mortgages, credit derivatives, other

exotic but liquid instruments, and also equities with skewed and fat tailed returns.

In what follows, we make use of arguments found in Borwein and Lewis (1991) to solve

our discrepancy problem based on a simpler unconstrained optimization problem on its

dual space. The corresponding dual optimization problem is given by:

vadMD(θ) = max
λ∈<n

λ′q − E{φ∗(λ′x)} (13)

where φ∗ denotes the convex conjugate of φ, calculated by the following expression:

φ∗(z) = sup
w

zw − φ(w) (14)

Newey and Smith (2004) show that when the discrepancy function is chosen within the

Cressie-Read (1984) family the dual problem belongs to the class of GEL estimators. In a

recent paper, Almeida and Garcia (2008) generalize Hansen and Jagannathan (HJ, 1991)

nonparametric bounds to consider higher moments of returns8 by specializing the Cressie

Read discrepancy problem to a nonparametric setting. In that context, implied probabil-

ities9 work as the optimal admissible SDF (optimal in the CR divergence sense). In their

work, implied probabilities are hyperbolic functions of linear combinations of the primitive

assets payoffs. The linear combination weights come from an optimal HARA portfolio prob-

lem that corresponds to the GEL dual problem, and involves only the primitive securities

(with no parametric model).

Our results parallel those in Almeida and Garcia (2008), with the important difference

that we consider the explicit existence of a parametric model y in order to generalize HJ

(1997). While their optimization problems obtain nonparametric admissible SDFs, as the

theorem below will show, our optimization problems will obtain admissible SDFs that

combine parametric aspects (coming from y) with nonparametric aspects coming from an

optimal linear combination of primitive assets’ payoffs (optimal in the divergence sense).

However, to be able to incorporate the parametric model and at the same time keep the

moment conditions compatible with those appearing in Hansen and Jagannathan (1997), we

formulate our MD problem in a slightly different form from those appearing in Newey and

Smith (2004) and Almeida and Garcia (2008). First, we formulate the moment conditions

by pricing the payoffs instead of excess returns. This has a direct impact on the dual

8See also Snow (1991) for a generalization of Hansen and Jagannathan (1991) bounds that similarly to
Almeida and Garcia (2008), takes into account higher moments of returns.

9Back and Brown (1993) provide GMM implied probabilities, Owen (1988) for EL, Kitamura and Stutzer
(1997) for ET, and Imbens et al. (1998) for Cressie Read discrepancy estimators. Brown and Newey (2002)
provide implied probabilities for Generalized Empirical Likelihood (GEL) estimators.
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optimization problem. Second, to measure misspecification of the asset pricing proxy y

with respect to an additive distance to an admissible SDF m (like HJ (1997) do), we need

to introduce a translation of the function φ by 1 − y. This translation guarantees that

function φ achieves its minimum when the asset pricing proxy y is an admissible SDF,

a very desirable property when the goal is to measure the degree of misspecification. In

addition, the inclusion of y in the divergence function (and not in the moment condition

explicitly) allows us to interpret this MD problem as genuinely a generalization of HJ

(1997), that is a way to measure the ”‘distance”’ (discrepancy) of the proxy y to a fixed

family M of admissible SDFs.

The next theorem provides the type of optimization problems that will have to be

solved to find the discrepancy of y with respect to the family M , and the corresponding

admissible SDF closest to y, when the discrepancy belongs to the Cressie Read (1984)

family of discrepancies, most adopted in the current econometric literature.

Theorem 1. Let y(θ) represent the asset pricing proxy, parameterized by a vector of pa-

rameters θ ∈ Θ. Let the discrepancy function belong to the class of Cressie Read functions:

φ(π) = πγ+1−1
γ(γ+1)

with γ ∈ <. In this case for a fixed vector of parameters θ, the optimization

problem (12) specializes to:

δadCR(θ) = min
m∈L2

E

{
(1 +m− y(θ))γ+1 − 1

γ(γ + 1)

}
subject to E(mx) = q (15)

Then the GEL problem dual to the MD problem is given by:

vadCR(θ) = max
λ∈<n

λ′q − E

{
(γλ′ · x)

γ+1
γ

γ + 1
+ (y(θ)− 1)λ′ · x+

1

γ(γ + 1)

}
(16)

and the admissible SDF which is closest to the asset pricing proxy y is given by:

mad
CR(θ) = y(θ)− 1 + (γλ′ad · x)

1
γ (17)

where λad is the solution of the optimization problem (16).

Proof:

Let φ̃(m) = φ(1 +m− y) = (1+m−y)γ+1−1
γ(γ+1)

, and note that it is a convex function.

According to Borwein and Lewis (1991), if we find the convex conjugate of φ̃, φ̃∗, we can

use it in Equation (13) to write the dual optimization problem that has the same solution

as the primal MD problem in Equation (12) with a Cressie and Read divergence. To

obtain the convex conjugate we apply Equation (14) to φ̃. Letting H(x) = zx− ˜φ(x), and

differentiating to obtain its supremum in x we obtain xsup = y−1+(γz)
1
γ and consequently

9



φ̃
∗
(z) = (y − 1)z + (γz)

γ+1
γ

γ+1
+ 1

γ(γ+1)
. Applying φ̃∗ in Equation (13) gives the optimization

problem (16). The first-order conditions of this optimization problem with respect to λ

are:
∂vadCR
∂λ

= q − E{(y + (γλ′ad · x)
1
γ ).x} = 0 (18)

showing that mad
CR in Equation (17) is an admissible SDF that minimizes the MD problem

(12) when the divergence is a member of the Cressie-Read family. �
We assume that there exists a risk-free asset on the set of primitive securities paying

interest rate equal to rf . The existence of such an asset is also assumed by HJ (1997,

assumption 1.2) and it is important to guarantee that our discrepancy problems are well

posed in the sense that the mean of any admissible SDF will be equal to 1
rf

. Of course,

if in practice such an asset does not exist, we can augment the primitive securities payoff

space by a synthetic risk-free asset. We provide a corollary to Theorem 1 that simplifies

the dual optimization problem by taking into account the existence of this risk-free asset.

Corollary 2. Assuming that there is a risk-free asset among the primitive securities then

the dual optimization problem in Equation (16) can be simpliefied to (by also eliminating

the constant term):

vad,coCR (θ) = max
λ̃∈<n−1

λ̃
′
qco − E

{
(1 + γλ̃

′ · x)
γ+1
γ

γ + 1
+ (y(θ)− 1)λ̃

′ · x

}
(19)

where qco is the vector of prices of the n− 1 remaining primitive securities other than the

risk-free asset. The corresponding admissible SDF that solves this problem is given by:

mad,co
CR (θ) = y(θ)− 1 + (1 + γλ̃

′
ad · x)

1
γ (20)

Proof:

To prove this corollary just observe that the risk-free asset has a constant payoff equal to

1, which allows the separation of the maximization in two parts:

vad,coCR (θ) = max
λ̃∈<n−1,α∈<

1

rf
.α + λ̃

′
qco − E

{
(γα + γλ̃

′ · x)
γ+1
γ

γ + 1
+ (y(θ)− 1)(λ̃

′ · x+ α)

}
(21)

By taking the derivative of equation (21) with respect to α, eliminating λ̃ and equating to

zero, we obtain the concentrated value α∗ =
( 1
rf
−Eµ[y−1])γ

γ
. For the particular case where

the proxy model y prices the risk-free asset, α∗ becomes 1
γ

and by substituting α∗ in (21)

and by eliminating constant terms (not depending on λ̃) the result follows. �
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3.2 The Multiplicative Minimum Discrepancy Problem

As mentioned earlier in the introduction, other variations of the asset pricing model’s evalu-

ation problem could be proposed based on minimum discrepancy estimators. In particular,

we can cast the problem in the traditional structure of the GMC or MD estimators:

δ̃
mu

MD(θ) = min
m∈L2

E{φ(m)} subject to E(my(θ)x) = q (22)

where φ is a convex function.

As in some problems, the admissible SDFs achieve negative values in some states of the

nature (see HJ (1991, 1997)), to guarantee that we will still have a MD problem based on a

convex function when this happens, we could also propose a variation of the problem that

composes function φ(.) with the absolute value function |.|:

δ̃
mu

MD(θ) = min
m∈L2

E{φ(|m|)} subject to E(my(θ)x) = q (23)

Note that the absolute value function |.| composed with φ maintains φ(|.|) as a convex

function even if the SDF m achieves negative values. This way with Equation (22) we will

be able to solve problems whose discrepancies are calculated with respect to a family of

nonnegative SDFs, while with Equation (23) we will solve the corresponding problems with

families of SDFs that admit negative values. In what follows, we will derive the results for

the more general problem given by Equation (23) and then we will specialize to the case

given by Equation (22).

The interpretation of the estimation problem posed by either (22) or (23)is in principle

different from that given to the additive MD problem described in section 3.1. Here model

y is represented by the moment condition E(m.y.x) = q and our goal is to find among all

the probability measures (or SDFs, see Section 3.3) m such that m∗y is an admissible SDF

pricing the primitive securities with payoffs x, the one that is closest to the true unknown

measure µ in the φ-discrepancy sense.

Apparently the main difference (in structure) between problems (12) and (23) lies in the

family of probability measures that satisfy the moment conditions. While in the problem

described by Eq. (12) there is a fixed family of admissible SDFs (the ones that price x), in

the multiplicative problem described here the family of m’s satisfying the moment condition

clearly depends on y since the moment condition asks for m ∗ y to be an admissible SDF.

However, this problem can be easily transformed to an equivalent problem that will present

a fixed family of admissible SDFs and will be more comparable to the additive MD problem.

Assuming that the proxy y is different of zero almost surely, by renaming the product m∗y
to a new random variable m̃, we obtain

11



δ̃
mu

MD(θ) = min
m̃∈L2

E

{
φ

(∣∣∣∣ m̃y(θ)

∣∣∣∣)} subject to E(m̃x) = q (24)

The transformed problem has a structure similar to the additive problem in (12) and

consequently similar to the original Hansen and Jagannathan (1997) analysis. It proposes

estimating distances of a proxy y to a fixed family of admissible SDFs (the ones that satisfy

the Euler equations).

This problem should be of interest since it also proposes a way of selecting models based

on metrics that take into account higher moments of admissible SDFs other than the mean

and the variance. Moreover, in contrast to problem (12), its solution involves a nonlinear

term in the proxy y that might become an important element responsible for differences

in the discrepancy measured in different points of the parametric space Θ, as we shall see

later. Similarly to problem (12) and using the same techniques, we now prove a theorem

that will give the corresponding dual optimization problem that should be equivalent to

the discrepancy problem (24) as well as the admissible SDF that will solve the optimization

problem, when the discrepancy function is within the Cressie Read family.

Theorem 3. Let y(θ) represent the asset pricing proxy, parameterized by a vector of pa-

rameters θ ∈ Θ. Let the discrepancy function belong to the class of Cressie Read functions:

φ(π) = πγ+1−1
γ(γ+1)

with γ ∈ <. In this case for a fixed vector of parameters θ, the optimization

problem (24) specializes to:

δ̃
mu

CR(θ) = min
m∈L2

E

{
| m̃
y(θ)
|γ+1 − 1

γ(γ + 1)

}
subject to E(m̃x) = q (25)

Then the dual GEL problem to the MD problem is given by:

ṽmuCR(θ) = max
λ∈<n

λ′q − E

{
|γyλ′ · x|

γ+1
γ

γ + 1
+

1

γ(γ + 1)

}
(26)

and the admissible SDF which is closest to the asset pricing proxy y is given by:

m̃mu
CR(θ) = (−1)I{γyλ′mu·x<0} .y|γyλ′mu · x|

1
γ (27)

where λmu is the solution of the optimization problem (26), and I{.} represents a set indi-

cator function.

Proof:

Let φ̃(m) = φ(| m̃
y
|) =

| m̃
y
|γ+1−1

γ(γ+1)
. Then φ̃ is a convex function defined in the interval

[0,∞). Now, we mimick the proof of Theorem 1. First, we find the convex conjugate

of φ̃, φ̃∗, and then use it in Equation (13) to write the dual optimization problem that

12



has the same solution as the primal MD problem in Equation (25). To obtain the convex

conjugate we apply Equation (14) to φ̃. Letting H(x) = zx − ˜φ(x), and differentiating

to obtain its supremum in x we obtain xsup = (−1)I{γ·y·z<0}|γ · y · z|
1
γ and consequently

φ̃
∗
(z) = |γyz|

γ+1
γ

γ+1
+ 1

γ(γ+1)
. Applying φ̃∗ in Equation (13) gives optimization problem (26).

The first-order conditions of this optimization problem with respect to λ are:

∂ṽCR,mu
∂λ

= q − E{((−1)I{γyλ′mu·x<0} .(|γyλ′mu · x|)
1
γ y).x} = 0 (28)

showing thatmCR,mu in Equation (27) is an admissible SDF that minimizes the MD problem

(25). �
Similarly to the MD additive problem if we consider the existence of a risk-free asset

rf we can concentrate one of the Lagrange Multipliers and obtain a simplified result. The

next corollary treats this case:

Corollary 4. Assuming that there is a risk-free asset among the primitive securities then

the dual optimization problem in Equation (26) can be simpliefied to (by also eliminating

the constant term):

vmu,coCR (θ) = max
λ̃∈<n−1

λ̃
′
qco − E

{
|1 + γyλ̃

′ · x|
γ+1
γ

γ + 1

}
(29)

where qco is the vector of prices of the n− 1 remaining primitive securities other than the

risk-free asset. The corresponding admissible SDF that solves this problem is given by:

mmu,co
CR (θ) = (−1)I{1+γyλ′mu·x<0}y|1 + γyλ̃

′
mu · x|

1
γ (30)

Proof:

To prove this corollary, we follow essentially the same steps appearing in the proof of

Corollary 2. �
As we suggested in the beginning of this section, an important alternative formulation

of the MD multiplicative problem concerns the case where we deal with only nonnegative

SDFs, which will be another way of generalizing the least-square problem with positivity

constraint solved by HJ (1997)10. This corresponds to the problem in Equation (22) where

we eliminate the absolute value function that is composing with the convex φ function. In

this case, the problem becomes completely compatible with the usual GMC literature. We

derive the corresponding dual problem and MD admissible SDF in the next corollary to

Theorem 3 and Corollary 4.

10HJ (1997) actually solve the problem with nonnagativity constraint.
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Corollary 5. If in the Theorem 3 we solve the MD problem (22) instead of problem (23),

and also assume the existence of a risk-free asset, the corresponding dual optimization

problem and the MD admissible SDF are given by:

ṽmu,coCR (θ) = max
λ̃∈<n−1

λ̃
′
qco − E

{
(1 + γyλ̃

′ · x)
γ+1
γ

γ + 1

}
(31)

m̃mu,co
CR (θ) = y(1 + γyλ̃

′
mu · x)

1
γ (32)

Proof:

By eliminating the absolute value function in Theorem 3, calculating the convex conjugate

of the Cressie Read function φ( m̃
y

), and eliminating the constant term, we obtain φ̃
∗
(z) =

(γyz)
γ+1
γ

γ+1
. By concentrating the LM of the risk-free asset out we obtain φ̃

∗,co
(z) = (1+γyz)

γ+1
γ

γ+1
,

which according to Borwein and Lewis (1991) leads to the dual maximization problem

appearing in Equation (31). The first-order conditions of this problem with respect to λ̃

give the admissible SDF in Equation (32). �
Note that the correction to the proxy y in this last case comes as a hyperbolic function

that depends on the optimal linear combination of primitive securities payoffs x and on the

proxy itself. In particular, by making the proxy y equal to the constant 1, we obtain the

nonparametric admissible SDFs from Almeida and Garcia (2008).

3.3 GMC Estimators and MD SDF Problems

We first formalize the concept of a Generalized Minimum Contrast estimator by following

the notation of Section 3 in Kitamura (2006)11.

Suppose that the econometrician observes IID realizations of a <n random variable z

with probability law µ, and that he is interested in the model defined by the following set

of moment conditions:

E[g(z, θ)] =

∫
g(z, θ)dµ = 0, θ ∈ <k (33)

Define a function D that will make use of function φ to measure the discrepancy between

two probability measures P and Q:

D(P,Q) =

∫
φ

(
dP

dQ

)
dQ (34)

11where he relates GEL estimators to Generalized Minimum Contrast estimators. See also Corcoran
(1998) for a sample version of minimum discrepancy estimators.
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Given a general convex function φ, a Generalized Minimum Contrast estimator will seek

to estimate the parameter vector θ by finding a probability measure π that satisfies the

moment conditions in (33) and that minimizes the discrepancy with respect to the true

unknown probability measure µ. This sentence is formalized by the following optimization

problem:

v(θ) = inf
θ∈Θ

inf
π∈P (θ)

D(π, µ) (35)

where P (θ) =
{
π is a probability measure in <n satisfying:

∫
g(z, θ)dπ = 0

}
.

3.3.1 GMC and the MD Additive SDF Problem

Let us now give the direct interpretation of our MD additive problem from the point of

view of GMC estimators. First note that in our problem, µ is the unknown probability

law generating the observable payoffs x of the primitive securities. Given the family M

of admissible SDFs m, we want to find a probability measure π = m
Eµ(m)

that satisfies

the nonparametric moment conditions imposed by the Euler equations for the primitive

securities, and that in addition, is as close as possible to the asset pricing proxy y in the

following sense: By constructing new probability measures π̃ = 1+m−y
Eµ(1+m−y)

we want the π

that will generate the π̃ closest (in the φ divergence sense) to the unknown probability µ.

Of course, by construction, any of those π̃ will satisfy a transformed moment condition

Eµ(π̃x) = rf .q − Eµ((y − 1)x), where rf represents the risk-free rate12. Define P̃ (θ) =

{probabilities π̃ such that: π = rf .(π̃+ y(θ)− 1) is a probability, and
∫

(x− rf .q)dπ = 0}.
Then our MD additive problem is equivalent to the following GMC problem:

v(θ) = inf
θ∈Θ

inf
π̃∈P̃ (θ)

D(π̃, µ) (36)

The solution to this problem, according to Corollary 2 will be given by

π̃adCR =
1 +mad

CR − y(θ)

Eµ(1 +mad
CR − y(θ))

=
(1 + γλ′ad · x)

1
γ

Eµ(1 + γλ′ad · x)
1
γ

(37)

And in the particular case where the proxy correctly prices the risk-free asset, equation

(37) reduces to:

π̃adCR = (1 + γλ′ad · x)
1
γ (38)

The probability measure π̃adCR in its corresponding sample version, generates πadCR,i’s that

12Here we assume that there is a risk-free asset rf and also that the SDF proxy y correctly prices this
risk-free asset.
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are denominated implied probabilities.

Those implied probabilities are useful in a variety of applications. Brown and Newey

(1998) obtain an efficient estimation of moment conditions based on implied probabilities.

Brown and Newey (2002) suggest their use on the estimation of probability distribution

functions via bootstrapping schemes. Smith (2004) shows how these probabilities can be

used to obtain efficient moment estimation for GEL estimators. Antoine et al. (2007) show,

in a context of Euclidean Likelihood, how implied probabilities contain important informa-

tion coming from overidentifying restrictions that can be used to decrease the variance of

the estimator.

In an asset pricing context, Almeida and Garcia (2008) show that implied probabili-

ties can be used to derive nonparametric bounds for stochastic discount factors that by

construction take into account higher moments of returns from primitive securities. The

main idea relating implied probabilities and admissible SDFs is that any positive SDF is

composed by a probability measure discounted by the risk-free rate. In particular, when

the risk-free rate is assumed to be constant, and admitting that implied probabilities might

achieve negative values for certain members of the Cressie Read family, we can extend the

previous statement to the following one: Under Cressie Read discrepancy problems, any

admissible SDF will be a linear transformation of a probability measure. As any Cressie

Read discrepancy becomes a homogeneous function with an appropriate affine transforma-

tion, the MD problem for SDFs and for probability measures are equivalent what makes the

implied probabilities exactly a normalized version of the admissible SDF mCR in Equation

(17), translated by 1− y as shown in Equation (37).

On the corresponding sample version (of size T ) of the Additive MD problem, we obtain:

πadCR,i = T
(1 + γλ̃

′
ad · xi)

1
γ∑T

j=1(1 + γλ̃
′
ad · xj)

1
γ

, i = 1, ..., T (39)

3.3.2 GMC and the MD Multiplicative SDF Problem

Our MD multiplicative problem follows a standard GMC problem. In fact, given the family

M of admissible SDFs m, we want to find a probability measure π = m
Eµ(m)

that satisfies

the nonparametric moment conditions imposed by the Euler equations for the primitive

securities, and that in addition, is as close as possible to the asset pricing proxy y in the

following sense: By constructing new probability measures π̃ =
m
y

Eµ(m
y

)
we want the π that

will generate the π̃ closest (in the φ divergence sense) to the unknown probability µ. Those

π̃ will of course depend on θ and will satisfy the original moment condition Eµ(π̃.y.x) = rf .q,

where rf represents the risk-free rate. Defining P̃ (θ) = {probabilities π̃ such that:
∫

(y.x−
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rf .q)dπ̃ = 0}, we obtain the following GMC problem:

ṽ(θ) = inf
θ∈Θ

inf
π̃∈P̃ (θ)

D(π̃, µ) (40)

The solution to this problem, according to Corollary 5 will be given by

π̃muCR =

mmuCR
y(θ)

Eµ(
mmuCR
y(θ)

)
=

(1 + γy(θ)λ′mu · x)
1
γ

Eµ(1 + γ(θ)λ′mu · x)
1
γ

(41)

And in the particular case where the proxy correctly prices the risk-free asset, equation

(41) reduces to:

π̃muCR = (1 + γy(θ)λ′mu · x)
1
γ (42)

On the sample version of the Multiplicative MD problem, we obtain:

π̃muCR,i = T
(1 + γyi(θ)λ

′
muxi)

1
γ∑T

j=1(1 + γyj(θ)λ
′
muxj)

1
γ

, i = 1, ..., T (43)

Note that in both the additive and multiplicative MD problems, the probabilities may

achieve negative values. It is documented in the literature that in general for members of

the Cressie Read family with negative parameter γ the probabilities are naturally positive.

However, for positive γ’s these probabilities might achieve negative values. As in our

particular financial environment negative probabilities will imply negative states of the

nature for the stochastic discount factor (what in a complete market setting would imply

the existence of arbitrage), it may be interesting to restrict the original discrepancy problem

to strictly positive admissible SDFs13. On the other hand, in an incomplete market setting,

having an admissible SDF as solution to the MD problem with negative values in some

states does not rule out absence of arbitrage, as the only implication of no-arbitrage is that

it should exist at least one positive admissible SDF, but it does not have to be exactly the

one that solves our optimization problem (see Cochrane (2000)).

3.4 Interpreting the Dual Optimization Problems

In a seminal work, Stutzer (1995) proposed a portfolio interpretation for the ET estimator

based on a standard two-period model of optimal portfolio choices (see Huang and Litzen-

berger (1988)). He showed that the ET entropy minimization problem corresponds to an

optimal portfolio problem with a CARA utility function. Based on the same two-period

model, Almeida and Garcia (2008) extended his interpretation to the whole Cressie Read

13This can be obtained by imposing that 1+γλ′mux > 0 in the additive case, and that 1+γy(θ)λ′mux > 0
in the multiplicative case (here also assuming that the proxy y > 0).
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family in a nonparametric setting. Here we extend their interpretation to the additive and

multiplicative dual optimization problems in a semi-parametric setting.

Both dual MD problems will admit interesting economic interpretations as optimal

portfolio problems. Let us first analyze the solution of our MD multiplicative problem for

Cressie Read estimators since it will present a very similar interpretation to that appearing

in Almeida and Garcia (2008): According to Corollary 5 it corresponds to an optimal

portfolio problem based on a specific HARA-type utility function:

u(W, y(θ)) = − 1

γ + 1
(1 + γy(θ)W )( γ+1

γ
) , (44)

with W and y such that 1 + γy(θ)W > 0 a sufficient condition to guarantee the concavity

and strict monotonicity of function u.

Suppose an investor distributes his/her initial wealth W0 putting λj units of wealth on

the risky asset Rj and the remaining W0 −
∑K

j=1 λj in a risk-free asset paying rf = 1
a
.

Terminal wealth is then W = W0 ∗ rf +
∑K

j=1 λj ∗ (Rj − rf ). Assume in addition that this

investor maximizes the HARA utility function provided above in equation (44), solving the

following optimal portfolio problem:

Ω = sup
λ∈Λ

E (u(W )) (45)

where Λ = {λ : u(W (λ)) is strictly increasing and concave}, and expectation is taken

with respect to W and y. By conditioning on y and by scaling the original vector λ

to be λ̃ = λ
(1+γy(θ)W0.rf)

, we can decompose the utility function in u(W ) = u(W0 ∗ rf ) ∗(
1 + γy(θ)λ̃

(
R− 1

a

))( γ+1
γ

)

. This decomposition essentially shows that solving a version of

the GEL optimal problem appearing in Corollary 5 for excess returns (instead of payoffs)

will measure the gain when switching from a total allocation of wealth at the risk-free asset

paying rf to an optimal (in the utility u sense) diversified allocation that includes both

risky assets and the risk-free asset, conditional on the stochastic process describing y. Of

course by integrating on the distribution of y we would obtain an average of the gains from

diversifying the allocation. In Almeida and Garcia (2008) the HARA function does not

depend on y what simplifies the problem to that equivalent to a degenerate distribution of

y. Here y(θ) works as a normalizing factor for the returns.

When considering the additive dual MD optimization problems appearing in Corollary

2, we can interpret them as allocation problems among the n primitive securities in a way
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to maximize the utility function U defined by:

U(W ) = − 1

γ + 1
(1 + γW )( γ+1

γ
) − (y(θ)− 1).W, (46)

Note that the utility is composed by two terms, one linear in wealth and the other, in

principle, given by a HARA utility exactly as in the multiplicative MD problem, except

that it does not depend on the proxy model y. If we again take expectations conditioning

on the proxy y, the linear term would correspond to a risk-neutral economy with stochastic

discount factor 1 − y. In fact, here 1 − y works as a penalty factor to avoid the resulting

marginal utility from the HARA part to be too far from y.

3.5 Some Special Cressie Read Discrepancies

In this section we specialize the results in Theorems 1 and 3 to provide the dual (portfolio-

type) optimization problems and corresponding admissible SDFs solutions for some special

discrepancies in the Cressie Read family frequently adopted in the econometric literature.

We begin by investigating the relation between Euclidean Likelihood and the HJ (1997)

distance under both the additive and multiplicative forms of our discrepancy problems. In a

sequence, we provide, again for both forms, the optimization problems and solutions under

EL (CR with γ = −1) and ET (CR with γ = 0) discrepancies. The other three additional

discrepancies adopted in the empirical section, namely Pearson’s Chi-Square (Cressie Read

with γ = −2), Hellinger’s distance (CR with γ = −1
2
), and CR with γ = 2 can be obtained

directly by application of Theorem 1 with their specific gammas.

3.5.1 Hansen and Jagannathan Distance Derived from Euclidean Likelihood

Euclidean likelihood or CUE is obtained by fixing γ = 1 on the Cressie Read discrepancy.

By using this value of gamma in the Corollary 2 above and dropping the constant terms,

we obtain the following optimization problem:

vad,coCUE(θ) = max
λ∈<n−1

λ′q−E{1

2
(1+λ′ ·x)2+(y−1)λ′x} = max

λ∈<n−1
λ′q−E{1

2
(λ′ ·x)2+yλ′x} (47)

whose first order conditions obtains mCUE = y + λ′x, precisely the linear correction term

obtained by HJ (1997). By comparing Equation (47) to Equation (7) we note that the two

problems are equivalent. Thus, under our proposed MD problem of additive type the HJ

distance becomes one element within the particular Cressie Read family.

Note that under the multiplicative MD formulation proposed in Section 3.2 this equiva-

lence to the Hansen and Jagannathan (1997) distance is not maintained. In fact, by taking

γ = 1 on Corollary 5, we obtain the following dual optimization problem:
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ṽmu,coCUE (θ) = max
λ∈<n−1

λ′q − E{(1 + yλ′ · x)2

2
} (48)

Note that the asset pricing model y appears as a quadratic term in (48) that is not

eliminated like in the additive case, and could not reproduce HJ (1997) since it would have

to appear linearly in the dual optimization problem. The admissible SDF that solves this

optimization problem is, according to Corollary 5, given by m̃CR = y(1+yλ′mu ·x). Observe

that while in HJ (1997) the solution to the problem that asks what is the least squares

distance of a proxy y to the family M of admissible SDFs pricing primitive securities x is

given by the distance between y and the admissible SDF y + λ′ad · x, here the admissible

SDF which is closest to y in the multiplicative CR divergence sense is quadratic in y: In

fact it can be seen as y added to a correcting term that is quadratic on y and that also

depends on the primitive securities payoffs (y2λ′mu · x) that guarantees it to be admissible.

By looking at these two results obtained in this quadratic case, it appears to be the case

that the CR (γ = 1) multiplicative distance will be more sensitive to changes in the proxy

y than the corresponding HJ distance, or CR (γ = 1) additive distance.

3.5.2 Empirical Likelihood (γ = −1)

In this limiting interesting case, the Cressie Read discrepacy converges to φ(π) = −ln(π).

Our MD problem under the additive form becomes:

δadEL(θ) = min
m∈L2

E{−ln(1 +m− y(θ))} subject to E(mx) = q (49)

Noting that the expression (1+γx)
γ+1
γ

γ+1
+ 1

γ(γ+1)
converges to −1 − ln(1 − x) when γ → −1,

and applying the results in Corollary 2, the dual optimization problem becomes:

vad,coEL (θ) = max
λ̃∈<n−1

λ̃
′
qco − E

{
−ln(1− λ̃′ · x) + (y(θ)− 1)λ̃

′ · x
}

(50)

The corresponding admissible SDF that solves this problem is given by:

mad,co
EL (θ) = y(θ)− 1 +

1

(1− λ̃′ad · x)
(51)

Similarly, the EL in the multiplicative case of Corollary 5 becomes:

vmu,coEL (θ) = max
λ̃∈<n−1

λ̃
′
qco − E

{
−ln(1− yλ̃′ · x)

}
(52)
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The corresponding admissible SDF that solves this problem is given by:

mmu,co
EL (θ) =

y

(1− yλ̃′mu · x)
(53)

3.5.3 Exponential Tilting (γ = 0)

The ET discrepancy is also a limiting case on the Cressie Read family studied by Kitamura

and Stutzer (1997). The Cressie Read discrepacy converges in this case to φ(π) = πlnπ,

whose convex conjugate is ez−1.

Then our MD problem under the additive form becomes:

δadET (θ) = min
m∈L2

E{(1 +m− y(θ))ln(1 +m− y(θ))} subject to E(mx) = q (54)

Noting that the expression (1+γx)
γ+1
γ

γ+1
+ 1

γ(γ+1)
converges to ex when γ → 0 and applying the

results in Corollary 2, the dual optimization problem becomes:

vad,coET (θ) = max
λ̃∈<n−1

λ̃
′
qco − E

{
eλ̃
′·x + (y(θ)− 1)λ̃

′ · x
}

(55)

The corresponding admissible SDF that solves this problem is given by:

mad,co
ET (θ) = y(θ)− 1 + eλ̃

′
ad·x (56)

The multiplicative problem based on Corollary 5 is given by:

vmu,coET (θ) = max
λ̃∈<n−1

λ̃
′
qco − E

{
eyλ̃

′·x
}

(57)

The corresponding admissible SDF that solves this problem is given by:

mmu,co
ET (θ) = yeyλ̃

′
mu·x (58)

3.6 Model Estimation Based on Minimum Discrepancy Bounds

Researchers have been using the HJ (1997) distance to estimate asset pricing models by

finding the parameter vector θ∗ that minimizes this distance. Similarly to their approach

and following Kitamura (2006) and the whole literature in Minimum Discrepancy estima-

tors, we propose estimating the above asset pricing models by finding the parameter vector

θMD that minimizes any specific discrepancy function either described by Equation (12) or

(22)14:

14or also by the corresponding versions with the absolute value function that would consider negative
admissible SDFs. See Equation (23) for the MD multiplicative case with negative SDFs.
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θadMD = argmin
θ∈<k

δadMD(θ) (59)

or

θmuMD = argmin
θ∈<k

δmuMD(θ) (60)

Note that these problems are composed optimization problems and for any fixed θ0 in

the parameter space, the inner problem will deliver a minimum discrepancy coming from the

admissible SDF closest (in φ sense) to y(θ), and a set of Lagrange Multipliers representing

portfolio weights from a HARA utility function ( see Section 3.4). In the empirical section

instead of estimating models based in (59) or (60), in order to understand the mechanics

of the MD problems, we begin by taking a step behind and concentrate on the analysis of

the inner optimization problems of the additive MD problem. By calibrating values of θ

in the parametric space we analyze the sensitivity of the different divergencies to changes

in parameters values of a specific asset pricing model. In a sequence, we also analyze the

calibration process of the multiplicative problem, and then estimate both problems and

compare their results.

4 Empirical Application

HJ (1997) illustrated the usefulness of their least-square projection by analyzing the degree

of misspecification of the canonical consumption-based asset pricing model of Breeden

(1979) and Lucas (1978) for various values of the preference parameters. We will perform a

similar analysis here but considering several Cressie Read discrepancy functions: Pearson’s,

EL, Hellinger’s, ET, CUE, and two other discrepancies with high positive values of the

Cressie Read parameter γ (CR(γ = 2), and CR(γ = 5)).

The CCAPM SDF is given by:

mccapm
t = βE

(
Ct+1

Ct

)−θ
. (61)

where Ct denotes the time t aggregate consumption in the economy considered.

We use the annual (1890- 1985) time-series data on stocks and bonds of Campbell

and Shiller (1989) updated to 2004 and the corresponding aggregate consumption annual

series15. Similarly to HJ (1997), we propose a small grid for values of the risk aversion

coefficient θ to analyze the sensitivity of different discrepancy functions to changes in the

parametric space. We concentrate on the risk-aversion parameter as it is the most important

parameter in the CCAPM and since it is the one generating nonlinearities in the model.

15The dataset is available on Shiller’s website, http://www.econ.yale.edu/ shiller/data.htm.

22



For this reason, for each value of θ, β is fixed to a value that guarantees that the mean

of the CCAPM SDF proxy is always equal to 0.98, the averaged value of the historical

1-month Treasury Bill.

For fixed values of the parameters β and θ, and given a time series of consumption

growth rates we can compute the SDF mccapm. Once we know the SDF proxy, it is pos-

sible to compute pricing errors, to estimate the discrepancy distance δCR and Lagrange

multipliers for any fixed discrepancy in the Cressie Read family (fixed γ).

We chose values for the risk aversion parameter θ from two very distinct regions of

the parametric space. Small values of θ (θ = 1, 5) will correspond to small volatility

CCAPM SDFs that will have more difficulty in pricing the stock returns (S&P 500). On

the other hand, high values of θ (θ = 20, 50) will generate more volatile CCAPM SDFs

that will have variation compatible with the extreme variation of equity returns. This

behavior description for the CCAPM SDF is compatible with the equity premium puzzle

first document by Mehra and Prescott (1985) and reexpressed in terms of SDF’s variance

bounds by HJ (1991).

4.1 Lagrange Multipliers (portfolio weights) and Implied SDFs

We start by analyzing results obtained with the Pearson, EL, Hellinger, ET, CUE, and

CR(γ = 2) discrepancies. For each fixed discrepancy and parameter θ value, we solve

the MD additive optimization problem proposed in Equation (16) to find the Lagrange

Multipliers (LM), the corresponding implied admissible SDF, and the value that minimizes

the discrepancy.

Table 1 presents the LM estimated with each CR discrepancy. As noticed in section

3.4, those LM estimates correspond to optimal portfolio weights from the maximization

of a HARA utility function (plus a linear term) when the agent can invest in a short-

term bond and/or the S&P 500. The dual HARA functions obtained from the Cressie

Read discrepancies need an inversion of sign in LM weights to be strictly increasing. In

this sense, negative weights in the table indicate that the agent is buying an asset while

positive ones indicate selling it. We observe that for all values of the parameter θ within

the grid, all discrepancies agree on the signs of the weights attributed to the bond and

the S&P: they all sell the bond and buy the S&P. According to the results appearing in

Corollary 2, the admissible SDFs that solve the concentrated additive MD problem should

be negatively correlated to the S&P returns whenever the nonparametric term given by

(1 + γλ̃
′
adx)

1
γ dominates the parametric term coming from the CCAPM. This is exactly

what can be observed in Table 2 and figures 1, 2, 3, and 4.

Table 2 presents the correlation of admissible SDFs with the S&P 500 returns. In the
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last column it presents the correlation of the parametric CCAPM model with the S&P 500

returns. For all discrepancies, the correlation is decreasing in absolute value with the value

of θ. This is well illustrated in Figures 1 to 4. They present for each value of θ and each

discrepancy function, the CCAPM SDF (dashed line) and the corresponding admissible

SDF (solid line) that is closest to the CCAPM SDF in that region of the parametric

space. Note that for small values of θ (see Figures 1 and 2), the nonparametric part of

the admissible SDF generates more variability than the CCAPM (compare the solid and

dashed lines). For larger values of θ (see Figures 3 and 4), the CCAPM term shows high

variability and the correlation between admissible SDf and S&P returns goes from high

negative values to small negative values, which is precisely the correlation of the CCAPM

SDF with the S&P returns (see last column of Table 2).

Still observing the portfolio weights (or LMs) in Table 1, we can see that the weights for

the S&P are not very sensitive to changes in the parameter value θ while the weights in the

short-term bond clearly decrease with θ. This has an intuitive interpretation: since when

increasing the value of θ we increase the variability of the CCAPM SDF, any admissible

SDF that will solve the MD problem should present the nonparametric term (1 + γλ̃
′
adx)

1
γ

with volatility of the magnitude of the parametric term (the CCAPM SDF). The way to

achieve this high volatility is to keep higher weights on the S&P and lower weights in the

bond.

4.2 Discrepancy Measures and Implied Probabilities

We next move to the analysis of the minimum discrepancy values obtained by solving the

dual maximization problems that will capture the degree of misspecifation of the CCAPM

model in each region of the parametric space. Table 3 presents the minimizing values for

the discrepancy functions adopted. Note that all Cressie Read discrepancies achieve their

smallest value (considering the parameter grid) when θ = 50. In principle, if we had to

choose a parameter value based on any of these discrepancy problems we would choose

the same as HJ (1997), which corresponds to our CUE quadratic problem. However, the

behavior of the implied admissible SDFs for each discrepancy function varies a lot, specially

for smaller values of the parameter θ (see again Figures 1 to 4). For instance, while Cressie

Read estimators with non-positive γ (Pearson, EL, Hellinger, and ET) produce SDFs that

are positively skewed with respect to the constant 1 (have more extreme positive values)

the corresponding estimators with positive γ (CUE and CR(γ = 2)) produce SDFs that are

negatively skewed with respect to the constant 1. Also, SDFs implied by CR estimators

with increasing γ become less and less volatile in general. Of course, these differences

become more subtle once we increase the parameter value to a high risk-aversion coefficient
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on the CCAPM model, but still, a careful observation of the implied admissible SDFs

reveals that estimators with higher γ get closer to the CCAPM SDF with smaller values

of the parameter θ (see for instance, the picture in the right bottom of Figure 2).

In order to further analyze this point, based on equation 37 we computed the implied

probabilities corresponding to those admissible SDFs. Here we have a total of 115 annual

observations what generates constant empirical probabilities equal to πemp = 1
115

= 0.0087.

Figures 5 to 8 show these implied probabilities. Note that for any fixed value of the CCAPM

parameter θ, the variability of those probabilities around the empirical probability (dashed

line) is a decreasing function of the Cressie Read parameter γ. In particular, for small

values of θ the implied probabilities of the CR (γ = 2) estimator are already very close

to the empirical probabilities. This suggests that perhaps for higher values of the Cressie

Read parameter γ it might happen that the estimator will minimize the discrepancy on

smaller values of the CCAPM risk aversion parameter θ. This would be interesting since

apparently the SDFs (both the CCAPM and the corresponding admissible ones) appear to

be much better behaved from an economic viewpoint for the value of θ = 5 than for θ = 50.

In fact, Almeida and Garcia (2008) showed that while the CCAPM model is only accepted

in the admissible region of the HJ (1991) variance bounds for very high values of the risk

aversion coefficient (θ), when analyzing Minimum Discrepancy bounds with Cressie Read

estimators with high positive values of the Cressie Read parameter γ, the CCAPM becomes

admissible with much smaller values of the risk aversion coefficient (θ).

To further investigate this point we implemented an estimator with very high γ: The

Cressie Read with γ = 5. Figures 9 and 10 show respectively the implied SDFs and

corresponding implied probabilities for all values of the parameter θ. Note in figure 9

how in this case, even for θ = 5, the implied admissible SDF is already very close to the

corresponding CCAPM SDF. Now compare the implied probabilities of this estimator with

the implied probabilities of the previously analyzed estimators. We can safely conclude that

the implied probabilities here are very close to the empirical probabilities even for θ = 1.

In fact, by looking at Table 4 we observe that the CR discrepancy for γ = 5 is minimized

when θ = 20, confirming our intuition that estimators with high values of CR γ will pick

up smaller values of the parameter θ. However, a question remains to be answered: How

come the estimator is able to pick up admissible SDFs so close to the CCAPM SDF when

the parameter θ is small, like 1 or 5?

4.3 Pricing Errors

To try to answer this question we calculate the pricing errors obtained with each implied

SDF and also with the CCAPM SDF. These errors are presented in Table 5. First note
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that for the Cressie Read estimators EL, Hellinger, ET, and CUE the pricing errors are not

presented since they are practically zero (all smaller than 10−7). Also note that we should

expect that the CCAPM SDF will present in general the highest pricing errors since all the

other (implied) SDFs are trying to correct the CCAPM SDF to become an admissible one.

For all the CR estimators shown we can easily conclude that the moment condition of the

S&P returns becomes binding exactly when the γ parameter in absolute value is high. For

Pearson’s (γ = −2) the pricing errors are still acceptable (between 1
10

and 1
6

of the CCAPM

errors). For CR (γ = 2) they are already high (around 25% of the original CCAPM errors)

but it is precisely for the CR estimator with highest γ that the errors appear to be very

high around 60% of the original CCAPM errors). This happens because to keep the HARA

function (1 + γλ′x)
γ+1
γ concave for high values of γ imposes a very tight restriction since

(1 + γλ′x) must be positive. This constraint forces the optimization problem to choose a

truncated version of an admissible SDF as solution.

A way to avoid high pricing errors for high values of the Cressie Read parameter γ is

to redefine the original minimum discrepancy function with a composition of the convex

function φ with the absolute value function φ(|1 + m − y|). This function is still convex

(just check by calculating the second derivative) and its solution will admit negative values

of (1 + γλ′x) while still keeping concave the HARA function from the dual optimization

problem. Of course there is a cost to all that: For the region where (1+γλ′x) is negative both

the admissible SDF as well as the corresponding implied probabilities will achieve negative

values. In order to illustrate this point we present the solution of the Cressie Read (γ = 5)

estimator allowing the SDF (and the implied probabilities) to become negative. Figures

11 and 12 show respectively the implied SDFs and corresponding implied probabilities for

all values of the parameter θ. In this case, we produce zero pricing errors exactly as the

estimators with low values of gamma, but we see that a few points (5 in a total of 115

observations) become negative. Interestingly the solution to this MD problem also chooses

θ = 20, exactly as the restricted CR (γ = 5) problem described above. In fact, by looking

at the implied admissible SDFs we observe that apart from these 5 negative values the

CCAPM and the admissible SDF are practically the same for θ = 20.

4.4 Comparison between the Additive and the Multiplicative CR Cases

4.4.1 Implied Admissible SDFs

Using the same grid for the CCAPM parameter theta, we obtain admissible SDFs and

corresponding implied probabilities under the multiplicative case and compare to results

shown in the additive case. Figures 13-16 present additive (dotted line) and multiplicative

(solid line) admissible SDFs for all analyzed Cressie Read discrepancies and for the four
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values of the risk aversion coefficient theta (1, 5, 20, and 50). By observing the pictures

we note that the two types of admissible SDFs (additive and multiplicative) have similar

shapes, specially for small values of the parameter theta like 1 or 5 (see Figures 13 and

14). However, a clear difference appears in extreme values of the SDFs: in general, the

multiplicative SDFs are more positively skewed than the additive SDFs. The differences

in extremes are more exacerbated for high values of theta like 20 or 50 (see Figures 15

and 16). A heuristic explanation for these differences can be constructed by looking at the

analytical SDF formulas in Equations (20, additive) and (32, multiplicative). First, note

that the asset pricing model proxy y (the CCAPM) only enters as an additive term on the

additive SDF and it enters in two ways on the multiplicative SDF, as a term multiplying the

primitive securities within a hyperbolic function, and as an extra linear factor multiplying

this hyperbolic function. Intuitevely we could expect that whenever the proxy y is above

one, the extra linear factor will make the multiplicative SDF to achieve higher values than

the additive one, exactly as observed in the figures. On the other hand, when the proxy y

is below one, apparently the hyperbolic term becomes dominant in the multiplicative SDF.

To better analyze the differences in goodness of fit of the two types of estimators, we

present additional graphs in Figure 17 for a fixed risk aversion coefficient of 20, including the

additive, the multiplicative and the CCAPM SDFs16. The graphs indicate that the positive

skewness of the multiplicative SDF, which is specially pronounced on extreme values (higher

than 2), makes the multiplicative estimator worse than the additive in capturing peaks of

the proxy model (see the left half of the SDF graphs including observations 1 to 60). On

the other hand, the multiplicative estimator appears to be better in capturing the values of

CCAPM that are not too far from the mean of 0.98 (see the right half of the SDF graphs

including observations 60 to 115).

4.4.2 Implied Probabilitities

From section 3.3 we see that the implied probabilities under the additive estimator are

obtained by a hyperbolic function of the underlying assets returns, while under the multi-

plicative estimator they are hyperbolic functions of returns weighted by the proxy model.

For small values of the risk aversion parameter (theta equal to 1, or 5) the implied probabil-

ities under these two types of estimators are very similar. Therefore we do not report them

here. These probabilities begin to achieve different shapes across estimators (add and mul)

only in the region of the parametric space that is closer to the optimal parameter values,

16We only present pictures for a high value of theta because in this region of the parametric space, the
admissible SDFs begin to approximate the corresponding CCAPM proxy providing a clearer perspective
of the differences in goodness of fit between the two types of estimators. Note also that we only include
the Pearson, CUE and CR (g=2) cases because the three other provide very similar pictures.
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meaning the region for high values of theta (see section 3.6 for details on the estimation).

Figure 18 shows, for a fixed risk aversion coefficient of 20, the implied probabilities for

the additive and the multiplicative estimators, for some representative CR discrepancies

(Pearson, CUE, and CR (g=2)). Note that the multiplicative implied probabilities are

clearly less volatile than the additive ones. However, the multiplicative still have some

extreme values that are higher than the additive ones (see especially observations 7 and

56 under CUE, 7 under Pearson, and 57 under CR (g=2)). Recall that the objective of

implied probabilities is to satisfy the moment conditions and simultaneously be as close as

possible to the homogeneous empirical probabilities. In this sense, the results presented

in Figure 18 confirm the higher stability of the multiplicative estimator when compared to

the additive one.

4.4.3 Pricing Errors

As we have shown before another important aspect to be analyzed is the existence or not

of pricing errors for certain elements of the Cressie Read family. We observed that for

a fixed value of the parameter theta, high values of gamma restrict the dual estimator

to search for optimal weights in smaller regions of the portfolio space since the HARA

function (1+γλ′x)
γ+1
γ should continue to be concave. It is interesting to note that under the

multiplicative estimator however there is a change in the HARA function to (1+γyλ′x)
γ+1
γ ,

including an extra term on the proxy model y that may change the way gamma imposes

a restriction. In fact, Table 6 presents pricing errors under the multiplicative estimator

for respectively the Pearson, the CR (g=2), and the CR (g=5) estimators (for all other

CR estimators the pricing errors are, similarly to the additive case, practically zero). Note

that in general, pricing errors are smaller than in the additive case. For instance, for

the Pearson estimator they are zero in the whole grid of the parameter theta (except for

theta=5, but the errors are small there). For the other two CR estimators, we observe

that the pricing errors of the short-term bond increase under the multiplicative estimator

but are still small in absolute values, achieving at most 46 basis points except for one

observation under CR (g=5, theta=50) where the error is high (128 basis points). On the

other hand the pricing errors of the equity returns that are the highest in absolute value

under both additive and multiplicative estimators, decrease significantly by more than 20

percent, with a few exceptions. Results here indicate that under the CCAPM model the

existence of an extra proxy term within the HARA function improves the estimator ability

to price the underlying primitive assets.
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4.5 Model Estimation

We follow the estimation proposal from Section 3.6, and solve the optimization problems

under the additive and multiplicative problems for all the CR discrepancies previously

analyzed. Figures 19 and 20 present the results of the estimation process, that is, the

estimated risk aversion coefficient theta and the corresponding admissible SDF that is

closest to the estimated parametric model (the CCAPM). Observing the pictures we see

that all the CR discrepancies under both additive and multiplicative estimators, obtain

very high values for the risk aversion coefficient confirming the failure of the CCAPM

model to explain the equity premium with an acceptable risk aversion coefficient. The

additive estimators achieve parameters of the order of 37, ranging from a minimum of 37.2

(under the CR (g=2) estimator) to a maximum of 43.0 (under the Pearson estimator).

The Pearson estimator produces too high a value when compared to the other CR additive

estimators (all were between 37.2 and 37.8). The reason for such difference in values

might rely on the fact that only for the additive Pearson estimator we had to make use

of the composed absolute function on the optimization problem since under the original

problem the HARA function was not well defined under certain portfolio weights and

certain returns of primitive assets. The multiplicative estimators produce parameter values

around 64, ranging from a minimum of 62.9 (under the CR (g=2)) to a maximum of 65.9

under the Pearson estimator. The multiplicative estimators produce more homogeneous

values in accordance to the stability analysis performed before under the fixed grid of theta

parameters. Note that the multiplicative estimators also are more emphatic in rejecting the

CCAPM model producing risk aversion coefficients that are more than fifty percent higher

than the ones produced under the additive estimators. Another interesting aspect of the

estimation process is that, in accordance to results obtained by Almeida and Garcia (2008)

when analyzing the CCAPM model based on nonparametric MD bounds, the authors found

that high values of gamma tend to attenuate the rejection of the CCAPM model. Similarly

here under a more formal estimation procedure we observe that higher values of gamma

like 2 produce smaller values for the estimated risk aversion parameter theta, under both

additive and multiplicative estimators.

Also in the pictures we can confirm that the multiplicative admissible SDFs have a

better fit to the corresponding estimated CCAPM SDF than the additive SDFs, except that

they miss some extreme points, exactly as analyzed when we calibrated the risk aversion

parameter theta before. In addition, the additive admissible SDFs clearly achieve some

negative values while the multiplicative ones do not. Additional controls to guarantee that

the additive SDFs become always positive might be implemented but with the cost of

possibly introducing/increasing pricing errors on the primitive securities returns.
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5 Discussion

A few lessons can be learned from the empirical application we just described. While ap-

plying our new discrepancy measures may appear like beating a dead horse, the exercise is

in fact very instructive in terms of misspecification. Indeed, the Cressie-Read discrepancy

measures all concur in showing that the CCAPM model becomes compatible with return

data only for high values of the risk-aversion. However, our approach allows us to recover

the implied nonparametric SDF or equivalently the pricing errors and this has informa-

tion about the potential source of misspecification. Indeed, as usual in econometrics, a

good misspecification test should provide some insight about the source of the specification

problem and suggest some direction for improving the model. For a regression model, an-

alyzing and testing some characteristics of the residuals will reveal some missing variables.

Similarly, pricing errors can be suggestive of directions to improve the asset pricing model.

We discussed in section 4.3 that forcing the model to achieve zero pricing errors may

not be the best way to obtain economically meaningful results. For EL, Hellinger, ET, and

CUE criteria, pricing errors are zero but implied SDFs are not satisfying from en economic

point of view with huge discounting factors as we increase θ. For a high γ, reducing pricing

errors to zero means obtaining a number of negative values for the implied probabilities.

However, we have seen that allowing a higher gamma will produce pricing errors but will

choose a lower value of theta and generate more reasonable implied SDFs for values of θ

such as 5 (see Figure 9). One can extract the pricing errors and relate them to variables

entering in more elaborate asset pricing models such as recursive utility or habit formation

models for consumption-based asset pricing models or in factor models when extending a

CAPM model. One can also analyze the distribution of the pricing errors to determine the

potential presence of skewness and kurtosis and identify the periods where mispricing is

more prevalent.

The richness of our framework in terms of discrepancy measures may be construed as

a hurdle since a criterion has to be chosen to pick a gamma among possible values or

even to choose between many families of discrepancies. In Almeida and Garcia (2008),

we discuss robustness issues related to diagnosing asset pricing models and performance

evaluation. For diagnosing models, we showed that increasing γ allows to lower the risk

aversion parameter that will make the CCAPM model admissible. Intuitively, the increased

admissibility of the CCAPM with higher values of γ comes from the fact that a lower risk

aversion parameter θ in the CCAPM model will be needed to accommodate the weighted

returns, since relatively lower probabilities will be assigned to extreme states, especially

to good states, exactly as the theory of marginal utility suggests. In the case of our

30



misspecification measure and the corresponding statistics that come with it, varying the γ

will tell us to what extent the model assessment is dependent upon the discrepancy measure

chosen. Allowing for this robustness analysis is in our view a good feature of our approach

since it can tell us in which direction to improve the asset pricing models at hand.

6 Conclusion

We extend the least-square projection proposed by Hansen and Jagannathan (1997) to

measured the degree of misspecification of asset pricing models by suggesting more general

projections based on the minimization of discrepancy convex functions. Solutions to these

Minimum Discrepancy (MD) problems naturally imply semiparametric and nonlinear SDFs

that take into account higher moments of the distributions of assets returns. We relate

the problem of finding general MD projections of asset pricing models onto the family of

admissible SDFs to that of solving an optimal portfolio problem. When specializing to the

Cressie Read family of discrepancies, our projections are obtained as solutions to optimal

portfolio problems based on HARA utility functions added to a linear term on the asset

pricing proxy that imposes the proxy as an imperfect SDF benchmark. We also relate

the MD admissible SDFs to the implied probabilities from the econometric literature (see

Newey and Smith (2004)), showing that in our context those probabilities are a normalized

version of the admissible SDFs translated by an affine function of the asset pricing proxy

model.

We apply our methodology to empirically analyze the CCAPM model, making use of a

number of well-known Cressie Read discrepancies, namely Pearson’s, EL, Hellinger’s, ET,

CUE, and two other discrepancies with high positive values of the Cressie Read parameter

γ (CR(γ = 2), and CR(γ = 5)). Based on a grid for the risk aversion parameter of the

CCAPM model, we show that most of the discrepancies agree on the choice of θ but once

we increase too much the Cressie Read parameter γ, the MD problems stop satisfying the

moment conditions (introducing pricing errors), and end up choosing θ’s in regions of the

parametric space other than the one chosen by the previous estimators. We also perform

estimation of the CCAPM model based on all the mentioned discrepancies and also in two

different formulations of the MD problems (additive and multiplicative). We discuss the

empirical findings across Cressie Read discrepancies relating them to the size of the pricing

errors, and to the magnitude of the admissible SDFs. Our results indicate that this new

class of higher-order SDF projections has a strong potential to be used as a tool to estimate

and rank asset pricing models, specially when estimation is based on assets with nonlinear

payoffs.

31



References

[1] Antoine B., H. Bonnal, and E. Renault (2007). On the Efficient Use of the Informational
Content of Estimating Equations: Implied Probabilities and Euclidean Empirical Likelihood.
Journal of Econometrics, 138, 461-487.

[2] Almeida C. and R. Garcia (2008). Empirical Likelihood Estimators for Stochastic Discount
Factors. Working Paper, Getulio Vargas Foundation and EDHEC Business School.

[3] Araujo A. and P.K. Monteiro (1989). Equilibrium without Uniform Conditions. Journal of
Economic Theory, 48, 2, 416-427.

[4] Back K., and D.P. Brown (1993). Implied Probabilities in GMM Estimators. Econometrica,
61, 971-975.

[5] Baroni-Adesi G. (1985). Arbitrage Equilibrium with Skewed Asset Returns. Journal of Fi-
nancial and Quatitative Analysis, 20, 3, 299-313.

[6] Beaulieu M.-C. and J.-M. Dufour (2005). Exact Multivariate Tests of Asset Pricing Models
with Stable Asymmetric Distributions. Working Paper at CIRANO.

[7] Borwein J.M. and A.S. Lewis (1991). Duality Relationships for Entropy-Like Minimization
Problems. SIAM Journal of Control and Optimization, 29, 2, 325-338.

[8] Breeden D. (1979). An Intertemporal Asset Pricing Model with Stochastic Consumption and
Investment Opportunities. Journal of Financial Economics, 7, 3, 265-296.

[9] Brown B.W., and W.K. Newey (1998). Efficient Semiparametric Estimation of Expectations.
Econometrica, 66, 453-464.

[10] Brown B.W., and W.K. Newey (2002). Generalized Method of Moments, Efficient Bootstrap-
ping, and Improved Inference. Journal of Business and Economic Statistics, 20, 507-517.

[11] Campbell J. and R. Shiller (1989). The Dividend-Price Ratio and Expectations of Future
Dividends and Discount factors. Review of Financial Studies, 1, 3, 195-228.

[12] Carr P. and L. Wu (2003). The Finite Moment Log Stable Process and Option Pricing.
Journal of Finance, 58, 12, 753-778.

[13] Chamberlein G. and M. Rothschild (1983). Arbitrage, Factor Structure, and Mean-Variance
Analysis on Large Asset Markets. Econometrica, 51, 5, 1281-1304.

[14] Chen X., J. Favilukis, and S. Ludvigson (2008). An Estimation of Economic Models with
Recursive Preferences. Working Paper, at Yale, LSE, and NYU.

[15] Chen X., H. Hong, and M. Shum (2007). Nonparametric Likelihood Ratio Model Selection
Tests Between Parametric Likelihood and Moment Condition Models. Journal of Economet-
rics, 141, 109-140.

[16] Chen X., and S. Ludvigson (2008). Land of Addicts? An Empirical Investigation of Habit-
Based Asset Pricing Models. forthcoming at Journal of Applied Econometrics.

32



[17] Cochrane J.H. (2000). Asset Pricing, Princeton University Press.

[18] Corcoran S.A. (1998). Bartlett Adjustment of Empirical Discrepancy Statistics. Biometrika,
85, 967-972.

[19] Cressie N., and T.R.C. Read (1984). Multinomial Goodness-of-fit Tests. Journal of the Royal
Statistics Society Series B, 46, 440-464.
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Table 1: Lagrange Multipliers for the CCAPM Under Different CR Discrepancies.
Risk factors are composed by annual returns over the period 1891 to 2004. The Bond and Stock risk factors
are represented respectively by a short-term bond and S&P 500 returns as in Campbell and Shiller (1989).
Cressie Read estimators solve HARA utility maximization problems whose portfolios are linear combinations
of the listed risk factors with an extra linear term including the asset pricing proxy model y (the CCAPM),
and where the Lagrange Multipliers are the portfolio weights. A fixed SDF mean equal to 0.98 is adopted.

CCAPM Parameter (θ) CR Discrepancies

Pearson’s EL Hellinger’s ET CUE/HJ CR (γ = 2)

θ = 1

Bond 0.5050 1.0665 1.1658 1.1968 1.0917 0.7201
S&P -1.1105 -1.4252 -1.4991 -1.477 -1.3828 -0.8419

θ = 5

Bond 0.8363 1.2279 1.3527 1.4005 1.3070 0.8625
S&P -1.0330 -1.4109 -1.4846 -1.468 -1.3703 -0.8419

θ = 20

Bond 0.8363 1.4414 1.5735 1.6290 1.5544 0.8625
S&P -1.0330 -1.3165 -1.3741 -1.365 -1.2690 -0.8419

θ = 50

Bond 0.8027 0.1691 0.1105 0.0373 -0.1245 0.5986
S&P -1.0295 -1.2847 -1.3274 -1.3312 -1.2265 -0.8482
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Table 2: Correlation Between Implied SDFs and the S&P 500 Returns Under Different CR
Discrepancies.
Risk factors are composed by annual returns over the period 1891 to 2004. The Bond and Stock risk factors are
represented respectively by a short-term bond and S&P 500 returns as in Campbell and Shiller (1989). Cressie
Read SDFs are obtained from the first-order condition of HARA utility maximization problems whose portfolios are
linear combinations of the listed risk factors with an extra linear term including the asset pricing proxy model y
(the CCAPM). A fixed SDF mean is set equal to 0.98.

CCAPM Parameter (θ) CR Discrepancies

Pearson’s EL Hellinger’s ET CUE/HJ CR (γ = 2) CCAPM

1 -0.8045 -0.8804 -0.9197 -0.9443 -0.9656 -0.9413 -0.0318
5 -0.6617 -0.7593 -0.7858 -0.8013 -0.8133 -0.7065 -0.0385
20 -0.3104 -0.3335 -0.3312 -0.3280 -0.3213 -0.2597 -0.0413
50 -0.0978 -0.1111 -0.1095 -0.1079 -0.1050 -0.0793 -0.0071

Table 3: Measuring Misspecification of the CCAPM via Different CR Discrepancies.
Risk factors are composed by annual returns over the period 1891 to 2004. The Bond and Stock risk
factors are represented respectively by a short-term bond and S&P 500 returns as in Campbell and
Shiller (1989). Cressie Read estimators solve HARA utility maximization problems whose portfolios are
linear combinations of the listed risk factors with an extra linear term including the asset pricing proxy
model y (the CCAPM). A fixed SDF mean is set equal to 0.98.

CCAPM Parameter (θ) CR Discrepancies

Pearson’s EL Hellinger’s ET CUE/HJ CR (γ = 2)

1 0.0343 0.0377 0.0382 0.0380 0.0356 0.0291
5 0.0333 0.0371 0.0376 0.0374 0.0351 0.0288
20 0.0295 0.0323 0.0327 0.0325 0.0306 0.0259
50 0.0277 0.0313 0.0316 0.0315 0.0299 0.0244
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Table 4: Specification Errors and Lagrange Multipliers (Weights) for the
CCAPM Under a CR Discrepancy with High γ.
Risk factors are composed by annual returns over the period 1891 to 2004. The Bond and Stock
risk factors are represented respectively by a short-term bond and S&P 500 returns as in
Campbell and Shiller (1989). The Cressie Read estimator solves a HARA utility maximization
problems whose portfolios are linear combinations of the listed risk factors with an extra linear
term including the asset pricing proxy model y (the CCAPM). A fixed SDF mean is set equal to
0.98.

CCAPM Parameter (θ) Discrepancy —– Lagrange Multipliers (weights)

CR (γ = 5) LM Bond LM S&P

1 0.0343 0.2765 -0.3207
5 0.0350 0.3515 -0.3409
20 0.0335 0.6471 -0.3207
50 0.0341 -0.4647 -0.3207
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Table 5: Pricing Errors for Different CR Discrepancies under the Additive Esti-
mator.
The pricing error for the implied SDFs is defined by Eµ((1 +R)mCR − 1), where R represents a
gross return (either short-term bond or S&P 500) and mCR represents the admissible SDF
implied by a certain Cressie Read discrepancy. The pricing error for the CCAPM is defined by
Eµ((1 +R)(Ct+1

Ct
)−θ − 1), where Ct represents aggregate consumption at time t. Risk factors are

composed by annual returns over the period 1891 to 2004. The Bond and Stock risk factors are
represented respectively by a short-term bond and S&P 500 returns as in Campbell and Shiller
(1989). Cressie Read estimators solve HARA utility maximization problems whose portfolios are
linear combinations of the listed risk factors with an extra linear term including the asset pricing
proxy model y (the CCAPM), and where the Lagrange Multipliers are the portfolio weights. A
fixed SDF mean is set equal to 0.98.

CCAPM Parameter

CCAPM Pearson’s CR (γ = 2) CR (γ = 5)

θ = 1

Bond -0.0001 -0.0013 0.0002 -0.0001
S&P 0.0514 0.0036 0.0167 0.0376

θ = 5

Bond -0.0009 0.0002 -0.0001 -0.0008
S&P 0.0503 0.0087 0.0159 0.0366

θ = 20

Bond -0.0020 -0.0009 -0.0012 -0.0004
S&P 0.0457 0.0042 0.0110 0.0325

θ = 50

Bond 0.0035 0.0043 0.0037 0.0005
S&P 0.0483 0.0071 0.0128 0.0314
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Table 6: Pricing Errors for Different CR Discrepancies under the Multiplicative
Estimator.
The pricing error for the implied SDFs is defined by Eµ((1 +R)mCR − 1), where R represents a
gross return (either short-term bond or S&P 500) and mCR represents the admissible SDF
implied by a certain Cressie Read discrepancy. Risk factors are composed by annual returns over
the period 1891 to 2004. The Bond and Stock risk factors are represented respectively by a
short-term bond and S&P 500 returns as in Campbell and Shiller (1989). Cressie Read estimators
solve HARA utility maximization problems whose portfolios are linear combinations of the listed
risk factors returns weighted by the asset pricing proxy model y (the CCAPM), and where the
Lagrange Multipliers are the portfolio weights. A fixed SDF mean is set equal to 0.98.

CCAPM Parameter

Pearson’s CR (γ = 2) CR (γ = 5)

θ = 1

Bond 0.0000 -0.0005 0.0010
S&P 0.0000 0.0091 0.0305

θ = 5

Bond 0.0015 -0.0019 0.0009
S&P 0.0045 0.0017 0.0278

θ = 20

Bond 0.0000 -0.0046 0.0030
S&P 0.0000 0.0157 0.0340

θ = 50

Bond 0.0000 -0.0037 0.0128
S&P 0.0000 -0.0025 0.0262
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Figure 1: Admissible SDFs and the CCAPM with θ = 1
This picture presents Admissible SDFs under different CR discrepancies and the CCAPM
SDF with a risk aversion coefficient (θ) of equal to 1. The MD problems are solved based
on annual returns on S&P 500 and a short-term bond over the period 1890 to 2004. The
CCAPM SDF is based on consumption groth data over the period 1890 to 2004. All SDF
means are fixed at 0.98.
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Figure 2: Admissible SDFs and the CCAPM with θ = 5
This picture presents Admissible SDFs under different CR discrepancies and the CCAPM
SDF with a risk aversion coefficient (θ) of equal to 5. The MD problems are solved based
on annual returns on S&P 500 and a short-term bond over the period 1890 to 2004. The
CCAPM SDF is based on consumption groth data over the period 1890 to 2004. All SDF
means are fixed at 0.98.
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Figure 3: Admissible SDFs and the CCAPM with θ = 20
This picture presents Admissible SDFs under different CR discrepancies and the CCAPM
SDF with a risk aversion coefficient (θ) of equal to 20. The MD problems are solved based
on annual returns on S&P 500 and a short-term bond over the period 1890 to 2004. The
CCAPM SDF is based on consumption groth data over the period 1890 to 2004. All SDF
means are fixed at 0.98.
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Figure 4: Admissible SDFs and the CCAPM with θ = 50
This picture presents Admissible SDFs under different CR discrepancies and the CCAPM
SDF with a risk aversion coefficient (θ) of equal to 50. The MD problems are solved based
on annual returns on S&P 500 and a short-term bond over the period 1890 to 2004. The
CCAPM SDF is based on consumption groth data over the period 1890 to 2004. All SDF
means are fixed at 0.98.
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Figure 5: Implied Probabilities under the CCAPM with θ = 1
This picture presents implied probabilities for different discrepancy measures from the
Cressie Read family, when measuring the degree of misspecification of the CCAPM asset
pricing model for a fixed riskl aversion coefficient θ = 1. Results are based on annual
returns from S&P 500 and a short-term bond over the period 1890 to 2004. The implied
probabilities are obtained by solving the dual optimization problems that have a portfolio
interpretation in terms of maximization of a HARA utility function. Implied probabilities
are hyperbolic functions of the returns.
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Figure 6: Implied Probabilities under the CCAPM with θ = 5
This picture presents implied probabilities for different discrepancy measures from the
Cressie Read family, when measuring the degree of misspecification of the CCAPM asset
pricing model for a fixed riskl aversion coefficient θ = 5. Results are based on annual
returns from S&P 500 and a short-term bond over the period 1890 to 2004. The implied
probabilities are obtained by solving the dual optimization problems that have a portfolio
interpretation in terms of maximization of a HARA utility function. Implied probabilities
are hyperbolic functions of the returns.
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Figure 7: Implied Probabilities under the CCAPM with θ = 20
This picture presents implied probabilities for different discrepancy measures from the
Cressie Read family, when measuring the degree of misspecification of the CCAPM asset
pricing model for a fixed riskl aversion coefficient θ = 20. Results are based on annual
returns from S&P 500 and a short-term bond over the period 1890 to 2004. The implied
probabilities are obtained by solving the dual optimization problems that have a portfolio
interpretation in terms of maximization of a HARA utility function. Implied probabilities
are hyperbolic functions of the returns.
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Figure 8: Implied Probabilities under the CCAPM with θ = 50
This picture presents implied probabilities for different discrepancy measures from the
Cressie Read family, when measuring the degree of misspecification of the CCAPM asset
pricing model for a fixed riskl aversion coefficient θ = 50. Results are based on annual
returns from S&P 500 and a short-term bond over the period 1890 to 2004. The implied
probabilities are obtained by solving the dual optimization problems that have a portfolio
interpretation in terms of maximization of a HARA utility function. Implied probabilities
are hyperbolic functions of the returns.
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Figure 9: CR (γ = 5) SDFs and the CCAPM
This picture presents, for different regions of the parametric space of the CCAPM model,
SDFs that are as close as possible to admissible ones under the CR (γ = 5) discrepancy
criterion. The CR problem is solved based on annual returns on S&P 500 and a
short-term bond over the period 1890 to 2004. The CCAPM SDF is based on
consumption groth data over the period 1890 to 2004. All SDF means are equal to 0.98.
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Figure 10: CR (γ = 5) Implied Probabilities under the CCAPM
This picture presents, for different regions of the parametric space of the CCAPM model,
implied probabilities for the Cressie Read discrepancy measure with a coefficient γ = 5.
Results are based on annual returns from S&P 500 and a short-term bond over the period
1890 to 2004. The implied probabilities are obtained by solving the dual optimization
problems that have a portfolio interpretation in terms of maximization of a HARA utility
function. Implied probabilities are a hyperbolic function of the returns.
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Figure 11: CR (γ = 5) SDFs with Zero Pricing Errors and the CCAPM
This picture presents, for different regions of the parametric space of the CCAPM model,
admissible SDFs under the CR (γ = 5) discrepancy criterion composed with the absolute
value fuction that achieve negative values in some states. The CR problem is solved based
on annual returns on S&P and a short-term bond over the period 1890 to 2004. The
CCAPM SDF is based on consumption groth data over the period 1890 to 2004. All SDF
means are equal to 0.98.
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Figure 12: CR (γ = 5) Implied Probabilities with Zero Pricing Errors
under the CCAPM
This picture presents, for different regions of the parametric space of the CCAPM model,
implied probabilities for the Cressie Read discrepancy measure with a coefficient γ = 5
composed with the absolute value fuction. Results are based on annual returns from S&P
500 and a short-term bond over the period 1890 to 2004. The implied probabilities are
obtained by solving the dual optimization problems that have a portfolio interpretation in
terms of maximization of a HARA utility function composed with the absolute value
fuction. Implied probabilities are a hyperbolic function of the returns.
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Figure 13: Comparison of Admissible SDFs under the Additive and Mul-
tiplicative Cases with θ = 1
This picture presents admissible SDFs for different discrepancy measures from the Cressie
Read family, under two formulations (additive and multiplicative) of the misspecification
problem of the CCAPM model with a fixed risk aversion coefficient θ = 1. Results are
based on annual returns from S&P 500 and a short-term bond over the period 1890 to
2004. The SDFs are obtained by solving the dual optimization problems that have
portfolio interpretations in terms of maximization of HARA utility functions.
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Figure 14: Comparison of Admissible SDFs under the Additive and Mul-
tiplicative Cases with θ = 5
This picture presents admissible SDFs for different discrepancy measures from the Cressie
Read family, under two formulations (additive and multiplicative) of the misspecification
problem of the CCAPM model with a fixed risk aversion coefficient θ = 5. Results are
based on annual returns from S&P 500 and a short-term bond over the period 1890 to
2004. The SDFs are obtained by solving the dual optimization problems that have
portfolio interpretations in terms of maximization of HARA utility functions.
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Figure 15: Comparison of Admissible SDFs under the Additive and Mul-
tiplicative Cases with θ = 20
This picture presents admissible SDFs for different discrepancy measures from the Cressie
Read family, under two formulations (additive and multiplicative) of the misspecification
problem of the CCAPM model with a fixed risk aversion coefficient θ = 20. Results are
based on annual returns from S&P 500 and a short-term bond over the period 1890 to
2004. The SDFs are obtained by solving the dual optimization problems that have
portfolio interpretations in terms of maximization of HARA utility functions.
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Figure 16: Comparison of Admissible SDFs under the Additive and Mul-
tiplicative Cases with θ = 50
This picture presents admissible SDFs for different discrepancy measures from the Cressie
Read family, under two formulations (additive and multiplicative) of the misspecification
problem of the CCAPM model with a fixed risk aversion coefficient θ = 50. Results are
based on annual returns from S&P 500 and a short-term bond over the period 1890 to
2004. The SDFs are obtained by solving the dual optimization problems that have
portfolio interpretations in terms of maximization of HARA utility functions.
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Figure 17: Comparison of Admissible SDFs under the Additive and Mul-
tiplicative Cases, including the CCAPM Proxy
This picture presents the CCAPM with a fixed risk aversion coefficient θ = 20 and the
corresponding admissible SDFs for different discrepancy measures from the Cressie Read
family, under two formulations (additive and multiplicative). Results are based on annual
returns from S&P 500 and a short-term bond over the period 1890 to 2004. The CR SDFs
are obtained by solving the dual optimization problems that have portfolio interpretations
in terms of maximization of HARA utility functions.
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Figure 18: Comparison of Implied Probabilities under the Additive and
Multiplicative Cases, including the Empirical Probabilities
This picture presents the implied probabilities obtained when evaluating the CCAPM
with a fixed risk aversion coefficient θ = 20 with different discrepancy measures from the
Cressie Read family, under two formulations of the estimators (additive and
multiplicative). Results are based on annual returns from S&P 500 and a short-term bond
over the period 1890 to 2004. The CR implied probabilities are obtained by solving the
dual optimization problems that have portfolio interpretations in terms of maximization of
HARA utility functions.
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Figure 19: Estimating the CCAPM under Additive Minimum Discrepancy
Problems
This picture presents admissible SDFs and corresponding estimated CCAPM SDFs for
different discrepancy measures from the Cressie Read family, under additive discrepancy
problems. Results are based on annual returns from S&P 500 and a short-term bond over
the period 1890 to 2004. The SDFs are obtained by solving a double optimization problem
where we search for the parameter theta that minimizes the Cressie Read discrepancy
which contains a linear term in the CCAPM asset pricing proxy.
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Figure 20: Estimating the CCAPM under Multiplicative Minimum Dis-
crepancy Problems
This picture presents admissible SDFs and corresponding estimated CCAPM SDFs for
different discrepancy measures from the Cressie Read family, under multiplicative
discrepancy problems. Results are based on annual returns from S&P 500 and a
short-term bond over the period 1890 to 2004. The SDFs are obtained by solving a double
optimization problem where we search for the parameter theta that minimizes the Cressie
Read discrepancy which contains a non-linear term in the CCAPM asset pricing proxy.
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