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1 Introduction

In this paper we consider a discrete-time, game-theoretic model of a finan-
cial market with endogenous asset prices determined by short run equilibrium
of supply and demand, given agents’ monetary bids. Uncertainty on asset
payoffs at each period is modeled via a general, exogenous stochastic process
governing the evolution of the states of the world. The states of the world are
meant to capture various macroeconomic and business cycle variables that
may affect investors’ behavior. The traders use general, adaptive strategies
(portfolio rules), distributing their current wealth between assets at every
period, depending on the observed history of the game and the exogenous
random factors. The main goal of the study is to identify investment strate-
gies that guarantee the “long-run survival” of any investor using them, in
the sense of keeping a strictly positive, bounded away from zero, share of
market wealth over the infinite time horizon, irrespective of the investment
strategies employed by the other agents in the market. The main result es-
tablishes that Kelly’s (1956) famous portfolio rule of “betting your beliefs”
possesses this property of unconditional survival. Moreover, we show that the
strategy possessing this property is essentially unique: any other strategy of
this kind (belonging to a certain class) is asymptotically similar to the Kelly
rule. The result on asymptotic uniqueness we obtain may be regarded as
an analogue of turnpike theorems1, stating that all optimal or quasi-optimal
paths of economic dynamics converge to each other in the long run.

This work constitutes an attempt to bring together the recent line of
studies on evolutionary finance (see, e.g., a review by Blume and Easley
2008) with the older literature on stochastic dynamic games going back to
Shapley (1953). The dynamic framework at hand shares some conceptual
features with two existing specific classes of dynamic games. One is formed
by the classical games of survival pioneered by Milnor and Shapley (1957).2

In a game of survival, two players start with wealth levels (w1, w2) such
that w1 + w2 = C (a fixed constant). At each stage, they play a zero-sum
matrix game B = [bij] wherein the choice of actions i and j would lead
to player 2 paying player 1 the amount bij, causing the state to transit to
(w1 + bij, w2 − bij) while the actual stage reward is 0 for both players. The

1See, e.g., Nikaido (1968) and McKenzie (1986).
2For textbook treatments of this class of games, see Luce and Raiffa (1989, Section

A8.4) and Maitra and Sudderth (1996, Section 7.16). For more recent research on similar
classes of games see Secchi and Sudderth (2001) and references therein.
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game repeats from the new wealth levels ad infinitum, or until w1 ≤ 0 (player
1 is bankrupt) or w1 ≥ C (player 2 is bankrupt), with the corresponding
payoffs being (0, 1) and (1, 0). In case the game goes on indefinitely, the
payoff is defined as (q, 1 − q), with 0 < q < 1. A game of survival is
thus a constant-sum stochastic game that may be viewed as a natural game-
theoretic analog of the well-known gambler’s ruin decision problem (Dubins
and Savage, 1965).

In a similar vein, Shubik and Whitt (1973) consider a dynamic market
game with one unit of a durable good per period, N players and a fixed
total wealth distributed across the players in exogenous fixed shares. Each
player can bid part or all of his current wealth on the durable good, of
which he obtains an amount in proportion to his bid. The total bid is then
redistributed to the players according to their fixed shares, and play proceeds
to the next period. Each player’s objective is to maximize the discounted
sum of utilities of consumption, using Markov bidding strategies.

While these two classes of dynamic investment games are related to the
present model in their general focus, there are important differences. The
main difference is that the game solution concept we use here is based on the
notion of a survival strategy outlined above, rather than on a Nash equilib-
rium of any kind. The notion we deal with is defined in terms of a property
holding almost surely, rather than in terms of expectations. No utilities,
discounted or undiscounted, are involved in the model, which makes the
modeling approach closer to applications, where typically quantitative infor-
mation about investor’s preferences is lacking. No conclusions from the rich
literature on dynamic games can be directly invoked in the present analysis.

This paper is organized as follows. Section 2 lays out the model de-
scription. Section 3 contains the statements of the main results and their
discussion. Section 4 provides their proofs.

2 The Model

The model we deal with is a game-theoretic version of evolutionary models of
financial markets with one-period assets (Blume and Easley 1992, Evstigneev
et al. 2002, Amir et al. 2005, and others). There areN ≥ 2 investors (traders)
acting in a market where K ≥ 2 risky assets (securities) are traded. A
portfolio of investor i at date t = 0, 1, ... is characterized by a vector xi

t =
(xi

t,1, ..., x
i
t,K) ∈ RK

+ where xi
t,k indicates the amount (“physical units”) of
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asset k in the portfolio xi
t. The coordinates of xi

t are non-negative: short
sales are ruled out. We denote by pt ∈ RK

+ the vector of market prices of
the securities. For each k = 1, ..., K, the coordinate pt,k of pt = (pt,1, ..., pt,K)
stands for the price of one unit of asset k at date t. The scalar product
〈pt, x

i
t〉 =

∑K
k=1 pt,kx

i
t,k expresses the market value of investor i’s portfolio at

date t.
It is supposed that the total amount of each security k available in the

market at date 0 is V0,k and in each subsequent time period t = 1, 2, ... it is
Vt,k(st) > 0, where st is the state of the world at date t and st := (s1, ..., st)
is the history of the process (st) up to time t. The sequence of states of the
world s1, s2, ... is an exogenous stochastic process with values in a measurable
space S. Assets live for one period: they are traded at the beginning of the
period and yield payoffs at the end of it; then the cycle repeats. The payoff
At,k(st) ≥ 0 of asset k = 1, 2, ..., K at date t = 1, 2, ... depends, generally, on
t and st. The functions At,k(st) are measurable and satisfy

K∑
k=1

At,k(st) > 0 for all t, st. (1)

The last inequality means that in each random situation at least one asset
gives a strictly positive payoff.

At date t = 0 investors have initial endowments—amounts of money
wi

0 > 0 (i = 1, 2, ..., N). These initial endowments form the traders’ budgets
at date 0. Trader i’s budget at date t ≥ 1 is 〈At(s

t), xi
t−1〉, where At(s

t) :=
(At,1(s

t), ..., At,K(st)). It is formed by the payoffs of the assets contained
in yesterday’s portfolio xi

t−1 of investor i. This budget is re-invested in the
assets available at date t, which will yield payoffs At+1,k(st+1), k = 1, ..., K,
at date t+1. Dynamics of this kind reflects some features of markets for real
assets related, e.g., to energy, natural resources, etc.

For each t ≥ 0, each trader i = 1, 2, ..., N selects a vector of investment
proportions λi

t = (λi
t,1, ..., λ

i
t,K) according to which he/she plans to distribute

the available budget between assets. Vectors λi
t belong to the unit simplex

∆K := {(a1, ..., aK) ∈ RK
+ : a1 + ...+ aK = 1}.

The investment proportions at each date t ≥ 0 are selected by the N traders
simultaneously and independently (so that we deal here with a simultaneous-
move N -person dynamic game). For t ≥ 1, they might depend, generally, on
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the history st := (s1, ..., st) of the process of the states of the world and the
market history (pt−1, xt−1, λt−1), where pt−1 = (p0, ..., pt−1) is the sequence of
asset prices up to time t− 1,

xt−1 := (xi
l), λ

t−1 := (λi
l), i = 1, ..., N, l = 0, ..., t− 1,

are the sets of vectors describing the portfolios and the investment propor-
tions of all the traders at all the dates up to t − 1. A vector Λi

0 ∈ ∆K and
a sequence of measurable functions Λi

t(s
t, pt−1, xt−1, λt−1), t = 1, 2, ..., with

values in ∆K form an investment (trading) strategy Λi of trader i, specifying
a portfolio rule according to which trader i selects investment proportions at
each date t ≥ 0. This is a general game-theoretic definition of a pure strategy,
assuming full information about the market history, including the players’
previous actions and the knowledge of all the past and present states of the
world. In the class of such general portfolio rules, we will distinguish those for
which Λi

t depends only on st, and not on the market history (pt−1, xt−1, λt−1).
Such portfolio rules will be called basic. They play an important role in this
work: the survival strategy we construct is of this kind.

Suppose each investor i at date 0 has selected investment proportions
λi

0 = (λi
0,1, ..., λ

i
0,K) ∈ ∆K . Then the amount invested in asset k by trader

i will be λi
0,kw

i
0, and the total amount invested in asset k will be equal to∑N

i=1 λ
i
0,kw

i
0. The equilibrium price p0,k of each asset k can be determined

from the equations

p0,kV0,k =
N∑

i=1

λi
0,kw

i
0, k = 1, 2, ..., K. (2)

On the left-hand side of (2), we have the total value, expressed in terms of the
prevailing price p0,k, of the assets of the kth type purchased by the market
participants at date 0 (recall that the amount of each asset k at date 0 is
V0,k). On the right-hand side, we have the total sum of money invested in
asset k by all the investors.

The investors’ portfolios xi
0 = (xi

0,1, ..., x
i
0,K), i = 1, 2, ..., N , at date 0 can

be determined from the equations

xi
0,k =

λi
0,kw

i
0

p0,k

, k = 1, 2, ..., K, i = 1, ..., N, (3)

meaning that the current market value p0,kx
i
t,k of the kth position of the

portfolio xi
t is equal to the fraction λi

0,k of the trader i’s investment budget wi
0.
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The last equation makes sense only if p0,k > 0. This condition is guaranteed
by the assumption that one of the investors, say the first one, has strictly
positive investment proportions λ1

t,1, ..., λ
1
t,K at each moment of time t ≥

0. The strict positivity of the vector of investment proportions of the first
investor at all moments of time will be assumed throughout the paper. Clearly,
this assumption implies x1

0,k > 0 for all k.
Suppose now that all the investors have chosen their investment pro-

portion vectors λi
t = (λi

t,1, ..., λ
i
t,K) at date t ≥ 1. Then the balance between

aggregate asset supply and demand implies the formula determining the equi-
librium prices

pt,kVt,k =
N∑

i=1

λi
t,k〈At, x

i
t−1〉, k = 1, ..., K, (4)

which, in turn, yields the expression for the investors’ portfolios xi
t = (xi

t,1, ...,
xi

t,K):

xi
t,k =

λi
t,k〈At, x

i
t−1〉

pt,k

, k = 1, ..., K, i = 1, ..., N. (5)

Here, in contrast with the case t = 0, the traders’ budgets at date t ≥ 1 are
not given exogenously as initial endowments, rather they are formed by the
payoffs of the previous date’s portfolios xi

t−1.
When writing equations (5), we have to care about the strict positivity of

pt,k. To guarantee this, we use our standing hypothesis on the strict positivity
of the investment proportions λ1

t,k of the first trader. Arguing by induction,
we can assume that x1

t−1 > 0, which implies 〈At, x
1
t−1〉 > 0 by virtue of (1),

which in turn yields pt,k > 0 and x1
t > 0 (see (4) and (5)). By summing up

equations (5) over i = 1, ..., N , we obtain that

N∑
i=1

xi
t,k =

N∑
i=1

λi
t,k〈At, x

i
t−1〉Vt,k∑N

j=1 λ
j
t,k〈At, x

j
t−1〉

= Vt,k

for every asset k (the market clears).
Given a strategy profile Λ = (Λ1, ...,ΛN) of the investors, we can generate

a path of the market game by setting λi
0 = Λi

0, i = 1, ..., N ,

λi
t = Λi

t(s
t, pt−1, xt−1, λt−1), t = 1, 2, ..., i = 1, ..., N, (6)
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and by defining pt and xi
t recursively according to equations (2)–(5). The

random dynamical system described determines the state of the market at
each moment of time t ≥ 1 as a measurable vector function of st:

(pt(s
t);x1

t (st), ..., xN
t (st);λ1

t (st), ..., λN
t (st)), (7)

where pt(s
t), xi

t(s
t) and λi

t(s
t) are the vectors of equilibrium prices, investors’

portfolios and their investment proportions, respectively. For t = 0, these
vectors are constant. The standing hypothesis Λ1

t > 0 together with the
assumption that wi

0 > 0 implies by induction that pt(s
t) > 0 and x1

t (st) > 0,
and so the random dynamical system under consideration is well-defined.

3 The Main Results

Consider a strategy profile Λ = (Λ1, ...,ΛN) of the investors and the path (7)
of the random dynamical system generated by this strategy profile. Let

wi
t = wi

t(s
t) := 〈At(s

t), xi
t−1(s

t−1)〉 (8)

denote investor i’s wealth at date t ≥ 1. Note that at every date t investor 1’s
wealth is strictly positive because x1

t−1 > 0. The total market wealth is equal

to Wt =
∑N

i=1w
i
t (> 0). We are primarily interested in the long-run behavior

of the relative wealth, or the market shares, ri
t := wi

t/Wt of the traders, i.e.
in the asymptotic properties of the sequence of vectors rt = (r1

t , ..., r
N
t ) as

t→∞.
Given a strategy profile (Λ1, ...,ΛN), we say that the strategy Λi (or in-

vestor i using it) survives with probability one if inft≥0 r
i
t > 0 almost surely

(a.s.). This means that for almost all realizations of the process of states of
the world (st), the market share of investor i is bounded away from zero by
a strictly positive random constant. A portfolio rule Λ is called a survival
strategy if investor i using it survives with probability one regardless of what
portfolio rules Λj, j 6= i, are used by the other investors.

To formulate the main result on survival strategies, define the relative
payoffs by

Rt,k(st) :=
At,k(st)Vt−1,k(st−1)∑K

m=1At,m(st)Vt−1,m(st−1)
. (9)

and put Rt(s
t) = (Rt,1(s

t), ..., Rt,K(st)). Consider the investment strategy
Λ∗ = (λ∗t ) for which

λ∗t (st) := EtRt+1(s
t+1), (10)

7



where Et(·) = E(·|st) is the conditional expectation given st (if t = 0, then
E0(·) = E(·)). This strategy, depending only on the history st of the pro-
cess (st), prescribes to distribute wealth according to the proportions of the
conditional expectations of the relative asset payoffs. The portfolio rule (10)
is a generalization of the Kelly portfolio rule of “betting your beliefs” well-
known in capital growth theory—see Kelly (1956), Breiman (1961), Algoet
and Cover (1988), and Hakansson and Ziemba (1995).

Assume that for each k = 1, 2, ..., K,

E lnEtRt+1,k(st+1) > −∞. (11)

This assumption implies that the conditional expectation EtRt+1,k =
E(Rt+1,k|st) is strictly positive a.s., and so we can select a version of this
conditional expectation that is strictly positive for all st. This version, λ∗t (st),
will be used in the definition of the portfolio rule (10).

A central result is as follows.

Theorem 1. The portfolio rule Λ∗ is a survival strategy.

In this study we use the notion of a survival strategy as a solution con-
cept for the game under consideration. This notion does not involve explicitly
agents’ utility functions and Nash equilibrium conditions, as would be stan-
dard in game theory. This notion can therefore be applied in those cases
when no quantitative information about investors’ preferences is available, a
realistic feature of financial markets.

Note that the portfolio rule Λ∗ belongs to the class of basic portfolio
rules: the investment proportions λ∗t (st) depend only on the history st of the
process of states of the world, and do not depend on the market history. The
following theorem shows that in this class the survival strategy Λ∗ = (λ∗t ) is
essentially unique: any other basic survival strategy is asymptotically similar
to Λ∗.

Theorem 2. If Λ = (λt) is a basic survival strategy, then

∞∑
t=0

||λ∗t − λt||2 <∞ (a.s.). (12)

Here, we denote by || · || the Euclidean norm in a finite-dimensional space.
Theorem 2 is akin to various turnpike results in the theory of economic
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dynamics, expressing the idea that all optimal or asymptotically optimal
paths of an economic system follow in the long run essentially the same route:
the turnpike (Nikaido 1968, McKenzie 1986). Survival strategies Λ can be
characterized by the property that the wealth wj

t of any investor j cannot
grow infinitely faster (with strictly positive probability) than the wealth of
investor i using Λ. The class of such investment strategies is similar to the
class of “good” paths of economic dynamics, as introduced by Gale (1967)
— paths that cannot be “infinitely worse” than the turnpike. Theorem 2
is a direct analogue of Gale’s turnpike theorem for good paths (Gale, 1967,
Theorem 8); for a stochastic version of this result see Arkin and Evstigneev
(1987, Chapter 4, Theorem 6).

Note that the class of basic strategies is sufficient in the following sense.
Any sequence of vectors rt = (r1

t , ..., r
N
t ) (rt = rt(s

t)) of market shares gen-
erated by some strategy profile (Λ1, ...,ΛN) can be generated by a strategy
profile (λ1

t (st), ..., λN
t (st)) consisting of basic portfolio rules. The correspond-

ing vector functions λi
t(s

t) can be defined recursively by (6). Thus it is
sufficient to prove Theorem 1 only for basic portfolio rules; this will imply
that the portfolio rule (10) survives in competition with any, not necessar-
ily basic, strategies. Such considerations cannot be automatically applied
to the problem of asymptotic characterization of general survival strategies.
This problem remains open; it indicates an interesting direction for further
research.

4 Proofs

1st step. We begin with the derivation of a system of equations describing
the dynamics of the market shares ri

t. From (2)–(5) and (8), we get

pt,kVt,k = 〈λt,k, wt〉, xi
t,k =

λi
t,kw

i
tVt,k

〈λt,k, wt〉
, (13)

where λt,k := (λ1
t,k, ..., λ

N
t,k) and wt := (w1

t , ..., w
N
t ). Consequently,

wi
t+1 =

K∑
k=1

At+1,kx
i
t,k =

K∑
k=1

At+1,kVt,k

λi
t,kw

i
t

〈λt,k, wt〉
(14)
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By summing up these equations over i = 1, ..., N , we obtain

Wt+1 =
K∑

k=1

At+1,kVt,k

∑N
i=1 λ

i
t,kw

i
t

〈λt,k, wt〉
=

K∑
k=1

At+1,kVt,k. (15)

Dividing the left-hand side of (14) by Wt+1, the right-hand side of (14) by∑K
m=1At+1,mVt,k, and using (15) and (9), we arrive at the system of equations

ri
t+1 =

K∑
k=1

Rt+1,k

λi
t,kr

i
t

〈λt,k, rt〉
, i = 1, ..., N. (16)

2nd step. Observe that it is sufficient to prove Theorem 1 in the case of
N = 2 investors. Consider the random dynamical system (16) and define

λ̃2
t,k(st) =

{
(λ2

t,kr
2
t + ...+ λN

t,kr
N
t )/(1− r1

t ) if r1
t < 1,

1/K if r1
t = 1.

(17)

Then we have
λ2

t,kr
2
t + ...+ λN

t,kr
N
t = (1− r1

t )λ̃2
t,k,

〈λt,k, rt〉 = r1
tλ

1
t,k + (1− r1

t )λ̃2
t,k,

and so

r1
t+1 =

K∑
k=1

Rt+1,k

λ1
t,kr

1
t

r1
tλ

1
t,k + (1− r1

t )λ̃2
t,k

. (18)

By summing up equations (16) over i = 2, ..., N , we obtain

1− r1
t+1 =

K∑
k=1

Rt+1,k

λ̃2
t,k(1− r1

t )

r1
tλ

1
t,k + (1− r1

t )λ̃2
t,k

. (19)

Thus the sequence (r1
t (st)) generated by the original N -dimensional system

(16) is the same as the analogous sequence generated by the two-dimensional
system (18)–(19) corresponding to the game with two investors i = 1, 2 whose
investment proportions are λ1

t,k(st) and λ̃2
t,k(st), respectively.

3rd step. Assume that N = 2 and λ1
t,k = λ∗t,k. Since λ∗t,k > 0, our standing

hypothesis on the strict positivity of the investment proportions of the first
investor is valid. Putting κt = κt(s

t) := r1
t (st), we obtain from (16) with

N = 2:

κt+1 =
K∑

k=1

Rt+1,k

λ1
t,kκt

λ1
t,kκt + λ2

t,k(1− κt)
.
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Observe that the process lnκt is a submartingale. Indeed, we have

Et lnκt+1 − lnκt = Et ln
K∑

k=1

Rt+1,k

λ1
t,k

λ1
t,kκt + λ2

t,k(1− κt)
≥

Et

K∑
k=1

Rt+1,k ln
λ1

t,k

λ1
t,kκt + λ2

t,k(1− κt)
=

K∑
k=1

λ1
t,k ln

λ1
t,k

λ1
t,kκt + λ2

t,k(1− κt)
=

K∑
k=1

λ1
t,k lnλ1

t,k −
K∑

k=1

λ1
t,k ln[λ1

t,kκt + λ2
t,k(1− κt)] ≥ 0 (a.s.).

We used here Jensen’s inequality for the concave function lnx and the ele-
mentary inequality

K∑
k=1

ak ln ak ≥
K∑

k=1

ak ln bk [ln 0 := −∞]

holding for any vectors (a1, ..., aK) > 0 and (b1, ..., bK) ≥ 0 with
∑
ak =∑

bk = 1 (see Lemma 2 below).
Further,

κt+1 = κt

K∑
k=1

Rt+1,k

λ1
t,k

λ1
t,kκt + λ2

t,k(1− κt)
≥

κt

K∑
k=1

Rt+1,k(min
m

λ1
t,m) = κt(min

m
λ1

t,m).

Since Eminm lnλ1
t,m > −∞ by virtue of assumption (11) and κ0 is a strictly

positive non-random number, each of the random variables 0 < κt ≤ 1
satisfies E| lnκt| <∞.

The non-positive submartingale lnκt has a finite limit a.s., and so κt →
κ∞ (a.s.), where κ∞ is a strictly positive random variable. Consequently,
the sequence κt > 0 is bounded away from zero with probability one, which
means that investor 1 survives almost surely. �

The proof of Theorem 2 is based on two lemmas.
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Lemma 1. Let ξt be a submartingale such that suptEξt <∞. Then the
series of non-negative random variables

∑∞
t=0(Etξt+1 − ξt) converges a.s.

Proof. We have ζt := Etξt+1−ξt ≥ 0 by the definition of a submartingale.
Further, we have

T−1∑
t=0

Eζt =
T−1∑
t=0

(Eξt+1 − Eξt) = EξT − Eξ0,

and so the sequence
∑T−1

t=0 Eζt is bounded because supT EξT <∞. Therefore
the series of the expectations

∑∞
t=0Eζt of the non-negative random variables

ζt converges, which implies
∑∞

t=0 ζt <∞ a.s. because E
∑∞

t=0 ζt =
∑∞

t=0Eζt
(see, e.g., Theorem I.12.3 in Saks 1964). �

Lemma 2. For any vectors (a1, ..., aK) > 0 and (b1, ..., bK) ≥ 0 satisfying∑
ak =

∑
bk = 1, the following inequality holds

K∑
k=1

ak ln ak −
K∑

k=1

ak ln bk ≥
1

4

K∑
k=1

(ak − bk)2. (20)

Proof. We have ln x ≤ x − 1, which implies (lnx)/2 = ln
√
x ≤
√
x − 1,

and so − lnx ≥ 2− 2
√
x. By using this inequality, we get

K∑
k=1

ak(ln ak − ln bk) = −
K∑

k=1

ak ln
bk
ak

≥
K∑

k=1

ak(2− 2

√
bk√
ak

) =

2− 2
K∑

k=1

√
akbk =

K∑
k=1

(ak − 2
√
akbk + bk) =

K∑
k=1

(
√
ak −

√
bk)2.

This yields (20) because (
√
a−
√
b)2 ≥ (a− b)2/4 for 0 ≤ a, b ≤ 1. �

Remark. Lemma 2 can be deduced from an inequality between the
Kullback-Leibler divergence (generalizing the expression on the left-hand side
of (20)) and the Hellinger distance (which reduces in our context to
[
∑

(
√
ak −

√
bk)2]1/2) — see, e.g., Borovkov (1998, Section II.31). For the

reader’s convenience we give a direct and elementary proof of Lemma 2,
rather than referring to these general facts.
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Proof of Theorem 2. Let Λ = (λt) be a basic survival strategy. Suppose
that investors i = 1, 2, ..., N − 1 use the strategy Λ∗ = (λ∗t ) and investor N
uses Λ. By summing up equations (16) with λi

t = λ∗t over i = 1, ..., N − 1,
we obtain

r̂1
t+1 =

K∑
k=1

Rt+1,k

λ∗t,kr̂
1
t

λ∗t,kr̂
1
t + λt,k(1− r̂1

t )
,

where r̂1
t := r1

t + ... + rN−1
t is the market share of the group of investors

i = 1, 2, ..., N −1 and 1− r̂t = rN
t is the market share of investor N . Further,

we have

1− r̂1
t+1 =

K∑
k=1

Rt+1,k
λt,k(1− r̂1

t )

λ∗t,kr̂
1
t + λt,k(1− r̂1

t )
.

Thus the dynamics of the market shares r̂1
t = r1

t + ... + rN−1
t , 1− r̂1

t = rN
t is

exactly the same as the dynamics of the market shares r̂1
t , r̂

2
t = 1− r̂1

t of two
investors i = 1, 2 (N = 2) using the strategies (λ1

t ) = (λ∗t ) and (λ2
t ) = (λt),

respectively. Since (λt) is a survival strategy, the random sequence rN
t =

1− r̂1
t = r̂2

t is bounded away from zero almost surely.
In the course of the proof of Theorem 1 (step 3), we have shown that the

sequence lnκt := ln r̂1
t+1 is a non-positive submartingale satisfying

Et lnκt+1 − lnκt ≥

K∑
k=1

λ∗t,k lnλ∗t,k −
K∑

k=1

λ∗t,k ln[λ∗t,kκt + λt,k(1− κt)] (a.s.). (21)

By virtue of Lemma 1, the series
∑

(Et lnκt+1−lnκt) of non-negative random
variables converges a.s., which implies, in view of inequalities (20) and (21),
that the sum

∞∑
t=0

K∑
k=1

[λ∗t,k − λ∗t,kκt − λt,k(1− κt)]
2 =

∞∑
t=0

(1− κt)
2||λ∗t − λt||2 (22)

is finite with probability one. Since inf(1−κt) = inf r̂2
t > 0 a.s., the fact that

the series in (22) converges a.s. yields (12). �
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selection and survival of investment strategies, J. Math. Econ. 41, 105–
122 (2005)

[3] Arkin, V. I., Evstigneev I. V.: Stochastic Models of Control and Eco-
nomic Dynamics. Academic Press, London (1987)

[4] Blume, L., Easley, D.: Evolution and market behavior, J. Econ. Theory
58, 9–40 (1992)

[5] Blume, L., Easley, D.: Market competition and selection. In: Durlauf,
S. N., Blume, L. (eds.) The New Palgrave Dictionary of Economics,
Volume 5, pp. 296–300, Macmillan Publishers, New York (2008)

[6] Borovkov, A. A.: Mathematical Statistics. Gordon and Breach, Amster-
dam (1998)

[7] Breiman, L.: Optimal gambling systems for favorable games, Fourth
Berkeley Symposium on Math. Statist. and Probability, v. 1, pp. 65–78
(1961)

[8] Dubins, L., Savage, L. M.: How to Gamble if You Must. Mc-Graw-Hill,
New York (1965)

[9] Evstigneev, I. V., Hens, T., Schenk-Hoppé, K. R.: Market selection of
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