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Abstract

This paper provides a theoretical analysis of margin requirements and their market-wide implica-
tions. The key feature of the model is time variation in margin constraints, which are endogenously
determined by prevailing market conditions. I demonstrate that in the states when margins do not
bind and investors are not financially constrained time variation in margins can have destabilizing
effects: it reduces liquidity and increases volatility of returns as well as their correlations relative
to the economy without margins. The effect is opposite when margin requirements are tight and
investors optimally exhaust their debt capacity. A purely dynamic hedging demand produced by
time variation in margins is responsible for the amplification effects. The destabilizing impact of
margin requirements 1) is stronger for intermediately severe margin requirements 2) is more pro-
nounced if individual assets are collateralized separately, and 3) is almost insensitive to the number
of risky assets in the economy.
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1 Introduction

Margin debt is a pervasive phenomenon in the financial industry: many investors borrow money and
construct leveraged portfolios. To protect themselves against losses caused by adverse price move-
ments, lenders almost always require borrowers to put their portfolios as collateral and, in addition,
impose certain limits (margin constraints) on maximum leverage. In many circumstances, the terms
of margin borrowing are not fixed and depend on prevailing market conditions.1 In this paper, I
provide a theoretical analysis of time variation in margin constraints as well as its impact on volatility
of returns, risk premium, liquidity, and correlation of returns.

Specifically, I demonstrate that time-varying margin constraints can have several important market-
wide implications. First, the constraints can make returns more volatile when they do not bind and
less volatile when they bind. Second, dynamic margins can make the market substantially less liquid
when the probability that the constraints become binding in the nearest future is relatively high.
Thus, variation in margins can explain why volatility of returns increases and liquidity “dries up”
when market conditions deteriorate. In a multiple asset setting, time variation in margins can con-
tribute to contagion: when investors are close to the point where they exhaust their debt capacity the
correlation between returns on assets with independent fundamentals increases.

As a laboratory for analysis of these effects, I use a continuous time equilibrium model with
infinite horizon and multiple risky assets. All assets are identical and pay stochastic dividends, which
are uncorrelated across assets. Dividends are exogenous and represent fundamentals in the model.
There are three types of agents in the economy dubbed as professional investors, long-term investors,
and financiers. Professional investors and long-term investors have different preferences and demands
and trade with each other. The role of financiers is to provide margin credit to professional investors
and set margin constraints, which are endogenously determined by current market conditions.

The focus of this paper is the impact of hedging demand produced by time variation in margin
requirements on the equilibrium. Even if margin constraints do not bind at a particular moment, the
possibility of hitting the constraint in the future can substantially change the optimal portfolio policy
of professional investors. A negative shock to fundamentals decreases prices and increases volatility.
Financiers, who want to protect themselves against potential losses, tighten margin constraints. In
response, because of hedging motives, current asset holders sell risky assets in advance driving the
price even lower and volatility even higher. Further tightening of margins feeds back into further
preventive selling, and this vicious circle amplifies the reaction of prices to changes in fundamentals
and leads to high volatility. It is worth emphasizing that professional investors who sell assets to
hedge the variation in margin constraints are not financially constrained and can, in principle, ignore
changes in margins. Moreover, they do not face a risk to be constrained in the immediate future.

I start the analysis by considering a single asset setup. To identify the impact of dynamic margin
constraints, I compare two otherwise identical economies with and without margins, where the economy
without margins serves as a benchmark. I demonstrate that margin constraints significantly change
the equilibrium: in the economy with margins, professional investors hold less assets; the Sharpe ratio

1For example, prime brokerage firms providing margin credit to hedge funds can unilaterally tighten margin require-

ments. In the year 2008 adverse changes in margins caused collapses of several high profile hedge funds. See additional

evidence of time variation in margin requirements in Section 2.
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is higher when margins bind; returns are more volatile and the liquidity is lower when investors are
unconstrained but face the risk of hitting the constraint; returns are less volatile when margins bind.

To examine how hedging contributes to these results, I compare the economy with its modified
analog, in which professional investors are replaced by myopic investors who do not anticipate changes
in investment opportunities. Even without margin requirements the hedging demand plays an essential
role and significantly affects the equilibrium making returns more volatile and markets less liquid.
Moreover, I find that in the presence of hedging demand the impact of introducing margin requirements
becomes more pronounced, i.e. they make volatility higher when margins do not bind and lower when
they bind. Also, the hedging demand exacerbates the drop in liquidity caused by margin constraints.

The impact that margin constraints have in equilibrium depends on their average severity, which
in turn is determined by how sensitive financiers are to uncertainty in the value of collateral. I show
that the effect of margins is the strongest when they are on average at the intermediate level. Indeed,
if financiers are very tolerant, margin requirements are loose and do not have a sizable effect on the
economy. In the other extreme, financiers are very sensitive to potential losses. In this case margin
constraints on average are very tight and bind almost all the time. Hence, professional investors
typically do not hold a sizable amount of risky assets and their rebalancing has only a limited effect,
which translates into a weak amplification of volatility.

A multiple asset version of the model provides additional insights making it possible to study the
correlation of returns, which is endogenous in the model. Since it is assumed that fundamentals of
individual assets are uncorrelated, the obtained correlation of returns is a purely equilibrium effect
resulting from optimal behavior of professional investors. Even without margin constraints returns
become correlated due to contagion caused by the wealth effect (Kyle and Xiong, 2001). While Kyle
and Xiong (2001) consider only two assets, I extend their analysis to the case with an arbitrary number
of assets and demonstrate that the wealth effect can become stronger as the number of assets available
for investing increases.

If financiers impose margin requirements, their exact form depends on the collateralization scheme
used by investors. I consider two types of collateralization. In the first scheme, portfolio is collateral-
ized as a whole, i.e. each investor with a leveraged portfolio uses only one financier to get capital. In
the second scheme, individual securities are collateralized separately and investors borrow money from
several financiers such that the number of financiers coincides with the number of assets. I demon-
strate that under both collateralization schemes margin requirements amplify volatility and contagion,
i.e. increase correlation of returns despite independence of asset fundamentals. However, the effect is
stronger if assets are collateralized individually. Thus, the model suggests that the tendency of hedge
funds to use multiple prime brokerage firms can further magnify the destabilizing effect of dynamic
margin constraints.

Finally, I analyze how the number of assets in the economy affects the impact of margin require-
ments on the volatility and correlation of returns. I find that the effect of introducing margins is
almost insensitive to the number of assets. This result holds for both collateralization schemes and is
especially surprising in the portfolio collateralization framework.

In equilibrium, agents simultaneously hedge two sorts of variation in investment opportunities:
changes in the Sharpe ratio and changes in margin constraints. The first type of variation is conven-
tional and was extensively studied in the literature. The second type is much less common, but it
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plays an important role in my analysis. To examine the hedging demand produced by time-varying
margin requirements, I consider a separate portfolio problem in which it appears in a pure form. It
is a standard continuous time portfolio problem with a constant Sharpe ratio, but with exogenously
varying portfolio constraints. To maintain generality, I assume that margin requirements can either
continuously change or experience sudden jumps. I show that if margins and asset prices are correlated,
the optimal strategy as a function of the current tightness of margin requirements has two regions. If
margins are relatively loose and margins and prices are positively (negatively) correlated, agents with
relative risk aversion greater than one underinvest (overinvest) in the risky asset. Remarkably, the
hedging demand of this type might have a significant magnitude: under reasonable assumptions on
volatility of margins and their persistence an agent with a moderate risk aversion reduces investment
in a risky asset by 10− 15%. If margins are relatively tight, it is optimal to exhaust the credit limit
and the optimal portfolio is on the margin constraint. The point where margins become binding is
endogenously determined as a part of the solution.

In general, hedging is not the only possible channel through which trading activity can affect
equilibrium prices and returns. Even without margin constraints volatility of returns can be different
from the volatility of fundamentals due to the wealth effect (Xiong, 2001; Kyle and Xiong, 2001).
The key idea is that a negative shock to fundamentals decreases the wealth of current asset holders
and triggers portfolio rebalancing. As a result, they unwind some of their positions pushing the price
down even further. This decline in price causes additional rebalancing and sell-offs amplifying the
fundamental shock and increasing volatility of returns.

Another channel is directly related to margin constraints and can be called the collateral channel.
An adverse shock to fundamentals reduces asset prices and, as a consequence, the value of collateral.
If the shock is sufficiently large, investors might be forced to liquidate a part of their portfolio to meet
margin calls even if the instantaneous Sharpe ratio is high and investors are willing to maintain higher
leverage. The sell-off drives the price down even further instigating new margin calls. This channel
works even if margin constraints are constant over time. If margin constraints can vary in response to
changing market environment, financiers may tighten the terms of credit and make the sell-off even
more pronounced. This is the liquidity spiral of Brunnermeier and Pedersen (2008).

While Brunnermeier and Pedersen (2008) is the closest paper to this study, there are several
important differences between their analysis and this paper. First, the focus of this paper is the
hedging demand produced by time-varying margin constraints and its equilibrium implications whereas
Brunnermeier and Pedersen (2008) emphasize the importance of funding liquidity, i.e. availability of
funding to risk neutral speculators. In my model, an amplification effect is produced by anticipation
of limited funding, but not the lack of funding per se. Second, in Brunnermeier and Pedersen (2008)
margins are destabilizing under certain conditions only. In particular, an asymmetry of information
between financiers and speculators plays an important role: margins increase in price volatility because
financiers cannot distinguish between fundamental shocks and liquidity shocks. In my model, there is
no asymmetric information and the possibility of hitting margin constraints always has a destabilizing
effect. Third, in Brunnermeier and Pedersen (2008) an important input of the model is autoregressive
conditional heteroscedasticity of fundamentals. In this paper, fundamentals are homoscedastic and
heteroscedasticity of returns arises endogenously.

This paper is related to several strands of literature. First, it compliments the literature analyzing
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the impact of constant margin requirements on stock prices in a general equilibrium. Using an OLG
framework with heterogeneous agents, Kupiec and Sharpe (1991) show that the relation between
constant margin requirements and stock price volatility is ambiguous and depends on the source of
variation in the aggregate risk-bearing capacity. Detemple and Murthy (1997) focus on the price levels
in the presence of portfolio constraints and demonstrate the existence of “collateral value premium”.
Chowdhry and Nanda (1998) show how in a two-period model constant margin requirements can
produce market instability, which is understood as a multiplicity of prices clearing the market. Aiyagari
and Gertler (1999) and Mendoza and Smith (2002) demonstrate that constant margin requirements can
amplify fundamental shocks and increase the volatility of stock prices. Coen-Pirani (2005) emphasizes
the importance of endogeneity of risk-free rate and the assumption that the risk-free asset is in zero
net supply. If the risk-free rate is allowed to adjust in response to shocks, in general it will absorb
them when margin constraints are binding and stock prices will be almost unaffected. Saha (2007)
argues that stock return volatility decreases when the margin constraint binds.

Although time variation of margin constraints is common in financial markets, it is surprisingly
underexplored in the academic literature. Yuan (2005) constructs a one-period rational expectation
model in which borrowing constraint is a function of price. Risk-sensitive regulation can be interpreted
as a form of dynamic margins (e.g., Basak and Shapiro, 2001; Dańıelsson, Shin, and Zigrand, 2004;
Dańıelsson and Zigrand, 2008). Pavlova and Rigobon (2008) study the impact of portfolio constraints
on stock prices and exchange rates in a three-good three-country general equilibrium model, in which
agents have logarithmic preferences.

The analysis of the hedging demand generated by margin constraints fits into the vast literature
studying the effect of changes in investment opportunities on the optimal portfolio policy. Following a
seminal paper by Merton (1971), this literature examined variations in the risk-free rate (e.g. Brennan,
Schwartz, and Lagnado, 1997; Campbell and Viceira, 2001; Liu, 2007), expected returns (e.g. Kim and
Omberg, 1996; Campbell and Viceira, 1999; Barberis, 2000; Wachter, 2002), volatility (e.g. Chacko
and Viceira, 2005; Liu, 2007), correlations of returns (e.g. Ang and Bekaert, 2002), and simultaneous
variations in the interest rate and the market price of risk (Detemple, Garcia, and Rindisbacher, 2003).
My paper emphasizes the role of a relatively non-standard hedging demand produced by variation in
margin constraints.

This paper is also close to the literature studying the impact of portfolio constraints on the optimal
portfolio policy (e.g. Cvitanić and Karatzas, 1992; Grossman and Vila, 1992; Vila and Zariphopoulou,
1997; Cuoco and Liu, 2000; Teplá, 2000; Schroder and Skiadas, 2003; Detemple and Rindisbacher,
2005). In my model, a portfolio problem with constraints is an important part of an equilibrium.

This paper is also related to the growing literature on the impact of margin constraints on the
existence and limits of arbitrage. Basak and Croitoru (2000) consider a model with heterogeneous
investors facing constant portfolio constraints and argue that in such framework mispricing can be
maintained in an equilibrium. Gromb and Vayanos (2002) focus on welfare implications of arbitrageurs’
financial constraints and show that arbitrageurs might fail to invest at a Pareto optimal level.

The rest of the paper is organized as follows. Section 2 summarizes anecdotal evidence on time
variation of margin requirements and claims that it is a widespread phenomenon. In Section 3 a general
equilibrium model is formulated. In this model, margin constraints are endogenous and determined by
changing volatility of returns. Sections 4 and 5 provide the analysis of single asset and multiple asset
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economies, respectively. These sections contain the main results of the paper. Section 6 concludes
by discussing potential directions for future research. Appendix A provides an additional analysis of
the portfolio choice problem under time-varying margin requirements. This is a partial equilibrium
analysis, in which dynamics of prices and margin constraints are exogenously specified. Appendix B
collects all proofs and Appendix C provides details on numerical techniques used in the paper.

2 Time-varying margin requirements: anecdotal evidence

Portfolio constraints in the form of margin requirements (minimum capital requirements) are typical
features of almost any investment environment. In particular, margin requirements play a fundamental
role in the relationship between hedge funds and prime brokerage firms. Pursuing highly leveraged
strategies, hedge funds significantly rely on availability of external credit. Provision of such credit is
one of the most prominent functions of prime brokers, who typically structure loans to hedge funds
as repurchase agreements (repos). The terms of repo agreements substantially vary across hedge
funds and over time. The last fact is particularly important: the tightness of margin constraints is the
outcome of private continuous negotiations between hedge funds and prime brokerage firms. Typically,
the prime broker is permitted to tighten the margin requirement (modify collateral haircut) at its own
discretion and even without advance notice.2 The increase in the margin can be substantial and might
have a huge impact on the fund’s liquidity. It is natural to expect that when markets are strained
or excessively volatile, prime brokers are more likely to use their discretionary right to adjust margin
requirements.

There is abundant anecdotal evidence that during the recent subprime mortgage crisis prime
brokerage firms indeed widely used their right to change margin requirements. For instance, according
to Citigroup data, for leveraged investors buying AA-rated corporate bonds, the average down payment
demanded by prime brokers has increased from 1-3% of the value of the leveraged portfolio in March
2007 to 8-12% in March 2008. This corresponds to the decline of maximum leverage from over 30
times to 8.3 times. Similarly, the haircut on high-yield bonds rated BB has increased from 10-15%
to 25-40%. On equities the haircut has increased from 15% to 20%, which means leverage has fallen
from 6.7 times in March 2007 to 5 times in March 2008 (Financial News, March 6, 2008). The most
substantial change in margin requirements occurred for AAA CLOs: the haircut jumped from 4% in
March 2007 to 20% in March 2008.

Tightening of margin requirements played an essential role in several recent hedge fund failures. For
instance, Peloton ABS Fund, which collapsed in February 2008, right before its debacle made desperate
attempts to comply with requests of banks (Goldman Sachs and UBS) to increase its collateral from
10% to 25% (Bloomberg, March 10). In fact, Peloton’s margin requirements were changed many
times before the end of February (HedgeWorld Daily News, May 9, 2008). Also, increasing margin
requirements contributed to the collapse of Carlyle Capital in March 2008 (MarketWatch, March
7, 2008). A couple of weeks before its failure the fund issued a statement saying that it received
“substantial additional margin calls and additional default notices from its lenders” and that “these

2Sometimes large and well-established hedge funds manage to negotiate lock-up agreements: the prime broker is not

allowed to change margin requirements without advance notice if the fund meets certain conditions. A length of a lock-up

period varies from one to three months.
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additional margin calls and increased collateral requirements could quickly deplete its liquidity and
impair its capital.”

Trading on margin is regulated not only by brokerage firms providing the credit, but also by
several agencies including the Federal Reserve, the SEC, and several more specialized associations.
For instance, Regulation T of the Federal Reserve sets initial margin requirements, i.e. restricts
the amount of credit that investors can get from brokers for the purpose of buying stocks. These
requirements were introduced in October 1934, and at that time the required margin was set at 45%.
From 1934 till 1974 this level was changed 22 times, fluctuating from 40% to 100%. Since January
1974 the initial margin requirement is 50%. Although margins have been constant over a long period
of time, there is an ongoing discussion of this policy.

Buying on margin or entering into repo transactions are direct ways to construct a leveraged
portfolio. However, leverage can also be increased indirectly by using various derivatives. For example,
the Regulation T can be partially circumvented by using futures. Noteworthy, indirect leverage also
creates exposure to variation in margin constraints. Indeed, the availability of derivatives and their
liquidity can also vary over time implicitly producing time variation in margin requirements faced
by investors. For exchange-traded derivatives margins are set by exchanges (brokerage firms might
request additional collateral that exceeds exchange margins) and can be adjusted periodically in
response to changing market conditions. For example, CME Group uses Standard Portfolio Analysis
of Risk Performance (SPAN) methodology to compute margins. The major variable in this approach is
volatility of each futures market. Typically, when volatility increases the margin requirements become
tighter.

In addition, certain macroeconomic events might lead to implicit abrupt changes in margin re-
quirements. For instance, consider the situation when the Federal Reserve introduces a new lending
facility to inject liquidity in the financial system. It is quite likely that such a step would alleviate the
liquidity needs of large investment banks, and their prime brokerage arms would be able to provide
more capital to hedge funds. As a result, margin requirements might effectively become less tight.
Also, margin requirements implicitly change when lenders decide to modify the list of securities they
accept as a collateral.

Overall, there is abundant anecdotal evidence that margin requirements faced by different investors
change over time. This fact might have important asset pricing implications, which are studied in the
next sections.

3 Model

In this section, I construct an equilibrium model featuring endogenous time-varying margin constraints.
This is a continuous-time framework with an infinite horizon.

3.1 Assets

There are K + 1 assets in the economy. The first one is a risk-free asset with an exogenously specified
rate of return r. This asset is assumed to have an infinitely elastic supply. The other K assets are
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risky; an aggregate supply of each asset is normalized to X̄. Cash flows generated by asset k follow
an Ornstein-Uhlenbeck process

dDk
t = φ(D̄ −Dk

t )dt + σDdBk
t , (1)

where Bk
t , k = 1, ..., K are independent standard Brownian motions defined on a probability space

(Ω, F, P ) and φ, D̄, and σD are constants. For simplicity, it is assumed that all risky assets are
identical with φ, D̄, and σD being the same for all assets. In general, the price of the risky asset Sk

t

is a function of the current level of cash flows Dk
t and state variables. It is convenient to define excess

return on one unit of the asset k: dQk
t = dSk

t + Dk
t dt − rSk

t dt. In the vector form, the stochastic
differential equation for Qt can be represented as

dQt = µQdt + σQdBt,

where the risk premium µQ is a k × 1 matrix and volatility of returns σQ is a k × k matrix. Both µQ

and σQ are functions of state variables and are determined by equilibrium conditions stated below.

3.2 Agents

There are three types of agents in the model: professional investors, long-term investors, and fi-
nanciers. Although the first two types trade risky assets, their objectives are completely different.
Professional investors use all available information and choose the portfolio policy and consumption
stream maximizing their utility function. They can be thought of as hedge funds who have a good
understanding of market conditions and can rationally exploit fluctuations in asset prices. There is
an infinite number of identical professional investors, and they behave competitively. Each individual
investor has an infinitesimally small demand and they are all located on a unit interval [0, 1].

Each professional agent i has Epstein-Zin preferences (Epstein and Zin, 1989; Weil, 1989) over an
infinite stream of consumption Cit, which is financed by portfolio Xit. In continuous time, Epstein-Zin
preferences can be described by stochastic differential utility with the utility process Jit, which in the
Duffie and Epstein (1992a, b) parametrization is specified as3

Jit = Et



∞∫

t

f(Cis, Jis)ds


 , (2)

where
f(Cis, Jis) = β(1− γ)Jis

(
log Cis − 1

1− γ
log((1− γ)Jis)

)
(3)

In order to make the wealth process stationary it is assumed that β > r. Eq. (3) corresponds to
Epstein - Zin preferences with the elasticity of intertemporal substitution (EIS) equal to one and the
coefficient of risk aversion γ. The major benefit of unit EIS is that it simplifies the model due to
a well-known property of Epstein - Zin preferences with unit EIS: the consumption-wealth ratio is
constant and is equal to β (Giovannini and Weil, 1989; Schroder and Skiadas, 1999). The assumption
of unit EIS is not critical for the intuition and it is quite likely that all qualitative results of the paper

3For proof of existence of stochastic differential utility in the infinite horizon case see Appendix C of Duffie and

Epstein (1992b) and Duffie and Lions (1992).
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would also be valid for other values of EIS. It is known that the elasticity of intertemporal substitution
mostly affects the consumption policy, but not the portfolio strategy (Campbell and Viceira, 1999).
Since the major focus of this paper is on the investment decisions, setting EIS equal to one does not
significantly restrict the analysis allowing to examine the effect of risk aversion on the optimal portfolio
allocation.

The second class of agents is formed by long-term investors. They are price takers with an exoge-
nous aggregate demand for the risky asset k

XLk
t =

F k
t − Sk

t

γ̄
, (4)

where Sk
t is the current price and F k

t is the fundamental value of the asset k defined as a present value
of future cash flows

F k
t = Et

∞∫

t

exp(−rs)Dk
t+sds =

D̄

r
+

Dk
t − D̄

r + φ
. (5)

The volatility of F k
t is related to the volatility of dividends Dk

t and is equal to σF = σD/(r + φ).
Demand for each asset is a downward-sloping function, so when there is a selling pressure on the
market long-term investors absorb it only at a discounted price. Eq. (4) can be considered as a
reduced form of demand arising in models with risk-averse market makers (Grossman and Miller,
1988). The constant γ̄ can be interpreted as a measure of risk tolerance of long-term investors. It is
convenient to think about long-term investors as pension plans, sovereign funds, or large individual
investors.4

Long-term investors serve two functions in the model. On the one hand, they create trading
opportunities for professional investors and allow them to earn high return by keeping risky assets.
Long-term investors neither try to predict future changes in prices, nor exploit the knowledge of
model state variables leaving these opportunities to professional investors. On the other hand, long-
term investors are buyers of last resort. If professional investors become financially constrained and
desperately need to sell a part of their risky portfolio, long-term investors will take the other side of
the trade, but at deeply discounted prices.

The third group of agents consisting of financiers is relatively passive and does not trade on the
market. Their role is to provide margin credit to professional investors and impose margin constraints.

3.3 Margin constraints

3.3.1 Motivation for margin requirements

The key feature of the model is margin constraints faced by professional investors. If existing in-
vestment opportunities are highly attractive, professional investors use borrowed money for investing
in risky assets. Financiers, who provide capital, put restrictions on how leveraged the position of
professional investors can be (i.e. they impose margin requirements). To determine the exact form
of margins, it is necessary to pin down the reason why margin constraints exist in the first place.

4In extreme cases, even firms themselves can be buyers of last resort for their own equity (Hong, Wang, and Yu,

2008).
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Although their existence is tantamount to credit rationing extensively studied in the corporate finance
literature, the origin of margins in the financial industry is likely to be different.

To be specific, I assume that margin constraints result from two market imperfections. First,
similar to Geanakoplos (1997, 2003) there are no penalty for defaulting, i.e. a borrower can go away
without any legal or reputational consequences. This extreme assumption captures the idea of limited
contract enforcement (Kehoe and Levine, 1993). This is especially plausible if a lender has to deal with
a big number of relatively small borrowers. Although sometimes costs of enforcement can be recovered
by setting a high interest rate, it is much more efficient to overcome the enforcement inefficiency by
asking a borrower to put collateral. If the collateral has a well defined market value and can be easily
sold, the lender is fully protected even if the borrower is highly leveraged.

The second imperfection assumed in the model is impossibility to sell collateral immediately at
the prevailing market price if a borrower does not meet a margin call. Although the time the lender
needs to complete the sell-off can be relatively short, under volatile market conditions the lender is
exposed to risk of getting a price below the value of loan. Hence, if the equity part of collateral is
small, the lender might not recover the loan in the case of default. To get some protection, the lender
imposes restrictions on the maximum leverage the borrower is allowed to have and these restrictions are
determined by current market conditions. This makes margin requirements endogenous and stochastic.
Understanding the effect of this stochasticity is the focus of the analysis.

Although the described imperfections yield an exact form of margin requirements, the inverse
relation between market conditions and tightness of margin constraints that they produce can be
interpreted more broadly. Indeed, the above assumptions capture the idea that the value of the
asset is not perfectly known to the financier, who after capturing the collateral has to deal with this
uncertainty. Even if the collateral can be sold immediately, the price that the financier gets is highly
uncertain and this results in a tight margin constraints.

I consider separately two types of margin requirements. If one financier provides capital for the
whole portfolio, the dynamics of portfolio value is taken into account when margin requirements are
determined. For instance, if individual asset returns are negatively correlated, then financing of a
portfolio is less risky than financing its individual constituents and margins can be set on a lower
level.5 This is a portfolio collateralization case.

Although portfolio collateralization is quite natural, some investors prefer to collateralize several
parts of their portfolios separately. For example, if a hedge fund wants to keep its arbitrage strategy
in a secret from its prime broker it might borrow money from several prime brokerage firms to finance
different legs of the strategy. In this case, only a part of portfolio is put as collateral with each financier
who imposes individual margin requirements. For expositional purposes, I assume that all individual
securities are collateralized separately and margin requirements are imposed on each asset. This is an
individual collateralization case. In the next two sections, I derive the form of portfolio restrictions
for these two types of margin requirements.

5E.g., CME group specifies different margin requirements for individual securities and certain strategies combining

several securities.
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3.3.2 Portfolio collateralization

First, consider a portfolio collateralization case. As explained above, if a borrower does not meet a
margin call the portfolio sell-off requires time τ > 0. If there is no need to liquidate the position, the
lender at the moment t+τ will have Bit(1+rτ), where Bit is the amount of debt provided to investor i.
If the borrower violates the margin requirement, the lender can capture X ′

itSt+τ + X ′
itDtτ , where the

prime denotes matrix transposition. Thus, the lender does suffer a loss if X ′
itSt+τ+X ′

itDtτ < Bit(1+rτ)
or X ′

it∆Qt+τ + Wit(1 + rτ) < 0. Here ∆Qt+τ is excess return from t to t+ τ and Wit is wealth of
investor i at time t. The lender sets the margin requirement such that the probability of loss is below
a certain threshold b:

Prob(X ′
it∆Qt+τ + Wit(1 + rτ) < 0) ≤ b, (6)

i.e. the lender uses the value-at-risk approach (Brunnermeier and Pedersen, 2008). If τ is suffi-
ciently small, the distribution of excess return ∆Qt+τ is approximately normal and in the first order
approximation the condition (6) reduces to

Φ


− Wit√

X ′
itσQσ′QXit

√
τ


 ≤ b,

where Φ(·) is a cdf of the standard normal distribution. Hence, the margin constraint can be rewritten
as √

X ′
itσQσ′QXit ≤ m̄Wit, (7)

where m̄ = 1/(−Φ−1(b)
√

τ). The constraint is tight (m̄ is low) when it takes a long time to sell the
asset (τ is large) or the desired probability of loss b is small. Note that in general the margin constraint
is not a simple limitation on portfolio leverage; it also takes into account the correlation structure of
returns on individual assets. Importantly, margin constraints are dynamic and can be set conditional
on the current realization of state variables determining volatility of returns.6

Note that if there is only one asset in the economy, Eq. (7) reduces to a direct constraint on the
portfolio leverage Lit, which is a ratio of the risky asset value over investor’s wealth

Lit =
XitSt

Wit
≤ m̄St

σQ
. (8)

Eq. (8) has a natural interpretation: the maximum leverage attainable by professional investors is
inverse to the volatility of dollar returns.

3.3.3 Collaterallization of individual assets

Next, consider the case in which each asset is collateralized separately. Investing in K assets, a
professional investor borrows money from K lenders. Again, if a professional investor does not meet
a margin call then the time τ is needed to liquidate the position. If there is no need to liquidate the
position, the lender k at the moment t + τ will have Bk

it(1 + rτ), where Bk
it is the amount of debt

provided to investor i by lender k. Following the same logic as before, the lender suffers a loss when
Xk

it∆Qk
t+τ + W k

it(1 + rτ) < 0, where W k
it = Xk

itS
k
t −Bk

it is the wealth financing the position in asset k.

6Margin constraint in the form of Eq. (7) is effectively a limitation on the volatility of investors’ return on wealth.
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The lender sets the margin requirement such that the probability of loss is below a certain threshold
b:

Prob(Xk
it∆Qk

t+τ + W k
it(1 + rτ) < 0) ≤ b. (9)

In the first order approximation in τ the condition (9) is

Xk
it

√
(σQσ′Q)kk ≤ m̄W k

it, (10)

where m̄ = 1/(−Φ−1(b)
√

τ) and (σQσ′Q)kk is the k-th diagonal element of the matrix σQσ′Q. Since
each professional investor can decide how to allocate wealth across different assets by adjusting Bk

it,
the margin requirement he effectively faces is

K∑

k=1

Xk
it

√
(σQσ′Q)kk ≤ m̄Wit (11)

or in a matrix form
X
′
it

√
diag(σQσ′Q) ≤ m̄Wit. (12)

Here
√

diag(σQσ′Q) is a vector consisting of square roots of diagonal elements diag(σQσ′Q). Clearly,
if there is only one risky asset Eq. (12) reduces to Eq. (8).

3.3.4 Stochastic enforcement of margin constraints

To avoid several technical complications, I introduce another type of randomness in the description
of margin requirements. This randomness ensures smoothness of aggregate demand, which in turn
makes the endogenous stochastic processes for price and aggregate wealth well defined. I assume that
each particular investor at each particular moment of time is bounded by margin constraints with
some probability λ only, i.e. margin requirements are enforced stochastically. By the law of large
numbers, only a fraction of investors is constrained even if margins are very tight.7 It is convenient
to think about this randomness in the following way. Every moment a professional investor asks a
financier for money required to finance the position X̃k

it in the risky asset k. If the request X̃k
it does

not violate margin requirements, the financier always lends money. However, if margin constraints are
not satisfied, the financier enforces them with some probability λ. The outcome can be interpreted
as a result of negotiations between professional investors and their financiers. This result depends on
many factors such as firm-specific relations, reputation, other assets in the portfolio, etc. The margin
requirements of Eqs. (7) and (12) can be interpreted as conservative industry standards pertaining to
all investors.

Under both collateralization schemes, the probability of enforcement λ depends on how severely
the margin requirement is violated by investor’s request X̃k

it. The margin violation ratio Mit, which
measures the severity is determined by Eqs. (7) and (12). When portfolio is collateralized as a whole,
the margin violation ratio is

Mit =

√
X̃ ′

itσQσ′QX̃it

m̄Wit
.

7If margins are enforced deterministically, all professional investors hit the margin constraint simultaneously. This

results in a kink in the aggregate demand function and discontinuity in equilibrium expected returns and volatility.
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In the case of individual collateralization, the margin violation ratio is

Mit =

∑K
k=1 X̃k

it

√
(σQσ′Q)kk

m̄Wit
.

If the request X̃k
it violates margin requirements (Mit > 1) and is not acknowledged, the financier allows

to borrow up to the margin requirement only and all requests are rescaled accordingly. As a result, a
professional investor buys X̂k

it of asset k, where

X̂k
it =

X̃k
it

Mit
. (13)

In both cases, the probability of enforcement is λ = λ (Mit), where the function λ : R → [0, 1] is
continuously differentiable and λ(x) = 0 for x ≤ 1. Also, λ(x̄) = 1 for x ≥ x̄ > 1 where x̄ is the
maximum permissible deviation from the margin requirement. As an example, I use the following
specification of λ(x):

λ(x) =





0, x < 1;

λ̄(x− 1)2, 1 ≤ x < 1 + 1√
2λ̄

;

1− λ̄
(
1 +

√
2
λ̄
− x

)2

, 1 + 1√
2λ̄
≤ x < 1 + 2√

2λ̄
;

1, x ≥ 1 + 2√
2λ̄

.

(14)

The function λ(x) contains one parameter λ̄, which admits a clear interpretation. Indeed, small λ̄

means that financiers are quite tolerant to violation of margin requirements, which are enforced with
a low probability. In the limit λ̄ → 0 margin constraints are not enforced at all and become irrelevant.
On the contrary, large λ̄ corresponds to the case in which financiers allow only small violation of
margin requirements. In the limit λ̄ → ∞ they are perfectly enforced and λ(x) converges to a step
function. A typical form of the function λ(x) with λ̄ = 50 is depicted in Panel A of Figure 1.

3.4 Portfolio problem of professional investors

Now consider the portfolio problem of professional investors with stochastic margin constraints. For a
moment assume that the dynamics of the model can be described by a one-dimensional state variable
zt. This assumption will be justified later and it will be shown that zt corresponds to the aggregate
wealth of professional investors. The stochastic process for zt is

dzt = µz(zt)dt + σz(zt)dBt, (15)

and functions µz(zt) and σz(zt) are determined by equilibrium conditions. Similarly, the process for
excess return is

dQt = µQ(zt)dt + σQ(zt)dBt,

where µQ(zt), and σQ(zt) are also determined in the equilibrium. The problem of a professional
investor is to maximize a recursive utility function specified by Eqs. (2) and (3) subject to the
stochastic margin constraint (7) or (12) and the budget constraint

dW i
t =





X̂ ′
it(µQ(zt)dt + σQ(zt)dBt) + (rWit − Cit)dt, if margin binds;

X̃ ′
it(µQ(zt)dt + σQ(zt)dBt) + (rWit − Cit)dt, if margin does not bind.

(16)
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Recall that X̃it is a request submitted to a financier and acknowledged with probability λ(M) and
X̂it = X̃it/Mit is actual portfolio if margin requirements are strictly enforced.

First, consider the case in which portfolio is collateralized as a whole. The solution to the portfolio
problem is given by the following proposition, where time subscripts and individual investor indexes
are omitted for simplification of notations.

Proposition 1 The optimal consumption C∗ and the optimal requested position X̃∗ solving the op-
timization problem of a professional investor with Epstein-Zin utility function (2), (3) subject to the
budget constraint (16) and a stochastic margin constraint (7) with the probability function (14) are

C∗ = βW, (17)

X̃∗ =
2
γ

y(A)
A

[
σQσ′Q

]−1 (
µQ + H ′σQσ′z

)
W, (18)

where

A =
2

γm̄

√(
µQ + H ′σQσ′z

)′ [
σQσ′Q

]−1 (
µQ + H ′σQσ′z

)
. (19)

The function y(x) is implicitly determined by an algebraic equation

x
(
1− λ(y) + λ′(y)− λ′(y)y

)− (
2(1− λ(y))y + λ′(y)− λ′(y)y2

)
= 0, (20)

where the unique root on the interval [0, 1 + 1/
√

3λ̄] is chosen. The function H solves the following
differential equation:

β(1− γ)(log β − 1)− βH + H ′µz +
1
2
(H ′′ + (H ′)2)σzσ

′
z + r(1− γ) (21)

+(1− γ)
γm̄2

2
[λ(A− 1) + (1− λ) y(A)(A− y(A))] = 0,

where λ = λ(y(A)). The value function is

V (z, W ) =
1

1− γ
W 1−γ exp(H(z)).

Proof. See Appendix B.

Note that the state of the world for professional investors is determined by the state variable zt only
(it determines expected returns and volatility as well as the tightness of margin constraints). Whether
the margin constraint binds or not at the particular moment does not affect the value function since
this knowledge does not help to predict whether the margin requirement binds in future.

The function y(x) is closely related to λ(x) and it is not difficult to show that it is well-defined
for all x ∈ R+. Its typical graph with λ̄ = 50 is depicted in Panel B of Figure 1. Note that in the
range x ≤ 2 it has a very simple form: y(x) = x/2. This is exactly the case when the investor submits
a financing request that will be deterministically fulfilled. Hence, the requested position X̃ coincides
with the optimal unconstrained demand

X̃∗ =
1
γ

[
σQσ′Q

]−1 (
µQ + H ′σQσ′z

)
W. (22)
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In the interval x > 2 the investor starts taking into account the possibility of being constrained
immediately since the optimal unconstrained demand violates margin requirements. As a result, the
requested position is reduced appropriately. The function y(x) determines the margin violation ratio:
M = y(A). Eq. (18) together with the form of y(x) indicates that the margin violation ratio never
exceeds 1 + 1/

√
3λ̄. In the one asset case it means that professional investors never request leverage

exceeding the contemporaneous margin constraint by more than 1 + 1/
√

3λ̄.
The optimal strategy X̃∗ from Proposition 1 is a complicated vector function. The optimal portfolio

takes a significantly simpler form when all assets are identical. The result is stated by Corollary 1.

Corollary 1 Let ι be a K × 1 vector of ones. If all assets are identical, i.e. µQ = µ̄Qι, σQ =
σ̄QI + ¯̄σQ(ιι′− I) and all innovations affect the state variable z symmetrically σz = σ̄zι

′ then demands
for assets are also identical: X̃∗ = x̃∗ι. If portfolio is collateralized as a whole,

x̃∗ =
m̄y(A)√

K(σ̄Q + ¯̄σQ(K − 1))
W, A =

2
√

K

γm̄

[
µ̄Q

σ̄Q + ¯̄σQ(K − 1)
+ H ′σ̄z

]

and the function H(z) solves

β(1− γ)(log β − 1)− βH + H ′µz(z) +
K

2
(H ′′ + (H ′)2)σ̄2

z + r(1− γ)

+ (1− γ)
γm̄2

2
[λ(A− 1) + (1− λ) y(A)(A− y(A))] = 0, (23)

where λ = λ(y(A)).

Note that Corollary 1 describes the solution to the portfolio problem that is faced by professional
investors in the symmetric equilibrium analyzed below.

Next, consider the portfolio problem of professional investors when individual assets are collat-
eralized separately. Unfortunately, in this case if processes of asset returns are not identical or the
state variable zt is asymmetrically affected by innovations dBk

t the optimal policy X̃ does not admit
an analytical solution analogous to Eq. (18). However, if all assets are identical the solution to the
optimal portfolio problem is relatively simple and provided by Proposition 2.

Proposition 2 If all assets are identical, i.e. µQ = µ̄Qι, σQ = σ̄QI + ¯̄σQ(ιι′− I) and all innovations
affect the state variable z symmetrically σz = σ̄zι

′ then the optimal consumption C∗ and the optimal
requested position X̃∗ solving the optimization problem of a professional investor with Epstein-Zin
utility function (2), (3) subject to the budget constraint (16) and a stochastic margin constraint (12)
with the probability function (14) are

C∗ = βW, X̃∗ = x̃∗ι (24)

with
x̃∗ =

m̄y (A)

K
√

σ̄2
Q + (K − 1)¯̄σ2

Q

W, (25)

where

A =
2K

γm̄

[
µ̄Q + H ′(σ̄Q + ¯̄σQ(K − 1))σ̄z

]√
σ̄2

Q + (K − 1)¯̄σ2
Q

(σ̄Q + ¯̄σQ(K − 1))2
(26)
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and the function y(x) is defined in Section 3.3.4. The function H solves the following differential
equation:

β(1− γ)(log β − 1)− βH + H ′µz +
K

2
(H ′′ + (H ′)2)σ̄2

z + r(1− γ)

+ (1− γ)
γm̄2

2K

(σ̄Q + ¯̄σQ(K − 1))2

σ̄2
Q + (K − 1)¯̄σ2

Q

[λ(A− 1) + (1− λ) y(A)(A− y(A))] = 0, (27)

where λ = λ(y(A)). The value function is

V (z, W ) =
1

1− γ
W 1−γ exp(H(z)).

Proof. See Appendix B.

Note that Proposition 2 is an analog to Corollary 1 and will serve as a building block for symmetric
equilibrium of Section 3.5.

The structure of the solution to the individual portfolio problem (18) and the stochastic nature of
margin constraints make it possible to find aggregate optimal demand of professional investors in a
closed form. Since professional investors are identical, they follow the same strategy X̃i = X̃(z,Wi)
and have the same function H(z). Due to linearity of the optimal strategy with respect to individual
wealth Wi they all have the same ratio X̃i/Wi, which can be inferred from Propositions 1 and 2. Since
under both collateralization schemes the margin violation ratio depends on ratios X̃i/Wi, margin
requirements bind all investors with the same probability. Thus, using the law of large numbers the
aggregate demand X can be written as

X =
∫ 1

0
Xidi =

∫ 1

0

[
λX̂i + (1− λ) X̃i

]
di (28)

=
∫ 1

0

[
λ

M
+ (1− λ)

]
X̃idi = [λ + (1− λ) y(A)]

X̃i

Wi

W

y(A)
,

where W is the aggregate wealth of professional investors. In the symmetric equilibrium studied
below, all assets have identical aggregate demands x, i.e. X = xι. Using Corollary 1 in the portfolio
collatarization case we get

x =
m̄ [λ + (1− λ) y(A)]√
K(σ̄Q + ¯̄σQ(K − 1))

W, (29)

whereas in the case with individual collateralization

x =
m̄ [λ + (1− λ) y(A)]

K
√

σ̄2
Q + (K − 1)¯̄σ2

Q

W. (30)

Note that the aggregate demand explicitly depends on the aggregate wealth of professional in-
vestors. Hence, if X/W is not constant W should be a state variable. Since the aggregation of
consumption policies (17) is trivial and immediately yields C = βW , we arrive at the following dy-
namics for W :

dWt = X ′(µQdt + σQdBt) + (r − β)Wtdt. (31)

Thus, if W is the only state variable, Eq. (31) coincides with Eq. (15) and µz = X ′µQ + (r − β)W ,
σz = X ′σQ.

15



3.5 Equilibrium

The equilibrium in the model is effectively determined by interaction between professional investors
and long-term investors. The following formal definition provides the details.

Definition. The equilibrium of the model is a set of matrix functions X̃it = X̃it(Ft, Wt,Wit),
µQ(Ft, Wt), σQ(Ft,Wt), and St = S(Ft,Wt) such that

1. X̃it solves the portfolio problem of professional investors with Epstein-Zin utility function (2),
(3) subject to the budget constraint (16) and a stochastic margin constraint (7) or (12) with the
probability function (14);

2. Market clearing condition holds:

Xt + XL
t = X̄ι, (32)

where XL
t is the demand of long term investors (4) and Xt is the aggregate demand of professional

investors given by Eq. (28);
3. Aggregate demand of professional investors satisfies Eq. (28).
The market clearing condition immediately relates the price function and the aggregate demand

of professional investors:
St = Ft − γ̄(X̄ι−Xt). (33)

Eq. (33) implies that the price can be easily found if we know the aggregate demand of professional
investors X. Moreover, Eq. (33) is quite intuitive. Long-term investors require a premium for keeping
risky assets. As a result, if professional investors hold only a fraction of risky assets the price is below
the fundamental value and the gap is determined by the parameter γ̄.

The above definition is quite general and allows for the existence of multiple very complex equilibria.
For the sake of tractability, I put additional restrictions on equilibrium functions, i.e. I am looking for
certain types of equilibria. Specifically, I impose two conditions. First, aggregate demand X, expected
returns µQ and volatility σQ are functions of only one state variable, which is the aggregate wealth
of professional investors Wt. Note that the existence of such an equilibrium essentially depends on
the form of margin constraints. In general, the level of fundamentals Ft is also a state variable, what
significantly complicates the analysis. Second, given that asset fundamentals are identical, I focus on
symmetric equilibria, i.e. equilibria with identical demands for all risky assets.

The price function (33) and the equation for fundamentals (5) fix the functional form of µQ(W )
and σQ(W ), which are completely determined by the aggregate demand function X(W ). The following
Proposition states the result.

Proposition 3 If the consumption-wealth ratio of professional investors is β and all assets have
identical demands X = xι, then expected returns are also identical with µQ = µ̄Qι, where

µ̄Q =
γ̄(r − β)xW W + K

2γ̄
xWW

x2
W

¯̄σ2
Q + rγ̄(X̄ − x)

1− γ̄KxW x
(34)

and the covariance matrix of returns can be rewritten as σQ = σ̄QI + ¯̄σQ(ιι′ − I), where

σ̄Q =
σD

r + φ

1− (K − 1)γ̄xW x

1− γ̄KxW x
, ¯̄σQ =

σD

r + φ

γ̄xW x

1− γ̄KxW x
. (35)
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Both µQ and σQ are determined by the aggregate demand of professional investors X and subscripts
on x denote derivatives.

Proof. See Appendix B.

Eqs. (34) and (35) show that if X is a function of W only, then σQ and µQ also depend only on
W . Proposition 3 together with the solution to the portfolio problem from Corollary 1 or Proposition
2 and the aggregation equation (28) deliver a system of differential equations determining equilibrium
demands, expected returns, and volatility. Combining Eqs. (34), (35) with Eqs. (23) and (29) in
the portfolio collateralization case or with Eqs. (27) and (30) in the individual asset collateralization
case we get equations for functions x(W ) and H(W ). The key object here is x(W ), which determines
equilibrium expected returns and their volatility as functions of the state variable W .

Note that the function x(W ) must satisfy natural boundary conditions. When aggregate wealth
of professional investors is zero, they cannot hold the risky asset: x(W ) = 0. In the opposite extreme,
when aggregate wealth tends to infinity professional investors compete for the risky asset and keep its
total supply X̄. Thus, x(∞) = X̄.

An interesting characteristic of the equilibrium at each moment of time is liquidity of risky assets,
which is defined as market depth. Specifically, if any of professional investors have an urgent need
to dump one of their securities on the market, the price should change appropriately to induce the
rest of investors to accommodate the excess supply. The depth of the market (liquidity) is defined
as LQt = dS

′
t/dX̄, where it is taken into account that the variation in X̄ affects the equilibrium

functions directly (they depend on X̄ as a parameter) and indirectly through instantaneous changes
in the aggregate wealth. It is not difficult to show that in the equilibrium considered above

LQ = −γ̄
(
I −XX̄ − SX

′
W

)(
I − γ̄XX

′
W − SX

′
W

)−1
. (36)

Note that liquidity depends not only on the current value of W , but also on the price S (or,
equivalently, on the current level of fundamentals). As a conservative estimate, for computation of
LQ I fix F = γ̄. This choice guarantees that even if W = 0 the price of the asset does not become
negative. Increase in F amplifies LQ and for some levels of fundamentals Eq. (36) becomes ill-defined.

4 Analysis: single asset case

4.1 Equilibrium without margin constraints

I start the analysis with a single asset economy (K = 1). As a benchmark case, consider a setup
without margin constraints in which professional investors can borrow unlimitedly. This case can be
obtained either when λ̄ → 0 (the probability of enforcement is negligibly small), or m̄ → ∞ (the
margin requirement is infinitely loose). Without margin constraints, the model resembles the setup
of Xiong (2001) with several important differences. First, in my model there are no noise traders.
Second, the preferences of professional traders are different: in Xiong (2001) speculators maximize the
logarithmic utility function giving rise to a myopic demand whereas in my model professional investors
are allowed to have arbitrary risk aversion. Taking into account that σz = X ′σQ, Eq. (18) together
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with Eq. (28) yields

X =
µQ

γσ2
Q

γW

γ −H ′W
. (37)

Note that X is a product of two terms. The first one is µQ/(γσ2
Q) and corresponds to myopic

demand. The second term γW/(γ−H ′W ) is a correction for time variation in investment opportunities.
Expected returns µQ and volatility σQ are given by Eqs. (34) and (35), respectively. The function H

solves the following equation:

β(1− γ)(log β − 1)− βH + H ′(XµQ + (r − β)W ) +
1
2
(H ′′ + (H ′)2)X2σ2

Q + r(1− γ)

+
1− γ

2γ

(
µQ

σQ
+ H ′XσQ

)2

= 0 (38)

with the boundary conditions X(0) = 0 and X(∞) = X̄.
Unfortunately, the system of non-linear differential equations (35), (34), (37), and (38) is rather

complex and does not admit an analytical solution. Thus, we have to rely on numerical analysis. To
find an approximate solution, a projection method is used, which approximates the functions X(W )
and H(W ) by linear combinations of Chebyshev polynomials. One of advantages this method has
is that the obtained solutions are automatically twice continuously differentiable for all W ∈ (0,∞).
Other details on the implementation of the projection method are collected in Appendix C.

Although most of my results are valid for a broad range of model parameters, for illustrative
purposes I set γ = 4, γ̄ = 6, β = 0.05. The volatility of fundamentals is σF = 0.2. The choice r = 0.03
guarantees the stationarity of aggregate wealth. The aggregate amount of assets is normalized to one:
X̄ = 1.

To visualize the structure of the equilibrium, several statistics of interest are plotted as a function
of the state variable w, which is a rescaled aggregate wealth of professional investors W : w = (W −
1)/(W + 1). Clearly, the point w = −1 corresponds to W = 0 and w = 1 corresponds to W = ∞.
This rescaling is quite natural when the solution is approximated by Chebyshev polynomials (see
Appendix C). The results are presented in Figure 2, where solid lines correspond to the equilibrium
under consideration.

The upper left panel of Figure 2 reports the aggregate demand of professional investors X. Con-
sistent with boundary conditions, when W = 0 no one holds the asset and X = 0. When W →∞ all
assets are held by professional investors: X = 1. For intermediate levels of wealth the asset is split
between professional investors and long-term investors.

The upper right panel shows the equilibrium Sharpe ratio. When professional investors have a lot
of wealth they fiercely compete with each other and drive the expected excess return to zero. Since
the volatility of the risky asset is not eliminated, the Sharpe ratio also tends to zero. In the opposite
extreme when the wealth of professional investors is close to zero their risk bearing capacity is small
and they require high premium even for keeping a small amount of the risky asset. Correspondingly,
the Sharpe ratio is also high.

The bottom left panel of Figure 2 presents the volatility of returns, which has a hump-shaped
form. In the extremes W = 0 and W = ∞ it coincides with the fundamental volatility σF : in both
cases the price is driven by the fundamental value Ft only. However, at intermediate levels of wealth
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the volatility is amplified by the wealth effect (Xiong, 2001; Kyle and Xiong, 2001). A negative
shock to fundamentals decreases the price of the asset and increases investors’ leverage. Trying to
maintain optimal portfolio weights professional investors start selling the asset to long-term investors
pushing the price down even further. This decline in price erodes investors equity even more and
triggers additional sell-offs. As a result, the impact of the fundamental shock on price is amplified and
volatility increases.

The most interesting graph is given by the bottom right panel: it represents the liquidity of the
market LQ. For all W the liquidity LQ is negative: positive shock to X̄ leads to a decrease in the
price. In the limit W = ∞ the market is perfectly liquid since competing professional investors would
be eager to absorb an extra amount of assets. When W = 0 and professional agents are absent in the
market the liquidity is completely determined by long-term investors and is equal to −γ̄. Interestingly,
for intermediate levels of the aggregate wealth the liquidity can be even lower than −γ̄. Intuitively,
at these levels an unexpected increase in the asset supply causes a decrease in prices, which in turn
stimulates additional sell-off by professional investors due to the wealth effect. This produces an
additional pressure on long-term investors and diminishes the depth of the market.

To facilitate understanding of the impact of the hedging demand, Figure 2 also plots equilib-
rium statistics in a counterfactual economy with semi-rational professional investors (dashed lines).
Instead of the optimal demand (37), semi-rational professional investors have a myopic demand
X = µQ/(γσ2

Q)W and ignore hedging needs. The upper left panel indicates that in the absence
of margin constraints the hedging demand is positive. It is quite intuitive, since negative shock in
wealth increases the Sharpe ratio. The risky asset provides a natural hedge to investors and this
explains the positivity of the hedging demand. Since aggregate demand is higher in the non-myopic
case, a lower share of the asset is kept by long-term investors and this explains why the Sharpe ratio is
also lower. It is interesting that the hedging demand increases volatility and reduces liquidity relative
to the myopic equilibrium. Intuitively, in the middle range of wealth non-myopic investors who have
larger investment in the risky asset relative to myopic investors are more sensitive to the wealth effect
and at some point liquidate their positions more aggressively than myopic investors in a response to an
adverse fundamental shock. As a result, the price becomes more sensitive to such shocks, i.e. returns
become more volatile and the market less liquid.

4.2 Equilibrium with margin constraints

To demonstrate the impact of margin constraints on the equilibrium, consider the setting from Section
4.1 in which now professional investors are subject to margin requirements. The margin parameter
m̄ is chosen such that the constraint is binding when the aggregate wealth of professional investors is
below some threshold, and this happens sufficiently often. In the numerical example m̄ = 0.1. The
parameter of the function λ(x) in Eq. (14) is set to λ̄ = 50, which makes stochastic deviations from
the margin mt relatively small.

For comparison with the no margins case, Figure 3 depicts the difference between statistics in
the economy with margin constraints and the economy without margins. Vertical lines indicate the
aggregate wealth of professional investors at which the margin constraint becomes binding. The upper
left panel depicting the aggregate demand of professional investors shows that the presence of margin
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constraints uniformly reduces holdings of professional investors. This reduction mostly results from
the hedging of margin constraints: professional agents underinvest in the risky asset because its price
is negatively correlated with the tightness of margin constraints when margins do not bind. This
hedging demand is fully examined in Appendix A.

Upper right panel demonstrates that when the margin constraint binds, the Sharpe ratio is higher
than in the unconstrained case. Intuitively, when professional investors have a limited ability to invest
in the risky asset this burden falls on long-term investors who require higher compensation for holding
the asset. As in the unconstrained case, when W = 0 the Sharpe ratio approaches rγ̄X̄/σF .

The bottom left panel shows the volatility of returns. On the one hand, when the aggregate wealth
is sufficiently high the volatility is higher than in the unconstrained case and peaks approximately
when the margin starts binding. On the other hand, when W is low and professional investors are
constrained the volatility is lower than in the benchmark case. Although the overall effect of margin
constraints on volatility is ambiguous, the model shows that negative shock in good times when wealth
is high and expected returns are low leads to increase in volatility. This is consistent with empirical
evidence. In addition, the decrease in volatility when margins bind is in line with Brunnermeier and
Pedersen (2008), who claim that “stabilizing margins are ... hard to escape in a theoretical model”
and resembles the result of Saha (2007).

The bottom right panel shows the difference in liquidity LQ. Clearly, the presence of time-varying
margin requirements substantially influences the reaction of the price to unanticipated sell-offs. When
the wealth W is relatively high, margin constraints drastically reduce liquidity, which becomes espe-
cially low near the threshold separating the binding and non-binding regions. Intuitively, an additional
amount of equity on the market reduces the price of the asset, and consequently, leads to decline of the
aggregate wealth W . However, in addition to the wealth effect, which reduces liquidity even without
margin constraints, now the reduction in wealth also increases the probability of hitting the margin
constraint in future. Because of that, the selling pressure created by professional investors becomes
stronger making the market significantly less liquid.

Interestingly, deep in the region with binding constraints market can become more liquid than in
the unconstrained case. Indeed, because of constraints professional investors leave the market earlier
and adding an extra amount of assets generates less rebalancing, leading to smaller decline in the asset
price.

Note that in the equilibrium model professional investors solving their portfolio problem need to
hedge two types of risks. First, expected returns and volatility change over time because of time vari-
ation in the aggregate wealth (this is the wealth effect as explained in Section 4.1). The resulting time
variation in the Sharpe ratio generates the standard hedging demand. Second, margin requirements
also vary in the equilibrium and their variation must be hedged as well. In the presence of fluctuating
margins, it is not easy to separate these two hedging demands. Indeed, the hedging of the second
type changes the aggregate demand of professional investors, which in turn determines the equilibrium
volatility and risk premium. As a result, individual investors hedging the time varying Sharpe ratio
partially respond to evolving margins.

The possibility that under some circumstances time varying margin constraints can play an ampli-
fication role was also pointed out by Brunnermeier and Pedersen (2008). However, there are several
substantial differences between this paper and Brunnermeier and Pedersen (2008). First, in Brunner-
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meier and Pedersen (2008) the security payoffs are exogenously heteroscedastic, and this assumption
is important for their results. In this paper fundamental volatility is constant and heteroscedastic-
ity in returns is generated endogenously. Second, the model of Brunnermeier and Pedersen (2008)
features risk-neutral speculators who exploit temporary imbalance in market orders and provide liq-
uidity, whereas in this paper professional agents investing in a risky asset demand liquidity when
their aggregate wealth changes. Third, to arrive at destabilizing margins Brunnermeier and Pedersen
(2008) (at least in the main analysis of period t = 1) need asymmetry of information between lenders
and borrowers. This is quite natural, since the investment opportunity is of an arbitrage type. In my
model, all agents have the same information and margins are destabilizing because of their dependence
on volatility, which in turn can be altered by the wealth effect. Fourth, as opposed to Brunnermeier
and Pedersen (2008) hedging motives play an important role in my analysis and results.

To illustrate the last point and assess the role of the hedging demand, I compare the impact of
margin requirements in two separate cases. In the first one, investors are fully rational, and this is
exactly the equilibrium discussed above. In the second case, investors ignore all hedging needs and
have a purely myopic demand X = µQ/(γσ2

Q)W . The differences of several conditional variables in
economies with and without margin constraints for myopic (dashed line) and non-myopic (solid line)
equilibria are presented in Figure 4. The upper right panel demonstrates that the decline in the
demand X caused by margin constraints is more pronounced when investors are fully rational. This is
very intuitive: they correctly anticipate that the margin can bind in future and try to avoid it. Note
that the desire to hedge margins is stronger than the desire to use the asset as a natural hedge (cf.
Figure 2).

Having a greater decline in X caused by margin constraints in the fully rational equilibrium, it is
not surprising to see that the Sharpe ratio is more strongly affected by margins (upper right panel of
Figure 4). The logic is familiar: there is a larger burden on long-term investors and they require a
higher risk premium.

The hedging component also changes the impact of margin constraints on volatility and liquidity.
Bottom panels of Figure 4 indicate that when the demand of agents has a hedging component at
intermediate levels of wealth the introduction of margin constraints significantly increases volatility
and reduces the liquidity of the market relative to the myopic case. Partially this difference can be
explained by the fact that in the myopic equilibrium agents behave more aggressively and do not
sell assets in advance. Thus, the margin constraint becomes binding at higher levels of aggregate
wealth (this is a vertical dashed line) than in the equilibrium with fully rational investors (this point
is indicated by a vertical solid line). As a result, myopic agents sell assets more smoothly and this
reduces the sensitivity of the price to fundamental shocks or changes in the aggregate amount of
wealth.

Finally, consider how the effect of margin constraints depends on their average tightness charac-
terized by m̄. Figure 5 plots the equilibrium statistics for m̄ = 0.01, m̄ = 0.1, and m̄ = 0.2. Clearly, if
margins are tight (m̄ is small) they start binding at higher levels of aggregate wealth w as indicated
by vertical lines. The reduction in the position X and increase in the Sharpe ratio are monotonic
in m̄: when margins are very restrictive professional agents cannot hold many assets and long-term
investors require higher risk premium for keeping the rest of them. Interestingly, the destabilizing
impact of margins on σQ and LQ has a hump-shaped form: it is stronger for intermediate values of m̄.
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Indeed, if margin requirements are loose they do not have a substantial effect on the economy since
most of the time they do not bind and can be almost ignored. However, if financiers are very sensitive
to potential losses margin constraints on average are very tight and start binding at relatively high
levels of professional investors’ wealth. As a result, professional investors typically do not hold many
risky assets and, hence, their rebalancing has only a limited effect, which translates into only a weak
amplification of volatility and reduction of liquidity.

5 Analysis: multiple asset case

5.1 Equilibrium without margin constraints

In this section, I analyze the general model with the number of assets K > 1. This extension makes
it possible to answer several additional questions. First, it can shed light on the impact of margin
constraints on correlation between returns and the contribution of time varying margins into contagion.
Second, it provides a framework for analysis of how the impact of margins depends on the number
of assets available for investing. Third, given several assets it is possible to study how different
collateralization schemes (portfolio collateralization vs. collateralization of individual securities) affect
asset returns.

Similar to the analysis of a single asset model, I start with the setup without margin constraints. As
mentioned earlier, this is a special case of the general model obtained in the limit m̄ →∞ or λ̄ → 0.
This simplified model serves as a benchmark for the fully-fledged model with margin constraints.
Following the theoretical analysis of Section 4, I focus on a symmetric equilibrium in which all risky
assets have identical processes for returns and professional investors split their wealth equally across
all assets. To facilitate comparison of results with the previous section, it is assumed that model
parameters are exactly the same as before: r = 0.03, β = 0.05, γ = 4, γ̄ = 6, σF = 0.2. Similar
to Section 4, the model is solved numerically and interesting statistics are reported as functions of
rescaled aggregate wealth of professional investors. The results are presented in Figure 6.

The top left panel of Figure 6 depicts the optimal number of shares that a professional investor
puts in his portfolio. Clearly, as the number of assets available for investment increases, professional
investors with the same amount of aggregate wealth hold smaller amount of each asset leaving a
higher share of each asset to long-term investors. Effectively, the aggregate risk-bearing capacity of
professional investors becomes smaller relative to the total amount of risk available in the economy.
This observation is confirmed by the top right panel of Figure 6, which shows Sharpe ratios of individual
securities. Since all assets are identical, Sharpe ratios are

SR =
µ̄Q√

σ̄2
Q + (K − 1)¯̄σ2

Q

. (39)

Sharpe ratios unambiguously increase with the number of assets since professional investors require
additional compensation for holding extra amount of risk brought by additional assets at each level
of wealth.

Bottom left panel of Figure 6 reports total conditional volatility of individual securities for different
levels of rescaled aggregate wealth w. Strikingly, the highest volatility achievable for each K increases
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with K. The intuition is as follows. A negative shock to fundamentals of asset k gives rise to wealth
effect: rebalancing triggers new sell-offs, which drive the price even further from fundamentals and
increase sensitivity of the price to adverse shocks. However, with multiple stocks rebalancing caused
by fundamentals of one asset leads to sell-off in others. These sell-offs drive prices of other stocks down
and generate new losses which instigate further rebalancing and sell-offs. This is contagion described
by Kyle and Xiong (2001). However, these authors consider only two assets. This paper generalizes
their analysis to a multiple asset setting and shows that volatility amplification caused by contagion
can become stronger as the number of assets increases.

Another measure related to contagion is the correlation between returns. For K identical assets,
a correlation coefficient between each two of them is

ρQ =
cov(dQk, dQl)

var(dQk)
=

¯̄σQ(2(σ̄Q − ¯̄σQ) + K ¯̄σQ)
σ̄2

Q + (K − 1)¯̄σ2
Q

. (40)

This correlation is shown in the bottom right panel of Figure 6. Note that despite independence of
assets fundamentals, returns appear to be highly correlated for intermediate levels of wealth. Only if
the aggregate wealth tends to zero or infinity the correlation of returns becomes closer to the correlation
of fundamentals. However, as opposed to volatility, the range of attainable correlations appears to be
significantly less sensitive to changes in the number of assets K.

Under certain circumstances, the inference drawn from bottom panels of Figure 6 can be mislead-
ing. Indeed, if the distribution of aggregate wealth has a relatively narrow support, only a certain
range of wealth might be relevant for analysis and extreme values of volatility and correlation might
be unattainable. To mitigate this concern, Table 1 reports 5% and 95% quantiles of total volatility
of returns and their pairwise correlations. Consistent with the previous discussion, 95% quantile for
volatility consistently increases and almost coincides with the top points of graphs depicted in the left
bottom panel of Figure 6. This indicates that volatility increase is not spurious and in certain states
of the world in the model with seven assets total volatility indeed can be higher than in any state in
the the model with, for example, one asset. Table 1 also confirms the conclusions on correlations be-
tween assets: although the 95% quantile increases with the number of assets, the effect is substantially
smaller than for volatility.

5.2 Equilibrium with margin constraints

To visualize the impact of endogenously varying margin requirements, Figure 7 reports differences in
several statistics in economies with and without margin constraints. For illustrative purposes it is
assumed that there are three identical assets in each economy. To make the results comparable, in
both economies all other parameters are set as in the previous sections except for margin requirements.
Following the analysis of Section 3, I examine two types of margin requirements associated with
different collateralization schemes. In Figure 7 the dashed line corresponds to the case of individual
collateralization whereas the solid line corresponds to the portfolio collateralization case. Figure
7 reports the aggregate demand of professional investors X, the Sharpe ratio of each asset SR, the
volatility of returns σtot

Q , and the correlation between returns ρQ. In consistency with one asset analysis
of Section 4, time varying margin constraints decrease optimal holdings of professional investors and
increase volatility of returns. Also, when margins bind the Sharpe ratio of assets becomes higher.
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A new result relative to the one asset case of Section 4 is that margin requirements can also
increase correlation between returns. As shown in the right bottom panel of Figure 7, the correlation
ρQ increases relative to no margins case as the aggregate wealth approaches the interval in which
margin constraint binds. The intuition is as follows. A negative shock to fundamentals of one asset
induces price change of other assets and increases their volatilities through the wealth effect described
in the previous section. However, in the presence of margin requirements the hedging demand in each
asset is responsible for additional sales of all assets. Hence, prices of all assets go down and this further
reduces wealth of professional investors leading to tighter margin constraints affecting all assets. Thus,
not only the wealth effect makes individual innovations in asset fundamentals partially systematic, but
also hedging of time variation in margin requirements contributes to the transformation of idiosyncratic
shocks into systematic and makes returns more correlated.

Comparing dashed lines with solid lines we conclude that margin requirements imposed on indi-
vidual assets have a stronger impact than margins applied to the portfolio as a whole. This finding is
quite intuitive since margin requirements imposed on individual assets are effectively more restrictive
than those imposed on the portfolio level even if the VaR rule followed by financiers is exactly the
same in both cases leading to identical m̄. Indeed, multiple stocks provide diversification opportunities
and if financiers care about portfolio volatility the perceived volatility of collateral value is lower. As
a result, margin constraints are less tight and the probability that they will bind is lower. Because of
that, investors are more risk tolerant and at each level of aggregate wealth allocate their capital more
aggressively maintaining higher positions in each asset (see left top panel of Figure 7). Moreover, in
the range of aggregate wealth where margins do not bind lower risk aversion produces weaker hedging
demand, which makes volatility and correlation between returns lower (see bottom panels of Figure 7).
This leads to further relaxation of margin constraints. Thus, the tendency to use different financiers
for different parts of the overall portfolio might have an important aggregate effect manifesting itself
in an even higher volatility of returns and their mutual correlations.

Finally, consider how the number of assets in the economy affects the impact of margin constraints
on volatility of returns and their correlations. Figure 8 reports differences between several statistics
in the economy with margin constraints and the economy without margins for different K. In the
economy with margins a portfolio collateralization scheme is assumed. Strikingly, the impact of
margins is almost insensitive to the number of assets. This is a manifestation of two counteracting
effects. On the one hand, the increase in the number of assets makes the portfolio more diversified.
Since the portfolio is collateralized as a whole, diversification reduces its volatility making margin
constraints less tight. As a result, volatility of returns and their correlation decrease. On the other
hand, an extra asset brings a new systematic component since because of the wealth effect and hedging
needs all returns would react to the new shock. This new systematic component increases volatility
of returns and their correlation. Which effect dominates depends on the parameters of the model, but
to a large extent they cancel each other.

6 Conclusion

The main conclusion of this paper is that time variation of margin requirements can have an eco-
nomically significant impact on volatility of returns, their correlation, and liquidity. Trying to hedge
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changes in margin constraints, risk-averse agents underinvest in risky assets and start selling them
when the probability that margin constraints become binding increases. In equilibrium, the hedging
behavior of agents substantially changes volatility and liquidity of the market. In particular, negative
shocks reducing the wealth of relatively risk tolerant investors in the states when margins do not bind
can be significantly amplified by hedging.

Theoretical understanding of the role of margin constraints is important from a practical point of
view and might have significant policy implications. There is a long-lasting discussion in the empirical
literature about the relation between margin requirements mandated by the Federal Reserve and stock
market volatility. Many authors claim that there is no robust evidence in favor of margin requirements
as an effective policy instrument (e.g., Moore, 1966; Schwert, 1989; Hsieh and Miller, 1990). This point
of view is challenged by Hardouvelis (1990), who argues that historically higher margin requirements
are associated with lower stock market volatility. This conclusion is partially reaffirmed by Hardouvelis
and Theodossiou (2002) who demonstrate that there is a negative causal relation between tightness of
margins and volatility in bull markets and no relation in bear markets. Similarly, using data from the
Tokyo Stock Exchange Hardouvelis and Peristiani (1992) show that an increase in margin requirements
is followed by decline in volatility of daily returns.

An interesting twist in this discussion is the opinion that not margins per se, but changes in margin
requirements can be an effective policy tool. Shiller (2000) claims that the Federal Reserve should
return to its pre-1974 policy of actively changing margin requirements in response to stock market
speculation. In particular, it argues that the announcement effect of increased margin requirements
might help to stabilize an exuberant stock market. This idea is in line with this paper, which suggests
that the volatility of markets can be reduced by making the tightness of margins procyclical.

The general equilibrium model considered in the paper can be generalized in numerous ways. First,
in this paper it is assumed that margins are solely determined by the impossibility to sell the collateral
immediately and lock in the current price. However, there might be other reasons why lenders impose
margin requirements. In particular, if the amount of assets the lender needs to sell is not negligible,
price impact might become an important issue for consideration. In this case, in addition to volatility
the financier starts worrying about liquidity of the market, and it becomes another determinant of
margin requirements.

Second, the ability of financiers to change margin requirements might open a door for their strategic
interaction. In particular, they might inefficiently coordinate on volatility or get involved in predation
against their customers in some states of the world. Understanding the strategic behavior of financiers
is likely to be the most fruitful direction for future research.

Appendix A. Portfolio problem with constant Sharpe ratio and dynamic margin constraints

A.1 Setup

To develop some intuition on the impact of dynamic margin constraints consider a portfolio choice problem
of a risk-averse investor who is subject to time-varying margin requirements. Although all results would be
similar for investors with the CRRA utility function, to make the analysis consistent with the equilibrium model
presented in Section 3 I assume that investors have Epstein-Zin preferences (Epstein and Zin, 1989; Weil, 1989)
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with unit EIS over an infinite stream of consumption Ct:

Jt = Et



∞∫

t

f(Cs, Js)ds


 , (41)

where

f(Cs, Js) = β(1− γ)Js

(
log Cs − 1

1− γ
log((1− γ)Js)

)
. (42)

There are two assets the investor can invest in, a risk-free asset with a constant rate of return r and a risky
asset, whose price St follows the process

dSt = (r + µS)Stdt + σSStdBS
t + QSSt−(dNt − λdt).

Innovations in the price can be of two types. The diffusion part is represented by standard Brownian motion

BS
t and corresponds to continuous changes in the price. Besides that, there can be infrequent jumps arriving

according to a Poisson process Nt with constant intensity λ. The size of jumps is also assumed to be fixed and

is equal to QS . As usually, St− denotes the price of the asset just before the jump arrival.

To delineate the impact of margin constraints, I deliberately assume that expected excess returns on the

asset µS and volatility σS are constant. It is not the case in the equilibrium studied in Section 3 where the

hedging of margin constraints is inextricably intertwined with the hedging of time-varying Sharpe ratio. To

ensure the stationarity of the wealth process I assume that β > r.
The investor is subject to margin constraints, which restrict the leverage of the portfolio: the proportion of

wealth ωt allocated to the risky asset cannot exceed a prespecified threshold mt: ωt ≤ mt. In general, mt is
time-varying with the dynamics specified as

dmt = φm(m̄−mt)dt + σ̄m

√
mt − 1dBm

t + Qm(mt− − 1)(dNt − λdt). (43)

Similar to the price of the risky asset, innovations in margins have diffusion and jump parts. The diffusive

innovations dBm
t correspond to gradual changes in margin requirements and it is convenient to think about them

as an outcome of continuous negotiations between investors and their financiers. I assume that cov(dBm
t , dBS

t ) =

ρmSdt and ρmS > 0. Although the sign of the correlation depends on how margins are set, it is quite natural

to think that margins become less tight when asset price increases.8

Jumps in the margin requirements are controlled by the same Poisson process Nt that is responsible for

jumps in the price. Hence, jumps can be interpreted as rare events which simultaneously shift the price and

margin requirements.9 Consistent with empirical evidence that returns more abruptly go down than up (“up

by stairs, down in elevator”), I assume that −1 < Qm < 0 and −1 < QS < 0.

Excluding jumps, the process (43) coincides with a Cox-Ingersoll-Ross process. This implies that the margin

fluctuates around m̄ and the square root in the diffusion term guarantees that mt is always greater than one.

The latter condition means that the portfolio constraint can be binding only if the investor borrows money and

there are no limitations on investments of his own wealth. To ensure that the boundary m = 1 is inaccessible,

8In the equilibrium model in Section 3 innovations in returns are perfectly positively correlated with the
state variable determining margin constraints.

9A good example of this sort of events is provided by stock market crash of October 19, 1987. At that day
S&P 500 index lost about 20%. Simultaneously, all investors who traded on a margin experienced a substantial
increase in margin requirements. For example, margins for S&P futures jumped from 4% to more than 12%. A
similar jump, although of a smaller size, occurred during the LTCM crisis in 1998.
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the standard Feller condition is imposed: 2φmm̄ ≥ σ̄2
m. The factor mt−− 1 in the jump term is also introduced

to guarantee that jumps do not push the margin below one.10

The problem of investor is to choose consumption and asset allocation maximizing the Epstein-Zin utility
function (41), (42) subject to the budget constraint

dWt = ωtWt((µS − λQS)dt + σSdBS
t ) + (rWt − Ct)dt + Wt−ωt−QSdNt (44)

and the margin requirement ωt ≤ mt. The solution to this problem is summarized in Proposition 4.

Proposition 4 The solution to the portfolio problem of an investor with Epstein-Zin utility function (41),
(42) subject to the budget constraint (44) and the margin requirement (43) is

C∗ = βW, ω∗ = min(m, ω̄(m)), (45)

where ω̄(m) solves the following equation

ω̄(m) =
µS − λQS

γσ2
S

+
σ̄m

√
m− 1ρmS

γσS
H ′(m)

+
λQS

γσ2
S

(1 + ω̄(m)QS)−γ exp(H(m + (m− 1)Qm)−H(m)). (46)

A twice continuously differentiable function H(m) solves the following ODE

β(1− γ)(log β − 1) + r(1− γ)− βH + H ′ (φm(m̄−m)−Qmλ(m− 1))

+
1
2
(H ′′ + (H ′)2)σ̄2

m(m− 1) + (1− γ)
(
ω∗(µS − λQS)− γ

2
(ω∗)2 σ2

S + H ′ω∗σS σ̄m

√
m− 1ρmS

)

+ λ
[
(1 + ω∗QS)1−γ exp(H(m + (m− 1)Qm)−H(m))− 1

]
= 0 (47)

and the value function is

V (m,W ) =
1

1− γ
W 1−γ exp(H(m)).

Proof. The value function of an investor maximizing stochastic differential utility (41), (42) satisfies the
following Bellman equation (Duffie and Epstein, 1992a)

max
{C,ω≤m}

[f(C, J) + DJ ] = 0. (48)

An aggregator f(C, J) is given by Eq. (42) and

DJ = JW (ωW (µS − λQS) + rW − C) +
1
2
JWW W 2ω2σ2

S + Jmφm(m̄−m)− JmQmλ(m− 1)

+
1
2
Jmmσ̄2

m(m− 1) + JWmWωσS σ̄m

√
m− 1ρmS + λ∆J,

where
∆J = J(W (1 + ωQS),m + (m− 1)Qm)− J(W,m).

Assuming (1− γ)J > 0, maximization with respect to C yields

C = arg max
{C}

[β(1− γ)J log C − JW C] = β(1− γ)
J

JW
. (49)

10Clearly, the suggested model can be generalized in numerous ways. For example, it is possible to introduce
jumps with random sizes, consider stochastic intensity of jump arrival, etc. Although such modifications may
enrich model implications, their consideration is beyond the scope of this paper.
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Due to homotheticity of preferences it is natural to look for the value function in the following standard form:

J(m, W ) =
1

1− γ
W 1−γ exp(H(m)), (50)

where the function H(m) is assumed to be twice continuously differentiable for all m achievable by the process
of Eq. (43). Eq. (50) satisfies the condition (1 − γ)J > 0 and immediately yields C∗ = βW . Substituting
optimal consumption back into (48) we reduce it to

max
{ω≤m}

[G(ω,m)] = 0, (51)

where

G(ω, m) = β(log β − 1) + r − β

1− γ
H +

1
1− γ

H ′ (φm(m̄−m)−Qmλ(m− 1))+

1
2(1− γ)

(H ′′ + (H ′)2)σ̄2
m(m− 1) + ω(µS − λQS)− γ

2
ω2σ2

S + H ′ωσS σ̄m

√
m− 1ρmS+

λ

1− γ

[
(1 + ωQS)1−γ exp(H(m + (m− 1)Qm)−H(m))− 1

]
= 0. (52)

The solution to the maximization problem ω∗ is either an internal point satisfying the first order condition
Gω(ω∗,m) = 0 or a point on the boundary ω∗ = m if Gω(ω, m) > 0 for all ω ≤ m. The first order condition
yields Eq. (46) and its solutions (if they exist) are denoted as ω̄. Since the optimal wealth can never become
negative (this will lead to infinitely negative utility), it is sufficient to consider only those portfolio weights for
which 1 + ωQS > 0 (see Liu, Longstaff, and Pan (2003) for a similar result). Note that if G(ω, m) has at most
one local maximum in {ω : ω < m}, then ω∗ = min(m, ω̄). The latter condition is guaranteed by Gωω < 0 for
all admissible ω and m, where

Gωω = −γ
(
σ2

S + λQ2
S(1 + ωQS)−1−γ exp(H(m + (m− 1)Qm)−H(m))

)
. (53)

The verification of Gωω < 0 is equivalent to checking the “verification theorem” (e.g. Fleming and Soner, 2006)

and completes the proof.

Proposition 4 indicates that the solution to the portfolio problem has a form of a free boundary problem:

choosing the portfolio policy the investor decides at which point m∗ the margin constraint becomes binding.

This point is determined by the equation m = ω̄(m) and the optimal portfolio policy (45) has a two-region

structure. If the margin constraint is sufficiently tight (m ≤ m∗) the investor prefers to invest up to this limit

and ω∗ = m. However, if m > m∗ the optimal portfolio is ω∗ = ω̄, where ω̄ solves Eq. (46).

The unconstrained demand ω̄ has a very intuitive structure. The first term is a standard myopic demand

corrected for jumps. The second term is a hedging demand caused by continuous changes in the marginal

requirement. From the structure of the value function, if γ > 1 the increase of V (m,W ) with m implies

H ′(m) < 0. Hence, when ρmS > 0 the hedging demand is negative and anticipating the possibility of binding

margin constraints investors should diminish their positions in the risky asset. On the contrary, if 0 < γ < 1 the

increase in indirect utility with relaxation of margin constraints implies H ′(m) > 0 and positive hedging demand

when returns are positively correlated with innovations in mt. Note that although this hedging demand is similar

to the standard hedging demand of Merton (1971) and can be interpreted as investor’s response to time-varying

investment opportunities, its origin is different. Merton’s hedging demand is produced by time variation in

the Sharpe ratio, whereas the hedging demand in Eq. (46) results from variation in margin constraints. This

difference manifests itself in the equation for the function H(m). The third term in Eq. (46) corresponds to

jump-related component and typically appears when price follows a jump-diffusion process (Liu, Longstaff, and

Pan, 2003; Wu, 2003).
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A.2 Analysis

To illustrate the implications of Proposition 4 consider sequentially several special cases. To avoid unnecessary

complications, there are no jumps in Sections A.2.1, A.2.2, and A.2.3.

A.2.1 No margin requirements

This is the simplest benchmark with no restrictions on portfolio weights. The solution to the portfolio problem
of Epstein-Zin investor facing constant investment opportunities is well-known (Svensson, 1989; Obstfeld, 1994).
Similar to a CRRA investor analyzed in Merton (1969), investors with Epstein-Zin preferences also have constant
myopic demand

ω∗ =
µS

γσ2
S

, (54)

which is completely determined by expected returns and volatility. The weight (54) coincides with the optimal

leverage of an unconstrained investor, and this leverage will be considered a benchmark in the subsequent

analysis.

A.2.2 Constant margin requirements

The next special case corresponds to a constant margin constraint: mt = m̄ = const. It is a special case of
borrowing constraints studied in the literature (Cvitanić and Karatzas, 1992; Teplá, 2000; Schroder and Skiadas,
2003). There are two possible outcomes here. If the myopic demand (54) does not violate the margin constraint,
it solves the portfolio problem and the margin constraint appears to be irrelevant. When the myopic portfolio
is not feasible, it is optimal for the investor to choose the highest possible weight of the risky asset ω = m̄ and
the margin constraint binds all the time.11 Thus, the optimal portfolio is

ω∗ = min
(

m̄,
µS

γσ2
S

)
. (55)

A.2.3 Time varying margin requirements without jumps

Now consider a more interesting situation in which the investor is exposed to time-varying margin constraints.
To separate the effect of continuous changes in margin requirements from the effect of jumps, I first focus on
the case with λ = 0. Without jumps, Eq. (46) becomes trivial and the optimal portfolio takes the form

ω∗ = min
(

m,
µS

γσ2
S

+
σ̄m

√
m− 1ρmS

γσS
H ′(m)

)
, (56)

where the function H(m) solves Eq. (47).

It is worth to compare the obtained hedging behavior of the investor with the standard dynamic hedging

first examined by Merton (1971). In the latter case, hedging needs are due to time-varying expected excess

returns or volatility of assets causing variation in the Sharpe ratio, which is associated with instantaneous

investment opportunities. In the portfolio problem under consideration expected returns and volatility are fixed

11Since there is only one risky asset in the economy, the solution to the portfolio problem with a constant
margin constraint is quite trivial. In the multiple asset case, however, the optimal portfolio is less obvious. As
demonstrated by Cvitanić and Karatzas (1992) and Teplá (2000), when the myopic portfolio is not feasible and
the margin constraint limits the aggregate position in risky assets the CRRA investors act as if unconstrained,
but facing a higher interest rate. Similar to the single asset economy, the optimal portfolio sits on the boundary
in the portfolio space.
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and instantaneous investment opportunities do not vary over time. The hedging demand arises because of a

distant possibility of binding margin constraints and has a long-run nature.

To illustrate the impact of dynamic margin constraints on the optimal portfolio policy, I consider several

numerical examples. In these examples the rate of time preference β is chosen to be 5%, and the risk free

rate is set at 3%. To make examples comparable, instead of fixing the parameters of the price process I keep

constant the Sharpe ratio SR = µS/σS and the optimal leverage of unconstrained investors L = µS/(γσ2
S). In

the benchmark specification SR = 1 and L = 4. Note that the return on the risky asset can be interpreted as a

return on any risky strategy. Hence, the parameters µS and σS can significantly deviate from the values typical

for the stock market.

It is natural to assume that margin requirements are quite persistent: long periods of high margins are typ-

ically followed by long periods of low margins. To reflect this fact, I assume that φm = 0.05. The unconditional

mean of margin is m̄ = 4, i.e. on average 75% of a position in the risky asset is financed by borrowed money.

The volatility of shocks to the margin constraint σm is set at 0.5. It means that the unconditional volatility

of m is 2.74. I also assume that innovations to asset prices are positively correlated with innovations to the

margin constraints: ρmS = 1. This positive correlation is consistent with the intuition that positive returns are

associated with declining volatility and, hence, more aggressive lending by financiers.

The optimal portfolio is determined by the solution to Eq. (47), which is a complicated ODE admitting only

numerical solutions. To solve for H(m), I use a projection method and approximate H(m) by appropriately

scaled Chebyshev polynomials. This approach guarantees that H(m) is twice continuously differentiable for all

m ∈ (1,∞). Further details about the numerical procedure are relegated to Appendix C.

Optimal demands of investors with various risk preferences are depicted in Figure 9. Similar to the standard

hedging demand caused by variations in the Sharpe ratio, the sign of hedging demand generated by time-varying

margin constraints depends on whether γ > 1 or γ < 1. When γ = 1 the hedging demand disappears and the

investor maintains the optimal myopic leverage from Eq. (54) unless the margin constraint hits. If the allowed

leverage is below myopic demand an investor with logarithmic preferences borrows up to the limit. However,

a risk-averse investor with γ > 1 underinvests in comparison with the no margin requirements case and even

when risk aversion is moderate hedging needs can significantly influence the optimal portfolio. For instance,

even if the myopic optimal leverage is 4 an investor with γ = 4 keeps his leverage at a level below 3.5 and

decreases it further as the margin gets tighter. For sufficiently low m an investor stops hedging and uses the

whole borrowing capacity (sits on the margin constraint). Note that an anticipated constraint changes both the

level and the slope of the demand function. Thus, not only an investor reduces his investments into the risky

asset, but also he becomes sensitive to variation in margins. The latter feature will be especially important in

the general equilibrium framework.

If γ < 1 the hedging demand has an opposite sign: constrained investors invest more in the risky asset

than their unconstrained peers. Although quantitatively the effect is less pronounced than in the γ > 1 case,

qualitatively the optimal demand resembles a strategy followed by some arbitrageurs: when prices decrease,

they buy more assets until hitting the margin constraint and at this point they start selling. Hence, hedging

time variation in margin constraints can at least partially rationalize this strategy.
To quantify the hedging demand, I consider average adjustments to the optimal portfolio policy caused by

dynamic margin constraints. Specifically, I simulate (discretized) paths of prices and margin constraints and
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estimate an average hedging demand as

HD = E

[
ω∗ − ω∗myopic

ω∗myopic

]
,

where ω∗ is the optimal constrained demand and ω∗myopic is myopic (unconstrained) demand. To examine the

relation between the size of the hedging demand, investors’ risk preferences, and characteristics of the risky

asset I consider several parameter sets. The results are reported in Panel A of Table 2.

It is not surprising that the size of hedging demand is positively related to risk aversion for any considered

values of the Sharpe ratio and myopic leverage. What is more interesting, hedging demand caused by margin

requirements might have a substantial size even for moderate coefficients of risk aversion. Thus, when γ = 4,

SR = 2, and L∗ = 4 hedging reduces optimal demand by 17%. This is a clear indication that accounting for

time varying margin requirements might be very important for portfolio managers.

Table 2 shows that the hedging demand is the largest when optimal leverage is equal to the mean value

of the margin constraint, which is four in the considered examples. Indeed, if L∗ is too low (e.g. L∗ = 2),

the margin constraint rarely binds and its existence is less relevant. As a result, hedging needs are small and

the solution in close to the myopic demand. On the other hand, when optimal leverage is high (e.g. L∗ = 6)

the margin constraint binds quite often both in myopic and non-myopic cases. Hence, the impact of hedging

demand is again reduced.

Another general conclusion from Table 2 is that the size of hedging demand grows with the Sharpe ratio SR.

Since SR = γσSL, keeping the coefficient of risk aversion and the optimal leverage fixed, an increase in the

Sharpe ratio implies an increase in the volatility of returns. This makes the asset a better hedging instrument

and increases the size of the hedging demand. This also indicates that hedge funds with higher Sharpe ratios

should be more attentive to time variation of margin requirements.

Panel B of Table 2 reports the boundary values of margin requirements below which an investor finds it

optimal to use the whole borrowing capacity. When γ > 1 this threshold is below optimal leverage indicating

that the hedging demand is negative. Also, the difference L∗−m∗ is more pronounced for higher γ, higher SR,

and higher L∗ indicating an increasing size of hedging demand. When γ < 1 an investor might prefer to be on

the constraint even when myopic allocation is feasible and L∗ < m∗. This is consistent with Figure 9.

It is worth to note that hedging of time-varying margin requirements might take different forms depending

on the exact form of portfolio constraints and financially constrained arbitrageurs might underinvest as well as

overinvest in a risky asset. In Grossman and Vila (1992) investors with CRRA preferences are bounded by a

borrowing constraint which is non-homogeneous in wealth. In contrast to this paper, the leverage constraint

binds at high levels of wealth making indirect utility function more concave. Investors with high risk aversion

(with γ > 1) overinvest in a risky asset at low levels of wealth (when margin does not bind) to be able to

postpone the effect of binding margins in future. When γ < 1 investors underinvest in the risky asset. Thus,

the effect of Grossman and Vila (1992) which is solely driven by an intercept in the margin constraint works in the

opposite direction to the hedging demand of this paper. Shleifer and Vishny (1997) argue that arbitragers invest

cautiously in underpriced assets since observing bad performance outside investors can withdraw capital exactly

in the time when arbitrage opportunities are especially profitable. In Liu and Longstaff (2004) a risk-averse

arbitrageur investing in an arbitrage opportunity represented by a Brownian bridge process faces a constant

collateral constraint expressed in terms of “units of arbitrage”, but not the dollar value of the position. In this

framework, the arbitrageur finds it optimal to invest in the arbitrage less than the constraint permits to be able
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to exploit the opportunities if the arbitrage gap widens. In Attari and Mello (2006) risk-neutral arbitrageurs

take a smaller position because a forced liquidation will drive the price downward exacerbating financial loss.

The price impact is also the cause of underinvestment in Basak and Croitoru (2006).

A.2.4 Margin requirements with jumps

Next, consider the effect of pure jumps in the margin constraint on the optimal portfolio policy. Specifically, it
is assumed that σ̄m = 0 and margins are updated irregularly when the price also abruptly changes. Note that
even without margin constraints the equation for an optimal weight (46) is non-linear and in general cannot
be solved analytically (Liu, Longstaff, and Pan, 2003; Wu, 2003). Moreover, in contrast to the pure diffusion
case some combinations of risk aversion γ, the Sharpe ratio SR, the optimal leverage L, and the probability of
jumps are unattainable. It is not difficult to show that the following inequality must be satisfied:

SR2 + 4LλγQS

[
(1 + LQS)−γ

]
> 0. (57)

Thus, as opposed to the diffusion case, it is not straightforward to compare hedging demands for various

leverages, risk aversion parameters, and the Sharpe ratios.

Consider the effect of risk aversion on the portfolio keeping other parameters as follows: the Sharpe ratio is

SR = 2, and the optimal leverage without constraints is L = 2. As in the previous section, an average margin

constraint coincides with the optimal leverage: m̄ = 2 and φm = 0.05. Also, I set β = 0.05, r = 0.03 and

maintain the desired optimal leverage and the Sharpe ratio by adjusting expected returns and volatility of the

asset.

It is assumed that the jump probability parameter is λ = 0.05. In such event, the asset price drops by 20%

and the margin constraint becomes tighter by 50%, i.e. QS = −0.2, Qm = −0.5. Given the facts collected in

Section 2, such intensity and sizes of jumps look quite reasonable.

Optimal portfolio policies for different γ are plotted in Figure 10. Qualitatively, the effect of jumps in

margins is similar to that of continuous changes. Risk averse investors with γ > 1 prefer to underinvest in the

asset if they anticipate even small probability of price drop accompanied by tightening of margins. For example,

if γ = 4 instead of maintaining the optimal leverage L = 2 investors prefer to have a leverage slightly above

1.7. On the contrary, if γ < 1 it is optimal to overinvest in the risky asset, but quantitatively the effect is quite

small.

This result indicates that even if investors do not need to renegotiate their margin constraints with lenders

on a regular basis, the risk of sudden price drops accompanied by abrupt changes in margin requirements

should be taken into consideration. Specifically, such risk should make a rational risk-averse investor with γ > 1

follow a more conservative strategy even if the jump risk does not affect instantaneous investment opportunities

measured by the Sharpe ratio.

Appendix B.

This Appendix collects the proofs of several propositions stated in the main part of the paper.

Proof of Proposition 1 and 2.

Omitting arguments of the value function J as well as time and investor subscripts we get the following Bellman
equation:

max
X̃,C

(
f(C, J) +

1
dt

Et[dJ ]
)

= 0,
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where

1
dt

Et[dJ ] = Jzµz +
1
2
Jzzσzσ

′
z + JW µ′Q

(
λ(M)X̂ + (1− λ(M)) X̃

)
+ JW (rW − C)

+
1
2
JWW

(
λ(M)X̂ ′σQσ′QX̂ + (1− λ(M)) X̃ ′σQσ′QX̃

)
+ JzW

(
λ(M)X̂ + (1− λ(M)) X̃

)′
σQσ′z. (58)

Eq. (58) uses Ito’s formula and the individual wealth dynamics (16). Recall that if the bid of a professional
investor violates the margin constraint, the margin binds with a probability λ (M), where

M =

√
X̃ ′σQσ′QX̃

m̄W

if portfolio is collateralized as a whole and

M =
X̃ ′

√
diag(σQσ′Q)

m̄W

if individual assets are collateralized separately. Maximization with respect to C is quite standard and yields

C = β(1− γ)
J

JW
.

Using X̂ = X̃/M the optimal portfolio problem reduces to

max
X̃

(
X̃ ′

(
λ(M)

M
+ 1− λ(M)

) (
JW µQ + JzW σQσ′z

)
+

1
2
JWW

(
λ(M)
M2

+ 1− λ(M)
)

X̃ ′σQσ′QX̃

)
= 0.

Hence, maximization with respect to X̃ leads to the following first order condition:

(
JW µQ + JzW σQσ′z

) (
λ

M
+ 1− λ + X̃ ′MX̃

(
λ′

M
− λ

M2
− λ′

))

+ JWW

(
λ(M)
M2

+ 1− λ(M)
)

σQσ′QX̃ +
1
2
JWW (X̃ ′σQσ′QX̃)MX̃

(
λ′

M2
− 2λ

M3
− λ′

)
= 0, (59)

where MX̃ is a vector derivative of M with respect to X̃. Assuming the value function in the form

J(z,W ) =
1

1− γ
W 1−γ exp(H(z))

we get C = βW and the following equation for X̃:

(
µQ + H ′σQσ′z

)
(

λ

M
+ 1− λ +

X̃ ′

W
(MX̃W )

(
λ′

M
− λ

M2
− λ′

))

− γ

(
λ

M2
+ 1− λ

)
σQσ′Q

X̃

W
− 1

2
γ

(
X̃ ′

W
σQσ′Q

X̃

W

)
(MX̃W )

(
λ′

M2
− 2λ

M3
− λ′

)
= 0. (60)

Equation for H(z) comes from the Bellman equation

β(1− γ)(log β − 1)− βH + H ′µz(z) +
1
2
(H ′′ + (H ′)2)σzσ

′
z + r(1− γ)

+(1− γ)(µQ + H ′σQσ′z)
′ X̃
W

(
λ

M
+ (1− λ)

)
− γ

2
(1− γ)

(
X̃ ′

W
σQσ′Q

X̃

W

) (
λ

M2
+ (1− λ)

)
= 0. (61)

Eqs. (60) and (61) are quite complicated and, in general, cannot be simplified further without specification of

the margin violation ratio M . Hence, I consider the cases of portfolio collateralization and collateralization of

individual securities separately.
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Portfolio collateralization. When portfolio is collateralized as a whole, the margin violation ratio and its
derivatives are

M =

√
X̃ ′σQσ′QX̃

m̄W
, MX̃W =

1
m̄2M

σQσ′Q
X̃

W
.

Hence, Eq. (60) yields

(
µQ + H ′σQσ′z

) (
1− λ + λ′ − λ′M

)− γσQσ′Q
X̃

W

(
1− λ +

λ′

2M
− 1

2
λ′M

)
= 0.

Assuming invertibility of σQ, we get

1
m̄

σ′Q
X̃

W

(
2(1− λ) +

λ′

M
− λ′M

)
=

2
γm̄

σ−1
Q

(
µQ + H ′σQσ′z

) (
1− λ + λ′ − λ′M

)
. (62)

Lemma 2 The solution to Eq. (62) is

X̃

W
=

2
γ

y(A)
A

[
σQσ′Q

]−1 (
µQ + H ′σQσ′z

)
, (63)

where

A =
2

γm̄

√(
µQ + H ′σQσ′z

)′ [
σQσ′Q

]−1 (
µQ + H ′σQσ′z

)
. (64)

and the function y(x) is defined in Section 3.3.4.

Proof. Multiplying Eq. (62) by its own transposition and using the difinition of M we arrive at

M

(
2(1− λ) +

λ′

M
− λ′M

)
=

2
γm̄

√(
µQ + H ′σQσ′z

)′ [
σQσ′Q

]−1 (
µQ + H ′σQσ′z

) (
1− λ + λ′ − λ′M

)
. (65)

Using Eq. (64) and noticing that Eq. (65) coincides with Eq. (20) we get

M = y(A).

Combining Eq. (62) with (65) we arrive at

A
1
m̄

σ′Q
X̃

W
=

2
γm̄

σ−1
Q

(
µQ + H ′σQσ′z

)
M, (66)

which immediately yields Eq. (63). ¥

Given the solution for X̃/W , the Bellman equation (61) can be significantly simplified. Indeed,

(µQ + H ′σQσ′z)
′ X̃
W

=
γm̄2

2
y(A)A,

X̃ ′

W
σQσ′Q

X̃

W
= m̄2y(A)2.

Hence, the equation for H(z) is

β(1− γ)(log β − 1)− βH + H ′µz(z) +
1
2
(H ′′ + (H ′)2)σzσ

′
z + r(1− γ)

+(1− γ)
γm̄2

2
A (λ + (1− λ) y(A))− γm̄2

2
(1− γ)

(
λ + (1− λ) y(A)2

)
= 0

or
β(1− γ)(log β − 1)− βH + H ′µz(z) +

1
2
(H ′′ + (H ′)2)σzσ

′
z + r(1− γ)

+(1− γ)
γm̄2

2
[λ(A− 1) + (1− λ) y(A)(A− y(A))] = 0.
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In the symmetric equilibrium further simplification is attainable. Indeed,

X̃

W
=

x̃

W
ι, µQ = µ̄Qι, σz = σ̄zι

′, σQ = σ̄QI + ¯̄σQ(ιι′ − I)

where x̃, µ̄Q, σ̄z, σ̄Q, and ¯̄σQ are scalars. I is a K-dimensional unit matrix and ι is a K × 1 vector consisting
of ones. Simple calculation yields

µQ + H ′σQσ′z =
[
µ̄Q + H ′(σ̄Q + ¯̄σQ(K − 1))σ̄z

]
ι,

σQσ′Q = (σ̄Q − ¯̄σQ)2I + [2(σ̄Q − ¯̄σQ) + K ¯̄σQ] ¯̄σQιι′,

[
σQσ′Q

]−1
ι =

1
(σ̄Q + ¯̄σQ(K − 1))2

ι.

Thus, the optimal strategy of Eq. (63) reduces to

x̃

W
=

m̄y(A)√
K(σ̄Q + ¯̄σQ(K − 1))

,

where

A =
2
√

K

γm̄

[
µ̄Q

σ̄Q + ¯̄σQ(K − 1)
+ H ′σ̄z

]
. (67)

Collateralization of individual assets. When individual assets are collateralized separately, the margin
violation ratio and its derivatives are

M =
X̃ ′

√
diag(σQσ′Q)

m̄W
, MX̃W =

√
diag(σQσ′Q)

m̄
.

The equation for the optimal policy (60) gives

(
µQ + H ′σQσ′z

) (
1− λ + λ′ − λ′M

)

− γ

(
λ

M2
+ 1− λ

)
σQσ′Q

X̃

W
− 1

2
γ

(
X̃ ′

W
σQσ′Q

X̃

W

) √
diag(σQσ′Q)

m̄

(
λ′

M2
− 2λ

M3
− λ′

)
= 0. (68)

This equation cannot be simplified further without using that all assets are identical. Similar to the case with
portfolio collateralization, it is convenient to introduce x̃, µ̄Q, σ̄z, σ̄Q, and ¯̄σQ such that

X̃

W
=

x̃

W
ι, µQ = µ̄Qι, σz = σ̄zι

′, σQ = σ̄QI + ¯̄σQ(ιι′ − I).

Then, the margin violation ratio is

M =
x̃

W

K
√

(σQσ′Q)11

m̄
, (σQσ′Q)11 = σ̄2

Q + (K − 1)¯̄σ2
Q.

Multiplying Eq. (68) by X̃/W we get

X̃ ′

W

(
µQ + H ′σQσ′z

) (
1− λ + λ′ − λ′M

)− γ
X̃ ′

W
σQσ′Q

X̃

W

(
1− λ +

λ′

2M
− 1

2
λ′M

)
= 0.

The substitution X̃/W = x̃/Wι yields
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ι′
(
µQ + H ′σQσ′z

) (
1− λ + λ′ − λ′M

)− γ

(
x̃

W

)
ι′σQσ′Qι

(
1− λ +

λ′

2M
− 1

2
λ′M

)
= 0

or

ι′
(
µQ + H ′σQσ′z

) (
1− λ + λ′ − λ′M

)− m̄γ

K
√

(σQσ′Q)11
ι′σQσ′Qι

(
(1− λ)M +

λ′

2
− 1

2
λ′M2

)
= 0

or
2ι′

(
µQ + H ′σQσ′z

)
K

√
(σQσ′Q)11

γm̄ι′σQσ′Qι

(
1− λ + λ′ − λ′M

)
= 2(1− λ)M + λ′ − λ′M2. (69)

Remarkably, Eq. (69) has exactly the same structure as Eq. (20). Denoting

A =
2ι′

(
µQ + H ′σQσ′z

)
K

√
(σQσ′Q)11

γm̄ι′σQσ′Qι

we get
M = y (A) .

The optimal strategy is
x̃

W
=

m̄

K
√

(σQσ′Q)11
y (A) .

or, noting that
(σQσ′Q)11 = σ̄2

Q + (K − 1)¯̄σ2
Q, ι′σQσ′Qι = K(σ̄Q + ¯̄σQ(K − 1))2,

we get

x̃

W
=

m̄

K
√

σ̄2
Q + (K − 1)¯̄σ2

Q

y




2K
[
µ̄Q + H ′(σ̄Q + ¯̄σQ(K − 1))σ̄z

] √
σ̄2

Q + (K − 1)¯̄σ2
Q

γm̄(σ̄Q + ¯̄σQ(K − 1))2


 .

Given the solution for X̃/W the Bellman equation (61) is

β(1− γ)(log β − 1)− βH + H ′µz(z) +
1
2
(H ′′ + (H ′)2)σzσ

′
z + r(1− γ)

+(1−γ)m̄
µ̄Q + H ′(σ̄Q + ¯̄σQ(K − 1))σ̄z√

σ̄2
Q + (K − 1)¯̄σ2

Q

(λ + (1− λ) y(A))−γm̄2

2K
(1−γ)

(σ̄Q + ¯̄σQ(K − 1))2

σ̄2
Q + (K − 1)¯̄σ2

Q

(
λ + (1− λ) y2(A)

)
= 0,

β(1− γ)(log β − 1)− βH + H ′µz(z) +
K

2
(H ′′ + (H ′)2)σ̄2

z + r(1− γ)

+(1− γ)
γm̄2

2K

(σ̄Q + ¯̄σQ(K − 1))2

σ̄2
Q + (K − 1)¯̄σ2

Q

[λ(A− 1) + (1− λ) y(A)(A− y(A))] = 0.

This completes the proof.

Proof of Proposition 3.

To simplify notations, subscripts are omitted. Using the definition of excess return dQ = dS + Ddt − rSdt

together with the equilibrium price function (33), the definition of fundamentals (5), and the dividend process
(1) we get

dQ = γ̄dX + rγ̄(X̄ι−X)dt +
σDdB

r + φ
.

In the equilibrium X is a function of W only. Hence, applying Ito’s formula to X(W ) and using the dynamics
of aggregate wealth

dW = X ′(µQdt + σQdB) + (r − β)Wdt (70)
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together with the linear relation between aggregate consumption and aggregate wealth C = βW we get:

dX = XW (X ′(µQdt + σQdB) + (r − β)Wdt) +
1
2
XWW (X ′σQσ′QX)dt.

Hence,

dQ = γ̄XW (X ′(µQdt + σQdB) + (r − β)Wdt) +
1
2
γ̄XWW (X ′σQσ′QX)dt + rγ̄(X̄ι−X)dt +

σDdB

r + φ

and using the definition dQ = µQdt + σQdB we arrive at matrix equations for µQ and σQ

µQ = γ̄XW (X ′µQ + (r − β)W ) +
1
2
γ̄XWW (X ′σQσ′QX) + rγ̄(X̄ −X), (71)

σQ = γ̄XW (X ′σQ) +
σDI

r + φ
, (72)

where I is a K-dimensional unit matrix. Solving Eqs. (71) and (72) for µQ and σQ we get

µQ =
γ̄(r − β)XW W + 1

2 γ̄XWW (X ′σQσ′QX) + rγ̄(X̄ι−X)
1− γ̄X ′

W X
(73)

+
γ̄2r

[
X ′(X̄ι−X)XW − (X ′XW )(X̄ι−X)

]
+ 1

2 γ̄2(X ′σQσ′QX) [(X ′XWW )XW − (X ′XW )XWW ]
1− γ̄X ′

W X
,

σQ =
σD

r + φ

I + γ̄(XW X ′ −X ′XW I)
1− γ̄X ′

W X
. (74)

If all assets are identical, i.e. X(W ) = x(W )ι then Eqs. (73) and (74) can be represented as µQ = µ̄Qι and
σQ = σ̄QI + ¯̄σQ(ιι′ − I), where µ̄Q, σ̄Q, ¯̄σQ are the following scalars:

µ̄Q =
γ̄(r − β)xW W + K

2γ̄
xW W

x2
W

¯̄σ2
Q + rγ̄(X̄ − x)

1− γ̄KxW x

σ̄Q =
σD

r + φ

1− (K − 1)γ̄xW x

1− γ̄KxW x
, ¯̄σQ =

σD

r + φ

γ̄xW x

1− γ̄KxW x
.

This completes the proof.

Appendix C.

This Appendix reports some details on numerical methods used to solve non-linear differential equations appear-
ing in Section 3 and Appendix A. The key idea is to use the projection method, which is essentially equivalent to
looking for an approximate solution in the form of a linear combination of orthogonal polynomials (Judd, 1998).
As an orthogonal basis Chebyshev polynomials of the first kind has been used. Since Chebyshev polynomials
form an orthogonal basis in L2([−1, 1]), the independent variables are rescaled to fit this interval. Denote the
state variable as Z: it is the aggregate wealth of professional investors W in Section 3 and exogenous margin
requirement m− 1 in Appendix A. In both cases the range of Z is (0,∞). The rescaled variable is

z =
Z − 1
Z + 1

(75)

and the range of z is (−1, 1). Thus, the transformation (75) monotonically and smoothly maps an interval
(0,∞) into an interval (−1, 1): the boundary Z = 0 corresponds to z = −1 and when Z tends to infinity z

approaches 1. Besides being a natural domain for Chebyshev polynomials, the interval (−1, 1) also facilitates
the reporting of results. The inverse map to (75) is

Z =
1 + z

1− z
.
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The change of variables (75) also affects derivatives appearing in the differential equations. It is easy to show
that derivatives with respect to Z and z are related as

∂

∂Z
=

(1− z)2

2
∂

∂z
,

∂2

∂Z2
=

(1− z)4

4
∂2

∂z2
− (1− z)3

2
∂

∂z
.

More specifically, denote the solution to the system of differential equations as {Y i(z)}, i = 1, ..., L. For
example, in Section 3 L = 2 and {Y 1(z), Y 2(z)} ≡ {H(z), X(z)}, whereas in Appendix A L = 1 and Y 1(z) ≡
H(z). Then, the projection method prescribes to look for a solution in the following form

Y i(z) =
N∑

j=0

ai
jTj(z),

where {Tj(z), j = 0...N} are Chebyshev polynomials of the first kind and N denotes the highest order. Thus, the
problem is to find the coefficients ai

j such that Y i(z) minimizes the deviation of the left hand side of differential
equations from zero and satisfies the boundary conditions. Since Tj(−1) = (−1)j and Tj(1) = 1 the boundary
conditions at z = −1 and z = 1 put linear restrictions on the unknown coefficients ai

j

Y i(−1) =
N∑

j=0

ai
j(−1)j , Y i(1) =

N∑

j=0

ai
j .

To set the objective function, I use the overidentified collocation method, which prescribes to minimize the

sum of squared errors computed at points {zm, m = 0, ..., M} and M > N . For better approximation, instead

of a uniform grid I use a Chebyshev array, which is a set of points where TM (zm) = 0 for all {zm, m = 0, ...,M}.
Since the optimization problem is overidentified, it is possible to ensure the existence of the solution if the value

of the objective function at the optimal point is close to zero. In the practical implementation of the projection

method I use M = 100 and N = 30. For these parameters, the error of approximation is typically of order

10−7. Moreover, the results are stable with respect to variation in the degree of Chebyshev polynomials and

the number of points, and this stability provides additional evidence that the numerical approximation indeed

converges to the exact solution.

References

Ang, Andrew, and Geert Bekaert, 2002, International asset allocation with regime shifts, Review of Financial

Studies 15, 1137-1187.

Attari, Mukarram, and Antonio S. Mello, 2006, Financially constrained arbitrage in illiquid markets, Journal

of Economic Dynamics and Control 30, 2793-2822.

Barberis, Nicholas, 2000, Investing for the long run when returns are predictable, Journal of Finance 55,

225-264.

Basak, Suleyman, David Cass, Juan Manuel Licari, and Anna Pavlova, 2008, Multiplicity in general financial

equilibrium with portfolio constraints, Journal of Economic Theory 142, 100-127.

Basak, Suleyman, and Benjamin Croitoru, 2000, Equilibrium mispricing in a capital market with portfolio

constraints, The Review of Financial Studies 13, 715-748.

38



Basak, Suleyman, and Benjamin Croitoru, 2006, On the role of arbitrageurs in rational markets, Journal of

Financial Economics 81, 143-173.

Basak, Suleyman, and Alexander Shapiro, 2001, Value-at-Risk-based risk management: optimal policies and

asset prices, The Review of Financial Studies 14, 371-405.

Bhamra, Harjoat S., and Raman Uppal, 2006, The role of risk aversion and intertemporal substitution in

dynamic consumption-portfolio choice with recursive utility, Journal of Economic Dynamics and Control

30, 967-991.

Brennan, Michael J., Eduardo S. Schwartz, and Ronald Lagnado, 1997, Strategic asset allocation, Journal of

Economic Dynamics and Control 21, 1377-1403.

Brunnermeier, Markus K., and Lasse Heje Pedersen, 2008, Market liquidity and funding liquidity, The Review

of Financial Studies (forthcoming).

Campbell, John Y., and Luis M. Viceira, 1999, Consumption and portfolio decisions when expected returns

are time varying, Quarterly Journal of Economics 114, 433-495.

Campbell, John Y., and Luis M. Viceira, 2001, Who should buy long-term bonds? American Economic Review

91, 99-127.

Chacko, George, and Luis M. Viceira, 2005, Dynamic consumption and portfolio choice with stochastic volatil-

ity in incomplete markets, The Review of Financial Studies 18, 1369-1402.

Chowdhry, Bhagwan, and Vikram Nanda, 1998, Leverage and market stability: The role of margin rules and

price limits, The Journal of Business 71, 179-210.

Coen-Pirani, Daniele, 2005, Margin requirements and equilibrium asset prices, Journal of Monetary Economics

52, 449-475.

Cuoco, Domenico, and Hong Liu, 2000, A martingale characterization of consumption choices and hedging

costs with margin requirements, Mathematical Finance 10, 355-385.
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Table I

Quantiles of σtot
Q and ρQ

This table reports 5% and 95% quantiles qα of simulated distributions of σtot
Q and ρQ for different

number of assets N in the economy without margin constraints. The model parameters are as follows:
r = 0.03, β = 0.05, γ = 4, γ̄ = 6, σF = 0.2.

N = 1 N = 3 N = 5 N = 7

q0.05(σtot
Q ) 0.2003 0.2003 0.2004 0.2004

q0.95(σtot
Q ) 0.3755 0.4180 0.4256 0.4270

q0.05(ρQ) — 0.0032 0.0038 0.0043

q0.95(ρQ) — 0.7710 0.7792 0.7806

43



Table II

Relative size of hedging demand under dynamic margin requirements

This table reports the percentage reduction HD of the optimal portfolio weight produced by
hedging time varying margin constraints (Panel A) and the boundary m∗ between constrained and
unconstrained regions (Panel B). The variable HD is defined as HD = E[(ω∗ − ω∗myopic)/ω∗myopic],
where ω∗ is optimal portfolio weight and ω∗myopic is myopic demand. SR is the Sharpe ratio, γ is
the coefficient of risk aversion, and L∗ is the optimal leverage of an unconstrained investor. Other
parameters are as follows: r = 0.03, β = 0.05, φm = 0.05, m̄ = 4, σm = 0.5, ρmS = 1.

SR = 1 SR = 2

γ = 0.5 γ = 2 γ = 4 γ = 0.5 γ = 2 γ = 4

Panel A: Contribution of hedging demand HD

L∗ = 2 < 10−2 −3.08 −4.96 < 10−2 −6.69 −9.07

L∗ = 4 3.24× 10−1 −6.54 −9.87 < 10−2 −13.0 −17.2

L∗ = 6 < 10−2 −6.01× 10−2 −2.41× 10−1 < 10−2 −5.30× 10−1 −1.51

Panel B: Boundary m∗ between constrained and unconstrained regions

L∗ = 2 2.02 1.89 1.85 2.01 1.81 1.76

L∗ = 4 4.06 3.56 3.39 4.01 3.25 3.06

L∗ = 6 6.08 5.24 4.96 6.02 4.74 4.45
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Figure 1. Functions λ(x) and y(x). Panel A plots the probability function λ(x) defined by
Eq. (14). Panel B depicts the function y(x) defined in Proposition 1. The parameter λ̄ is 50.
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Figure 2. The equilibrium without margin constraints in the single asset setup. This
figure presents the aggregate demand of professional investors X, the Sharpe ratio SR = µQ/σQ, the
volatility of returns σQ, and the liquidity of the market LQ in the absence of margin constraints. All
statistics are functions of rescaled wealth of professional investors w = (W − 1)/(W + 1). The model
parameters are as follows: r = 0.03, β = 0.05, γ = 4, γ̄ = 6, σF = 0.2. The dashed line corresponds
to the equilibrium with myopic investors (H ′ = 0), the solid line corresponds to the equilibrium with
fully rational investors.
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Figure 3. The impact of margin constraints on equilibrium statistics in the single
asset setup. This figure presents the difference between several statistics in the economy with and
without margin constraints. X is the aggregate demand of professional investors, SR = µQ/σQ is the
Sharpe ratio, σQ is the volatility of returns, and LQ is the liquidity of the market. All statistics are
functions of rescaled wealth of professional investors w = (W − 1)/(W + 1). The model parameters
are as follows: r = 0.03, β = 0.05, γ = 4, γ̄ = 6, σF = 0.2, m̄ = 0.1, λ̄ = 50. The vertical solid line
indicates the wealth of professional investors at which the margin constraint starts binding.
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Figure 4. The effect of margin constraints with and without hedging demand in the
single asset setup. This figure presents the difference between several statistics in the economy with
and without margin constraints. X is the aggregate demand of professional investors, SR = µQ/σQ is
the Sharpe ratio, σQ is the volatility of returns, and LQ is the liquidity of the market. All statistics
are functions of rescaled wealth of professional investors w = (W −5)/(W +5). The model parameters
are as follows: r = 0.03, β = 0.05, γ = 4, γ̄ = 6, σF = 0.2, m̄ = 0.1, λ̄ = 50. The dashed line
corresponds to the equilibrium with myopic investors, the solid line corresponds to the equilibrium
with fully rational investors. The vertical lines indicate wealth at which the margin constraint starts
binding in the myopic (dashed line) and fully rational (solid line) equilibria.
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Figure 5. Comparative statics with respect to m̄. This figure presents the difference
between several statistics in the economy with and without margin constraints. X is the aggregate
demand of professional investors, SR = µQ/σQ is the Sharpe ratio, σQ is the volatility of returns,
and LQ is the liquidity of the market. All statistics are functions of rescaled wealth of professional
investors w = (W − 1)/(W + 1). The model parameters are as follows: r = 0.03, β = 0.05, γ = 4,
γ̄ = 6, σF = 0.2, λ̄ = 50. Dotted line corresponds to m̄ = 0.01, solid line corresponds to m̄ = 0.1,
dashed-dot line corresponds to m̄ = 0.2. The vertical solid line indicates the wealth of professional
investors at which the margin constraint starts binding.
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Figure 6. Equilibrium statistics in a multiple asset case without margin constraints.
This figure presents the aggregate demand of professional investors X, the Sharpe ratio SR defined
by Eq. (39), the total volatility of returns σtot

Q , and the correlation of returns ρQ defined by Eq.
(40). All statistics are functions of the rescaled wealth of professional investors w = (W − 1)/(W + 1)
and computed for different number of assets K. Dotted line corresponds to K = 1, dash-dotted line
corresponds to K = 3, dashed line corresponds to K = 5, and solid line corresponds to K = 7. The
model parameters are as follows: r = 0.03, β = 0.05, γ = 4, γ̄ = 6, σF = 0.2.
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Figure 7. Equilibrium statistics in a multiple asset case with margin constraints.
This figure presents the difference between several statistics in the economy with margin constraints
and the economy without margins. X is the aggregate demand of professional investors; the Sharpe
ratio SR is defined by Eq. (39); σtot

Q is the total volatility of returns; ρQ is the correlation of returns
defined by Eq. (40). All statistics are functions of the rescaled wealth of professional investors
w = (W − 10)/(W + 10) and computed for the number of assets K = 3. Dashed line corresponds
to the case when individual securities are collateralized separately and solid line corresponds to the
case of portfolio collateralization. The model parameters are as follows: r = 0.03, β = 0.05, γ = 4,
γ̄ = 6, σF = 0.2, m̄ = 0.1. The vertical lines indicate wealth at which the margin constraint becomes
binding under individual collateralization scheme (dashed line) and portfolio collateralization scheme
(solid line).
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Figure 8. The effect of margin constraints in models with different number of assets.
This figure presents the difference between several statistics in the economy with margin constraints
and the economy without margins. X is the aggregate demand of professional investors; the Sharpe
ratio SR is defined by Eq. (39); σtot

Q is the total volatility of returns; ρQ is the correlation of returns
defined by Eq. (40). All statistics are functions of the rescaled wealth of professional investors
w = (W − 5)/(W + 5) and computed for different number of assets K. Dotted line corresponds
to K = 1, dash-dotted line corresponds to K = 3, dashed line corresponds to K = 5, and solid line
corresponds to K = 7. The vertical lines indicate wealth at which the margin constraint starts binding
in models with different K. The model parameters are as follows: r = 0.03, β = 0.05, γ = 4, γ̄ = 6,
σF = 0.2, m̄ = 0.1.
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Figure 9. Optimal portfolios with margin requirements following a diffusion process.
This figure presents optimal portfolio policy ω∗(m) as a function of the current level of margin con-
straints m for investors with various risk aversion γ. The model parameters are as follows: r = 0.03,
β = 0.05, ρmS = 1, σm = 0.5, φm = 0.05, m̄ = 4. Expected returns µS and volatility σS are set
separately for each γ such that the Sharpe ratio is one and the optimal myopic leverage is four.
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Figure 10. Optimal portfolios with jumps in margin requirements. This figure presents
optimal portfolio policy ω∗(m) as a function of the current level of margin constraints m for investors
with various risk aversion γ. The model parameters are as follows: r = 0.03, β = 0.05, φm = 0.05,
m̄ = 2, λ = 0.05, QS = −0.2, Qm = −0.5. Expected returns µS and volatility σS are set separately
for each γ such that the Sharpe ratio SR = 2 and the optimal myopic leverage L = 2.
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