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Abstract

I study the effects of aversion to risk and ambiguity (uncertainty in the sense

of Knight (1921)) on the value of the market portfolio when investors receive

public information that they find difficult to link to fundamentals and hence

treat as ambiguous. I show that small changes in public information can pro-

duce large changes in the stock price and systemic negative news may lead to

higher valuations of the stock market than idiosyncratic negative events. Aver-

sion to risk and ambiguity can explain high expected stock market returns and

excess volatility and kurtosis of stock market returns. Moreover, the skewness

of stock returns is negative (positive) if risk aversion of the marginal investor

is high (low).
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Investors receive a lot of information every day. Sometimes they lack data or

experience to be able to assess to quality of this information or to determine to what

extent this information will affect the fundamentals of the economy. In these sit-

uations investors may be worried that they don’t have the right distribution when

evaluating an investment in an asset. In this paper I consider investors with prefer-

ences that exhibit an aversion to this uncertainty or ambiguity and study the effects

on asset prices.

Investors face risk and ambiguity when they evaluate an investment in an asset

because they neither know the future realization of the asset’s payoff—risk, nor the

probability of it occurring—ambiguity. This distinction between risk and ambiguity is

often attributed to Knight (1921). In this paper, investor’s preferences are represented

by “max-min” expected utility. In other words, investors evaluate the outcome of an

investment with respect to a set of beliefs and then choose the belief that leads to

the lowest expected utility. These preferences exhibit aversion to ambiguity and have

a solid axiomatic foundation: Gilboa and Schmeidler (1989) axomatize this behavior

in an atemporal setting, and Epstein and Schneider (2003) generalize their work to

a dynamic setting. Moreover, the axioms describe behavior that is consistent with

experimental evidence that shows that agents don’t like consequences with unknown

odds (Ellsberg (1961)).

I focus on the effects of risk and ambiguity (also known as Knightian uncertainty)

on the value of the market portfolio when investors process public information. To be

more specific, investors receive a public signal about the fundamentals of the economy
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but they don’t know the precision of the signal. Investors are averse to ambiguity

and hence have a range of signal precisions in mind when processing this information.

Epstein and Schneider (2008) show that in this case prices react more to bad news

than to good news because risk neutral investors respond asymmetrically to public

signals. Specifically, investors evaluate any investment with respect to the signal

precision that leads to the lowest expected utility. Hence a signal that conveys bad

(good) news is treated as (un)informative because in this case the mean of the asset

is significantly (moderately) revised down (up).

Risk aversion has qualitatively very different implications for the price of the

market portfolio. Specifically, the equilibrium mapping of signal to price has a dis-

continuity, which it does not have when the marginal investor is risk neutral. Hence,

arbitrarily small differences in information can produce large discrete changes in the

price of the market portfolio. In other words, aversions to risk and ambiguity lead

to excess sensitivity of prices to public news (Shiller (1992)), because the marginal

investor drastically changes the worst case scenario belief in equilibrium and hence

the interpretation of the public information.

Moreover, systemic negative events such as the failure of a big financial institution

may lead to higher valuations of the stock market than idiosyncratic negative events.

Intuitively, the marginal investor treats signals lower than a particular negative signal

value as more informative than signals larger than this critical value. The risk pre-

mium is lower when the signal is treated as more informative, and hence the price of

the market portfolio would suddenly drop if the signal increased trough this critical
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point. The news has significant impact on fundamentals when the precisions of the

signal is high and almost no effect on fundamentals when the precisions of the signal

is low. Hence systematic bad news can lead to higher stock prices than idiosyncratic

bad news.

To study the effects of ambiguous information on expected returns and the vari-

ance, skewness, and kurtosis of stock market returns I consider a pure exchange

economy. Investors are averse to risk and ambiguity and decide how much to invest

in the market portfolio and the risk-free asset after receiving a public signal. I assume

that investors know the marginal distribution of fundamentals (the aggregate divi-

dend) but are ambiguous about the conditional distribution of the signal given the

dividend (the precision of the signal). I find that expected returns are large because

investors require a risk and ambiguity premium to hold the market portfolio. I also

find that drastic changes in the interpretation of public information leads to a large

variance of stock returns. Moreover, aversion to risk and ambiguity tends to result in

fatter tails while the skewness is positive if the risk aversion of the marginal investor

is low and negative if it is high.

This paper is most closely related to Epstein and Schneider (2008), who investi-

gate the impact of ambiguous information on stock prices assuming a representative

investor who is risk neutral and averse to ambiguous information. I extend their work

along three dimension: (i) investors are risk averse1, (ii) investors are heterogenous

with respect to risk and ambiguity, (iii) investors can learn from ambiguous signals

1Epstein and Schneider (2008) consider an example in which the signal can take on two values
and solve it numerically when investor are risk averse.
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over time.2 I show that risk aversion leads to very different qualitative implications

for the equilibrium signal-to-price map, and it amplifies the effects of ambiguous in-

formation on the conditional distribution of stock market returns. Moreover, I prove

the existence of a representative investor when investors have different risk aversion,

and I discuss the properties of the equilibrium when investors also differ with respect

to ambiguity aversion.

Dow and Werlang (1992) show in a partial equilibrium framework that there is a

range of prices at which investors are neither long nor short the asset. Cao, Wang, and

Zhang (2005) extend their result and show that limited stock market participation can

arise endogenously in equilibrium when investors differ with respect to their ambiguity

aversion. I show that when investors receive ambiguous information, then the worst-

case-scenario belief depends on the asset demand and the signal. This dependence

leads to a demand function that is flat for two ranges of prices. Specifically, there is an

interval of prices at which investors (i) don’t participate in the market because they are

ambiguous about the mean of the asset and (ii) don’t change their long/short position

in the asset because they are ambiguous about the mean and the risk premium of the

asset.

The fact that ambiguity aversion can lead to value functions that are not differ-

entiable everywhere and thus may lead to a continuum of equilibrium prices for some

states of the world is not new. Epstein and Wang (1994) write in their abstract: “A

noteworthy feature of the model is that uncertainty may lead to equilibria that are

2Epstein and Schneider’s dynamic model focuses on short learning episodes where investors receive
one ambiguous signal about the next innovation in dividends whereas in this model investor receive
and anticipate an ambiguous signal about a future liquidating dividend.
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indeterminate, that is, there may exist a continuum of equilibria for given fundamen-

tals.” However, the value function is typically not differentiable only at the certainty

point (i.e. zero demand for the ambiguous asset) which can not be an equilibrium.

The striking result of this paper is that when investors process ambiguous informa-

tion, then the value function is not differentiable at the market clearing stock demand

if and only if investors are averse to risk and ambiguity. Hence there is an interval of

equilibria for a particular signal value and the effects of ambiguity aversion on stock

prices can be distinguished from the effects of risk alone.

Routledge and Zin (2001) and Caballero and Krishnamurthy (2008) study the

connection of ambiguity with liquidity. Routledge and Zin (2001) consider a financial

intermediary who makes a market in a derivative security and show that ambiguity

can drastically increase the bid-ask spread and hence reduce liquidity. Caballero and

Krishnamurthy (2008) study the effects of ambiguity about the impact of aggregate

liquidity shocks on investors and show that this ambiguity can lead to a socially

inefficient flight to quality. In this paper ambiguous information does not have an

effect on market liquidity but nevertheless leads to drastic changes in the price of the

market portfolio and hence excess variance and kurtosis of stock market returns.

Maenhout (2004) solves the dynamic portfolio choice problem of an investor with

Epstein and Zin (1989) preferences. Leippold, Trojani, and Vanini (2008) consider an

economy in which investors learn from dividends and signals about the unobservable

expected dividend growth rate and reconcile the excess volatility puzzle with a high

equity premium and a low risk-free rate. Both papers use the robust control approach
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of Hansen and Sargent (2007) to describe aversion to ambiguity. The main difference

in this paper is that the excess sensitivity of prices to news results from a discontinuity

in the equilibrium signal-to-price map which occurs even in a simple static model.

Garlappi, Uppal, and Wang (2007) discuss the effect of ambiguity on mean/variance

portfolio choice and Kogan and Wang (2003) discuss the implications of ambiguity for

the cross sectional properties of asset returns. In both papers investors have perfect

knowledge about the covariance matrix but are ambiguous about the mean return

vector of asset returns. The main difference of this paper is that I focus on how

ambiguity about the informativeness of news and hence imperfect knowledge of the

posterior mean and variance of fundamentals affects optimal portfolios of investors

and, more importantly, equilibrium prices.

I Ambiguous Information

In this section I show how investors who are averse to risk and ambiguity behave when

the receive ambiguous information about the fundamentals of an asset. I adopt the

model of Epstein and Schneider (2008) in which an investor considers multiple models

that link information to fundamentals and then makes decisions with respect to the

model that leads to the lowest expected utility. This behavior exhibits aversion to am-

biguity (Knightian uncertainty) and is axiomatized by Gilboa and Schmeidler (1989)

in a static setting and generalized to a dynamic setting by Epstein and Schneider
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(2003).3

Suppose an investor receives a signal s̃ about the dividend d̃. A model consists of

a marginal distribution of the dividend d̃ and a conditional distribution of the signal

s̃ given the dividend d̃. The investor knows the marginal distribution of the dividend

but lacks data and/or experience to know how to link this signal to the dividend and

therefore doesn’t know the conditional distribution of the signal given the dividend.

The investor is averse to ambiguity and hence behaves as if she would have a set of

models (a marginal and a set of conditionals) in mind when evaluating the outcome

of a decisions.

Let u(·) denote the utility function of the investor, m a model, M the set of

all models considered by the investor, and Em[·] the expectation with respect to the

belief generated by the model m. An ambiguity averse investor in the sense of Gilboa

and Schmeidler (1989) chooses a portfolio θ to maximize

inf
m∈M

Em [u (w̃) | s̃ = s]

s.t. w̃ = w0 +
(

d̃− p
)

θ,

(1)

in which w0 denotes an investor’s initial and w̃ her future wealth. The price of the

risky asset is denoted by p and the risk-free rate is normalized to zero.

This paper focuses on the effects of risk and ambiguity on asset prices and there-

fore it is important to emphasize the difference between aversion to risk and ambi-

3Other preferences that exhibit aversion to ambiguity are axiomatized in Klibanoff, Marinacci,
and Mukerji (2005) and Maccheroni, Marinacci, and Rustichini (2006).
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guity. Specifically, the curvature of the utility function u(·) determines an investor’s

risk aversion whereas the size of M and the “inf” operator describe an investors am-

biguity and aversion to ambiguity. If M is a singleton, then the investor is a standard

expected utility maximizer in the sense of Savage (1954) and hence neutral to ambi-

guity. I use the terms ambiguity or aversion to ambiguity interchangeably because

the axioms presented by Gilboa and Schmeidler (1989) do not allow to identify them

separately.4

Suppose that both the marginal distribution of d̃ and the conditional distribution

of s̃ given d̃ is normal. Specifically, there is a single normal marginal of d̃:

d̃ ∼ N
(

d̄, σ2
d

)

(2)

and there is a family of conditional distributions of s̃ given d̃:

s̃ = d̃+ ε̃, ε̃ ∼ N
(

0, σ2
)

,

in which σ2 ∈ [σ2
a, σ

2
b ] ⊆ [0,∞].5

Each model m ∈ M determines a conditional belief for d̃ given s̃ and hence

4This fact is emphasized in Routledge and Zin (2001). Moreover, Klibanoff, Marinacci, and
Mukerji (2005) present a model of preferences that allows for a distinction between ambiguity and
attitude towards ambiguity. The Gilboa and Schmeidler (1989) specification arises as a limiting case
when investors have infinite aversion to ambiguity.

5I do not rule out the case [σ2
a, σ2

b ] = [0,∞].
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standard normal-normal updating for each σ2 ∈ [σ2
a, σ

2
b ] leads to

d̃ | s̃ = s ∼ Nβ

(

d̄+ β
(

s− d̄
)

, σ2
d(1 − β)

)

, β =
σ2

d

σ2
d + σ2

. (3)

It is convenient to describe the informativeness of the signal by beta and hence the

set of conditional beliefs is given by [βa, βb] ⊆ [0, 1] with

βa = σ2
d/(σ

2
d + σ2

b ) (4)

βb = σ2
d/(σ

2
d + σ2

a). (5)

The utility of an investor who is averse to ambiguous information and holds θ shares

of the risky asset is therefore6

min
β∈[βa,βb]

Eβ

[

u
(

w0 +
(

d̃− p
)

θ
)

| s̃ = s
]

. (6)

Investors are more averse to ambiguous information if the set of models and hence the

interval [βa, βb] is large and therefore the degree of aversion to ambiguous information

can be measured by βb − βa.

Suppose the investor has CARA utility over future wealth w̃; i.e. u(w̃) =

−e−γw̃. Then, the investor chooses θ to maximize her certainty equivalent.7 The

certainty equivalent of the ambiguity averse investor with wealth w0 is denoted by

6The objective function is continuous and the feasible set is compact and hence I can replace the
infimum by the minimum.

7The utility function is strictly increasing and hence optimizing u(CE(·)) is equivalent to opti-
mizing CE(·).
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CE(θ;w0, p, s). It is equal to the “worst case scenario certainty equivalent” of a Savage

investor. Specifically,

CE(θ;w0, p, s) = min
β∈[βa,βb]

CES(θ, β;w0, p, s), (7)

in which

CES(θ, β;w0, p, s) = w0 +
(

Eβ

[

d̃ | s̃ = s
]

− p
)

θ − 1

2
γ Varβ

[

d̃ | s̃ = s
]

θ2 (8)

denotes the certainty equivalent of a standard expected utility maximizer with wealth

w0 and subjective belief β (a Savage investor with wealth w0 and belief β).

The assumption of CARA-utility and normally distributed beliefs leads to a mean-

variance portfolio choice problem in which the beta (informativeness) of the signal

affects both the mean and the variance. The worst case scenario belief β∗ depends

therefore on the portfolio θ and the realization of the signal s. Specifically,

β∗ = β∗(θ, s) ∈ argmin
β∈[βa,βb]

CES(θ, β;w0, p, s). (9)

I discuss the “worst case scenario” for the mean and variance of the risky asset before

I determine the certainty equivalent of the ambiguity averse investor (the “worst case

scenario” certainty equivalent of a Savage investor).

Suppose the investor is long the asset (θ > 0). Then the worst case scenario

for the mean is a high beta signal if bad news arrives and a low beta signal if good
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news arrives because the mean is significantly adjusted downwards with bad news

and moderately adjusted upwards with good news. Specifically,

min
β∈[βa,βb]

Eβ

[

d̃ | s̃ = s
]

=































d̄+ βa (s− d̄) if s− d̄ > 0

d̄+ βb (s− d̄) if s− d̄ < 0

d̄ if s− d̄ = 0.

(10)

Similarly, if the investor is short the asset (θ < 0), then the worst case scenario for

the mean is a low beta signal when bad news arrives and a high beta signal when

good news arrives.

On the other hand, the worst case scenario for the variance is always a low beta

signal. Specifically,

max
β∈[βa,βb]

Varβ

[

d̃ | s̃ = s
]

= σ2
d (1 − βa) . (11)

The worst case scenarios for the mean and the variance can not be chosen indepen-

dently of each other but depend on the beta of the signal and hence there is a tradeoff

between the effects of beta on the mean and the variance when minimizing CES(β; ·).

The certainty equivalent of an ambiguity averse investor and its properties are

determined in the next proposition.
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Proposition 1. Let θ̂ ≡ −2(s− d̄)/(γσ2
d). Then,

CE(θ;w0, p, s) =































CES(θ, βa;w0, p, s) if θ ≤ min
(

θ̂, 0
)

CES(θ, βb;w0, p, s) if min
(

θ̂, 0
)

< θ < max
(

θ̂, 0
)

CES(θ, βa;w0, p, s) if θ ≥ max
(

θ̂, 0
)

(12)

The certainty equivalent CE(·) is a continuous and concave function of the stock

demand θ. Moreover, it is continuously differentiable except for the critical values

θ = 0 and θ = θ̂ if s 6= d̄.

Proof. See Appendix B.

The function CES(·) does not depend on beta at the critical points 0 and θ̂ but

is otherwise a linear function of beta because the conditional mean and the residual

variance are linear in beta. Hence, the certainty equivalent of an ambiguity averse

investor is either CES(βa; ·) or CES(βb; ·) and switches from one to the other at 0 and

θ̂.

Figure 1 shows the certainty equivalent of three different Savage investors and the

ambiguity averse investor as a function of the portfolio demand θ. Specifically, the

blue solid line shows the certainty equivalent of a Savage investor with belief β = βa,

the black dashed line shows the certainty equivalent of a Savage investor with belief

β = (βa + βb)/2, the red chain-dotted line shows the certainty equivalent of a Savage

investor with belief β = βb, and the black solid line shows the certainty equivalent

of the ambiguity averse investor with belief β = β∗. The right graph shows the case
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when investors receive bad news (s < d̄) and the left graph shows the case when

investors receive good news (s > d̄).
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Figure 1: Expected Utility
Both figures show the certainty equivalent as a function of the demand θ when β = βa

(blue solid line), β = (βa + βb)/2 (black dashed line), β = βb (red chain-dotted line),
and β = β∗ (black solid line). The parameters are d̄ = 5, σd = 1, γ = 1, w0 = 1,
p = 5, βa = 1/5, and βb = 4/5.

Suppose an investor receives bad news (right graph). If she is short the asset, then

CES(·) is uniquely minimized at βa because the worst case scenario for the mean and

the residual variance is a low beta signal. On the other hand, if she is long the asset,

then the worst case scenario for the mean is a high beta signal whereas the worst case

scenario for the residual variance is a low beta signal. If the long position is sufficiently

large (θ > θ̂), then the variance dominates and CES(·) is uniquely minimized at βa.

CES(·) is minimized at βb for small long positions in the asset (θ < θ̂) because in this

case the mean dominates. The long position for which the effects on the mean and

the residual variance offset each other is θ̂.8 Similar arguments lead to the worst case

scenario for an investor who receives good news (left graph).

8If θ = 0, then there is no ambiguity and hence expected utility does not depend on beta.
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If the signal confirms the expected value of the dividend (s = d̄), then there is no

ambiguity about the conditional mean and hence CES(·) is uniquely minimized at βa

for all portfolio positions because the worst case scenario for the residual variance is

always a low beta signal. In other words, there is no kink in expected utility if s = d̄.

To summarize, an investor who has CARA utility and is averse to ambiguous

information in the sense of Gilboa and Schmeidler (1989) will evaluate the outcome

of a portfolio with respect to the belief β that leads to the lowest expected utility.

Hence, the indifference curves of an investor who is either long or short in the risky

asset have two kinks if the signal doesn’t confirm the unconditional mean of the

dividend and are otherwise smooth. The equilibrium price of the market portfolio

when investors are averse to risk and ambiguous information is determined in the

next section.

II Equilibrium

In this section I derive the equilibrium price of the market portfolio when a represen-

tative investor receives an ambiguous signal about the fundamentals of the economy.

I show that small changes in information about the value of the market portfolio can

lead to drastic changes in the price of the market portfolio and better news do not

always lead to a higher price. The proof of the existence of a representative investor

is deferred to Section IV.

Consider a discrete time economy with two dates 0 and 1. There is a competitive
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market in a risk-free asset and a stock. The risk-free asset is in zero-net-supply and

the stock is in positive supply normalized to one. The stock is a claim on a normally

distributed liquidating dividend d̃ at date 1; i.e. d̃ ∼ N(d̄, σ2
d). There is no ex ante

ambiguity about the distribution of the dividend; i.e. d̄ and σd are known.

Suppose there is a representative investor with CARA-utility; i.e u(x) = −e−γx.

There is no consumption at date zero. At date one the dividend d̃ is revealed and

consumed by the representative investor. The risk-free asset is used as numeraire, so

the risk-free rate is zero.

At date zero the investor receives an ambiguous signal about the dividend. The

ambiguous signal is described by a family of conditionals. Specifically, s̃ = d̃+ ε̃ with

ε̃ ∼ N (0, σ2) and σ2 ∈ [σ2
a, σ

2
b ]. Ambiguity about the informativeness of the signal

leads to the family of conditional beliefs for d̃ given s̃ described in equation (3).

The representative investor observes the realization of the ambiguous signal and

chooses a portfolio θ to maximize

min
β∈[βa,βb]

Eβ [u (w̃) | s̃ = s]

s.t. w̃ = w0 +
(

d̃− p
)

θ,

(13)

in which β denotes the informativeness of the signal defined in equation (3) and βa

and βb are defined in equations (4) and (5), respectively.

In equilibrium the representative investor holds the asset and consumes the liq-

uidating dividend. Hence, the price of the asset at date one equals the liquidating
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dividend and θ = 1. The price at date zero depends on the signal and is determined

below.

The equilibrium when the representative investor has standard expected utility

preferences (in the sense of Savage (1954)) is provided in the next proposition. The

proof is straightforward and thus omitted.

Proposition 2 (Savage Benchmark). If the representative investor is standard ex-

pected utility maximizers with subjective belief β, then

p(s) = Eβ

[

d̃ | s̃ = s
]

− γVarβ

[

d̃ | s̃ = s
]

. (14)

The price is a strictly increasing continuous function of the signal because the

conditional mean is strictly increasing and continuous in the signal and the conditional

variance does not depend on the signal.9 This is no longer true when investors are

averse to ambiguous information as the next theorem shows.

Theorem 1. Let ŝ = d̄−γσ2
d/2. There is a unique equilibrium stock price correspon-

dence. Specifically,

p(s) ∈































{

Eβa

[

d̃ | s̃ = s
]

− γVarβa

[

d̃ | s̃ = s
] }

if s > ŝ

P(ŝ) if s = ŝ

{

Eβb

[

d̃ | s̃ = s
]

− γVarβb

[

d̃ | s̃ = s
] }

if s < ŝ.

(15)

9The conditional expectation and variance in equation (14) are provided in Lemma 8 of Appendix
F.
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Specifically, p ∈ P(ŝ), if ∃ β ∈ [βa, βb] such that

p = Eβ

[

d̃ | s̃ = ŝ
]

− γVarβ

[

d̃ | s̃ = ŝ
]

. (16)

Proof. See Appendix D.

A brief description of the proof is as follows. If s > ŝ (s < ŝ), then by Proposition

1 there exists an open neighborhood of the market clearing stock demand θ = 1

for which CES(·) is uniquely minimized at βa (βb). Hence, the unique maximum

of the certainty equivalent CE(·) on this open neighborhood is attained at θ = 1,

if and only if the price is equal to the Savage benchmark price, given in equation

(14), when the mean and the variance are determined with respect to the conditional

belief characterized by βa (βb). Moreover, concavity of the certainty equivalent (see

Proposition 1) implies that the local maximum is also a global maximum.

If s = ŝ, then there is an interval of equilibrium prices. Intuitively, if the signal

s attains the critical value ŝ, then θ̂ = 1 and hence by Proposition 1 the certainty

equivalent is not differentiable at the market clearing demand θ = 1. Loosely speaking

the interval of prices in this case consists of all prices that are needed to set all marginal

utilities (the subdifferential of the certainty equivalent) to zero at θ = 1.10 Put it

differently, the demand function is constant equal to one for a range of prices at the

critical signal value ŝ and hence all these prices are equilibrium prices.11

Let p+(ŝ) denote the limit when s approaches ŝ from the right and p−(ŝ) denote

10See Appendix A for a definition and discussion of the subdifferential of a function.
11The demand function is determined in Proposition 3.
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the limit of p(s) when s approaches ŝ from the left. Specifically,

p+(ŝ) ≡ lim
s↓ŝ

p(s) = Eβa

[

d̃ | s̃ = ŝ
]

− γVarβa

[

d̃ | s̃ = ŝ
]

(17)

p−(ŝ) ≡ lim
s↑ŝ

p(s) = Eβb

[

d̃ | s̃ = ŝ
]

− γVarβb

[

d̃ | s̃ = ŝ
]

. (18)

It is straightforward to verify that P(ŝ) = [p+(ŝ), p−(ŝ)] and

∆p(ŝ) = p+(ŝ) − p−(ŝ) = − (βb − βa)
γ

2
σ2

d < 0. (19)

The price of the market portfolio is a non-monotone and discontinuous correspon-

dence of the signal (the price correspondence is upper hemicontinuous but not lower

hemicontinuous and hence not continuous).12 Figure 2 shows the equilibrium signal-

to-price map.

12See Mas-Colell, Whinston, and Green (1995) Section M.H. for properties of correspondences.
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Figure 2: Equilibrium Signal-to-Price Map

This figure shows the equilibrium signal-to-price map of the market portfolio. The
parameters are d̄ = 100, σd = 5, βa = 1/5, βb = 4/5, and γ = 2. Moreover, ŝ = 75,
p+(ŝ) = 55, and p−(ŝ) = 70.

There is a discontinuity in the equilibrium signal-to-price map and a higher signal

value does not always lead to a higher price. Specifically, the equilibrium stock price

is unique except for the signal value ŝ at which there is an interval of equilibrium stock

prices. If the signal increases through the critical point, then the price suddenly drops

and hence better information leads to a lower stock price.

The stock price is not monotone in the signal in equilibrium because the model
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that leads to the lowest expected utility for the marginal investor depends on the

signal. Specifically, if the signal is bad, then it is treated as informative and thus

the residual variance is low. Conversely, if the signal is good, then it is treated as

uninformative and thus the residual variance is high. Hence, a bad signal leads to a

low risk premium and thus to a high price.

The critical signal value ŝ at which the marginal investor changes her worst case

scenario belief and hence switches the interpretation of the news is equal to the

unconditional mean minus half the unconditional risk premium of the asset. The

critical value is decreasing in the risk premium (the unconditional variance of the

dividend and risk aversion) because if the risk premium is large, then the news have

to be really bad in order for the mean to dominate the variance.

There is no discontinuity in the equilibrium signal to price map if investors are

standard expected utility maximizers (βa = βb = β) and/or if they are risk neutral

(γ = 0). Hence, it is possible to distinguish the effects of risk and ambiguity on the

price of the market portfolio.13 Moreover, the price reacts more to bad news (s < ŝ)

than to good news (s > ŝ) because the residual variance does not depend on the

signal and the worst case scenario for the mean is a high beta signal for bad news

and a low beta signal for good news.14

Figure 3 shows the equilibrium signal-to-price map for different aversion to risk

and ambiguity. Specifically, the left graph shows the equilibrium signal-to-price map

13The issue of observational equivalence is often raised in the literature (see Backus, Routledge,
and Zin (September 2004) page 37).

14Epstein and Schneider (2008) show that the price reacts more to bad news (s < d̄) than to good
news (s > d̄) if investors are averse to ambiguous information but risk neutral.
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when γ = 0 (black solid line), γ = 2 (red chain-dotted line), and γ = 4 (blue dashed

line). The right graph shows it when [βa, βb] = [0, 1] (black solid line), [βa, βb] =

[1/10, 1/2] (red chain-dotted line), and [βa, βb] = [4/10, 6/10] (blue dashed line).
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Figure 3: Different Aversion to Risk and Ambiguity

The left graph shows the equilibrium signal-to-price map when γ = 0 (black solid
line), γ = 2 (red chain-dotted line), and γ = 4 (blue dashed line). The parameters
are: d̄ = 100, σd = 5, βa = 1/5, and βb = 4/5. The right figure shows the equilibrium
signal-to-price map when [βa, βb] = [0, 1] (black solid line), [βa, βb] = [1/10, 1/2] (red
chain-dotted line), and [βa, βb] = [4/10, 6/10] (blue dashed line). The parameters are:
d̄ = 100, σd = 5, and γ = 2.

If γ = 0, then the price is continuously increasing in the signal s with a kink

at s = d̄.15 This case is shown by the black solid line in the left graph of Figure

3. However, if γ > 0, then the price is neither continuous nor monotone in the

signal which is illustrated by the blue dashed line and the red chain-dotted line in

15The equilibrium stock price when investors are risk neutral and averse to ambiguous information
simplifies to (see Epstein and Schneider (2008))

p(s) = min
β∈[βa,βb]

Eβ

[

d̃ | s̃ = s
]

= d̄ + βa max(s − d̄, 0) + βb min(s − d̄, 0).
(20)
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the left graph of Figure 3. The point ŝ at which the representative investor switches

the interpretation of the information moves to the left when risk aversion increases.

Specifically, ŝ = 75 if γ = 2 and ŝ = 50 if γ = 4. Hence strong price reactions only

occur for very bad news if risk aversion and hence the risk premium is large. Moreover,

the size of the price drop increases with risk aversion because the the difference in the

risk premium for low and high beta signals increases with risk aversion. The price

drops by 15 when γ = 2 and 30 when γ = 4.

The right graph of Figure 3 shows that there is a large price reaction to bad news

when βb is large and a moderate price reaction to good news when βa is low because

the signal is treated as high beta (βb) for bad news and low beta (βa) for good news.

The price drop is increasing in the aversion to ambiguous information measured by

βb − βa because the difference in the risk premium for low and high beta signals

increases. Specifically, the price drops by 25 when βb − βa = 1 (black solid line), by

10 when βb − βa = 3/8 (red chain-dotted line), and by 5 when βb − βa = 1/5 (blue

dashed line).

II.A Unconditional Moments of Price Changes

In this section I discuss the effects of aversion to risk and ambiguity on the uncondi-

tional distribution of changes in the price of the market portfolio. Specifically, I com-

pute the mean, variance, skewness, and excess kurtosis of the price change d̃− p (s̃).

The “true” or “objective” conditional distribution (the distribution an econometri-

cian would observe) of d̃ given s̃ is characterized by β ∈ [βa, βb]. The moments are
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plotted as a function of β for three different cases: (i) the Savage case when γ = 1

and the objective belief β coincides with the subjective belief of the Savage investor ,

(ii) the Epstein-Schneider case when γ = 0 and [βa, βb] = [1/5, 4/5], and (iii) the case

when investors are averse to risk and ambiguity. The first case is represented by the

blue dashed line in all four graphs of Figure 4, the second case is represented by the

red chain-dotted line in all four graphs, and the last case is represented by the black

solid line when γ = 1 and [βa, βb] = [1/5, 4/5] in all four graphs and by the black

dotted line when γ = 5 and [βa, βb] = [1/5, 4/5] for all graphs except the top left.

If investors are averse to risk and ambiguity, then the expected price change is

larger than in either the Savage or Epstein-Schneider case because investors require

both a risk premium and an ambiguity premium to hold the market portfolio (see top

left graph of Figure 4). Aversion to ambiguity leads to a larger variance than risk

aversion because in the former investors can drastically change the interpretation of

the information. This leads to a kink in the Epstein-Schneider case and a discontinuity

when investors are averse to risk and ambiguity. The skewness and excess kurtosis

in the Savage case is zero. Aversion to ambiguity tends to result in fatter tails while

the skewness is positive for low risk aversion and negative for large risk aversion.

Intuitively, the price change is positively skewed when the representative investor

is risk neutral because the aggregate dividend is normally distributed and the price

reacts more to bad signals than to good signals. If the investor is risk averse, then

the discontinuity leads to a large variance of the price change conditional on negative

news and hence, for sufficiently high risk aversion, to a negative skewness of price
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changes.
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Figure 4: Unconditional Moments of Price Changes

The top left graph shows the mean, the top right graph shows the variance, the bottom
left graph shows the skewness, and the bottom right graph shows the excess kurtosis
of d̃ − p(s̃) as a function of the “true” or “objective” distribution characterized by
β ∈ [βa, βb] . In all four graphs the blue dashed line represents the Savage case when
γ = 1 and the subjective belief coincides with β ∈ [βa, βb]. The red chain dotted line
represents the Epstein-Schneider case when γ = 0 and [βa, βb] = [1/5, 4/5]. The case
when investors are averse to risk and ambiguity is shown by the black solid line when
γ = 1 and [βa, βb] = [1/5, 4/5] in all four graphs and by the black dotted line when
[βa, βb] = [1/5, 4/5] and γ = 5 four all graphs except the top left. The parameters are
d̄ = 5 and σd = 1.

Figure 5 shows the unconditional moments of the price change d̃ − p(s̃) as a

function of ambiguity βb − βa. The objective distribution is characterized by β =
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(βa + βb)/2. Ambiguity βb − βa increases from zero to one such that β is always the

midpoint of the interval [βa, βb]. In all four graphs the blue dashed line represents

the Savage case when γ = 1 and the subjective belief coincides with β. The red

chain dotted line represents the Epstein-Schneider case when γ = 0. The case when

investors are averse to risk and ambiguity is shown by the black solid line when γ = 1

in all four graphs and by the black dotted line when γ = 5 four all graphs except the

top left. The parameters are d̄ = 5 and σd = 1.

The mean and variance are strictly increasing in the degree of aversion to ambi-

guity. The rate of increase is linear for the mean and does not depend on risk aversion

whereas the variance increases exponentially at a rate that is increasing in the level

of risk aversion. The excess kurtosis is increasing in ambiguity for large levels of risk

aversion but remains constant if risk aversion is close to zero. The skewness of price

changes is increasing for low risk aversion and decreasing for large risk aversion.
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Figure 5: Effects of Ambiguity Aversion on Unconditional Moments of Price Changes

The top left graph shows the mean, the top right graph shows the variance, the
bottom left graph shows the skewness, and the bottom right graph shows the excess
kurtosis of d̃ − p(s̃) as a function of ambiguity βb − βa. The “true” or “objective”
distribution is characterized by β = (βa + βb)/2. In all four graphs the blue dashed
line represents the Savage case when γ = 1 and the subjective belief coincides with
β. The red chain dotted line represents the Epstein-Schneider case when γ = 0. The
case when investors are averse to risk and ambiguity is shown by the black solid line
when γ = 1 in all four graphs and by the black dotted line when γ = 5 four all
graphs except the top left. The parameters are d̄ = 5 and σd = 1. Ambiguity βb − βa

increases from zero to one such that β is always the midpoint of the interval [βa, βb].
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III Portfolio Choice

In this section I determine the optimal portfolio of an investor who can invest in a

risky asset and a risk-free asset and receives an ambiguous signal about the value

of the risky asset. I show that (i) there is a range of prices for which investors do

not change their short position in the risky asset when they receive good news, (ii)

there is a range of prices for which investors do not change their long position in the

risky asset when they receive bad news, and (iii) there is a range of prices for which

investors are neither long or short in the risky asset when they receive good or bad

news.

I have shown in Section I that an investor with CARA-utility and aversion to

ambiguous information chooses a portfolio θ ∈ R to maximize

CE(θ;w0, p, s) = min
β∈[βa,βb]

{

w0 +
(

Eβ

[

d̃ | s̃ = s
]

− p
)

θ − 1

2
γ Varβ

[

d̃ | s̃ = s
]

θ2

}

.

(21)

The investor is a mean-variance optimizer and averse to ambiguous information

and hence the mean-variance frontier depends on the realization and the informative-

ness of the signal. The solution to the portfolio choice problem in this case is provided

in the next proposition.

Proposition 3. The optimal demand function for an investor with risk aversion γ

and aversion to ambiguous information described by [βa, βb] is continuously decreasing
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if s = d̄ and continuously non-increasing if s 6= d̄. Specifically,

θ(p) =


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











Eβa

[

d̃ | s̃ = s
]

− p

γVarβa

[

d̃ | s̃ = s
] p ≤ p1

− 2
γσ2

d

min
(

s− d̄, 0
)

p1 < p ≤ p2

Eβb

[

d̃ | s̃ = s
]

− p

γVarβb

[

d̃ | s̃ = s
] p2 < p ≤ p3

− 2
γσ2

d

max
(

s− d̄, 0
)

p3 < p ≤ p4

Eβa

[

d̃ | s̃ = s
]

− p

γVarβa

[

d̃ | s̃ = s
] p > p4,

(22)

in which

p1 = Eβa

[

d̃ | s̃ = s
]

+
2

σ2
d

Varβa

[

d̃ | s̃ = s
]

min
(

s− d̄, 0
)

(23)

p2 = Eβb

[

d̃ | s̃ = s
]

+
2

σ2
d

Varβb

[

d̃ | s̃ = s
]

min
(

s− d̄, 0
)

(24)

p3 = Eβb

[

d̃ | s̃ = s
]

+
2

σ2
d

Varβb

[

d̃ | s̃ = s
]

max
(

s− d̄, 0
)

(25)

p4 = Eβa

[

d̃ | s̃ = s
]

+
2

σ2
d

Varβa

[

d̃ | s̃ = s
]

max
(

s− d̄, 0
)

. (26)

Proof. See Appendix C.

I use the subdifferential of the certainty equivalent which I define and calculate in

the Appendix to prove Proposition 3. To provide some more intuition consider three

different investors: a low beta Savage investor (a standard expected utility maximizer

with subjective belief βa), a high beta Savage investor (a standard expected utility
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maximizer with subjective belief βb), and an investor with aversion to ambiguity

described by [βa, βb]).
16

Let θa(p) denote the optimal demand of a low beta Savage investor, θb(p) the

optimal demand of a high beta Savage investor, and θ(p) the optimal demand of an

ambiguity averse investor. Maximizing the certainty equivalent given in equation (8)

evaluated at βa and βb leads to the optimal demand of the low beta and high beta

Savage investor. Specifically,

θa(p) =
Eβa

[

d̃ | s̃ = s
]

− p

γVarβa

[

d̃ | s̃ = s
] (27)

θb(p) =
Eβb

[

d̃ | s̃ = s
]

− p

γVarβb

[

d̃ | s̃ = s
] . (28)

The proof is straightforward and thus omitted.

The optimal demand of the ambiguity investor is equal to the optimal demand

of the low beta Savage investor when the signal confirms the expected value of the

dividend (s = d̄) because in this case there is only ambiguity about the residual

variance and hence there is no kink in expected utility (see Proposition 1).

If the price satisfies p ≤ p1 or p ≥ p4, then the ambiguity averse investor behaves

like a low beta Savage investor and hence θ(p) = θa(p). For instance, suppose an

investor receives good news (s = 125 > d̄ = 100) and the price of the asset is high

(p = 192.5). Then the certainty equivalent of the ambiguity averse investor coincides

16The discussion follows closely Routledge and Zin (2001).
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with the certainty equivalent of a low beta Savage investor for large short positions

and all long positions in the asset, and coincides with the certainty equivalent of a

high beta Savage investor for small long positions. In this case, the optimal demand

of the ambiguity averse investor satisfies the first order condition of the low beta

Savage investor because the price is so high (p = 192.5 > p4 = 147.5) such that the

optimal short position (θ∗ = −2) is larger than the critical value θ̂ = −1.17 This case

is illustrated in the left graph of Figure 6. Similarly, if investors receive bad news

(s = 25 < d̄ = 100) and p2 ≤ p ≤ p3, then the ambiguity averse investor behaves like

a high beta Savage investor and hence θ(p) = θb(p). This case is illustrated in the

right graph of Figure 6.
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Figure 6: Expected Utility is Smooth at an Optimum
The blue dashed line shows the certainty equivalent of a low beta Savage investor, the
red chain-dotted line shows the certainty equivalent of a high beta Savage investor, and
the black solid line shows the certainty equivalent of an ambiguity averse investor.
The left graph shows the certainty equivalent as a function of the demand when
s = 125 and p = 125 whereas the right graphs shows the certainty equivalent when
s = 25 and p = 22.5. The parameters are w0 = 10, d̄ = 100, σd = 5, βa = 1/10,
βb = 9/10, and γ = 2.

However, if p1 < p < p2 or p3 < p < p4, then the behavior of an ambiguity averse

17The subdifferential of the certainty equivalent is single-valued and equal to zero at the optimal
demand.
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investor is different than the behavior of a Savage investor. Specifically, a marginal

change of the price in this range doesn’t change the optimal demand. To illustrate

that suppose the price of the risky asset is 43.75 and the realization of the signal

is 62.5. The ambiguity averse investor behaves like a high beta Savage investor and

increases her demand until the critical value θ̂ = 1.5. If she would continue to increase

her long position, then the utility would still increase and hence, θ = 1.5 would not

be optimal for a high beta Savage investor. However, at θ = θ̂ = 1.5 the ambiguity

averse investor does no longer behave like a high beta Savage investor. Specifically,

a further increase of the long position would mean a change to the behavior of a low

beta Savage investor. However, for a low beta Savage investor the price of the risk

asset is too large and thus her expected utility would go down with a further increase

of the long position. Hence, to be at the kink is optimal for the ambiguity averse

investor.18 This case is illustrated in the left graph of Figure 7.

The behavior of an ambiguity averse investor is distinctly different than the be-

havior of a Savage investor at θ̂ = 1.5. To see this suppose the price increases from

p = 43.75 < p2 = 58.75 to p = p2. It is still optimal for the ambiguity averse investor

to hold θ̂ = 1.5 shares of the risky asset even though expected utility has decreased

from 40 to 17.5 because of the rise in the price of the risky asset. This case is illus-

trated in Figure 7. Hence, a change in the price does not change the portfolio but

it changes expected utility. In contrast, a Savage investor would reduces her long

position when the price goes up.19

18The subdifferential of the certainty equivalent is multi-valued and contains zero at the optimal
demand.

19If the price of the risky asset lies between the highest and lowest valuation of the asset, then
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Figure 7: Expected Utility has a Kink at the Optimum
The blue dashed line shows the certainty equivalent of a low beta Savage investor, the
red chain-dotted line shows the certainty equivalent of a high beta Savage investor,
and the black solid line shows the certainty equivalent of an ambiguity averse investor
as a function of demand. The left graph shows the certainty equivalent when p = 43.75
and the right graph shows the certainty equivalent when p = 58.75. The parameters
are d̄ = 100, σd = 5, βa = 1/10, βb = 9/10, γ = 2, s = 62.5, and w0 = 11.875.

The investor doesn’t hold the asset if its price lies between the highest and lowest

valuation of the dividend given the signal . This is the well known non-participation

result discussed in Dow and Werlang (1992), Cao, Wang, and Zhang (2005), and

Epstein and Schneider (2007). However, if investors receive ambiguous information,

then the investor neither changes her long nor her short position if the price lies

between the highest and lowest valuation of the mean minus θ̂ times the risk premium

of the asset. Hence, the demand function is flat for two price ranges because the worst

case scenario belief depends on the portfolio and the signal.

Figure 8 shows the optimal demand function when s > d̄ (red dashed line), s = d̄

(black line), and s < d̄ (blue chain-dotted line). Suppose the investor receives bad

news (s < d̄ and hence θ̂ > 0). Then there is a range of low prices for which she

it is optimal not to hold the asset. In this case a marginal change in the price neither changes the
position in the asset nor the utility value.
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does not change her long position θ̂. Hence, the demand for the asset may be larger,

than if she would have received good news. Intuitively, the investor changes the

interpretation of bad news for low prices but not for good news.
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This figures shows optimal demand of an ambiguity averse investor with bad news
(s = 90, blue chain-dotted line), confirming news (s = 100, black line), and good news
(s = 110, red dashed line). The parameters are E[d] = d̄ = 100, σd = 5, βa = 1/5,
βb = 4/5, and γ = 1.

Figure 8: Optimal Demand
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IV Aggregation

In this section I discuss the equilibrium signal-to-price map with heterogeneous in-

vestors. Specifically, I prove the existence of a representative investor when investors

differ with respect to risk aversion and show that there is still a discontinuity in the

equilibrium signal-to-price map when investors differ with respect to aversion to risk

and ambiguity.20

Consider the one period economy described in Section II and suppose there are

H investors that all receive the same ambiguous signal but may differ with respect to

initial wealth and aversion to risk and ambiguity. Let w0h denote investor h’s initial

wealth, γh her risk aversion coefficient, and [βah, βbh] the interval that describe her

aversion to ambiguous information.

Definition 1 (Equilibrium). The signal to-price-map p(s) is an equilibrium ∀s ∈ R

if and only if (i) each investor chooses a portfolio θh to maximize

min
βh∈[βah,βbh]

Eβh

[

uh

(

w0h +
(

d̃− p(s)
)

θh

)

| s̃ = s
]

, ∀s ∈ R (29)

and (ii) markets clear; i.e.
∑H

h=1 θh = 1.

There exists a representative investor if all investors are standard expected utility

maximizers. I show in the next proposition that this is still true when all investors

have the same aversion to ambiguous information.

20There are no interesting wealth effects because investors have CARA utility.
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Proposition 4 (Representative Investor). Assume that all investors have the same

aversion to ambiguous information described by [βa, βb]. Then, there exists a repre-

sentative investor with aversion to ambiguous information described by [βa, βb], initial

wealth equal to w0 =
∑H

h=1w0h, and absolute risk aversion equal to

γ =
1

∑H

h=1
1
γh

. (30)

Proof. See Appendix D.

Intuitively, the range of prices at which the demand function given in equation (22)

changes its slope does not depend on risk aversion and hence individual demands can

be added up as in the standard expected utility case. Hence, the equilibrium signal-to-

price map is given in Theorem 1 with γ = 1/
∑H

h=1 (1/γh) and [βah, βbh] = [βa, βb]∀h.

Suppose there is also heterogeneity in aversion to ambiguous information and

define [βa, βb] ≡
⋂H

h=1[βah, βbh]. I show in the next proposition that there is a still a

discontinuity in the equilibrium signal-to-price map when investors are heterogeneous

in their aversion to ambiguous information.

Proposition 5 (Aggregation). Suppose there exists an equilibrium. Then there is

a discontinuity in the equilibrium signal-to-price map if βa 6= βb. The interval of

equilibrium prices is given by P. Specifically, p ∈ P, if ∃ β ∈ [βa, βb] such that

p = Eβ

[

d̃ | s̃ = ŝ
]

− γVarβ

[

d̃ | s̃ = ŝ
]

,
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in which ŝ = d̄− γσ2
d/2 and γ = 1/

∑H

h=1 (1/γh).

Proof. See Appendix D.

Figure 9 provides the intuition for the result. It shows the demand function for

three investors and aggregate demand. All three investors differ with respect to their

aversion to risk and ambiguity. The first investor has the highest degree of aversion

to risk and ambiguity (γ1 = 5 and [βa1, βb1] = [1/10, 9/10]). Her demand (blue solid

line) thus doesn’t change for a wide range of prices and is only moderately decreas-

ing otherwise. The second investor has the lowest degree of aversion to ambiguous

information (γ2 = 5/4 and [βa2, βb2] = [1/4, 3/4]) whereas the third investor has the

lowest degree of risk aversion (γ3 = 1 and [βa3, βb3] = [1/4, 4/5]). The investor with

the lowest degree of aversion to ambiguity determines the range of prices for which

aggregate demand (black solid line) is flat; i.e. [βa, βb] = [1/4, 3/4]. The individual

demand for the second investor (green chain-dotted line) is constant equal to 2/5 for

the same range of prices whereas the demand for the third investor (red dashed line)

is 1/2 and the demand for the first investor (blue solid line) is 1/10 for an even wider

range of prices. Hence, aggregate demand sums up to the market clearing stock de-

mand of one and the range of prices at which the investor with the smallest aversion

to ambiguity doesn’t change her demand comprises the interval of equilibrium prices.
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This figure shows the individual demand functions of three investors and aggregate
demand. The investors differ with respect to their aversion to risk and ambiguity.
Specifically, γ1 = 5 and [βa1, βb1] = [1/10, 9/10], γ2 = 5/4 and [βa2, βb2] = [1/4, 3/4],
and γ3 = 1 and [βa3, βb3] = [1/4, 4/5]. The parameters are d̄ = 100, σd = 5, and
s = 93.75. The signal value s is equal to the critical signal value ŝ = 93.75 for an
investor with risk aversion equal to γ = 1/2 (aggregate risk aversion). The individual
demand functions add up to one for a range of prices at which the second investor (an
investor with aversion to ambiguity described by the intersection of all three investor’s
beliefs) doesn’t change her demand. Hence, there is an interval of equilibrium stock
prices.

Figure 9: Aggregation
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V Two Ambiguous Signals

We know from Epstein and Schneider (2008) that investors who anticipate ambiguous

information about the value of an asset require a premium to hold the asset. In this

section I discuss the effects of aversion to risk and ambiguity on the value of the

market portfolio when investor can learn from ambiguous signals over time about the

underlying fundamentals. In this case a model that links this ambiguous information

to fundamentals will affect the mean, the risk premium, and the ambiguity premium

of the market portfolio.

I show that when investors receive ambiguous information and anticipate ambigu-

ous information in the future, then the equilibrium price is multi-valued for two critical

signal values. Specifically, if the signal increases through the first critical value, then

the price suddenly drops, whereas if the price increases through the second critical

value, then the price suddenly increases. Moreover, the stock price variance con-

ditional on bad news is always larger than the variance conditional on good news

because the sudden drop for bad news is larger than the sudden increase for good

news.

Intuitively, ambiguous information affects an investor’s utility through the real-

ization of the current signal and the informativeness of the current and the future

signal. If the current signal roughly confirms the unconditional mean of the dividend,

then the marginal investor treats both signals as uninformative, and hence the risk

premium is larger than when the news is either good or bad. If one imagined the signal
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increasing through the first critical value (which is lower than the unconditional mean

of the dividend), the risk premium of the asset would suddenly increase, whereas if one

imagined the signal increasing through the second critical value (which is higher than

the unconditional mean of the dividend), the risk premium would suddenly decrease.

This is formally shown below.

Consider a discrete time economy with four dates 0, 1, 2, and 3. There is a

competitive market in a risk-free asset and a stock. The risk-free asset is in zero-net-

supply and the stock is in positive supply normalized to one. The stock is a claim on

a normally distributed liquidating dividend d̃ at date 3; i.e. d̃ ∼ N(d̄, σ2
d). There is

no ex ante ambiguity about the distribution of the dividend; i.e. d̄ and σd are known.

Suppose there is a representative investor with CARA-utility, i.e. u(x) = −e−γx

and γ ≥ 0. There is no interim consumption. At date 3 the dividend d̃ is revealed and

consumed by the representative investor. The risk-free asset is used as numeraire, so

the risk-free rate is zero.

At date 2 the representative investor observes a noisy signal of the dividend.

Specifically,

s̃2 = d̃+ ε̃2, ε̃2
id∼ N

(

0, σ2
2

)

. (31)

At date 1 the representative investor observes a noisy signal of s̃2. Specifically,

s̃1 = s̃2 + ε̃1, ε̃1
id∼ N

(

0, σ2
1

)

. (32)

The representative investor is ambiguous about the informativeness of both signals
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and hence makes decision with respect to a family of signal noise distributions de-

scribed by [σ2a, σ2b] and [σ1a, σ1b], respectively.21

At date zero there is no ambiguity about the liquidating dividend but there is

ambiguity about future information regarding the liquidating dividend described by

the signals s̃1 and s̃2.

To summarize, a model or prior m consists of a normal marginal distribution for

fundamentals denoted by µ0 and two normal conditionals that link information to

fundamentals. Specifically, the conditional distribution of s̃1 given s2 is denoted by l1

and the conditional distribution of s̃2 given d is denoted by l2. Hence, a model can be

defined as a normal marginal and two normal conditionals; i.e. m = (µ0, l1, l2). Let M

denote the set of all possible models, L2 denote the set of all conditionals of s̃2 given

d and L1 the set of all conditionals of s̃1 given s2. It follows that M = {µ0}×L1×L2.

Portfolio Choice

For t = 0, 1, 2, and 3, let wt denote wealth at time t, pt the price of the stock at

time t, and θt the number of shares of the stock in an investor’s portfolio at time t.

The budget constraint of an investor is

wt+1 = wt + θt(pt+1 − pt), ∀ t = 0, 1, 2. (33)

21This simple two signal structure is a parsimonious way to study the impact of ambiguous infor-
mation on asset prices and changes in asset prices when investors are averse to risk and ambiguity.
Moreover, it captures an investor’s ability to learn over time about fundamentals from ambiguous
information.
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I use dynamic programming to solve for the optimal portfolio at each date.22

Specifically, an investor chooses θ2 to maximize

inf
m∈M

Em

[

u
(

w2 + θ2

(

d̃− p2

))

| s̃1 = s1, s̃2 = s2

]

. (34)

The value function at date 2 is defined as

V2(w2, s1, s2) = sup
θ2∈R

inf
m∈M

Em

[

u
(

w2 + θ2

(

d̃− p2

))

| s̃1 = s1, s̃2 = s2

]

. (35)

At date 1 an investor chooses θ1 to maximize

inf
m∈M

Em [V2 (w1 + θ1 (p2(s̃2, s1) − p1) , s̃2, s1) | s̃1 = s1] . (36)

The value function at date 1 is defined as

V1(w1, s1) = sup
θ1∈R

inf
m∈M

Em [V2 (w1 + θ1 (p2(s̃2, s1) − p1) , s̃2, s1) | s̃1 = s1] . (37)

At date 0 an investor chooses θ0 to maximize

inf
m∈M

Em [V1 (w0 + θ0 (p1(s̃1) − p0) , s̃1)] . (38)

The value function at date 0 is defined as

V0(w0) = sup
θ0∈R

inf
m∈M

Em [V1 (w0 + θ0 (p1(s̃1) − p0) , s̃1)] . (39)

22Preferences are dynamically consistent (see Epstein and Schneider (2003)).
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There is no requirement for the m attaining the infimum to be the same at each date.

On the contrary it is important to allow an investor to choose different models at

each date to guarantee dynamic consistency.

Equilibrium

In equilibrium the representative investor holds the asset and consumes the liq-

uidating dividend; i.e. p̃3 = d̃ and θ0 = θ1 = θ2 = 1.

I use dynamic programming to derive equilibrium stock prices. Specifically, the

derivation in each period consists of four steps: (i) determine the set of conditional

beliefs described by the set of models M, (ii) for each price and portfolio solve for

the conditional belief that minimizes expected utility, (iii) for each price choose a

portfolio that maximizes expected utility with respect to the worst case scenario

conditional belief determined in part (ii), (iv) find the price such that the optimal

portfolio determined in part (iii) equals the market portfolio.

The equilibrium when the signal noise variance is known is provided in the next

proposition. The proof is straightforward and thus omitted.

Proposition 6 (Savage Benchmark). Fix (σ1, σ2). Then

p2(s2) = Eσ2

[

d̃ | s̃2 = s2

]

− γVarσ2

[

d̃ | s̃2 = s2

]

(40)

p1(s1) = E(σ1,σ2)

[

d̃ | s̃1 = s1

]

− γVar(σ1,σ2)

[

d̃ | s̃1 = s1

]

. (41)

p0 = E(σ1,σ2)

[

d̃
]

− γVar(σ1,σ2)

[

d̃
]

. (42)
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The effects of ambiguous information on the conditional distribution of funda-

mentals and the derivation of the equilibrium stock price when investors are averse to

ambiguous information is provided below. I proceed in two steps: (i) I determine and

discuss the set of conditional beliefs at each date and (ii) I determine the equilibrium

price of the market portfolio at each date.

Beliefs

At date 2 investors have ambiguous information about the fundamentals of the

economy. Each model m ∈ M links this information to fundamentals and hence

determines a conditional belief for d̃ given s1 and s2. The unconditional distribution

of d̃ is known and s2 is a sufficient statistic (l1 is irrelevant) and hence the set of

conditional beliefs is determined by applying Bayes rule to each l2 ∈ L2.
23 Specifically,

standard normal-normal updating for each σ2 ∈ [σ2a, σ2b] leads to

d̃ | s̃2 = s2 ∼ N
(

d̄+ βd|s2
(s2 − d̄), σ2

d(1 − βd|s2
)
)

, βd|s2
=

σ2
d

σ2
d + σ2

2

. (43)

Ambiguity about the informativeness of s̃2 leads to ambiguity about the posterior

mean and variance and hence to a family of conditional beliefs (see the discussion in

Section I).

At date 1 investors have ambiguous information and anticipate ambiguous infor-

mation about the fundamentals of the economy. Specifically, every model m ∈ M

determines a conditional belief for s̃2 given s1. The set of conditional beliefs is de-

termined by applying Bayes rule to each (l1, l2) ∈ (L1 × L2). Specifically, standard

23See Appendix F for normal-normal updating rules.
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normal-normal updating for each (σ1, σ2) ∈ [σ1a, σ1b] × [σ2a, σ2b] leads to

s̃2 | s̃1 = s1 ∼ N
(

d̄+ βs2|s1(s̃1 − d̄), (σ2
d + σ2

2)(1 − βs2|s1)
)

, (44)

in which

βs2|s1 =
σ2

d + σ2
2

σ2
d + σ2

2 + σ2
1

. (45)

Ambiguity about the informativeness of s̃1 and s̃2 leads to ambiguity about the pos-

terior mean and variance. Moreover, the posterior mean depends on the realization

of s̃1 and hence the worst case scenario belief will depend on s1.

Suppose the investor has long position in the asset. The worst case scenario

for the mean is when investors put more weight on bad news than on good news.

Specifically,

min
σ1 ∈ [σ1a, σ1b]

σ2 ∈ [σ2a, σ2b]

E(σ1,σ2) [s̃2 | s̃1 = s1] =































d̄+ βs2|s1
(σ1b, σ2a) (s1 − d̄) if s1 − d̄ > 0

d̄+ βs2|s1
(σ1a, σ2b) (s1 − d̄) if s1 − d̄ < 0

d̄ if s1 − d̄ = 0.

(46)

The slope βs2|s1, which measures how much weight to put on s1 and how much infor-

mation about s̃2 is revealed by s1, is strictly decreasing in the signal noise variance

of the first signal but strictly increasing in the signal noise variance of the second

signal because investors learn more from the current signal if there is more noise in

the future signal.

The worst case scenario for the residual variance is a lot of noise in both signals.
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Specifically,

max
σ1 ∈ [σ1a, σ1b]

σ2 ∈ [σ2a, σ2b]

Var(σ1,σ2) [s̃2 | s̃1 = s1] = (σ2
d + σ2

2b)(1 − βs2|s1
(σ1b, σ2b)). (47)

At date 0 investors anticipate future ambiguous information about the funda-

mentals of the economy. Specifically, every model m ∈ M determines a belief for s̃1.

The set of beliefs is determined by applying Bayes rule to each (l1, l2) ∈ (L1 × L2).

Specifically, standard normal-normal updating for each (σ1, σ2) ∈ [σ1a, σ1b]× [σ2a, σ2b]

leads to

s̃1 ∼ N
(

d̄, σ2
d + σ2

2 + σ2
1

)

. (48)

Ambiguity about the informativeness of future signals leads to ambiguity about the

posterior variance and thus to a family of beliefs at date zero even though there is no

ex ante ambiguity about the dividend at date 3. This concludes the derivation of the

family of conditional beliefs at each date. I now proceed with the derivation of the

equilibrium at each date.

Equilibrium

The set of models considered at date 2 leads to a set of conditional beliefs de-

scribed by the interval [σ2a, σ2b]. Hence, the value function given in equation (35)

is

V2(w2, s2) = max
θ2∈R

min
σ2∈[σ2a,σ2b]

Eσ2

[

u
(

w2 + θ2

(

d̃− p2

))

| s̃2 = s2

]

(49)
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The optimization problem at date 2 is the same as the static optimization problem

discussed in the previous sections and hence the equilibrium signal-to-price map is

provided in Theorem 1.24

Let CE2(θ2;w2, p2, s2) denote the certainty equivalent of the ambiguity averse

investor defined in equation (7) and determined in equation (12). Plugging in for

the equilibrium price correspondence p2(s̃2) leads to a unique equilibrium certainty

equivalent correspondence. Specifically,

CE2(s2) ∈































{

w2 + γ

2
Varσ2b

[

d̃ | s̃2 = s2

] }

if s2 > ŝ2

CE2(ŝ2) if s2 = ŝ2

{

w2 + γ

2
Varσ2a

[

d̃ | s̃2 = s2

] }

if s2 < ŝ2,

(50)

Specifically, CE2 ∈ CE2(ŝ2), if ∃ σ2 ∈ [σ2a, σ2b] such that

CE2 = w2 +
γ

2
Varσ2

[

d̃ | s̃2 = ŝ2

]

. (51)

This concludes the derivation at date 2.

The set of models considered at date 1 leads to a set of conditional beliefs char-

acterized by the two intervals [σ1a, σ1b] and [σ2a, σ2b]. Hence, the value function given

in equation (37) is

V1(w1, s1) = max
θ1∈R

min
(σ1,σ2)∈[σ1a,σ1b]×[σ2a,σ2b]

E(σ1,σ2) [u (CE2 (w̃2, s̃2)) | s̃1 = s1] , (52)

24Let ŝ2 = d̄ − γσ2
d/2, β2 = βd|s2

(σ2), β2a = βd|s2
(σ2b), and β2b = βd|s2

(σ2a) in Theorem 1.
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in which w̃2 = w1 + θ1 (p2(s̃2) − p1) and p2(·) is given in equation (15) and CE2(·) is

given in equation (51). The price and the certainty equivalent are multi-valued at ŝ2

but the probability of s̃2 = ŝ2 is zero and hence the expectation in equation (52) is

well defined.

To gain some more intuition consider first the case in which investors are risk

neutral. In this case the price of the market portfolio is equal to the expected future

stock price when the worst case scenario is used to evaluate the expected value.

Specifically,

p1(s1) = min
(σ1,σ2)∈[σ1a,σ1b]×[σ2a,σ2b]

E(σ1,σ2) [p2(s̃2) | s̃1 = s1] , (53)

in which

p2(s̃2) = d̄+ β2b

(

s̃2 − d̄
)

− (β2b − β2a) max
(

s̃2 − d̄, 0
)

(54)

and hence

E(σ1,σ2) [p2(s̃2) | s̃1 = s1] = d̄+ β2b E(σ1,σ2)

[

s̃2 − d̄ | s̃1 = s1

]

− (β2b − β2a)E(σ1,σ2)

[

max(s̃2 − d̄, 0) | s̃1 = s1

]

.

(55)

The investors knows that an ambiguous signal will arrive and hence requires an ambi-

guity premium to hold the asset. The ambiguity premium, which is given by the last

term of equation (55), is determined in Proposition 7 of Appendix E. It is strictly

increasing in the posterior mean and variance. Hence, ambiguity about the infor-
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mativeness of both signals will affect the posterior mean and variance and thus the

mean and ambiguity premium of the asset. Moreover, the mean and the ambiguity

premium will depend on the realization of s̃1.

The posterior variance dominates if the signals roughly confirms the unconditional

mean of the divided s1 ≈ d̄ whereas the posterior mean dominates when the news

are either very good or very bad (| s1 − d̄ |≫ 0). Specifically, if the signal roughly

confirms the unconditional mean of the dividend, then the worst case scenario is a

large ambiguity premium. The ambiguity premium is large when the residual variance

is large and hence both signals are treated as high noise. However, if the signal is

either good (| s1 − d̄ |≫ 0) or bad ((s1 ≪ d̄)), then the worst case scenario is a low

posterior mean. Hence, the current signal s̃1 is treated as low noise for very bad news

(s1 ≪ d̄) and otherwise as high noise whereas the future signal s̃2 is treated as low

noise for very good news (s1 ≫ d̄) and high noise otherwise.25

The next figure shows the equilibrium price as a function of the signal. Ambiguous

information has two effects on the price of the market portfolio: (i) investors put more

weight on bad than on good news and hence the price reacts more to bad news than

to good news and (ii) the price of the asset is lower than the mean of the asset because

investors anticipated that they will receive ambiguous information in the future and

thus require a premium to hold the asset. Moreover, the mean and the ambiguity

premium are continuous functions of the signal and hence the price of the market

portfolio is a continuous and concave function of the signal.

25There are parameter values for which the worst case scenario signal noise distribution of either
signal is attained in the interior of the signal noise interval for a small ranges of signal values. See
Proposition 7 in Appendix E.
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Figure 10: Equilibrium Signal-to-Price Map at Date 1

This figure shows the equilibrium signal-to-price map at date one when investors
are risk neutral and ambiguity averse. The parameters are: d̄ = 200, σd = 5, and
[σ2

1a, σ
2
1b] = [σ2

1a, σ
2
1b] = [1/3, 3].

I solve for the equilibrium price numerically when investors are averse to risk and

ambiguity. The worst case scenario for the representative investor depends on the

realization of the current signal and the informativeness of the current and future

signal. Specifically, I find that the representative investor treats s̃1 as informative

and s̃2 as uninformative for bad news, s̃1 as uninformative and s̃2 as informative

for good news, and both signals as uninformative for news that roughly confirm the
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unconditional mean of the dividend. Figure 11 shows the equilibrium signal to price

map p1(s1) for γ = 2 and [σ2
1a, σ

2
1b] = [σ2

1a, σ
2
1b] = [1/3, 3].
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Figure 11: Equilibrium Signal-to-Price Map at Date 1

This figure shows the equilibrium signal-to-price map at date one. The parameters
are: d̄ = 200, σd = 5, γ = 2, and [σ2

1a, σ
2
1b] = [σ2

1a, σ
2
1b] = [1/3, 3].

Investors put more weight on bad than on good news and hence the price reacts

more to bad news than to good news. Moreover, the price of the asset is lower than

the mean of the asset because investors require a risk and ambiguity premium to hold

the asset. If the signal roughly confirms the unconditional mean of the dividend,

then the residual variance is larger than if the signal is very good or bad. Hence,
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if the signal increases trough the first critical signal value which is lower than the

unconditional mean of the dividend, then the residual variance suddenly increases

and hence the price drops. On the other had, if the signal increase trough the second

critical value which is larger than the unconditional mean of the dividend, then the

residual variance suddenly drops and hence the price increases.

The set of models considered at date 0 leads to a set of conditional beliefs char-

acterized by the two intervals [σ1a, σ1b] and [σ2a, σ2b]. Hence, the value function given

in equation (39) is thus

V0(w0) = max
θ1∈R

min
(σ1,σ2)∈[σ1a,σ1b]×[σ2a,σ2b]

E(σ1,σ2) [u (CE1 (w̃1, s̃1))] , (56)

in which w̃1 = w0 +θ0 (p1(s̃1) − p0) and p1(·) and CE1(·) are to be determined numer-

ically. The price and the certainty equivalent are multivalued at two critical signal

values but the probability of attaining either of these two values is zero and hence

the expectation in equation (56) is well defined.26

The price at date one is non-increasing and concave if the representative investor

is risk neutral and hence the worst case scenario is a large signal noise of both signals.

Specifically,

p0 = min
(σ1,σ2)∈[σ1a,σ1b]×[σ2a,σ2b]

E(σ1,σ2) [p1(s̃1)]

= E(σ1b,σ2b) [p1(s̃1)]

(57)

26Suppose the two period model is extended to an N period model with signal structure s̃n =
s̃n+1 + ε̃n+1, ε̃n+1 ∼ N(0, σ2

n+1), and σn ∈ [σan, σnn]. Then it would still be the case that the
minimization problem at each date would be at most two dimensional.
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The numerical derivation of the price at date zero for risk averse investors is omitted.

VI Conclusion

In this paper I study the effects of aversion to risk and ambiguity on the value of the

market portfolio when investors receive ambiguous information about the fundamen-

tals of the economy. I show that small changes in public information can produce large

changes in the stock price and systemic negative news may lead to higher valuations

of the stock market than idiosyncratic negative events.

Investor’s preferences are represented by ”max-min” expected utility. These pref-

erences exhibit aversion to ambiguity but lead to non smooth indifference curves

which makes them less tractable than standard preferences. Specifically, I show that

there is an interval of equilibrium stock prices at a negative signal value because the

utility of the marginal investor has a kink at the market clearing stock demand.

An important question is: What happens to the kink in the indifference curve of

the marginal investor in aggregation? To be more specific: Does the kink smooth out

when aggregating over heterogenous investors? To address the issue of aggregation,

I solve for the equilibrium price of the market portfolio when there are multiple

investors that differ with respect to aversion to risk and ambiguity.27

I show that there is an interval of equilibrium stock prices at a critical negative

signal value when I aggregate over investors with different preferences as long as there

27There are no interesting wealth effects because investors have CARA utility.
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is a common set of beliefs (signal precisions). Intuitively, if investors share a common

set of beliefs, then there is an interval of prices at which they do not the change

their position in the asset. All these prices are equilibrium prices because individual

demands, which can differ in magnitude depending on an investor’s risk aversion, add

up to the market clearing demand at the critical signal value.

This implies that there is no discontinuity in the equilibrium signal-to-price map if

at least one investor has standard expected utility preferences or if there is speculative

trade.28 However, preliminary results show that in both cases small changes in public

information can still produce large changes in the stock price and systemic negative

news may lead to higher valuations of the stock market than idiosyncratic negative

events. I leave a more detailed discussion of the aggregation when investors are

heterogenous but don’t have a common set of beliefs for future research.

A Convex Analysis

In this section I provide some elementary results of Convex Analysis that I will use
in the remainder of the appendix for all proofs. A good reference is the book by
Bertsekas, Nedić, and Ozdaglar (2003).

Let f : R → R be a continuous function that is differentiable except for a finite num-
ber of points. Let N denote the finite set of points at which f(x) is not differentiable.

Definition 2 (Left and Right Derivative of f). Let f ′
−(ξ) denote the left derivative and

28Risk averse investors with subjective expected utility engage in betting or speculative trade if
and only if their beliefs differ. If agents are also ambiguity averse, then there is speculative trade
if and only if investors don’t have a belief in common; i.e.

⋂H

h=1[βah, βbh] = ∅. This is shown by
Billot, Chateuneuf, and Gilboa (2000) for Gilboa and Schmeidler (1989) preferences and extended
to a broader class of preferences that exhibit aversion to ambiguity, including the convex Choquet
model of Schmeidler (1989), the smooth second-order prior models of Klibanoff, Marinacci, and
Mukerji (2005) and Nau (2006), the second-order expected utility model of Ergin and Gul (2004),
the multiplier model of Hansen and Sargent (2001), and the variational preferences of Maccheroni,
Marinacci, and Rustichini (2006) by Rigotti, Shannon, and Strzalecki (2008).
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f ′
+(ξ) denote the right derivative of the function f(x) evaluated at x = ξ. Specifically,

f ′
+(ξ) ≡ lim

x↓ξ
f ′(x) (58)

f ′
−(ξ) = lim

x↑ξ
f ′(x). (59)

Lemma 1. The function f(x) is concave if (i) f
′′

(x) ≤ 0 ∀x ∈ R \ N and (ii)
f ′
−(x) ≥ f ′

+(x) ∀x ∈ N .

Proof. Straightforward.

Definition 3 (Subgradient and Sudifferential). Let f : R → R be a concave function.
The scalar d ∈ R is a subgradient of f at a point ξ ∈ R if

f(x) ≤ f(ξ) + (x− ξ)d, ∀x ∈ R. (60)

The set of all subgradients of a concave function f at ξ ∈ R is called the subdifferential
of f at ξ and is denoted by ∂f(ξ).

The subdifferential of f can be characterized by its right and left derivative. This is
shown in the next Lemma.

Lemma 2 (Subdifferential of f(x)). Let f : R → R be a continuous and concave
function. Then,

∂f(x) =
{

d | f ′
+(x) ≤ d ≤ f ′

−(x)
}

, ∀ x ∈ R. (61)

Proof. See exercise 4.5 in Bertsekas, Nedić, and Ozdaglar (2003).

Necessary and sufficient conditions to obtain the maximum of f are provided in the
next lemma.

Lemma 3 (Maximum of f(x)). Let f : R → R be a continuous and concave function.
Then,

ξ ∈ argmax
x∈R

f(x) if and only if 0 ∈ ∂f(ξ). (62)

Proof. Straightforward.

B Ambiguous Information

In this section I prove Proposition 1. I will proceed in four steps: (i) I determine
CE(·) in Lemma 4, (ii) then I discuss continuity and differentiability of CE(·), (iii)
then I derive the left and right derivative of CE(·) at all points for which it is not
differentiable, (iv) I conclude this section with the proof of Proposition 1.
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Let’s define two functions for notional convenience: fix β ∈ [βa, βb] and let φβ(θ) ≡
CES(θ, β;w0, p, s) and fix s ∈ R and let ψs(θ) = CE(θ;w0, s, p).

Lemma 4. The certainty equivalent of the ambiguity averse investor is given by

ψs(θ) = w +
(

d̄− p
)

θ − 1

2
γσ2

d θ
2

+ max

(

s− d̄+
1

2
γσ2

dθ, 0

)

(βa max(θ, 0) + βb min(θ, 0))

+ min

(

s− d̄+
1

2
γσ2

dθ, 0

)

(βb max(θ, 0) + βa min(θ, 0))

(63)

Moreover, let θ̂ ≡ −2(s− d̄)/(γσ2
d). Then,

ψs(θ) =



















φβa
(θ) if θ ≤ min

(

θ̂, 0
)

φβb
(θ) if min

(

θ̂, 0
)

< θ < max
(

θ̂, 0
)

φβa
(θ) if θ ≥ max

(

θ̂, 0
)

.

(64)

Proof. Plugging in for the conditional mean and variance in equation (8) leads to

φβ(θ) = w0 +
(

d̄+ β(s− d̄) − p
)

θ − 1

2
γσ2

d(1 − β)θ2. (65)

Let η(θ) = s− d̄+ 1
2
γσ2

dθ and g(β; θ) = βη(θ). Hence,

φβ(θ) = w0 + (d̄− p)θ − 1

2
γσ2

dθ
2 + θg(β; θ). (66)

If θ is positive then φβ(θ) is minimized with respect to β if g(β, θ) is minimized with
respect to β whereas if θ is negative then φβ(θ) is minimized with respect to β if
g(β, θ) is maximized with respect to β. Specifically,

ψs(θ) = w0 + (d̄− p)θ − 1

2
γσ2

dθ
2 + max{θ, 0}gmin(θ) + min{θ, 0}gmax(θ), (67)

in which

gmin(θ) ≡ min
β∈[βa,βb]

g(β; θ) = βa max{η(θ), 0} + βb min{η(θ), 0} (68)

gmax(θ) ≡ max
β∈[βa,βb]

g(β; θ) = βb min{η(θ), 0} + βa max{η(θ), 0}. (69)

Plugging η(θ), gmin(θ), and gmax(θ) into equation (67) and rearranging terms leads to
equation (63). The parameter θ̂ = −2(s− d̄)/(γσ2

d) is the unique root of the function

η(·), i.e. η(θ̂) = 0. Moreover, η(θ) ≥ 0 if θ ≥ θ̂ and η(θ) < 0 if θ < θ̂. Evaluating
equation (63) for the three different cases: (i) s − d̄ = 0 ⇔ θ̂ = 0, (ii) s − d̄ < 0 ⇔
θ̂ > 0, and (iii) s− d̄ < 0 ⇔ θ̂ < 0 leads to equation (64).
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Lemma 5. ψs(θ) is continuous ∀ θ ∈ R. If s = d̄, then ψs(θ) is continuously
differentiable ∀ θ ∈ R. If s 6= d̄, then ψs(θ) is continuously differentiable ∀ θ ∈
R \ {0, θ̂}.

Proof. Consider equation (63). Both the min(·) and max(·) function are continuous
and hence ψs(θ) is a continuous function of θ. If s = d̄, then ψs(θ) = φβa

(θ) and
hence is continuously differentiable.

The functions min(x, a) and max(x, a) are continuously differentiable expect for x =
a. Hence, if s 6= d̄, then ψs(θ) is continuously differentiable except when θ = 0 and
θ = θ̂. The latter follows directly from η(θ̂) = 0.

The right and left derivative of ψs(θ) are determined in the next lemma.

Lemma 6 (The right and left derivative of ψs(θ)). Let s 6= d̄. Then ψs(θ) is not
differentiable at θ = 0 and θ = θ̂. Moreover,

ψ′+
s (0) =

{

d̄+ βa(s− d̄) − p if s− d̄ > 0
d̄+ βb(s− d̄) − p if s− d̄ < 0

(70)

ψ′−
s (0) =

{

d̄+ βb(s− d̄) − p if s− d̄ > 0
d̄+ βa(s− d̄) − p if s− d̄ < 0

(71)

ψ′+
s (θ̂) =

{

d̄+ 2(s− d̄) − p− βb(s− d̄) if s− d̄ > 0
d̄+ 2(s− d̄) − p− βa(s− d̄) if s− d̄ < 0

(72)

ψ′−
s (θ̂) =

{

d̄+ 2(s− d̄) − p− βa(s− d̄) if s− d̄ > 0
d̄+ 2(s− d̄) − p− βb(s− d̄) if s− d̄ < 0

(73)

Moreover, if s = d̄, then θ̂ = 0 and

ψ′+
s (0) = ψ′−

s (0) = ψ′
s(0) = d̄− p (74)

Proof. Taking the first derivative of φβ(θ) given in equations (8) and (65) leads to

φ′
β(θ) = Eβ

[

d̃ | s̃ = s
]

− p− γVarβ

[

d̃ | s̃ = s
]

θ

= d̄+ β(s− d̄) − p− γσ2
d(1 − β)θ.

(75)

Consider three cases: (i) s− d̄ = 0 ⇔ θ̂ = 0, (ii) s− d̄ < 0 ⇔ θ̂ > 0, and (iii) s− d̄ < 0
⇔ θ̂ < 0.

1. If θ̂ = 0, then ψs(θ) = φβa
(θ) ∀ θ ∈ R and hence

ψs(θ̂) = ψs(0) = ψ+
s (0) = ψ−

s (0) = d̄− p. (76)
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2. If θ̂ > 0, then taking the derivatives of ψs(θ) given in equation (64) with respect
to θ except for θ = 0 and θ = θ̂ leads to

ψ′
s(θ) =







φ′
βa

(θ) if θ < 0

φ′
βb

(θ) if 0 < θ < θ̂

φ′
βa

(θ) if θ > θ̂.

(77)

Moreover, taking the limit of ψ′
s(θ) given in equation (77) at θ = θ̂ from above

leads to

ψ′+
s (θ̂) = lim

θ↓θ̂
ψ′

s(θ) = lim
θ↓θ̂

φ′
βa

(θ)

= d̄+ βa(s− d̄) − p− γσ2
d(1 − βa)θ̂

= d̄− p+ 2(s− d̄) − βa(s− d̄).

(78)

Similarly, taking the limit of ψ′
s(θ) at θ = θ̂ from below leads to

ψ′−
s (θ̂) = lim

θ↑θ̂
ψ′

s(θ) = lim
θ↑θ̂

φ′
βb

(θ)

= d̄+ βb(s− d̄) − p− γσ2
d(1 − βb)θ̂

= d̄− p+ 2(s− d̄) − βb(s− d̄).

(79)

Taking the limit of ψ′
s(θ) given in equation (77) at θ = 0 from above leads to

ψ′+
s (0) = lim

θ↓0
ψ′

s(θ) = lim
θ↓0

φ′
βb

(θ)

= d̄+ βb(s− d̄) − p.
(80)

Similarly, taking the limit of ψ′
s(θ) at θ = 0 from below leads to

ψ′−
s (0) = lim

θ↑0
ψ′

s(θ) = lim
θ↑0

φ′
βa

(θ)

= d̄+ βa(s− d̄) − p.
(81)

3. The proof for the case θ̂ < 0 is similar and thus omitted.

Proof of Proposition 1. I have determined CE(·) in Lemma 4 and I have shown in
Lemma 6 that CE(·) is continuous and continuously differentiable except for the
critical values θ = 0 and θ = θ̂ if s 6= d̄.

It remains to show that ψs(θ) is concave. Both φβa
(θ) and φβb

(θ) are concave func-
tions. Hence, it remains to show that the difference between the right derivative and
the left derivative at θ = 0 and θ = θ̂ (the points where both functions are connected
but not differentiable) is negative (see Lemma 1).
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Let s− d̄ > 0, then

ψ′+
s (θ̂) − ψ′−

s (θ̂) = − (βb − βa) (s− d̄) < 0 (82)

ψ′+
s (0) − ψ′−

s (0) = − (βb − βa) (s− d̄) < 0. (83)

Similarly, let s− d̄ < 0, then

ψ′+
s (θ̂) − ψ′−

s (θ̂) = (βb − βa) (s− d̄) < 0 (84)

ψ′+
s (0) − ψ′−

s (0) = (βb − βa) (s− d̄) < 0 (85)

If s− d̄ = 0, then ψs(·) is concave because ψs(θ) = φβa
(θ) ∀ θ ∈ R.

C Portfolio Choice

I have shown in Proposition 1 that CE(θ;w0, p, s) = ψs(θ) is a continuous and concave
function of the stock demand θ. Hence, if zero is contained in the subdifferential
of CE(θ∗;w0, p, s), then it follows from Lemma 2 that θ∗ is a global maximum of
CE(θ;w0, p, s) for all θ ∈ R.

The subdifferential of CE(θ;w0, p, s) is determined in the next lemma. The proof
follows directly from Lemma 2 and Lemma 6 and is thus omitted.

Lemma 7 (Subdifferential of CE(θ)). If s = d̄, then the subdifferential of ψs(θ) is
single-valued. Specifically,

∂ψs(θ) = {φ′
βa

(θ)}, ∀θ ∈ R. (86)

If s 6= d̄, then the subdifferential is single valued except for θ = 0 and θ = θ̂. Specifi-
cally,

∂ψs(θ) = {ψ′
s(θ)} ∀θ ∈ R \ {0, θ̂}, (87)

in which

ψ′
s(θ) =



















φ′
βa

(θ) if θ < min
(

θ̂, 0
)

φ′
βb

(θ) if min
(

θ̂, 0
)

< θ < max
(

θ̂, 0
)

φ′
βa

(θ) if θ > max
(

θ̂, 0
)

.

(88)

The subdifferential is multi-valued at θ = 0 and θ = θ̂. Specifically,

∂ψs(0) =
{

d | ψ′+
s (0) ≤ d ≤ ψ′−

s (0)
}

(89)

∂ψs(θ̂) =
{

d | ψ′+
s (θ̂) ≤ d ≤ ψ′−

s (θ̂)
}

, (90)
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in which

ψ′+
s (0) = mβa

(s) I{s≥d̄} +mβb
(s) I{s≤d̄} − p

= d̄− p+ βa max{s− d̄, 0} + βb min{s− d̄, 0} (91)

ψ′−
s (0) = mβb

(s) I{s≥d̄} +mβa
(s) I{s≤d̄} − p

= d̄− p+ βb max{s− d̄, 0} + βa min{s− d̄, 0} (92)

ψ′+
s (θ̂) =

(

mβb
(s) − θ̂λβb

)

I{s≥d̄} +
(

mβa
(s) − θ̂λβa

)

I{s≤d̄} − p

= d̄+ 2(s− d̄) − p− βb max{s− d̄, 0} − βa min{s− d̄, 0}
(93)

ψ′−
s (θ̂) =

(

mβa
(s) − θ̂λβa

)

I{s≥d̄} +
(

mβa
(s) − θ̂λβa

)

I{s≤d̄} − p

= d̄+ 2(s− d̄) − p− βa max{s− d̄, 0} − βb min{s− d̄, 0},
(94)

in which I{·} is the indicator function and

mβ(s) ≡ Eβ

[

d̃ | s̃ = s
]

= d̄+ β(s− d̄) (95)

λβ ≡ γVarβ

[

d̃ | s̃ = s
]

= γσ2
d(1 − β). (96)

Proof of Proposition 3. It follows from Lemma 3 that there is a unique maximum of
the certainty equivalent of an ambiguity averse investor if and only if zero is contained
in the subdifferential of the certainty equivalent. The certainty equivalent of an
ambiguity averse investor is given in equation (12) and its subdifferential is provided
in Lemma 7.

Consider three cases: (i) s− d̄ = 0 ⇔ θ̂ = 0, (ii) s− d̄ > 0 ⇔ θ̂ < 0, and (iii) s− d̄ < 0
⇔ θ̂ > 0.

The certainty equivalent is smooth in the first case and thus the proof is trivial.

Consider the case s > d̄. The certainty equivalent is differentiable except for the
critical points 0 and θ̂ < 0. Specifically,

ψ′
s(θ) =







φ′
βa

(θ) = mβa
− p− λβa

θ if θ < θ̂

φ′
βb

(θ) = mβb
− p− λβb

θ if θ̂ < θ < 0
φ′

βa
(θ) = mβa

− p− λβa
θ if θ > 0.

(97)

I first determine the range of prices at which the subdifferential of the certainty
equivalent is single valued and equal to zero. Specifically, φ′

βa
(θ∗) = 0 implies that

θ∗ = (mβa
(s) − p)/λβa

. Hence, ψ′
s(θ

∗) = φ′
βa

(θ∗) = 0 if and only if θ∗ > 0 or θ∗ < θ̂.

The range of prices for which this is true is mβa
(s) > p and mβa

(s) − θ̂λβa
< p.

Similarly, φ′
βb

(θ∗) = 0 implies that θ∗ = (mβb
(s)−p)/λβb

. Hence, ψ′
s(θ

∗) = φ′
βb

(θ∗) = 0

if and only if θ̂ < θ∗ < 0. The range of prices for which this is true is mβb
(s) < p and

mβb
(s) − θ̂λβb

> p. Moreover, mβa
(s) < mβb

(s) and mβb
(s) − θ̂λβb

< mβa
(s) − θ̂λβa

for all βa < βb if s > d̄.
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It remains to determine the optimal demands if mβa
(s) ≤ p ≤ mβb

(s) and if mβb
(s)−

θ̂λβb
≤ p ≤ mβa

(s) − θ̂λβa
. I conjecture that (i) θ∗ = 0 if and only if mβa

(s) ≤ p ≤
mβb

(s) and (ii) θ∗ = θ̂ if and only if mβb
(s) − θ̂λβb

≤ p ≤ mβa
(s) − θ̂λβa

.

The first conjecture is true if and only if the subdifferential of ψs(θ) contains zero
when evaluated at θ = 0. Hence,

0 ∈ ∂ψs(0) ⇔ ψ′+
s (0) ≤ 0 ∧ ψ′−

s (0) ≥ 0 ⇔ mβa
(s) − p ≤ 0 ∧ mβb

(s) − p ≥ 0.

The second conjecture is true if and only if the subdifferential of ψs(θ) contains zero
when evaluated at θ = θ̂. Hence,

0 ∈ ∂ψs(θ̂) ⇔ ψ′+
s (θ̂) ≤ 0 ∧ ψ′−

s (θ̂) ≥ 0

⇔ mβb
(s) − θ̂λβb

− p ≤ 0 ∧ mβa
(s) − θ̂λβa

− p ≥ 0.

The proof for the case s < d̄ is similar and thus omitted.

Proof of Proposition 4. I know from Proposition 3 that the optimal demand of an in-
vestor with initial wealth wh0, risk aversion γh and aversion to ambiguous information
described by [βa, βb] is

θh(p) =















































































Eβa

[

d̃ | s̃ = s
]

− p

γhVarβa

[

d̃ | s̃ = s
] p ≤ p1

− 2
γhσ2

d

min
(

s− d̄, 0
)

p1 < p ≤ p2

Eβb

[

d̃ | s̃ = s
]

− p

γhVarβb

[

d̃ | s̃ = s
] p2 < p ≤ p3

− 2
γhσ2

d

max
(

s− d̄, 0
)

p3 < p ≤ p4

Eβa

[

d̃ | s̃ = s
]

− p

γhVarβa

[

d̃ | s̃ = s
] p > p4,

(98)

with p1, . . ., p4 given in equations (23), . . ., 26, respectively. The price levels p1, . . .,
p4 are the same for each investor and hence adding up the individual demands of all
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investor for all five intervals leads to the aggregate demand function

θ(p) =

H
∑

h=1

θh =















































































Eβa

[

d̃ | s̃ = s
]

− p

Varβa

[

d̃ | s̃ = s
]

∑H

h=1
1
γh

p ≤ p1

− 2
σ2

d

min
(

s− d̄, 0
)
∑H

h=1
1
γh

p1 < p ≤ p2

Eβb

[

d̃ | s̃ = s
]

− p

Varβb

[

d̃ | s̃ = s
]

∑H

h=1
1
γh

p2 < p ≤ p3

− 2
σ2

d

max
(

s− d̄, 0
)
∑H

h=1
1
γh

p3 < p ≤ p4

Eβa

[

d̃ | s̃ = s
]

− p

Varβa

[

d̃ | s̃ = s
]

∑H

h=1
1
γh

p > p4,

(99)

which is the demand function of the representative investor with initial wealth w0 =
∑H

h=1w0h, risk aversion γ = 1/
(

∑H

h=1 1/γh

)

, and ambiguity [βa, βb].

D Equilibrium

In this section I prove Theorem 1 and Proposition 5.

Proof of Theorem 1. Take the optimal demand function given in equation (22) of
Proposition 3 and set it equal to the market clearing stock demand of one.

Consider four cases (i) s = ŝ, (ii) s < ŝ, (ii) ŝ < s < 0 and (vi) s ≥ 0 with
ŝ = d̄− γσ2

d/2.

(i) if s = ŝ, then θ̂ = 1. The optimal demand θ(p) equals θ̂ = 1 = −2 min(ŝ −
d, 0)/(γσ2

d) if and only if p1 ≤ p ≤ p2. Evaluating p1 and p2 at ŝ leads to

p1 = Eβa

[

d̃ | s = ŝ
]

− γVarβa

[

d̃ | s = ŝ
]

(100)

p2 = Eβb

[

d̃ | s = ŝ
]

− γVarβb

[

d̃ | s = ŝ
]

(101)

Hence, P(ŝ) = [p1, p2] is the set of equilibrium prices. Moreover, it is straightforward
to show that p ∈ P(ŝ), if ∃ β ∈ [βa, βb] such that

p = Eβ

[

d̃ | s̃ = ŝ
]

− γVarβ

[

d̃ | s̃ = ŝ
]

. (102)

If s < ŝ, then θ̂ > 1 and hence the market clearing stock demand is optimal and equal
to one if and only if

p(s) = Eβb

[

d̃ | s̃ = s
]

− γVarβb

[

d̃ | s̃ = s
]

. (103)
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In this case the inequality

p2 = Eβb

[

d̃ | s̃ = s
]

− θ̂γVarβb

[

d̃ | s̃ = s
]

≤ p ≤ Eβb

[

d̃ | s̃ = s
]

= p3.

is always satisfied.

Similarly, if ŝ < s < 0, then θ̂ < 1 and hence the market clearing stock demand is
optimal and equal to one if and only if

p(s) = Eβa

[

d̃ | s̃ = s
]

− γVarβa

[

d̃ | s̃ = s
]

. (104)

In this case the inequality

p ≤ p1 = Eβa

[

d̃ | s̃ = s
]

− θ̂γVarβa

[

d̃ | s̃ = s
]

is always satisfied.

Similarly, if s ≥ 0, then θ̂ ≤ 0 and hence the market clearing stock demand is optimal
and equal to one if and only if

p(s) = Eβa

[

d̃ | s̃ = s
]

− γVarβa

[

d̃ | s̃ = s
]

. (105)

In this case the inequality

p ≥ p4 = Eβa

[

d̃ | s̃ = s
]

− θ̂γVarβa

[

d̃ | s̃ = s
]

is always satisfied. This concludes the proof

Proof of Proposition 5. Suppose there exists and equilibrium. Moreover, let [βa, βb] =
⋂H

h=1[βah, βbh], γ = 1/
∑H

h=1 (1/γh), and ŝ = d̄− γσ2
d/2. Define,

p1 = Eβa

[

d̃ | s̃ = ŝ
]

+
2

σ2
d

Varβa

[

d̃ | s̃ = ŝ
]

min
(

ŝ− d̄, 0
)

(106)

p2 = Eβb

[

d̃ | s̃ = ŝ
]

+
2

σ2
d

Varβb

[

d̃ | s̃ = ŝ
]

min
(

ŝ− d̄, 0
)

(107)

Hence, investor h’s optimal demand for the price range p1 ≤ p ≤ p2 is constant.
Specifically,

θh(p) = − 2

γhσ2
d

min
(

ŝ− d̄, 0
)

∀ p1 ≤ p ≤ p2.

Summing over all investors leads to

H
∑

h=1

θh(p) = − 2

σ2
d

min
(

ŝ− d̄, 0
)

H
∑

h=1

1

γh

= 1 ∀ p1 ≤ p ≤ p2.

If βa < βb, then p1 < p2 and hence, there is an interval of equilibrium prices if investors
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share more than one belief. In this case P = [p1, p2] and it is straightforward to show
that p ∈ P, if ∃ β ∈ [βa, βb] such that

p = Eβ

[

d̃ | s̃ = ŝ
]

− γVarβ

[

d̃ | s̃ = ŝ
]

.

If βa = βb, then p(ŝ) = p1 ≤ p2, then there is a unique equilibrium price if investors
share only one belief.

E Dynamic Model

Proposition 7. The asset price at date one is a non-decreasing concave function of
the signal. Specifically,

p1(s1) = min
(σ1,σ2)∈[σ1a,σ1b]×[σ2a,σ2b]

E(σ1,σ2) [p2(s̃2) | s̃1 = s1] (108)

= d̄+ β2b E(σ∗

1 (s1),σ∗

2 (s1))

[

s̃2 − d̄ | s̃1 = s1

]

− Λ(σ∗
1(s1), σ

∗
2(s1); s1) (109)

in which

Λ(σ1, σ2; s1) = (β2b − β2a) E(σ1,σ2)

[

max(s2 − d̄, 0) | s̃1 = s1

]

= (β2b − β2a)

(
√

v(σ1, σ2)

2π
e
− 1

2
m(σ1,σ2;s1)2

v(σ1,σ2) +m(σ1, σ2; s1)N

(

m(σ1, σ2; s1)
√

v(σ1, σ2)

))

,

(110)

and N (·) denotes the cumulative distribution function of a standard normal distri-
bution and m(σ1, σ2; s1) and v(σ1, σ2) denote the conditional mean and variance of
s̃2 − d̄ given s1, respectively.

Moreover,

(σ∗
1(s1), σ

∗
2(s1)) =























(σ1b, σ2a) if s1 < ŝ1a

(σ̄1, σ2a) if ŝ1a ≤ s1 ≤ ŝ1b

(σ1a, σ2a) if ŝ1b < s1 < ŝ1c

(σ1a, σ̄2) if ŝ1c ≤ s1 ≤ ŝ1d

(σ1a, σ2b) if s1 > ŝ1d

(111)

It is straightforward to solve for σ̄1, σ̄2, ŝ1a, ŝ1b, ŝ1c, and ŝ1d numerically. There are
parameter values for which ŝ1a > ŝ1b and ŝ1c > ŝ1d. In this case the minimum is
always attained at the boundary.

Proof. I use Lemma 10 to determine the conditional expectation in equation (108).
Then I write down the Karusch-Kuhn-Tucker conditions to solve for the minimum of
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the optimization problem

min
σ1,σ2

E(σ1,σ2) [p2(s̃2) | s̃1 = s1]

s.t. σ1a ≤ σ1 ≤ σ1b

σ2a ≤ σ2 ≤ σ2b

F Normal Distribution

This appendix summarizes properties of normally distributed variables. The proofs
are straightforward and hence omitted.

Lemma 8 (Normal-Normal Updating). Let

d̃ = d̄+ ε̃d ε̃d
id∼ N

(

0, σ2
d

)

s̃2 = d̃+ ε̃2 ε̃2
id∼ N

(

0, σ2
2

)

s̃1 = s̃2 + ε̃1 ε̃1
id∼ N

(

0, σ2
1

)

(112)

The marginal distribution of s̃2 and s̃1 is normal. Specifically,

s̃2 ∼ N(d̄, σ2
d + σ2

2) (113)

s̃1 ∼ N(d̄, σ2
d + σ2

2 + σ2
1). (114)

The distribution of d̃ | s2, d̃ | s1, and s̃2 | s1 is normal. Specifically,

d̃ | s2 ∼ N
(

d̄+ βd|s2

(

s2 − d̄
)

, σ2
d

(

1 − βd|s2

))

(115)

d̃ | s1 ∼ N
(

d̄+ βd|s1

(

s1 − d̄
)

, σ2
d

(

1 − βd|s1

))

(116)

s̃2 | s1 ∼ N
(

d̄+ βs2|s1

(

s1 − d̄
)

,
(

σ2
d + σ2

2

) (

1 − βs2|s1

))

(117)

with

βd|s2
=

Var[d]

Var[s2]
=

σ2
d

σ2
d + σ2

2

(118)

βd|s1 =
Var[d]

Var[s1]
=

σ2
d

σ2
d + σ2

2 + σ2
1

(119)

βs2|s1 =
Var[s2]

Var[s1]
=

σ2
d + σ2

2

σ2
d + σ2

2 + σ2
1

. (120)

Lemma 9. Let x denote a normally distributed variable. Specifically, x ∼ N(µ, σ2).
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Moreover, let −∞ ≤ a < b ≤ ∞ and α ∈ R. Then,

E ≡ Ex

[

eαx1{a≤x≤b}

]

= eαµ+ 1
2
α2σ2

(

N

(

µ+ ασ2 − a

σ

)

−N

(

µ+ ασ2 − b

σ

))

.

= eαµ+ 1
2
α2σ2

(

N

(

b− (µ+ ασ2)

σ

)

−N

(

a− (µ+ ασ2)

σ

))

.

(121)

Moreover,

lim
a→−∞

E = eαµ+ 1
2
α2σ2

(

1 −N

(

µ+ ασ2 − b

σ

))

= eαµ+ 1
2
α2σ2

N

(

b− (µ+ ασ2)

σ

)

,

(122)

lim
b→∞

E = eαµ+ 1
2
α2σ2

N

(

µ+ ασ2 − a

σ

)

= eαµ+ 1
2
α2σ2

(

1 −N

(

a− (µ+ ασ2)

σ

))

,

(123)

and

lim
a → −∞

b → ∞

E = eαµ+ 1
2
α2σ2

. (124)

Lemma 10. Let x denote a normally distributed variable. Specifically, x ∼ N(µ, σ2).
Moreover, let −∞ ≤ a < b ≤ ∞ and α ∈ R. Then,

E ≡ Ex

[

xeαx1{a≤x≤b}

]

=
σ√
2π

(

eaα− 1
2(

µ−a

σ )
2

− ebα− 1
2(

µ−b

σ )
2)

+ (µ+ ασ2) eαµ+ 1
2
α2σ2

(

N

(

µ+ ασ2 − a

σ

)

−N

(

µ+ ασ2 − b

σ

))

.

=
σ√
2π

(

eaα− 1
2(

µ−a

σ )
2

− ebα− 1
2(

µ−b

σ )
2)

+ (µ+ ασ2) eαµ+ 1
2
α2σ2

(

N

(

b− (µ+ ασ2)

σ

)

−N

(

a− (µ+ ασ2)

σ

))

.

(125)
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Moreover,

lim
a→−∞

E = − σ√
2π

ebα− 1
2(

µ−b

σ )
2

+ (µ+ ασ2)eαµ+ 1
2
α2σ2

N

(

b− (µ+ ασ2)

σ

)

lim
b→∞

E =
σ√
2π

eaα− 1
2(

µ−a

σ )
2

+ (µ+ ασ2)eαµ+ 1
2
α2σ2

N

(

µ+ ασ2 − a

σ

)

lim
a → −∞

b → ∞

E = (µ+ ασ2)eαµ+ 1
2
α2σ2

(126)
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