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Asset Pricing in General Equilibrium with Constraints

Abstract

We evaluate the impact of portfolio constraints on financial markets in a dynamic equilibrium
pure exchange economy with one consumption good and heterogeneous investors. Despite nu-
merous applications, portfolio constraints are notoriously difficult to incorporate into dynamic
equilibrium analysis unless constrained investors are assumed to have logarithmic preferences.
Our solution method yields new insights on the impact of constraints on stock prices without
relying on this assumption. We compute the equilibrium when both investors have (identical for
simplicity) CRRA preferences, one of them is unconstrained while the other faces an upper bound
constraint on the proportion of wealth invested in stocks. We show that tighter constraints lead
to higher price-dividend ratios and lower stock-return volatilities when the intertemporal elastic-
ity of substitution (IES) is less than one, and lower price-dividend ratios and higher volatilities
when IES is greater than one. Moreover, in the latter case the model generates countercycli-
cal market prices of risk and stock return volatilities, procyclical price-dividend ratios, excess
volatility and other patterns consistent with empirical findings. Finally, the baseline analysis is
extended to study the impact of various portfolio constraints when investors disagree on mean
dividend growth rates.

Journal of Economic Literature Classification Numbers: D52, G12.
Keywords: asset pricing, dynamic equilibrium, heterogeneous investors, portfolio constraints,
risk sharing, stock return volatility.
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1. Introduction

Portfolio constraints and market frictions have long been considered among key contributors
towards understanding investor behavior and equilibrium asset prices. In particular, dynamic
equilibrium models with heterogeneous investors facing portfolio constraints have extensively
been employed by financial economists to confront a wide range of phenomena such as the equity
premium puzzle, mispricing of redundant assets, role of arbitrageurs, impact of heterogeneous
beliefs on asset prices, and stock comovements [e.g., among others, Detemple and Murthy (1997),
Basak and Cuoco (1998), Basak and Croitoru (2000, 2006), Kogan, Makarov and Uppal (2007),
Gallmeyer and Hollifield (2008), Pavlova and Rigobon (2008)]. However, tractable character-
izations of equilibria are only obtained assuming that a constrained investor has logarithmic
preferences which simplifies the analysis at the cost of assuming investor’s myopia.1 Despite
recent developments in portfolio optimization, such as duality method of Cvitanic and Karatzas
(1992), portfolio constraints are notoriously difficult to incorporate into general equilibrium anal-
ysis as well as portfolio choice when constrained investors have more general preferences inducing
hedging demands.

The assumption of logarithmic preferences is not innocuous and impedes the evaluation of
the impact of constraints on stock prices and stock return volatilities. Thus, in economic settings
with two logarithmic investors and single consumption good [e.g., Detemple and Murthy (1997),
Basak and Cuoco (1998), Basak and Croitoru (2000, 2006)] stock prices and hence stock return
volatilities are unaffected by constraints since the income and substitution effects perfectly offset
each other. When the constrained investor is logarithmic, the volatility effects of constraints have
been studied in specific settings where the other (unconstrained) investor has different preferences
[e.g., Gallmeyer and Hollifield (2008)], which requires further justification. To our best knowledge,
this paper is the first to study the effect of different constraints on stock return volatility in a
continuous-time economy without relying on the assumption of logarithmic investors. As a result,
our solution method yields new insights on the impact of portfolio constraints on stock prices
and, in particular, highlights the role of constraints in explaining empirically observed procyclical
variation of price-dividend ratios and countercyclical variation of stock return volatilities (i.e.,
positive shocks to dividend growth rates lead to higher price-dividend ratios and lower stock
return volatilities).

We solve for the equilibrium in a continuous-time pure exchange economy with one con-
sumption good and two heterogeneous investors facing portfolio constraints. First, for general
preferences and constraints we provide a characterization of interest rates and market prices of
risk which highlight the role of constraints and risk sharing, and in specific economic settings

1The assumption that one investor has logarithmic preferences is also commonly made for tractability in models
with unconstrained investors who differ in risk aversions. Thus, Dumas (1989) studies dynamic equilibrium in a
production economy, where one investor has logarithmic while the other general CRRA preferences. Wang (1996)
studies an exchange economy where one investor has logarithmic while the other square-root preferences. One
notable exception is Bhamra and Uppal (2009), who study the effect of introducing non-redundant securities on
the volatilities of asset returns in an exchange economy with CRRA investors not restricted to being logarithmic.
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can explicitly be characterized in terms of empirically observable quantities such as stock returns
and consumption volatilities. Based on these results, we specialize to settings with two CRRA
investors one of whom is unconstrained while the other faces portfolio constraints. Specifically,
we first derive the equilibrium when the constrained investor faces an upper bound on the pro-
portion of wealth invested in stocks.2 Then, we study the impact of short-sale constraints on
equilibrium when investors have different beliefs about mean dividend growth. The methodolog-
ical contribution of the paper is a solution method for the efficient computation of equilibria
in economies with constraints. Specifically, we derive stock price-dividend ratios, stock return
volatilities and other parameters in terms of wealth-consumption ratios that can be computed
numerically via a simple iterative procedure with fast convergence.

At the first step of our analysis when we allow for general preferences, we demonstrate that the
riskless rates and market prices of risk include new terms that capture the effects of constraints
and risk sharing. In specific settings we obtain the expressions for interest rates and market
prices of risk in terms of intuitive and empirically observable parameters such as stock return
and consumptions volatilities. The tractability of our results allows to compare interest rates in
constrained and unconstrained economies for a given allocation of consumption among investors
and demonstrate that for various constraints interest rates will be lower in constrained economies
whenever both investors have the same prudence-risk aversion ratios.

Using the insights from the case with general preferences we show that when investors have
(identical for simplicity) CRRA preferences, one of them faces an upper bound on the proportion
of wealth invested in stocks, and dividends follow a geometric Brownian motion, the interest rates
and market prices of risk can explicitly be expressed in terms of marginal utility ratios, their
volatilities and the volatilities of stock returns. We completely characterize the equilibrium by
computing these volatilities numerically. While in models with two logarithmic investors price-
dividend ratios and stock return volatilities are deterministic functions of time, in our setting
these parameters depend on constrained investor’s consumption share which evolves stochasti-
cally. The effect of constraints on price-dividend ratios and stock-return volatilities depends on
the relative strength of classical income and substitution effects. When the intertemporal elastic-
ity of substitution (IES) is less than one and hence the income effect dominates, price-dividend
ratios increase while stock return volatilities decrease with tighter constraints, and vice versa

2Srinivas, Whitehouse and Yermo (2000) in a survey of pension fund regulations show that limits on both
domestic and foreign equity holdings of pension funds are in place in a number of OECD countries such as
Germany (30% on EU and 6% on non-EU equities), Switzerland (30% on domestic and 25% on foreign equities)
and Japan (30% on domestic and 30% on foreign equities), among others. Moreover, our approach allows to
study the impact of passive investors that hold a fixed fraction of their wealth in stocks, as in Chien, Cole and
Lustig (2008). Samuelson and Zeckhouser (1988) document the popularity of this strategy using as an example
the participants of popular TIAA/CREF retirement plan who choose a fraction of wealth to be invested in stocks
and rarely change it due to “status quo bias”, while Campbell (2006) points out that households may limit their
participation in stock market and invest cautiously due to the lack of necessary skills. Important special case of
our framework is stock market non-participation which in year 2002 accounted for 50% of U.S. households [e.g.,
Guvenen (2006)].
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when IES is greater than one and the substitution effect is stronger.3 Moreover, the effects of
constraints are more pronounced in bad times, when dividends are hit by adverse shocks, than
in good times.

To understand the intuition, we first evaluate the impact of portfolio constraints on investment
opportunity sets and demonstrate that interest rates decrease while market prices of risk increase
with tighter constraints, and that the effects of constraints are stronger in bad times. When the
portfolio constraint binds, negative shocks to dividends shift the distribution of the aggregate
wealth and consumption to the constrained investor since she is less exposed to stock market
fluctuations. Thus, in bad times, when the constrained investor holds a significant fraction of
aggregate wealth and consumption, the price-dividend ratio is approximately equal to her wealth-
consumption ratio. With tighter constraints the investment opportunities of the constrained
investor deteriorate since interest rates fall and she is unable to benefit from the increase in market
prices of risk. As a result, her wealth-consumption ratio, and hence the price-dividend ratio,
increases when the income effect dominates and decreases when the substitution effect dominates.
The effect of constraints is weaker in good times since as the share of the unconstrained investor
in aggregate wealth and consumption increases, all the economic parameters, including price-
dividend ratios, converge to the parameters in the unconstrained economy.

Thus, when the substitution effect dominates, price-dividend ratios turn out to be procyclical
(lower in bad times than in good times) while stock return volatilities exceed the volatility of
dividends and are countercyclical (higher in bad times than in good times), consistently with the
empirical evidence [e.g., Schwert (1989), Campbell and Cochrane (1999)]. Moreover, irrespec-
tive of investors’ intertemporal elasticities of substitution, market prices of risk turn out to be
countercyclical [e.g., Ferson and Harvey (1991)] since in bad times unconstrained investors lose
wealth and require higher compensation for risk taking, causing market prices of risk to go up.
We also study the survival of constrained investors in equilibrium and demonstrate that their
impact on financial markets is gradually eliminated in the course of time but is significant even
after one hundred years.

Finally, we extend our baseline analysis to economic settings with heterogeneous beliefs and
multiple stocks. In both cases, for general preferences we derive expressions for interest rates
and market prices of risk similar to those in the baseline model. In the case of heterogeneous
beliefs we solve for equilibrium in a model where two investors have the same CRRA utilities
and disagree on the dividend growth rate. The optimist is unconstrained while the pessimist
faces a constraint on the proportion of wealth that can be held in short positions in stocks.
We demonstrate that tighter short-sale constraints imply higher price-dividend ratios since they
increase the constrained investor’s demand for stocks. We also find that stock return volatility
in the constrained economy can be both higher or lower than the volatility in an unconstrained

3When the investment opportunities worsen, the income effect induces investors to decrease consumption and
save more while the substitution effect induces them to consume more and save less due to cheaper current
consumption. For CRRA preferences with risk aversion γ, IES=1/γ, the income effect dominates for IES < 1 and
the substitution effect dominates for IES > 1 while for IES = 1 both effects perfectly offset each other.
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economy, depending on whether the latter is higher or lower than the volatility of dividend growth.
This is because the short-sale constraints do not allow the investor to trade on her pessimism
making her stockholding closer to what it would be in the case of homogeneous beliefs, and hence,
the stock return volatility shifts towards volatility in an unconstrained homogeneous economy,
given by the volatility of dividends.

Our solution method is based on a combination of the duality approach and dynamic program-
ming. First, following Cvitanic and Karatzas (1992) we derive optimal consumptions in terms
of the state price densities in equivalent unconstrained fictitious economies in which the interest
rates and market prices of risk are adjusted to account for the difference in investors’ behavior
in constrained economies. Then, market clearing for consumption yields expressions for equilib-
rium parameters in terms of the adjustment parameters that solve a certain fixed point problem.
Moreover, in our specific examples these adjustments to interest rates and market prices of risk
can be derived in terms of instantaneous volatilities of stock returns and the ratios of marginal
utilities of the two investors. Next, these volatilities and all the equilibrium parameters are ex-
plicitly characterized in terms of investors’ wealth-consumption ratios that satisfy a system of
quasilinear Hamilton-Jacobi-Bellman equations. We solve this system of equations numerically
via a simple iterative procedure that requires solving a simple system of linear equations at each
step.

There is a growing literature studying dynamic equilibria in continuous-time economies with
heterogeneous investors and portfolio constraints assuming that constrained investors have log-
arithmic preferences. Basak and Cuoco (1998) consider a model in which one investor is uncon-
strained and guided by a general time-additive utility function while the other investor cannot
invest in the stock market and has logarithmic preferences. They derive the riskless rates and
market prices of risk in this economy and characterize all the equilibrium parameters explicitly
when both investors are logarithmic. Detemple and Murthy (1997), Basak and Croitoru (2000,
2006) present equilibrium models with two logarithmic investors, heterogeneous beliefs and port-
folio constraints. Hugonnier (2008) considers a similar model and shows that under restricted
participation the stock prices implied by market clearing may contain a bubble and in the setting
with multiple stocks the equilibrium might not be unique. In contrast to our work all the above
papers do not find the impact of constraints on stock prices and their moments.

Jarrow (1980) studies the equilibrium effect of short-sale constraints in a one-period economy
with mean-variance investors that have heterogeneous beliefs. Dumas and Maenhout (2002)
develop an approach with two central planners for solving incomplete-market equilibrium with
two CRRA investors. However, in their analysis the variance-covariance matrix of returns is taken
as given and hence they do not study the impact of constraints on volatility. Kogan, Makarov and
Uppal (2007) derive equilibrium parameters in an economy with borrowing constraints when one
investor is logarithmic while the other has general CRRA utility and find that all the moments
of asset returns are deterministic and stock return volatilities are unaffected by constraints.
When little borrowing is permitted they numerically find interest rates and market prices of
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risk as functions of wealth distributions but do not consider the volatilities of stock returns. He
and Krishnamurthy (2008) consider a model of intermediated asset pricing in which individual
households are logarithmic and invest into stock only via an intermediary guided by CRRA
utility. Wu (2008) studies the equilibrium in a setting with one unconstrained and one buy-
and-hold CRRA investors. Gallmeyer and Hollifield (2008) study the asset pricing with short-
sale constraints in the presence of heterogeneous beliefs when the pessimist and optimist have
logarithmic and CRRA utilities respectively. They study equilibrium parameters by employing
Monte-Carlo simulations and derive conditions for stock return volatilities to be larger or lower
than in the unconstrained case assuming that investors have the same share of aggregate wealth
at the initial date.

Bhamra (2007) analyzes the effect of liberalization on emerging markets’ cost of capital in
a model with two logarithmic investors, two stocks and one consumption good. Pavlova and
Rigobon (2008) and Schornick (2009) consider models with constrained logarithmic investors
and two consumption goods in international finance framework and derive various asset-pricing
implications assuming that investors face preference shocks. Longstaff (2009) develops a two-asset
economy where one of the assets is non-tradable for a certain period and logarithmic investors
are heterogeneous in time discount parameter.

There are a number of papers that solve models with heterogeneous investors and portfolio
constraints numerically in discrete time. Cuoco and He (2001) consider a model with general
utilities and derive equilibrium asset prices in terms of stochastic weights of a representative
investor’s utility which are obtained numerically from a nonlinear system of equations. Guve-
nen (2006) solves numerically a model with restricted market participation when investors are
guided by recursive utilities. Chien, Cole and Lustig (2008) also in a discrete-time framework
consider a model with non-participants, passive and active investors guided by CRRA prefer-
ences, where passive investors hold fixed portfolios while active ones adjust them each period.
Gomes and Michaelides (2008) study numerically the equilibrium with incomplete markets and
investors subject to fixed cost of stock market participation and by calibration generate high
equity premium and match observed market participation rate. Dumas and Lyasoff (2008) solve
for equilibrium in various incomplete market settings in discrete time by employing binomial
trees. These works do not study the impact of constraints on conditional stock return volatilities
and do not provide expressions for equilibrium parameters in terms of observable quantities as
we do in this paper by employing considerable flexibility of continuous-time methods.

The remainder of the paper is organized as follows. In Section 2, we derive interest rates and
market prices of risk for general utility functions under the assumption that the dual optimization
problem has a solution and discuss their properties. In Section 3 we illustrate our solution
method by computing the equilibrium in a model with two CRRA investors where one investor is
unconstrained while the other faces an upper bound on the fraction of wealth invested in stocks.
Section 4 extends our baseline analysis to the settings with heterogeneous beliefs and multiple
stocks. We also solve for equilibrium in a model with heterogeneous beliefs in which one of the
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investors faces short-sale constraints. Section 5 concludes, Appendix A provides the proofs and
Appendix B provides further details for our numerical method.

2. General Equilibrium with Constraints

2.1. Economic Setup

We consider a continuous-time economy with one consumption good and an infinite horizon.
The uncertainty is represented by a filtered probability space (Ω,F , {Ft}, P ), on which is defined
a Brownian motion w. All the stochastic processes that appear in the paper are adapted to
{Ft, t ∈ [0,∞)}, the augmented filtration generated by w.

The investors trade continuously in two securities, a riskless bond in zero net supply with
instantaneous interest rate r and a stock in a positive net supply, normalized to one unit. The
stock is a claim to an exogenous strictly positive stream of dividends δ following the dynamics

dδt = δt[µδtdt+ σδtdwt], (1)

where the dividend mean-return, µδ, and volatility, σδ, are stochastic processes. The dividend
process (1) and its moments are assumed to be well-defined, without explicitly stating the reg-
ularity conditions. We consider equilibria in which bond prices, B, and stock prices, S, follow
processes

dBt = Btrtdt, (2)

dSt + δtdt = St[µtdt+ σtdwt], (3)

where the interest rate r, the stock mean return µ and volatility σ are stochastic processes
determined in equilibrium, and bond price at time 0 is normalized so that B0 = 1.

There are two investors in the economy. Investor 1 is endowed with s units of stock and −b
units of bond, while investor 2 is endowed with 1 − s units of stock and b units of bond. The
investors choose consumption, ci, and an investment policy, {αi, θi}, where αi and θi denote the
fractions of wealth invested in bonds and stocks, respectively, and hence, αi + θi = 1. Investor
i’s wealth process W evolves as

dWit =
[
Wit

(
rt + θit(µt − rt)

)
− cit

]
dt+Witθitσtdwt, (4)

and her investment policies are subject to portfolio constraints

θi ∈ Θi, i = 1, 2, (5)

where Θi = [θi, θi]. We also assume that initial endowments of stocks are such that θi at time 0
belong to sets Θi. Thus, the financial market in our economy is incomplete due to the presence
of portfolio constraints (5).
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Each investor i (i = 1, 2) is guided by an expected utility over a stream of consumption c. In
particular, her dynamic optimization is given by

max
ci, θi

E
[∫ ∞

0
e−ρtui(cit)dt

]
, (6)

subject to the budget constraint (4), no-bankruptcy constraint Wt ≥ 0 and portfolio constraints
(5), for some discount parameter ρ > 0. The utility functions ui(c) are assumed to be increasing,
concave, three times continuously differentiable, satisfying Inada’s conditions

lim
c↓0

u′i(c) =∞, lim
c↑∞

u′i(c) = 0, i = 1, 2. (7)

By Ait and Pit we denote absolute risk aversion and prudence parameters of investor i, given by

Ait = −u
′′
i (c)
u′i(c)

, Pit = −u
′′′
i (c)
u′′i (c)

, (8)

and assume that both are strictly positive for each investor.

Next, we define an equilibrium in this economy as a set of parameters {rt, µt, σt} and of con-
sumption and investment policies {c∗it, α∗it, θ∗it}2i=1 such that consumption and investment policies
solve dynamic optimization problem (6) for each investor, given price parameters {rt, µt, σt}, and
consumption and financial markets clear, i.e.,

c∗1t + c∗2t = δt,

α∗1tW
∗
1t + α∗2tW

∗
2t = 0,

θ∗1tW
∗
1t + θ∗2tW

∗
2t = St,

(9)

where W ∗1t and W ∗2t denote optimal wealths of investors 1 and 2 under optimal consumption and
investment policies.

2.2. Characterization of Equilibrium

This Section characterizes the parameters of equilibria and studies their properties in economies
with constrained investors. In particular, by employing the duality method of Karatzas and
Cvitanic (1992), we recover expressions for interest rates and market prices of risk in equilibrium
in terms of the parameters of equivalent fictitious unconstrained economies. These expressions
are intuitive and highlight the impact of risk-sharing and attitude towards risk on equilibrium
parameters. Moreover, they form a basis for an efficient methodology for computing equilibria,
which we develop in Section 3.

We start by noting that since the market is incomplete due to the presence of portfolio
constraints, a Pareto optimal allocation may not be feasible and hence, the ratio of the marginal
utilities of consumption of the investors follows a stochastic process. This ratio can be interpreted
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as a stochastic weight in the construction of a representative-investor preferences in an equivalent
economy, and serves as a state variable in terms of which the equilibrium can be characterized
[e.g., Basak and Cuoco (1998), Cuoco and He (2001)]. By employing the methodology of Cvitanic
and Karatzas (1992) we obtain optimal consumptions and then derive the equilibrium parameters
from the market clearing conditions.4 This approach is similar to the approach in Basak (2000),
who characterizes the equilibrium in an economy where investors have heterogeneous beliefs, but
in contrast to our work are unconstrained.

We start by characterizing optimal consumptions of constrained investors in a partial equilib-
rium in which the investment opportunities are taken as given, and then obtain the interest rate
r, and the market price of risk κ, from the consumption clearing condition. For each investor i,
following the approach of Cvitanic and Karatzas (1992), we characterize the optimality condi-
tions for consumption by embedding investor i’s partial equilibrium economy into an equivalent
fictitious complete-market economy with bond and stock prices following dynamics with adjusted
parameters:

dBt = Bt[rt + f(ν∗it)]dt, (10)

dSt + δtdt = St[(µt + ν∗it + f(ν∗it))dt+ σtdwt], (11)

where fi(ν) are support functions for the sets of portfolio constraints Θi, defined as

fi(ν) = sup
θ∈Θi

(−νθ), (12)

and ν∗1t and ν∗2t solve so called dual optimization problem, defined in Cvitanic and Karatzas
(1992), and lie in the effective domains for support functions, given by

Υi = {ν ∈ R : fi(ν) <∞}. (13)

It follows from the dynamics of bond and stock prices in fictitious economy (10)–(11) that the
corresponding state prices ξit evolve as

dξit = −ξit[ritdt+ κitdwt], (14)

where rit and κit denote the adjusted riskless rate and market price of risk in fictitious economy
i, given by

rit = rt + fi(ν∗it), κit = κt +
ν∗it
σt
, (15)

where κ = (µ− r)/σ is the market price of risk in the original constrained economy.

Throughout this Section we assume that the solutions to dual optimization problems exist
and since the fictitious economies are complete, the marginal utilities of optimal consumption
are given by

e−ρtu′i(c
∗
it) = ψiξit, i = 1, 2, (16)

4Cuoco (1997) studies consumption-portfolio choice of constrained investors, mainly at a partial equilibrium
level, and extends the results of Cvitanic and Karatzas to the case of more general utility functions and forms of
market incompleteness. He derives a CAPM in an economy with portfolio constraints but does not study interest
rates and other parameters of equilibrium.

8



for some constants ψi > 0. The first order conditions (16) and state prices (14) demonstrate that
consumption and investment decisions of the constrained investor are equivalent to those of an
unconstrained one, who faces interest rates and market prices of risk adjusted to account for the
constraints. Moreover, optimality conditions in (16) allow to express consumptions c∗it in terms
of state prices in fictitious economies as follows:

c∗it = Ii(ψieρtξit), i = 1, 2, (17)

where Ii(·) denote inverse functions for marginal utilities u′i(·).
The expressions for marginal utilities in (16) also imply that the ratio of investors’ marginal

utilities, defined as

λt =
u′1(c∗1t)
u′2(c∗2t)

, (18)

is stochastic in equilibrium, and not a constant as in complete markets [e.g., Karatzas and Shreve
(1998)] where consumption allocations are Pareto efficient. Basak and Cuoco (1998) and Cuoco
and He (2001) demonstrate that the process λ serves as a convenient state variable in terms of
which the equilibrium parameters can be expressed. Moreover, in an equivalent complete-market
economy with a representative investor, parameter λ can be interpreted as a stochastic weight in
the utility u(c;λ) of a representative investor, given by

u(c;λ) = max
c1+c2=c

u1(c1) + λu2(c2), (19)

and follows a stochastic process

dλt = −λt[µλtdt+ σλtdwt]. (20)

The parameters µλ and σλ are determined in equilibrium and quantify the violation of Pareto-
optimality in the economy.

Next we characterize the parameters of our economy in equilibrium in terms of adjustments
ν∗it from the market clearing in consumption. To determine the interest rate r and market price
of risk κ we substitute optimal consumptions (17) into consumption clearing condition in (9),
apply Itô’s Lemma to both sides and recover equilibrium parameters by matching the drift and
volatility terms. Similarly, from optimality conditions (16), by applying Itô’s Lemma to equation
(18) for λt and comparing the result with the process for λt in (20) we recover parameters µλ
and σλ. The following Proposition summarizes the results.

Proposition 1. If there exists an equilibrium, the riskless interest rate r, market price of risk
κ, drift µλ and volatility σλ of weighting process λ that follows (20) are given by

rt = r̄t −
At
A1t

f1(ν∗1t)−
At
A2t

f2(ν∗2t)−
A3
t (P1t + P2t)
2A2

1tA
2
2t

σ2
λt −

A3
t

A1tA2t

(P1t

A1t
− P2t

A2t

)
δtσδtσλt,(21)

κt = κ̄t −
At
A1t

ν∗1t
σt
− At
A2t

ν∗2t
σt
, (22)

9



µλt = Atδtσδtσλt + f1(ν∗1t)− f2(ν∗2t)−
At
A1t

σ2
λt, σλt =

ν∗1t − ν∗2t
σt

, (23)

where r̄ is the riskless rate and κ̄ is the market price of risk in an unconstrained economy, given
by

r̄t = ρ+Atδtµδt −
AtPt

2
δ2
t σ

2
δt, κ̄t = Atδtσδt (24)

Ait, Pit, and At and Pt are absolute risk aversions and prudence parameters of investor i and a
representative investor with utility (19), respectively.5

Optimal consumptions c∗i , wealths Wi, stock S and optimal investment policies θ∗i are given by

c∗it = gi(δt, λt), (25)

W ∗it =
1
ξit
Et

[∫ ∞
0

ξisc
∗
isds

]
, (26)

St = W ∗1t +W ∗2t, (27)

θ∗it =
1
σt

(
W ∗it

(
κt +

ν∗it
σt

)
+
φit
ξit

)
, (28)

where functions gi(δt, λt) are such that c∗1t and c∗2t satisfy consumption clearing in (9) and equation
(18) for process λ, state prices ξit follow processes (14) and φi are such that

Mit ≡ Et
[∫ ∞

0
ξisc
∗
isds

]
= Mi0 +

∫ t

0
φisdws.

Initial value λ0 is such that the budget constraints at time 0 are satisfied:

siS0 + bi = W ∗i0, (29)

where s1 = s, s2 = 1− s, b1 = −b and b2 = b. Moreover, adjustments ν∗it satisfy complementary
slackness condition

fi(ν∗it) + θ∗itν
∗
it = 0. (30)

Proposition 1 provides the characterization of equilibrium parameters in terms of adjustments
ν∗i in fictitious economy. Expression (21) decomposes interest rates r into groups of terms that
separate the effects of constraints and the inefficiency of risk sharing. The first term in (21) is
the riskless rate in the unconstrained economy with the representative investor. The next two
terms capture the effect of binding constraints on interest rates and tend to increase or decrease

5As demonstrated in Basak (2000), the risk aversion, A, and prudence, P , of the representative investor can be
obtained from the following expressions:

1

At
=

1

A1t
+

1

A2t
,

Pt
A2
t

=
P1t

A2
1t

+
P2t

A2
2t

.
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them depending on the signs of support functions fi(ν). In particular, these terms are positive
in economic settings with binding portfolio constraints when investors buy more bonds. This is
due to the fact that the investors behave as if their subjective interest rates rit in their fictitious
economy were higher than in the real one, and hence positive adjustments fi(ν∗i ). Finally, the
last two terms in expression (21) capture the effect of risk sharing, quantified by volatility σλ.
The weight λ acts as a state variable that gives rise to specific hedging demands that can push
interest rates in either direction.

Similarly, the expression (22) for the market price of risk is comprised of the market price of
risk in an unconstrained economy [first term in (22)] and the effects of constraints [second and
third terms in (22)]. Expressions for the drift µλ and volatility σλ parameters of the stochas-
tic weighting process λ in (23) demonstrate that this process, in general, is no longer a local
martingale as in works assuming logarithmic constrained investor [e.g., Basak and Cuoco (1998),
Gallmeyer and Hollifield (2008), Pavlova and Rigobon (2008)]. Finally we observe that optimal
consumptions, wealths, stock prices and investments can be obtained from expressions (25) –
(28) when the parameters of equilibrium, and hence all state prices, are known.

The results in Proposition 1 can also be used to compute the equilibrium parameters numer-
ically. On one hand, Proposition 1 expresses equilibrium parameters and investment policies in
terms of adjustments ν∗i , and on the other, the adjustments can be obtained from the complemen-
tary slackness condition (30). Thus, finding the adjustments becomes essentially a fixed point
problem, which can potentially be solved by the method of successive iterations. Moreover, as
demonstrated in Huang and Pages (1992), under certain conditions optimal wealths (26) satisfy
linear PDEs with coefficients determined by equilibrium parameters while optimal policies (28)
can be expressed in terms of derivatives of wealths W ∗i . Hence, the adjustments can be expressed
in terms of derivatives of Wit from conditions (30) and substituted back into the PDEs for opti-
mal wealths. Thus, the characterization of equilibrium reduces to solving a system of quasilinear
PDEs which, as we demonstrate in Section 3, can efficiently be solved numerically for specific
constraints.

2.3. Further Properties of Equilibrium

We here explore the implications of Proposition 1 by noting that in various economic settings the
signs of adjustments ν∗i and support functions fi(ν) can easily be determined explicitly from the
definitions of support functions and effective domains in (12) and (13). Moreover, the interest
rates r and market prices of risk κ can be expressed in terms of empirically observed quantities,
such as stock and consumption volatilities, thus providing empirical implications of the model.

Table 1 presents the effective domains and the signs of the support functions for plausible
constraints and allows to analyze their effect on equilibrium parameters. For example, when
investors face constraints on the proportion of wealth invested in stocks [case (d) in Table 1] the
results in Proposition 1 and Table 1 imply that these constraints tend to decrease the interest
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Table 1
Effective Domains and Support Functions

Case Constraint Υ f(ν)

(a) θ ∈ R 0 0

(b) θ = 0 R 0

(c) θ ≤ θ ≤ θ, θ ≤ 0 R +

(d) θ ≤ θ, θ > 0 ν ≤ 0 +

(e) θ ≥ θ, θ < 0 ν ≥ 0 +

(f) θ ≥ θ, θ > 0 ν ≥ 0 −

rates and increase the market prices of risk relative to an unconstrained model if stock volatility σ
is strictly positive. Hence, these constraints work in the right direction for explaining the equity
premium puzzle [e.g., Mehra and Prescott (1985)]. The overall effect of constraints on interest
rates is convoluted by the risk sharing captured by the last two terms in the expression for interest
rates (21). The following Corollary to Proposition 1 establishes simple sufficient conditions
under which the interest rate r will be lower than the interest rate r̄ in a representative-investor
unconstrained economy.

Corollary 1. If the utility functions and the allocation of consumption are such that P1/A1 =
P2/A2 and the sets of portfolio constraints have positive support functions fi(ν) then the interest
rate in a constrained economy, r, is lower than in an unconstrained one, r̄, and the following
upper bound for rate r holds:

rt ≤ r̄t −
A3
t (P1t + P2t)
2A2

1tA
2
2t

σ2
λ. (31)

The Corollary demonstrates that the inability to share risks contributes to the decrease of interest
rates by creating hedging needs against fluctuating ratios of marginal utilities λ. The condition
that investors have the same prudence-risk aversion ratio is in particular satisfied when both
investors have identical HARA preferences.6 In the case of two logarithmic investors when one of
them is unconstrained the result in Corollary 1 has also been pointed out in the literature [e.g.,
Basak and Cuoco (1998)].

Conveniently, in various economic settings interest rates and market price of risk can be ex-
pressed only in terms of the parameters of utility functions and empirically observed parameters.
For example, when investor 1 is unconstrained and investor 2 faces a constraint allowing her to
invest in stock no more than a certain fraction of wealth [case (d) of Table 1], it can be observed

6For HARA utility function absolute risk aversion is given by −u′′(c)/u′(c) = γ/(γ0 + c). Differentiating both
sides of this expression and then dividing by −u′′(c)/u′(c) we obtain that Pi/Ai = 1 +γ, and hence, the prudence-
risk aversion ratio is the same for both investors.
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that parameters r and κ are given by:

rt = r̄t−
At
A2t

θ̄σtσλt−
A3
t (P1t + P2t)
2A2

1tA
2
2t

σ2
λt−

A3
t

A1tA2t

(P1t

A1t
− P2t

A2t

)
δtσδtσλt, κt = κ̄t+

At
A2t

σλt, (32)

where stock return volatility σ can easily be obtained from the data, while the weighting process
volatility σλ can be obtained in terms of utility parameters and the parameters of the consumption
processes for each investor. In particular, assuming that consumption processes ci for each
investor follow Itô’s processes

dcit = cit[µcitdt+ σcitdwt], (33)

applying Itô’s Lemma to the definition of weighting process λ in (18) we find that

σλt = A1tc1tσc1t −A2tc2tσc2t. (34)

In specific frameworks the volatilities of consumption growth can potentially be estimated from
the data. In particular, for the model with restricted participation (θ̄ = 0) Malloy, Moskowitz
and Vissing-Jorgensen (2009) estimate consumption volatilities of stock market participants and
non-participants to be 3.6% and 1.4% respectively, while Mankiw and Zeldes (1991) and Guvenen
(2006) show that the share of consumption of non-participants in aggregate consumption is 0.68.
As a result, the expressions for r and κ in (32) can potentially be used for identifying the
parameters of the utility functions of investors as well as for quantifying the impact of risk
sharing inefficiencies on the interest rates and market prices of risk.

3. Equilibrium with Proportional Constraints

This Section applies the results of Section 2 to compute and analyze the equilibrium in a specific
economic setting in which investor 1 is unconstrained while investor 2 faces a constraint allowing
her to invest in stock no more than a certain fraction of wealth. For simplicity we assume
that dividends follow a geometric Brownian motion and both investors have identical CRRA
preferences. Using the results of Section 2, in Section 3.1 we present a simple solution method
for finding an equilibrium in this economy, and in Section 3.2 we study the impact of constraints
on the equilibrium. In our setting with fully rational investors we also study the survival of
constrained investors in the long run and demonstrate that it takes a long time to eliminate their
impact on financial markets.

3.1. Characterization and Computation of Equilibrium

In this Section we present a solution method which allows to compute the equilibrium in an effi-
cient way. This method does not rely on a widely used assumption of a logarithmic constrained
investor [e.g., Detemple and Murthy (1997), Basak and Cuoco (1998), Basak and Croitoru (2000,
2006), Kogan, Makarov and Uppal (2003), Bhamra (2007), Gallmeyer and Hollifield (2008),
Hugonnier (2008), Pavlova and Rigobon (2008), Schornick (2009)] which allows to derive the
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adjustments ν∗i in fictitious economy explicitly at the cost of investor’s myopia inherent in log-
arithmic preferences. In discrete time, Cuoco and He (2001), Guvenen (2006), Chien, Cole
and Lustig (2008) and Gomes and Michaelides (2008) study the models with constrained het-
erogeneous investors numerically without assuming that constrained investor is logarithmic. In
contrast to these works, in settings with two CRRA investors the flexibility of continuous-time
analysis allows us to recover tractable expressions for interest rates and market prices of risk
and to find new insights on the impact of constraints on price-dividend ratios and stock return
volatilities.

Finding an equivalent unconstrained economy is a challenging problem which so far has
only been solved for logarithmic investors [e.g., Cvitanic and Karatzas (1992), Karatzas and
Shreve (1998)] or CRRA investors but assuming constant investment opportunity sets [e.g., Tepla
(2000)]. We tackle this problem by first expressing the parameters of the fictitious economy in
terms of the stochastic weighting process λ, and the volatilities of λ and stock returns, which then
are obtained in terms of the investors’ wealth-consumption ratios satisfying Hamilton-Jacobi-
Bellman equations. Even though in equilibrium the coefficients of HJB equations themselves
depend on the sensitivities of wealth-consumption ratios with respect to parameter λ, we demon-
strate that the time-independent solutions can easily be obtained via an iterative procedure that
at each step requires solving a simple system of linear algebraic equations.

Throughout Section 3 we assume for simplicity that dividends follow a geometric Brownian
motion

dδt = δt[µδdt+ σδdwt], (35)

both investors have CRRA utilities with relative risk aversion parameter γ, given by7

ui(c) =
c1−γ − 1

1− γ , i = 1, 2, (36)

and solve optimization problem in (6) subject to budget constraint (4), no-bankruptcy constraint
Wt ≥ 0, and portfolio constraint θ ≤ θ̄ for investor 2, while investor 1 is unconstrained. By
Ji(Wt, λt, t) we denote the indirect utility function of investor i.

For convenience, we solve the optimization problem of constrained investor 2 in an equivalent
fictitious unconstrained economy in which she maximizes objective function (6) subject to budget
constraint

dW2t =
[
W2t

(
rt + f2(ν∗2t) + θ2t(µt − rt + ν∗2t)

)
− c2t

]
dt+W2tθ2tσtdwt, (37)

where ν∗2t and f2(ν∗2t) are adjustments to stock mean returns and riskless rates respectively. By
applying dynamic programming we find that the indirect utility functions should satisfy the

7The assumption that investors have identical risk aversions is made for simplicity. More general case can be
considered along the same lines.
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following HJB equations:

0 = max
ci,θi

{
e−ρt

c1−γ
it

1− γ +
∂Jit
∂t

+
[
Wit

(
rt + fi(ν∗it) + θit(µt − rt + ν∗it)

)
− cit

] ∂Jit
∂Wit

−λtµλt
∂Jit
∂λt

+
1
2

[
W 2
itθ

2
itσ

2
t

∂2Jit
∂W 2

it

− 2Witθitλtσtσλt
∂2Jit

∂Wit∂λt
+ λ2

tσ
2
λt

∂2Jit
∂λ2

t

]}
,

(38)

with transversality condition Et[JiT ] → 0 as T → ∞, which guarantees the convergence of the
integral in investors’ optimization (6). We next obtain expressions for ν∗i and fi(ν∗i ) without
solving the dual problem by noting that since investor 1 is unconstrained ν∗1 = 0 [case (a) in
Table 1] while ν∗2 can be obtained from equilibrium expression for σλt in (23), and hence,

ν∗1t = 0, f1(ν∗1t) = 0, ν∗2t = −σtσλt, f2(ν∗2t) = θ̄σtσλt. (39)

The HJB equations in (38) are standard except for the fact that the equation for investor
2 is in terms of parameters of fictitious economy, which allows to formulate her problem as an
unconstrained one. We conjecture that the indirect utility functions are given by

Ji(Wi, λ, t) = e−ρt
W 1−γ
i

1− γ Hi(λ, t)γ , i = 1, 2. (40)

Then, from the first order conditions with respect to consumption we obtain

c∗it =
Wit

Hit
, i = 1, 2, (41)

where Hit is a shorthand notation for Hi(λ, t), and hence, functions Hit can be interpreted as the
wealth-consumption ratio of investor i. By substituting indirect utility functions (40) into HJB
equations it can be verified that wealth-consumption ratios satisfy the following PDEs:

∂Hit

∂t
+
λ2
tσ

2
λt

2
∂2Hit

∂λ2
t

−λt
(
µλt+

1− γ
γ

κitσλt

)∂Hit

∂λt
+
(1− γ

2γ
κ2
it+(1−γ)rit−ρ

)Hit

γ
+1 = 0, i = 1, 2,

(42)
where rit and κit denote riskless rate and price of risk in a fictitious economy and are defined in
(15) in terms of adjustments given in (39). Moreover, optimal investment policies for investors 1
and 2 are given by

θit =
1
γσt

(
κit − γσλt

∂Hit

∂λt

λt
Hit

)
, i = 1, 2. (43)

Since the horizon is infinite we will look for time-independent and bounded solutions of
equations (42). Moreover, throughout this Section we assume that θ̄ ≤ 1. We note that if
investor 2 faces borrowing constraint, i.e. θ̄ ≥ 1, the equilibrium coincides with the equilibrium
in an unconstrained economy in which the investors, being identical, optimally choose θ∗it = 1.

Conveniently, since the fictitious economy is complete, the equations for wealth-consumption
ratios in (42) are linear if volatilities σ and σλ are known. However, in equilibrium these volatil-
ities themselves depend on wealth-consumption ratios Hi. The stock return volatility σ can be
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obtained by applying Itô’s Lemma to stock price St = Rtδt, where Rt is a shorthand notation
for the stock price-dividend ratio which can be expressed in terms of wealth-consumption ratios
from the market clearing conditions in (9). Furthermore, the volatility σλ can be obtained from
the complementary slackness condition (30). The following Proposition 2 summarizes our results
and provides a characterization of equilibrium in terms of wealth-consumption ratios.

Proposition 2. If there exists an equilibrium, the riskless interest rate r, market price of risk κ
and drift µλ of weighting process λ that follows (20) are given by

rt = r̄ − λ
1/γ
t

1 + λ
1/γ
t

θ̄σtσλt −
1 + γ

2γ
λ

1/γ
t

(1 + λ
1/γ
t )2

σ2
λt, (44)

κt = κ̄+
λ

1/γ
t

1 + λ
1/γ
t

σλt, (45)

µλt = γσδσλt − θ̄σtσλt −
1

1 + λ
1/γ
t

σ2
λt, (46)

where r̄ is the riskless rate and κ̄ is the market price of risk in an unconstrained economy, given
by

r̄ = ρ+ γµδ −
γ(1 + γ)

2
σ2
δ , κ̄ = γσδ. (47)

Optimal consumptions c∗i , wealths W ∗i , stock price-dividend ratio R and optimal investment poli-
cies θ∗i are given by

c∗1t =
1

1 + λ
1/γ
t

δt, c∗2t =
λ

1/γ
t

1 + λ
1/γ
t

δt, (48)

W ∗1t = H1t
1

1 + λ
1/γ
t

δt, W ∗2t = H2t
λ

1/γ
t

1 + λ
1/γ
t

δt, (49)

Rt = H1t
1

1 + λ
1/γ
t

+H2t
λ

1/γ
t

1 + λ
1/γ
t

, (50)

θ∗1t =
1
γσt

(
κt − γσλt

∂H1t

∂λt

λt
H1t

)
, θ∗2t = θ̄, (51)

while the volatilities of the stock returns, σ, and weighting process, σλ, are given by

σt = σδ − σλt
∂Rt
∂λt

λt
Rt
, σλt =

(1− θ̄)γσδ
1

1+λ
1/γ
t

+ γ ∂H2t
∂λt

λt
H2t
− θ̄γ ∂Rt∂λt

λt
Rt

, (52)

where wealth-consumption ratios H1t and H2t satisfy equations (42). Moreover, the initial value
λ0 for the weighting process (20) solves equation

sH2(λ0, 0)
λ

1/γ
0

1 + λ
1/γ
0

δ0 − (1− s)H1(λ0, 0)
1

1 + λ
1/γ
0

δ0 = b. (53)
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The expressions for riskless rate r and price of risk κ in Proposition 2 are in terms of the of
volatilities σ and σλ, as well as parameter λ1/γ which in our economic setting can be interpreted
as the ratio of consumptions of investors 2 and 1, as it follows from the expressions in (48). As
in the general case in Proposition 1, interest rates are comprised of three terms, where the first
term is a riskless rate in an unconstrained economy, while the second and third terms highlight
the impact of constraints and risk sharing. Moreover, the effect of risk sharing, as captured by
volatility σλ, can be expressed in terms of consumption volatilities. In particular, from expression
(34) it follows that

σλt = γ(σc1t − σc2t). (54)

It will be demonstrated later that volatility σλ is positive in equilibrium since investor 1 is more
exposed to risk and hence her consumption growth is more volatile.

Proposition 2 also demonstrates that when θ̄ < 1 the portfolio constraint of investor 2 is
always binding since otherwise, having identical preferences, both investors should find optimal
to invest θi < 1 which contradicts market clearing conditions (9). Moreover, Proposition 2
provides expressions for equilibrium volatilities σ and σλ in terms of the elasticities of wealth-
consumption and price-dividend ratios with respect to weighting process λ, given by

εH2t =
∂H2t

∂λt

λt
H2t

, εP t =
∂Rt
∂λt

λt
Rt
. (55)

From the expression for the volatility σλ in (52) it follows that σλ is decreasing in elasticity
εH2 and increasing in εP . The effect of elasticities in (55) on volatility σλ then determines their
impact on all the other parameters in equilibrium.

To understand the effect of these elasticities on volatility σλ we observe that elasticity εH2 is
proportional to the stock hedging demand of investor 2 given by the second term in the expression
for optimal policy (43). Moreover, since σλ is positive, it follows from this expression that higher
elasticity εH2 tends to decrease optimal investment in stock. Thus, higher εH2 makes the stock less
attractive, and hence reduces the cost of being constrained. Therefore, σλ also decreases to reflect
decreased risk sharing distortions of the constraint. Moreover, as follows from the expressions
for volatilities (52) the increase in elasticity εP tends to decrease stock volatility σ since the
dividends and weighting process are negatively correlated. Hence, if volatility σ decreases, the
stock becomes more attractive for both investors. However, since investor 2 is constrained, her
ideal unconstrained holding moves further away from her constrained holding θ̄ and hence the
risks are shared in a less optimal way and σλ increases.

Proposition 2 also allows to explicitly identify the coefficients of PDEs (42) for wealth-
consumption ratios Hi, which depend on equilibrium parameters identified in expressions (44)–
(52). Moreover, it appears that the coefficients themselves depend on ratios Hi and hence, we
obtain a system of quasilinear PDEs the solutions to which completely characterize the equi-
librium. We next solve for time-independent solutions of PDEs (42) which correspond to the
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infinite horizon case. To solve the equations (42), we first fix a large horizon parameter T , choose
a starting value for Hi(λ, T ) and then solve the equation backwards using a modification of Eu-
ler’s finite-difference method until the solution converges to a stationary one. This approach is
similar to the subsequent iterations method for solving Bellman equations in discrete time [e.g.,
Ljungqvist and Sargent (2004)] when at a distant time in the future the value function is set
equal to some function (usually zero) and then the value functions at earlier dates are obtained
by solving equations backwards.

Since weight λ varies from zero to infinity, we first perform a change of variable and rewrite
the PDEs (42) as well as the equilibrium parameters in Proposition 2 in terms of constrained
investor’s share in aggregate consumption, given by

yt =
λ

1/γ
t

1 + λ
1/γ
t

. (56)

Variable y takes values in the interval [0, 1] and provides one-to-one mapping to variable λ. The
solution of PDEs in terms of new variable we label as H̃i(y, t). Assuming that the solutions to
new PDEs are continuous and twice continuously differentiable, setting in those equations y = 0
and y = 1 we recover boundary conditions for H̃i(y, t). Next, we replace the derivatives by their
finite-difference analogues letting the time and state variable increments denote ∆t ≡ T/M and
∆y ≡ 1/N , where M and N are integer numbers. Solving the equation backwards, sitting at
time t we compute the coefficients of finite-difference analogues of PDEs (42) using the solutions
H̃i(y, t + ∆t) obtained from the previous step t + ∆t. As a result, the coefficients of equations
for H̃i(y, t) are known at time t and hence H̃i(y, t) can be found by solving a system of linear
finite-difference equations with three-diagonal matrix. Appendix B provides further details of the
numerical algorithm. The wealth-consumption ratios then allow us to derive all the parameters
of equilibrium.

Remark 1 (Bond prices). Proposition 2 allows to determine the instantaneous interest rate
rt. Therefore, the bond price Bt can be obtained by solving numerically the equation for the
bond price dynamics (2).

Remark 2 (Existence of Equilibrium). The numerical analysis shows that the function on
the left-hand side of the equation for λ0 in (53) is a monotone function of λ0 and maps interval
[0,∞) into [C0, C1), where C0 and C1 are some constants, and hence, if b ∈ [C0, C1) there always
exists the unique solution λ0 that satisfies the equation. Given the existence of λ0 and the
solutions to HJB equations (42), expressions (44)–(52) fully characterize the equilibrium in the
economy.

3.2. Analysis of Equilibrium

We now study the impact of constraints on various equilibrium parameters. Important implica-
tion of our model is that in contrast to models with logarithmic investors the constraints do affect
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Figure 1: Parameters of Equilibrium with Constraints, γ < 1.

The figure plots interest rates r, market prices of risk κ, price-dividend ratios R and ratios of stock return
and dividend growth volatilities σ/σδ as functions of constrained investor’s consumption share y. Dividend
mean growth rate µδ = 1.8% and volatility σδ = 3.2% are from the estimates in Campbell (2003), based
on consumption data in 1891–1998, while risk aversion and time discount are set to γ = 0.8 and ρ = 0.01.

the price-dividend ratios and stock return volatilities. Figures 1 and 2 present equilibrium inter-
est rates, market prices of risk, price-dividend ratios and the ratios of stock return and dividend
growth volatilities as functions of constrained investor’s consumption share y for different levels
of the tightness of constraints θ̄ when risk aversions are less than unity (γ = 0.8) and greater
than unity (γ = 3), respectively. The equilibrium is derived under plausible parameters for the
dividend process.8 We note that in our model the instantaneous changes in the dividend growth
dδ/δ and constrained investor’s consumption share dy are negatively correlated since negative
shocks to dividends shift relative consumption to constrained investors, due to the fact that the
latter are less affected by adverse stock market fluctuations. Hence, higher consumption share

8In particular, the parameters for the dividend process (µδ = 1.8%, σδ = 3.2%) are taken from the estimates in
Campbell (2003), based on consumption data in 1891–1998 years, and the discounting parameter is set to ρ = 0.01.
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y is associated with bad times while lower y is associated with good times. Following the liter-
ature [e.g., Chan and Kogan (2002)] we label economic variables as procyclical if they increase
in good times (when dividend growth rate shocks are positive) and decrease in bad times (when
dividend growth rate shocks are negative), and as countercyclical if they decrease in good times
and increase in bad times.

For risk aversion less than unity Figure 1 demonstrates that tighter constraints decrease
interest rates and price-dividend ratios, and increase market prices of risk and stock return
volatilities. For risk aversion greater than unity, Figure 2 shows that tighter constraints decrease
interest rates and stock return volatilities, and increase market prices of risk and price-dividend
ratios. In both cases the impact of constraints is asymmetric and is more pronounced in bad
times, when consumption share y is larger. We first analyze the equilibrium parameters for the
case γ < 1, presented on Figure 1, and then for the case γ > 1, presented on Figure 2.

Panel (a) of Figure 1 presents interest rates when γ < 1 and demonstrates that in line with
the results of Section 2 interest rates in constrained economy are lower than in an unconstrained
one for a given consumption share y. Moreover, they become lower with tighter constraints and
are decreasing functions of constrained investor’s share of consumption y. Intuitively, constrained
investor invests more in bonds driving interest rates down. Moreover, constraints prevent the
investor from sharing risks efficiently and smoothing consumption over time. As a result, when
her current consumption is high the price of future consumption increases making her more
willing to lend at a lower interest causing interest rates to fall.

Panel (b) of Figure 1 shows that the prices of risk are higher in the constrained than in
the unconstrained economies and increase as constraint becomes tighter. When the constrained
investor invests only a fraction θ̄ < 1 of her wealth in the stock, for the markets to clear investor 1
should be leveraged so that θ∗1 > 1. This, however, implies that the unconstrained investor should
be more exposed to risk as the constraint tightens, and hence, the market price of risk should
be higher. Moreover, market price of risk also increases with constrained investor’s consumption
share y since in those states in which the unconstrained investor consumes less and possesses
less wealth she is more risk averse and requires market prices of risk to increase for the stock
market to clear. Thus, the market price of risk is countercyclical, consistently with the empirical
literature [e.g., Ferson and Harvey (1991)].

Panel (c) of Figure 1 demonstrates that the price-dividend ratios become lower with tighter
constraints and the effect of constraints is more pronounced in states with higher constrained
investor’s consumption share y. To understand the patterns of price-dividend ratios we first
observe that in equilibrium the price-dividend ratio can be interpreted as the ratio of aggregate
wealth over aggregate consumption since the market clearing conditions (9) imply that the sock
price equals aggregate wealth while the aggregate consumption equals the dividend. As a result,
the price-dividend ratio will be close to wealth-consumption ratio of unconstrained or constrained
investor depending on which of them dominates in the market by holding larger fraction of con-
sumption and wealth. When the unconstrained investor dominates (y is low), the equilibrium will
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Figure 2: Parameters of Equilibrium with Constraints, γ > 1.

The figure plots interest rates r, market prices of risk κ, price-dividend ratios R and ratios of stock return
and dividend growth volatilities σ/σδ as functions of constrained investor’s consumption share y. Dividend
mean growth rate µδ = 1.8% and volatility σδ = 3.2% are from the estimates in Campbell (2003), based
on consumption data in 1891–1998, while risk aversion and time discount are set to γ = 3 and ρ = 0.01.

be close to that in the benchmark unconstrained economy in which case all equilibrium param-
eters, including price-dividend ratios, are constant (dotted lines in Figures 1 and 2). However,
in states with dominating constrained investor (y is high) the price-dividend ratio is close to
constrained investor’s wealth-consumption ratio, which increases or decreases with tighter con-
straints depending on the relative strength of classical income and substitution effects. When
the investment opportunities worsen, the income effect induces investors to decrease consumption
and save more while the substitution effect induces them to consume more and save less due to
cheaper current consumption. For CRRA preferences the intertemporal elasticity of substitution
(IES) equals 1/γ, the income effect dominates for IES < 1 and the substitution effect dominates
for IES > 1 while in the case of IES = 1 both effects perfectly offset each other. With tighter
constraints the investment opportunities for constrained investor worsen due to the decline in
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interest rates and inability to fully benefit from the increase in market prices of risk, and hence
her wealth-consumption ratios decrease for γ < 1 via the substitution effect.9 As a result, the
price-dividend ratios decrease with tighter constraints and the effect is stronger in bad times,
when constrained investor dominates the market and the decline in interest rates is sharper.

The stock return volatilities on panel (d) of Figure 1 increase with tighter constrains and are
higher in bad times (when y is high) than in good times (when y is low). This is due to the fact
that the instantaneous changes in price-dividend ratio R and dividend δ are positively correlated
due to the fact that ratio R is a decreasing function of consumption share y, which is negatively
correlated with changes in dividend δ. Consequently, since the stock price is the product of price-
dividend ratio and the dividend, stock return volatility should be higher in constrained economy.
Moreover, this effect is stronger in bad times (when y is high) due to the concavity of ratio R, and
when θ̄ is low, due to the higher sensitivity of ratio R to changes in y. Thus, for γ < 1 consistently
with the empirical literature [e.g., Schwert (1989), Campbell and Cochrane (1999)] our model
generates procyclical price-dividend ratios, countercyclical stock return volatilities exceeding the
volatility of dividends, as well as negative correlation between changes in stock returns and their
volatilities. Moreover, the results on Figure 1 demonstrate that lower price-dividend ratios R
predict higher market prices of risk κ as well as higher risk premia (given by µ− r = κσ).

Turning to the case γ > 1 we observe from the results shown on Figure 2 that the constraints
affect the interest rates and market prices of risk in the same directions as in the case γ < 1.
However, by contrast with the case of γ < 1, due to the dominance of income effect, price-dividend
ratios increase while stock return volatilities decrease with tighter constraints, and the effects are
stronger in bad times.10 One might think that the results in the case γ > 1 are more plausible
than in the case γ < 1 given the evidence [e.g., Mehra and Prescott (1985)] that risk aversion
is greater than unity. However, we note, that the intuition for the dynamics of price-dividend
ratios and stock return volatilities in our model is driven by the relative strength of income and
substitution effect and not by the risk aversion per se. It is well known that CARA utility does
not allow to separate IES from the risk aversion and hence, in our setting IES > 1 is necessarily
associated with γ < 1.

We also note that since lower θ̄ decreases interest rates and increases market prices of risk,
9The relation between wealth-consumption ratios and the attractiveness of investment opportunities can con-

veniently be illustrated in an unconstrained partial equilibrium economy with constant interest rate r and market
price of risk κ = (µ − r)/σ, and an investor maximizing her objective (6) subject to budget constraint (4) and
no-bankruptcy constraint. It can easily be verified that when condition ρ − (1 − γ)(r + 0.5κ2/γ) > 0 is satisfied,
the investor’s wealth-consumption ratio is given by:

W

c
=

γ

ρ− (1− γ)(r + 0.5κ2/γ)
,

Hence, if investment opportunities deteriorate due to decrease of r or κ, the wealth-consumption ratio increases if
the income effect dominates (γ > 1) and decreases if the substitution effect dominates (γ < 1).

10In our model when γ > 1 the instantaneous volatility of stock returns is lower than that of dividend growth
and hence there is no excess volatility. Bhamra and Uppal (2009) demonstrate a significant excess volatility in a
complete-market exchange economy with CRRA investors that differ in risk aversions. Thus, excess volatility is
likely to be present in the extension of our model to the case where investors have different risk aversions.
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irrespective of risk aversion γ, the case of restricted participation which corresponds to θ̄ = 0
better explains the levels of observed interest rates and market prices of risk. In particular, in our
model with plausible parameters described above and γ = 3, when we set y = 0.7 [e.g., Mankiw
and Zeldes (1991), Guvenen (2006)] we obtain r = 4.8% and κ = 28%, while the volatilities of
individual consumptions are σc1 = 9% and σc2 = 0.7%. The estimates in Campbell (2003) show
that r = 2% and κ = 36%, while Malloy, Moskowitz, and Vissing-Jorgensen (2009) show that
σc1 = 3.6% and σc2 = 1.4%. Thus, our model implies riskless rates and market prices of risk
sufficiently close to those in the data for such a simple model.

Remark 3 (Duffie-Epstein preferences). The discussion above demonstrates that for risk
aversion γ < 1 the model generates empirically plausible patterns for price-dividend ratios and
stock return volatilities while for γ > 1 it generates high market prices of risk and low interest
rates close to those observed in the data. We note that the intuition for price-dividend ratios and
stock return volatilities only relies on the relative strength of income and substitution effects.
As pointed out above, for CRRA preferences the intertemporal elasticity of substitution (IES)
equals 1/γ and hence high IES leading to the dominance of substitution effect is only possible
for γ < 1. However, more general Duffie-Epstein recursive preferences allow for IES independent
of risk aversion parameter γ [Duffie and Epstein (1992)]. Our results lead to a conjecture that in
a model with Duffie-Epstein preferences with both IES and risk aversion exceeding unity [as in
Bansal and Yaron (2004)] it might be possible to match interest rates and market prices of risk,
as well as generate procyclical price-dividend ratios and countercyclical stock return volatilities
which exceed the volatility of dividends, consistently with the empirical literature.11

Our results also allow to obtain the expressions for consumption growth volatilities of in-
vestors, which also capture the effect of risk sharing between them. The expressions for the
volatilities can be obtained by applying Itô’s Lemma to optimal consumptions (48) and are
reported in the following Corollary 2.

Corollary 2. The optimal consumption growth volatilities of unconstrained and constrained
investors are given by

σc1t = σδ +
1
γ

λ
1/γ
t

1 + λ
1/γ
t

σλt, σc2t = σδ −
1
γ

1

1 + λ
1/γ
t

σλt. (57)

It can be shown in our example that the volatility σλ is positive, and hence, consumption
volatilities in (57) imply that unconstrained investor, being exposed to more risk, has larger
volatility of consumption than the constrained one. Basak and Cuoco (1998) show in the case of
restricted participation and γ = 1 that the volatility σc2 of constrained investor is zero and all

11Campbell and Cochrane (1999) and Chan and Kogan (2002) present the models with habit formation and
“catching up with the Joneses” preferences respectively, that explain the patterns for price-dividend ratios and
stock return volatilities.
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Figure 3: Probability Density Functions for Constrained Investor’s Share
in Aggregate Consumption, γ = 3.

The figure plots interest rates r, market prices of risk κ, price-dividend ratios R and ratios of stock return
and dividend growth volatilities σ/σδ as functions of constrained investor’s consumption share y. Dividend
mean growth rate µδ = 1.8% and volatility σδ = 3.2% are from the estimates in Campbell (2003), based
on consumption data in 1891–1998, while risk aversion and time discount are set to γ = 3 and ρ = 0.01.

the risk is borne by the unconstrained investor. However, in our case with γ > 1 volatility σc2
is greater than zero, as also in the data for non-stockholders [e.g. Malloy, Moskowitz, Vissing-
Jorgensen (2009)].

Finally, we address the question of how the constraints affect the distribution of consump-
tion between the investors. So far we have compared the parameters of equilibria with different
constraint θ̄ for a given level of consumption share y. This comparison does not account for the
fact that share y itself depends on θ̄. Figure 3 shows probability density functions of y for γ = 3,
different constraints θ̄ and time horizons equal to ten and one hundred years respectively. The
probability densities imply that consumption share y tends to decline, and hence, the impact
of constrained investor becomes smaller in the course of time even though it is still significant
even after hundred years. As discussed in Hong, Kubik and Stein (2004) stock market par-
ticipation depends on person-specific characteristics such as social integrations and education.
Thus, specializing to the case of restricted participation (θ̄ = 0) our model demonstrates that
these characteristics lead to gradual, although slow, elimination of non-stockholders’ impact on
financial markets via natural selection.12

12In unconstrained economic settings the survival of irrational investors has been studied in Kogan, Ross, Wang
and Westerfield (2004), Berrada (2009), Dumas, Kurshev and Uppal (2009) and Yan (2008), among others. The
results in the latter three works suggest that it takes a long time to eliminate the impact of irrational investors
that have wrong beliefs about mean dividend growth rates. Hugonnier (2008) considers survival of constrained
logarithmic investor and demonstrates that their impact can quickly be eliminated. However, in his calibration the
volatility of dividends is 20% while we set this parameter to the volatility of aggregate consumption 3.2% taken
from Campbell(2003). When in the calibration we choose γ = 1 and σδ = 20% consistently with Hugonnier our
results also imply fast elimination of constrained investor’s impact.
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4. Extensions and Ramifications

In this Section we demonstrate that our model is extendable to different alternative economic
settings. Section 4.1 extends the results of Section 2 to the case of heterogeneous beliefs and
provides a numerical solution to the model with CRRA investors with heterogeneous beliefs when
one of them faces short-sale constraints. Section 4.2 demonstrates that the results of Section 2
generalize to the environments with multiple assets.

4.1. Heterogeneous Beliefs Formulation

We now consider an economy in which investors are constrained and have different beliefs about
mean dividend growth rate in the economy. We first generalize the results of Section 2 and derive
expressions for the parameters of equilibrium in terms of adjustments in fictitious economy and
the differences in beliefs. Then, we specialize to a framework in which both investors have
identical CRRA preferences and the pessimist faces short-sale constraints. We solve this model
numerically by employing the approach of Section 3 and discuss some properties of the equilibrium
parameters.

Basak (2000, 2005) derives expressions for equilibrium parameters for general utility functions
in the economy in which investors face heterogeneous belief but does not study the impact
of constraints as we do in this work. Our model is also related to the model of Gallmeyer
and Hollifield (2008) in which the pessimist has logarithmic preferences and faces short-sale
constraints while the investor with general CRRA is optimistic and unconstrained. By contrast,
our model does not rely on the assumption of a logarithmic constrained investor.

The economic setting is similar to that of Section 2. In particular, investors trade in two
securities, a riskless bond and stock, and dividends follow process (1). They agree on dividends,
bond and stock prices and the dividend growth rate volatility σδ but disagree on the growth rate
µδ. Throughout this Section we will be using superscript i to denote quantities on which investors
disagree, while by subscript i investor-specific quantities on which there is no disagreement.
Investors update their beliefs µiδt in a Bayesian fashion:

µiδt = Ei[µδt|Fδt ], i ∈ {o, p}, (58)

where Ei[·] denotes the expectation under the subjective probability measure of investor i and Fδt
is the augmented filtration generated by δt. Both investors have different priors µiδ0 and investor
1 is optimistic (i = o) while investor 2 is pessimistic (i = p) about the dividend growth. From
the point of view of investor i the dividends and stock prices follow the processes

dδt = δt[µiδt + σδtdw
i
t], (59)

dSt + δtdt = St[µitdt+ σtdw
i
t], (60)

where wit denotes Brownian motions under the subjective probability measure of investor i.

25



From the filtering theory in Lipster and Shiryayev (1977) it follows that Brownian motions
wit are given by

dwit =
µδ − µiδt
σδ

dt+ dwt, i ∈ o, p. (61)

By ∆µδt we denote the disagreement process defined as

∆µδt =
µoδt − µ

p
δt

σδt
. (62)

Moreover, if dividends follow geometric Brownian motion (35) and investors’ initial priors are
normally distributed with parameters

µiδ ∼ N(µ̂iδ0, σ̂
i
δ0),

then µiδt is also normally distributed and the processes for µiδt and ∆µδt are given by

dµiδt =
σ̂iδt
σδ
dwit, (63)

d∆µδt = − σ̂
p
δt

σδ
∆µδtdt+

σ̂oδt − σ̂
p
δt

σδ
dwit, (64)

where

σ̂iδt =
σ̂iδ0σ

2
δ

σ̂iδ0t+ σ2
δ

. (65)

The budget constraint for each investor is given by (4) in which Brownian motion w and
stock mean-return µ are replaced by investor’s subjective Brownian motion wi and mean-return
µi. Each investor solves optimization problem (6) in which now expectation operator E[·] is
replaced by operator Ei[·] under investor’s subjective beliefs, subject to the budget constraint,
no-bankruptcy constraint Wt ≥ 0 and portfolio constraints (5).

The equilibrium in this economy is a set of parameters {rt, µot , µpt , σt} and of consumption
and investment policies {c∗it, α∗it, θ∗it}i∈{o,p} which solve investor i’s dynamic optimization problem
and satisfy market clearing conditions in (9).

As in Section 2, the parameters of equilibrium are characterized in terms of adjustments ν∗i
and support functions fi(ν∗i ). We first characterize investor’s marginal utilities in terms of state
prices that follow processes as in (14) but with Brownian motions under subjective probability
measures. Then, we introduce the ratio of their marginal utilities λ, which follows the process

dλt = −λt[µiλtdt+ σλtdw
i
t]. (66)

By employing market clearing conditions we obtain the parameters of equilibrium. Proposition
3 summarizes our results.
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Proposition 3. If there exists an equilibrium, the riskless interest rate r, perceived market prices
of risk κi, drifts µiλ and volatility σλ of weighting process (66) are given by

rt = r̄t −
At
Aot

fo(ν∗ot)−
At
Apt

fp(ν∗pt)−
A3
t (Pot + Ppt)
2A2

otA
2
pt

σ2
λt −

A3
t

AotApt

(Pot
Aot
− Ppt
Apt

)
δtσδtσλt

− A
2
t

Apt
δtσδt∆µδt +

A2
t

AotApt
σλt∆µδt, (67)

κot = κ̄t +
At
Apt

σλt, κpt = κ̄t −
At
Aot

σλt, (68)

µoλt = Atδtσδtσλt + fo(ν∗ot)− fp(ν∗pt)−
At
Aot

σ2
λt −∆µδκ

p
t , µpλt = µoλt − σλt∆µδt, (69)

σλt = ∆µδt +
ν∗ot − ν∗pt

σt
, (70)

where r̄ is the riskless rate and κ̄ is the market price of risk in an unconstrained economy populated
by optimists, given by

r̄t = ρ+Atδtµ
o
δt −

AtPt
2

δ2
t σ

2
δt, κ̄t = Atδtσδt, (71)

Ait, Pit, and At and Pt are absolute risk aversions and prudence parameters of investor i and a
representative investor with utility (19), respectively.

Expressions for optimal consumption c∗i and stock price S are as in Proposition 1. Optimal
wealths W ∗i and optimal investment policies θ∗i are given by expressions (26) and (28) in which
expectation operator E[·] and market prices of risk κ are replaced by subjective operator Ei[·] and
price of risk κi. Initial value λ0 for weighting process (66) is such that budget constraint at time
zero (29) is satisfied. Moreover, adjustments ν∗i satisfy complementary slackness conditions (30),
as in Proposition 1.

The expressions for interest rates in Proposition 3 demonstrate the impact of heterogeneous
beliefs on interest rates and subjective market prices of risk. In particular, the expression for
interest rates have additional terms [last two terms in (67)] which demonstrate the direct effect
of disagreement process ∆µδ. Since the disagreement process is positive, its impact depends on
the sign of volatility σλ. Moreover, the expression for volatility σλ in (70) demonstrates that this
parameter itself depends on ∆µδ since the disagreement affects the efficiency of the risk sharing,
quantified by σλ. Unlike the setup of Section 2, investors now disagree also on the market prices
of risk, which are given in (68).

We now consider a modification of the model in Section 3 in which now investors have
heterogeneous beliefs about the dividend growth rate. In particular, investor 1 is optimistic
and unconstrained while investor 2 is pessimistic and faces constraints that impose a limit on
the short-sales θ ≥ θ, where θ < 0. For simplicity, as in Yan (2008) we assume that investors do
not update their beliefs and believe that dividends follow a GBM

dδt = δt[µiδdt+ σδdw
i
t], (72)
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and their difference in beliefs we denote by ∆µδ. This assumption can further be justified by
noting that under plausible parameters it takes very long time for the beliefs to converge.13

As in Section 3 we characterize the equilibrium in terms of the wealth-consumption ratios of
investors which satisfy HJB equations (42) in which the drift parameter µλ is now investor-specific
and should be replaced by µiλ. Our results are summarized in Proposition 4.

Proposition 4. If there exists an equilibrium, the riskless interest rate r, perceived market price
of risk κi and drifts µiλ of weighting process λ that follows (20) are given by

rt = r̄ +
λ

1/γ
t

1 + λ
1/γ
t

θσt(∆µδ − σλt)−
1 + γ

2γ
λ

1/γ
t

(1 + λ
1/γ
t )2

σ2
λt

−γ λ
1/γ
t

1 + λ
1/γ
t

σδ∆µδ +
λ

1/γ
t

(1 + λ
1/γ
t )2

σλt∆µδ, (73)

κot = κ̄+
λ

1/γ
t

1 + λ
1/γ
t

σλt, κpt = κ̄− 1

1 + λ
1/γ
t

σλt, (74)

µoλt = γσδσλt −
1

1 + λ
1/γ
t

σ2
λt −∆µδκ

p
t + θσt(∆µδ − σλt), µpλt = µoλt −∆µδσλt, (75)

where r̄ is the riskless rate and κ̄ is the market price of risk in an unconstrained economy populated
by optimists, given by

r̄ = ρ+ γµoδ −
γ(1 + γ)

2
σ2
δ , κ̄ = γσδ. (76)

Optimal consumptions c∗i , wealths W ∗i , stock price-dividend ratio R and optimal investment poli-
cies θ∗i are given by

c∗ot =
1

1 + λ
1/γ
t

δt, c∗pt =
λ

1/γ
t

1 + λ
1/γ
t

δt, (77)

W ∗ot = Hot
1

1 + λ
1/γ
t

δt, W ∗pt = Hpt
λ

1/γ
t

1 + λ
1/γ
t

δt, (78)

Rt = Hot
1

1 + λ
1/γ
t

+Hpt
λ

1/γ
t

1 + λ
1/γ
t

, (79)

θ∗ot =
1
γσt

(
κot − γσλt

∂Hot

∂λt

λt
Hot

)
, θ∗pt =

1
γσt

(
κpt − γσλt

∂Hpt

∂λt

λt
Hpt

)
, (80)

13In particular, assuming that investors have the same variances for the prior belief, σ̂iδ0 = σ̂δ0, equations for
the disagreement and estimation error processes in (64) and (65) imply that

∆µδt = ∆µδ0

(
σ2
δ

σ̂δ0t+ σ2
δ

)σδ

.

Assuming further that σ̂δ0 = σδ and taking σδ = 3.2%, as in Campbell (2003), we obtain that it takes 100 years
for the disagreement ∆µδ to decrease by 20%.
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Figure 4: Price-Dividend Ratios and Ratios of Stock Return and Dividend Growth
Volatilities with Heterogeneous Beliefs, γ > 1.

The figure plots interest rates r, market prices of risk κ, price-dividend ratios R and ratios of stock return
and dividend growth volatilities σ/σδ as functions of constrained investor’s consumption share y. Dividend
mean growth rate µδ = 1.8% and volatility σδ = 3.2% are from the estimates in Campbell (2003), based
on consumption data in 1891–1998, while risk aversion and time discount are set to γ = 3 and ρ = 0.01.

while the volatilities of the stock returns, σ, and weighting process, σλ, are given by

σt = σδ − σλt
∂Rt
∂λt

λt
Rt
, σλt = min

{ (1− θ)γσδ
1

1+λ
1/γ
t

+ γ
∂Hpt
∂λt

λt
Hpt
− θγ ∂Rt∂λt

λt
Rt

,∆µδ
}
, (81)

where wealth-consumption ratios Hot and Hpt satisfy equations (42). Moreover, the initial value
λ0 for the weighting process (20) solves equation

sHp(λ0, 0)
λ

1/γ
0

1 + λ
1/γ
0

δ0 − (1− s)Ho(λ0, 0)
1

1 + λ
1/γ
0

δ0 = b. (82)

Proposition 4 characterizes equilibrium parameters in terms of wealth-consumption ratios
and highlights the effects of heterogeneous beliefs and short-sale constraints. Crucial difference
form the results of Proposition 2 is that now market prices of risk (74) and the drifts of weight-
ing process (75) are investor-specific due to investors’ disagreement on the dividend growth.
Moreover, the short-sale constraint will not always be binding in equilibrium since when con-
strained investor’s share of aggregate consumption is large she becomes more willing to smooth
consumption over time and invests more in stock.

By calibrating our economy to plausible parameters we find that constraints have little effect
on riskless rates, while market prices of risk are investor-specific. Therefore, we here focus on
price-dividend ratios and stock return volatilities which are presented on Figure 4 for different
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levels of θ. We here consider only the case γ > 1 and note that the case γ < 1 can be analyzed in
a similar way. The dotted lines correspond to quantities in an unconstrained economy (θ = −∞)
which are computed using explicit formula for stock prices in terms of weighting process λ,
available in Yan (2008). We assume that the optimist has correct beliefs about mean dividend
growth while the pessimist underestimates it by 40%. The first picture on Figure 4 demonstrates
that tighter short-selling constraints (higher θ) increase price-dividend ratios. In the presence
of short-sale constraints the optimist should hold less stocks in equilibrium which decreases
her perceived market price of risk. As a result, investment opportunities deteriorate and her
wealth-consumption ratio increases due to the dominance of substitution effect. Thus, when the
optimist dominates in the market, the price-dividend ratio should go up for the similar reasons as
in Section 3. When the pessimist dominates, the constraint does not bind and the price-dividend
ratio becomes closer to that in the unconstrained case.

It can also be observed that the price-dividend ratios on panel (a) of Figure 4 are U-shaped
when θ is low, even though this effect is not economically significant. To understand the intuition,
we observe that when the optimist dominates in the market, when pessimist’s consumption and
wealth share gradually increases, she shorts more in proportion of her wealth. As a result, the
optimist should hold more stocks in equilibrium which requires higher market prices of risk, and
hence, better investment opportunities. Therefore, the income effect decreases the optimist’s
wealth-consumption ratio. However, as the pessimist’s consumption share increases further,
at some point the price-dividend ratio should start increasing again since when the pessimist
dominates, the optimist’s wealth is low and she becomes unable to hold large amount of stock.
As a result, shorting becomes less attractive for the pessimist in equilibrium and her subjective
market price of risk increases pushing up the wealth-consumption ratio and hence the price-
divided ratio.

Panel (b) of Figure 4 demonstrates that stock return volatility can both be higher and lower
than the volatility of dividends, which is due to the U-shaped form of the price-dividend ratio.
Moreover, as short-sale constraints become tighter the volatility of stock returns decreases for
small consumption shares y, increases for medium y, and is almost unchanged for values of y
close to unity when the constraint does not bind. Intuitively, short-sale constraints limit the
ability of the pessimist to trade on her pessimism and hence her stockholding look as if she had
smaller disagreement with the unconstrained investor. As a result, the economic parameters
should become closer to the values in the unconstrained economy without disagreement. In
particular, stock return volatilities should move closer to the volatility of dividends σδ, which we
observe on Figure 4. This effect can also be formally demonstrated by observing that adjustment
parameters for unconstrained and constrained investors are such that ν∗o = 0 [case (a) in Table 1]
and ν∗p ≥ 0 [case (e) in Table 1], and hence the volatility σλ given by (70) decreases towards zero
since the volatility of stock returns σ is positive. Then, from the expression for volatility σ in
(81) it follows that the difference between σ and dividend growth volatility σδ becomes smaller.

In a similar model with a logarithmic constrained pessimist Gallmeyer and Hollifield (2008)
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find that the stock return volatility increases when the unconstrained optimist has risk aversion
γ > 1 and each investor is initially endowed with 50% of the market portfolio. By contrast
with their work we present the analysis of price-dividend ratios and stock return volatilities
as functions of both the pessimist’s consumption share y and the tightness of the short-sale
constraint. Moreover, we show that the volatility σ can decrease with tighter constraints even
though the economic magnitude of this effect is small. Finally, our numerical method relies only
on solving linear algebraic equations at each step rather than employing Monte-Carlo simulations
as in their work.

4.2. Multiple Stock Formulation

We now demonstrate that the baseline analysis of Section 2 with single stock can easily be gen-
eralized to the case of multiple stocks. The uncertainty is now generated by a multi-dimensional
Brownian motion w = (w1, ..., wN). The investors trade in a riskless bond and N stocks in a
positive net supply, normalized to unity, each of which is a claim to an exogenous strictly positive
stream of dividends δn following the dynamics

dδnt = δnt[µδntdt+ σ>δntdwt], n = 1, ..., N, (83)

where µδn and σδn are stochastic processes. We consider equilibria in which bond prices, B, and
stock prices, S, follow processes

dBt = Btrtdt (84)

dSnt + δntdt = Snt[µntdt+ σ>ntdwt], n = 1, ..., N. (85)

We let µ ≡ (µ1, ..., µN)> denote the vector of stock mean returns and σ ≡ (σ1, ..., σN)> the
volatility matrix, assumed invertible, with each component measuring the covariance between
the stock return and Brownian motion wn. By δ we denote the process for aggregate dividend,
δ = δ1 + δ2 + ...+ δN , which follows the process

dδt = δt[µδt + σ>δtdwt], (86)

where
µδt =

δ1t

δt
µδ1t + ...+

δNt
δt
µδN t, σδt =

δ1t

δt
σδ1t + ...+

δNt
δt
σδN t.

Investor 1 is endowed with sn units of stock n and −b units of bond, while investor 2 is
endowed with 1− sn units of stock n and b units of bond. Investor i’s wealth process W follows

dWit =
[
Wit

(
rt + θ>it (µt − rt)

)
− cit

]
dt+Witθ

>
itσtdwt, (87)

and her investment policies are subject to portfolio constraints

θi ∈ Θi, i = 1, 2, (88)
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where Θi is a closed convex set in RN and θ = (θ1, ..., θN)> is the vector of wealth proportions
invested in the N stocks. Each investor i solves her dynamic optimization (6) subject to budget
constraint (87), no-bankruptcy constraint Wt ≥ 0 and portfolio constraints (88).

Following the approach of Section 2 we first embed the optimization problem for each investor
into an equivalent fictitious complete-market economy in which stock prices evolve as

dξit = −ξit[ritdt+ κ>itdwt]. (89)

Assuming that dual problems in Cvitanic and Karatzas (1992) have solutions we obtain that
riskless rates rit and market prices of risk κit in fictitious economy are given by

rit = rt + fi(ν∗it), κit = κt + σ−1
t ν∗it, (90)

where κ is the market price of risk in the original economy, fi(ν) are support functions for the
sets Θi, defined as

fi(ν) = sup
θ∈Θi

(−ν>θ), (91)

ν∗1t and ν∗2t solve duality optimization problem in Cvitanic and Karatzas (1992) and belong to
the effective domains for support functions, given by

Υi = {ν ∈ RN : fi(ν) <∞}. (92)

Proposition 5 characterizes the equilibrium in terms of the adjustments ν∗it and f(ν∗it) in
fictitious economies and the parameters of the process for the ratio of marginal utilities of con-
sumption, λt, which evolves as

dλt = −λt[µλtdt+ σ>λtdwt]. (93)

Proposition 5. If there exists an equilibrium, the riskless interest rate r, market price of risk
κ, drift µλ and volatility σλ of weighting process λ that follows (93) are given by

rt = r̄t −
At
A1t

f1(ν∗1t)−
At
A2t

f2(ν∗2t)−
A3
t (P1t + P2t)
2A2

1tA
2
2t

σ>λtσλt −
A3
t

A1tA2t

(P1t

A1t
− P2t

A2t

)
δtσ
>
δtσλt, (94)

κt = κ̄t −
At
A1t

σ−1
t ν∗1t −

At
A2t

σt
−1ν∗2t, (95)

µλt = Atδtσ
>
δtσλt + f1(ν∗1t)− f2(ν∗2t)−

At
A1t

σ>λtσλt , σλt = σ−1
t (ν∗1t − ν∗2t), (96)

where r̄ is the riskless rate and κ̄ is the market price of risk in an unconstrained economy, given
by

r̄t = ρ+Atδtµδt −
AtPt

2
δ2
t σ
>
δtσδt, κ̄t = Atδtσδt, (97)
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Ait, Pit, and At and Pt are absolute risk aversions and prudence parameters of investor i and a
representative investor with utility (19), respectively. Optimal consumptions c∗i , wealths Wi and
optimal investment policies θ∗i are given by

c∗it = gi(δt, λt), (98)

W ∗it =
1
ξit
Et

[∫ ∞
0

ξisc
∗
isds

]
, (99)

θ∗it = σ−1
t

(
W ∗it(κt + σ−1

t ν∗it) +
φit
ξit

)
, (100)

where functions gi(δt, λt) are such that c∗1t and c∗2t satisfy consumption clearing in (9) and equation
(18) for process λ, state prices ξit follow processes (14) and φi are such that

Mit ≡ Et
[∫ ∞

0
ξisc
∗
isds

]
= Mi0 +

∫ t

0
φ>isdws.

Initial value λ0 is such that budget constraints at time 0 are satisfied:

si1S10 + ...+ siNSN0 + bi = W ∗i0, (101)

where s1n = sn, s2n = 1− sn, b1 = −b and b2 = b. Moreover, adjustments ν∗it satisfy complemen-
tary slackness condition

fi(ν∗it) + θ∗>it ν
∗
it = 0. (102)

The expression for interest rates (94) can again be decomposed into three groups of terms
that represent riskless rate in an unconstrained economy, the impact of constraints and the effect
of risk sharing. The last term in (94) also shows that in the case of heterogeneous utility functions
the interest rates depend on the covariance between aggregate dividend and weighting process
λ, captured by σ>δ σλ. The expression for equilibrium interest rates also allows to formulate a
simple sufficient condition under which the equilibrium interest rates in the constrained economy
are lower than in the unconstrained one.

Corollary 3. If the utility functions and the allocations of consumption are such that P1/A1 =
P2/A2 and the sets of portfolio constraints Θi contain the origin, i.e. 0 ∈ Θi, then the interest
rate in a constrained economy, r, is lower than in an unconstrained one, r̄, and the following
upper bound for rate r holds:

rt ≤ r̄t −
A3
t (P1t + P2t)
2A2

1tA
2
2t

σ>λ σλ. (103)

The expressions for the market price of risk now reflect the impact of multiple constraints. By
contrast with the single stock case, market clearing conditions can only determine the aggregate

33



value of all stocks and not the values of individual ones. Moreover, as demonstrated in Hugonnier
(2008) if the weighting process is not a martingale then there might be multiple equilibria with
different stock prices but unique riskless rates and market prices of risk. The application of the
methodology developed in Section 3 for finding equilibria in a multi-stock economy we leave for
the future research.

5. Conclusion

Despite numerous applications of dynamic equilibrium models with heterogeneous investors facing
portfolio constraints, little is known about the equilibrium when we depart from the assumption
of logarithmic preferences. In various frameworks we provide explicit expressions for interest rates
and market prices of risk in terms of instantaneous volatilities of stock returns and consumptions
as well as risk aversions and prudence parameters. We then consider an economic setting where
one investor is unconstrained while the other faces upper bound on the proportion that can be
invest in stocks, and both investors have identical CRRA utilities. We completely characterize
the equilibrium in terms of investors’ wealth-consumption ratios satisfying a pair of differential
equations that we solve numerically by employing a simple iterative algorithm. We further
demonstrate that the direction in which portfolio constraints change price-dividend ratios and
stock returns volatilities crucially depends on the intertemporal elasticity of substitution (IES).
In particular, when the IES is greater than unity the model generates countercyclical market
prices of risk and stock return volatilities, procyclical price-dividend ratios, excess volatility and
other patterns consistent with empirical findings. We also find that the impact of constrained
investor diminishes in the course of time but is still significant even after one hundred years. Our
approach is then extended to the case of heterogeneous beliefs and multiple assets. Given the
tractability of our analysis we believe that our approach for finding equilibria in economies with
constraints may find applications in various models with heterogeneous investors and incomplete
financial markets as well as in solving portfolio choice problems with constraints at a partial
equilibrium level.
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Appendix A: Proofs

Proof of Proposition 1. First, we obtain a system of equations for parameters of the fictitious
economy by substituting the expressions for optimal consumption (17) into consumption clearing
condition in (9), applying Itô’s Lemma to both sides and matching the coefficients. Noting from
the properties of inverse functions that

I ′i(ψie
ρtξit) =

1
u′i(c

∗
it)
, I ′′i (ψieρtξit) = −u

′′
i (c
∗
it)

u′i(c
∗
it)

1
(u′i(c

∗
it))2

,

we obtain the following equations

rt − ρ
At

+
f1(ν∗1t)
A1t

+
f2(ν∗2t)
A2t

+
1
2

(
P1t

( κ1t

A1t

)2
+ P2t

( κ2t

A2t

)2)
= δtµδt, (A.1)

κ1t

A1t
+
κ2t

A2t
= δtσδt. (A.2)

By applying Itô’s Lemma to both sides of the definition of λ in (18) and noting that marginal
utilities u′i(c

∗
i ) are given by (16), matching the terms we obtain the drift µλ and volatility σλ of

the weighting process (20):

µλt = σλtκ2t + f1(ν∗1t)− f2(ν∗2t), σλt = κ1t − κ2t. (A.3)

Taking into account the definition of κit in terms of adjustments in (15) from equations (A.1)–
(A.3) we obtain expressions (21)–(23) in Proposition 1. Analogously, it can be shown that in the
unconstrained economy the interest rate is given by (24).

Optimal consumptions c∗it are obtained from consumption clearing and the equation for weight
λ in (18). Expressions for optimal wealths and optimal policy (26) and (28) follow from the results
in Cox and Huang (1989), Huang and Pages (1992) and Karatzas and Shreve (1998), while stock
prices (3) are derived from the market clearing conditions in (9). The complementary slackness
condition in (30) is established in Chapter 6.3 of Karatzas and Shreve (1998). Q.E.D.

Proof of Corollary 1. The proof directly follows from Proposition 1 by noting that the last
term in the expression for r in (21) disappears. Q.E.D.

Proof of Proposition 2. We obtain expressions (44)–(48) for equilibrium parameters from
expressions (21)–(25) in Proposition 1 by substituting adjustment parameters (39) and risk-
aversion and prudence parameters for CRRA preferences, given by

A1t =
γ

c1t
, A2t =

γ

c2t
, At =

γ

δt
,

P1t =
1 + γ

c1t
, P2t =

1 + γ

c2t
, Pt =

1 + γ

δt
.

(A.4)
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We first demonstrate that the constraint for investor 2 should always be binding in equilib-
rium. The complementary slackness condition (30), given expressions for adjustments (39), takes
the form (θ̄ − θ∗2t)ν∗2t = 0. Therefore, if constraint does not bind it follows that ν∗2t = 0. Hence,
from (23) we obtain that σλt = 0 and µλt = 0 and the economy will permanently remain in a
Pareto-efficient unconstrained equilibrium. As a result, since the investors have identical prefer-
ences and the equilibrium investment opportunity sets are constant when σλt = 0 and µλt = 0, it
can easily be verified that the investors will choose θ∗it = 1, which violates constraint θ2t ≤ θ̄ < 1.
Therefore, the constraint should always be binding in equilibrium.

Expressions for wealths W ∗it follow from the first order condition for consumption in (41),
while the expression for price-dividend ratio R follows from the expression for stock price (3),
derived from consumption clearing, and the expressions for wealths in (49). Optimal policy for
investor 1, θ∗1t, in (51) is obtained by solving an HJB equation, while policy for investor 2 equals θ̄
since the investor always binds on her constraint, as demonstrated below. Stock return volatility
σ in (52) is derived by applying Itô’s Lemma to stock price, given by St = Rtδt.

From the definition of κit in (15), expression for κt in (45) and expressions for adjustments
in (39) we find that

κ2t = γσδ −
1

1 + λ
1/γ
t

σλ. (A.5)

Substituting κ2t from (A.5) into expression for optimal investment policy (43) and noting that
constraint θ2t ≤ θ̄ is always binding we obtain the following equation for σλ:

1
γσt

(
γσδ − σλt

( 1

1 + λ
1/γ
t

+ γ
∂H2t

∂λt

λt
H2t

))
= θ̄. (A.6)

Substituting volatility σ given by first expression in (52) into equation (A.6) and solving it yields
σλ given by second expression in (52). Finally, the equation for λ0 is obtained so as to satisfy
time-0 budget constraints (29). By substituting W ∗10, W ∗20 and S0 = R0δ0 from Proposition 2 into
the budget constraints (29) it can easily be observed that both constraints are satisfied whenever
equation (53) for λ0 holds.14 Q.E.D.

14We also note that the results of Proposition 2 can be derived without relying on the methodology in Cvitanic
and Karatzas (1992) by solving the HJB for investor 2 directly in constrained economy. Since the constraint is
always binding the problem is equivalent to the one with constraint θ2t = θ̄. The HJB equation is then given by
(38) in which θ2t = θ̄ and ν∗it = 0, since we solve in constrained economy. Then, conjecturing that J2t has form
(40) yields the equation for H2t. From the first order condition (41) we obtain e−ρtW−γ2t H

γ
2t = ξ2t, where ξ2t is

the marginal utility of investor 2 which follows the process (14). Applying Itô’s Lemma to both sides shows that

θ̄σt =
κ2t

γ
− σλt

∂H2t

∂λt

λt
H2t

.

Substituting this expression into HJB after some algebra we obtain equation (42) for investor 2. Price of risk κ2

can be found from (A.2)–(A.3) while r2 can be found by applying Itô’s Lemma to ξ2tW2t = e−ρtW 1−γ
2t Hγ

2t, noting
that the right-hand side satisfies HJB equation, θ2t = θ̄, and matching the terms.

Moreover, since investor 1 faces complete market, in the derivation of rt and κt to obtain equations (A.1)–(A.2)
we assume that u′(c∗1t) = ψ1e

ρtξ1t where

ξ1t = −ξ1t[rtdt+ κtdwt].
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Proof of Corollary 2. Applying Itô’s Lemma to both sides of the first order conditions for
consumption (16) and matching the terms we find that

citσcit =
κit
Ait

. (A.7)

Since investor 1 is unconstrained, κ1 = κ and is given by (45) while κ2 is given by (A.5). Substi-
tuting κ1 and κ2 into (A.7) and noting that for CRRA utility Ai = γ/ci we obtain expressions
(57) for volatilities σci . Q.E.D.

Proof of Proposition 3. From expression (61) we first express Brownian motion wp in terms
of Brownian motion wo as follows:

dwpt = ∆µδtdt+ dwot , (A.8)

and then rewrite all subsequent stochastic processes in terms of Brownian motion wo under the
optimist’s probability measure. Then, state prices ξit in fictitious economies follow processes:

dξot = −ξot[rotdt+ κotdw
o
t ], dξpt = −ξpt[(rpt + ∆µδtκ

p
t )dt+ κptdw

o
t ]. (A.9)

Optimal consumptions in fictitious economies are given by (17). Substituting them into con-
sumption clearing condition in (9), applying Itô’s Lemma to both sides and matching terms as
in the proof of Proposition 1 after some algebra we obtain:

rt − ρ
At

+
fo(ν∗ot)
Aot

+
fp(ν∗pt)
Apt

+
1
2

(
Pot

( κot
Aot

)2
+ Ppt

( κpt
Apt

)2)
=

κot
Aot

µoδt
σδt

+
κpt
Apt

µpδt
σδt

, (A.10)

κot
Aot

+
κpt
Apt

= δtσδt. (A.11)

By applying Itô’s Lemma to both sides of the definition of λ in (18) and noting that marginal
utilities u′i(c

∗
i ) are given by (16) and state prices follow (A.9), matching the terms we obtain the

drift µλ and volatility σλ of the weighting process (66) for the optimist:

µoλt = σλtκ
p
t −∆µδtκ

p
t + fo(ν∗ot)− fp(ν∗pt), σλt = κot − κpt . (A.12)

Using equations (A.10), (A.11) and the second equation in (A.12) we obtain expressions for r
and κ in Proposition 3.

To obtain drift µpλt we rewrite the process for λt given by (66) under the Brownian motion of
the optimist as follows

dλt = −λt[(µpλt + σλt∆µδt)dt+ σλtdw
o
t ].

Huang and Pages (1992) derive this result assuming that
∫ t
0
|rτ |dτ < ∞ a.s., and κt < K̄ a.s., where K̄ is a

constant. It is difficult to check these conditions analytically. However, the graphs on Figure 3 demonstrate that
the states with y close to 1, where rt and κt are unbounded, have zero probability, and hence, the conditions are
likely to be satisfied. We also check numerically that the integrals in investor’s optimization (6) converge to Jit
derived in Section 3.
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Matching the drift parameters for the processes for λt from both optimist’s and pessimist’s points
of view yields expression for µpλt in Proposition 3. To obtain expression for σλ we note first that
by the definition of prices of risk in fictitious economies

κot =
µot − rt
σt

+
νoit
σt
, κpt =

µpt − rt
σt

+
νpit
σt
. (A.13)

Moreover, rewriting the process for stock prices St for both the optimist and pessimist in terms
of Brownian motion wo

dSt = St[µotdt+ σtdw
o
t ]

= St[(µ
p
t + ∆µδtσt)dt+ σtdw

o
t ],

and matching the terms we obtain
µot − µpt
σt

= ∆µδt. (A.14)

The expression for σλ in (A.12) along with equations (A.13) and (A.14) gives σλ reported in
Proposition 3. The rest of the proof is as in Proposition 1. Q.E.D.

Proof of Proposition 4. From the definition of the support function in (12) applied to θ ≥ θ
and the expression (70) for volatility σλ we obtain the adjustment parameters:

ν∗1t = 0, f(ν∗1t) = 0, ν∗2t = σt(∆µδt − σλt), f(ν∗2t) = −θσt(∆µδt − σλt). (A.15)

Substituting adjustments (A.15) and risk-aversion and prudence parameters in (A.4), into the
expressions (67)–(71) we obtain equilibrium parameters (73)–(76) reported in Proposition 4.

Consumptions (77) are obtained from the consumption clearing condition in (9) and definition
of λt in (18). Wealth-consumption ratios Ho and Hp satisfy HJB equations (42) in which µλ is
replaced by µoλ and µpλ respectively. Hence, from the first order condition for consumption in (41)
and market clearing condition we obtain expressions for W ∗it and Rt. Expressions for optimal
policies are obtained by solving HJB equations in fictitious economies, as in Section 3, while
stock return volatility σ is obtained by applying Itô’s Lemma to stock price St = Rtδt.

The complementary slackness condition in (30) in our setting takes the form (θ− θ∗it)ν∗it = 0.
As a result, if constraint is not binding ν∗it = 0, and hence, from the expression in (70) it follows
that σλ = ∆µδt. To solve for σλ when the constraint is binding we first substitute κp from (74)
into the investment policy (80) and obtain

θ∗pt =
1
γσt

(
γσδ − σλt

( 1

1 + λ
1/γ
t

+ γ
∂Hp

t

∂λt

λt
Hp
t

))
. (A.16)

Then, substituting σ from (81) into (A.16) and solving equation θ∗pt = θ we obtain

σλt =
(1− θ)γσδ

1

1+λ
1/γ
t

+ γ
∂Hpt
∂λt

λt
Hpt
− θγ ∂Rt∂λt

λt
Rt

. (A.17)
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Moreover, since ν∗2t ≥ 0 [Table 1 case (e)] if the constraint binds σλ is given by (A.17) and should
be lower than ∆µδt which leads to expression for σλ in Proposition 4.15

Q.E.D.

Proof of Proposition 5. The proof is a multi-dimensional version of the proof of Proposition
1. Q.E.D.

Proof of Corollary 3. From the definition of support functions in (12) it follows easily that
fi(ν) ≥ 0 if 0 ∈ Θi. Then, the proof follows from the fact that in the expression for interest rates
r in Proposition 5 the second and third terms are positive while the last term vanishes. Q.E.D.

15Similarly to the discussion in the footnote in the proof of Proposition 2 it can be argued that the results in
Proposition 4 can be obtained without relying on the methodology in Cvitanic and Karatzas (1992).
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Appendix B: Numerical Method

We here present the details of our numerical solution method in Section 3 first for γ > 1 and then
for γ < 1. Since variable λ takes values in the interval (0,+∞) we first rewrite the HJB equations
(42) in terms of variable y = λ1/γ/(1 + λ1/γ). By H̃i(y, t) we denote the wealth-consumption
ratios as functions of y so that

Hi(λ, t) = H̃i(y(λ), t). (B.1)

The derivatives of Hi(λ, t) then can be expressed in terms of derivatives of H̃i(y, t) by differenti-
ating both sides in (B.1) as follows:

∂Hit

∂t
=

∂H̃it

∂t
, λt

∂Hit

∂λt
=
y(1− y)

γ

∂H̃it

∂y
, (B.2)

λ2
t

∂2Hit

∂λ2
t

=
y2(1− y)2

γ2

∂2Hit

∂y2
+

2y(1− y)((1− γ)/2− y)
γ2

∂H̃it

∂y
. (B.3)

Taking into account our change of variable and the expressions for derivatives in (B.2)–(B.3)
from the expressions in Proposition 2, definitions of parameters rit and κit in (15), and expressions
for adjustment parameters in (39) we obtain the following expressions for equilibrium parameters
in fictitious economies:

r1t = r̄ − y

1− y θ̄σtσyt −
1 + γ

2γ
y

1− yσ
2
yt, κ1t = γσδ +

y

1− yσyt,

r2t = r̄ + θ̄σtσyt −
1 + γ

2γ
y

1− yσ
2
yt, κ2t = γσδ − σyt,

µλt =
µyt

1− y , σλt =
σyt

1− y

(B.4)

where r̄ is given by (47), µyt, σt and σyt are given by

µyt = γσδσyt − θ̄σtσyt − σ2
yt, σt = σδ −

σyt
γ

∂R̃t
∂yt

yt

R̃t
, σyt =

(1− θ̄)γσδ

1 + ∂H̃2t
∂yt

yt
H̃2t
− θ̄ ∂R̃t∂yt

yt
R̃t

, (B.5)

and R̃t is a price-dividend ratio as a function of y. Substituting expressions for derivatives (B.2)
and (B.3) into the HJB equations (42) we obtain the following PDEs for H̃it:

∂H̃it

∂t
+
y2
t σ

2
yt

2γ2

∂2H̃it

∂y2
t

+
yt
γ2

(
σ2
yt

(1− γ)/2− yt
1− yt

− γµyt − (1− γ)κitσyt
)∂H̃it

∂yt

+
1
γ

(1− γ
2γ

κ2
it + (1− γ)rit − ρ

)
H̃it + 1 = 0, i = 1, 2.

(B.6)

To find stationary, time-independent solutions of equations (B.6) we fix a large horizon T , pick
two functions h̃1(y) and h̃2(y), specify terminal condition

H̃i(y, T ) = h̃i(y), i = 1, 2, (B.7)
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and solve HJB equations (B.6) backwards until the convergence to stationary solutions. We
assume that functions h̃i are continuous and differentiable on the interval [0, 1] and satisfy con-
ditions h̃1(1) = 0 and h̃′2(1) = (γ − 1)h̃2(1).

We assume that H̃i(y, t) are twice continuously differentiable in the interval (0, 1), have
bounded first and second right derivatives at y = 0, σ2

y > 0, and there exist limits (1 −
y)2∂2H̃1(y, t)/∂y2 → 0, (1 − y)∂2H̃2(y, t)/∂y2 → 0 and (1 − y)∂H̃1(y, t)/∂y → 0, as y → 1.
After we compute the solutions we also verify numerically that these assumptions are satisfied
for γ > 1.

Passing to the limit y → 0 in equations (B.6) we obtain simple ordinary differential equations
for Hi(0, t) solving which yields boundary conditions at y = 0:

H̃i(0, t) = h̃i(0)epi(T−t) +
epi(T−t) − 1

pi
, i = 1, 2, (B.8)

where
p1 =

1− γ
2

θ̄2σ2
δ +

(1− γ)r̄ − ρ
γ

, p2 =
1− γ

2
σ2
δ +

(1− γ)r̄ − ρ
γ

. (B.9)

Expressions in (B.8) and (B.9) demonstrate that conditions pi ≤ 0 are necessary for the existence
of stationary solutions of equations (B.6). To obtain boundary conditions at y = 1 we multiply
the equations for H1(y, t) and H2(y, t) by (1 − y)2 and (1 − y), respectively, and passing to the
limit y → 1 we obtain:

(1− θ̄)(γ − 1)H̃1(1, t) = 0,
∂H̃2(1, t)

∂y
= (γ − 1)H̃2(1, t). (B.10)

The problem then becomes to solve HJB equations (B.6) subject to terminal condition (B.7) and
boundary conditions (B.8) and (B.10).

For simplicity, in the description of the numerical method we omit subscript i. We let the
time and state variable increments denote ∆t ≡ T/M and ∆y ≡ 1/N , where M and N are integer
numbers, and index time and state variables by t = 0,∆t, 2∆t, ..., T and y = 0,∆y, 2∆y, ..., 1,
respectively. Next, we derive discrete-time analogues of HJB equations and boundary conditions
replacing derivatives by their finite-difference analogues as follows:

H̃n,k+1 − H̃n,k

∆t
+ an,k+1

H̃n+1,k − 2H̃n,k + H̃n−1,k

∆y2
+ bn,k+1

H̃n,k − H̃n−1,k

∆y
+ cn,k+1H̃n,k + 1 = 0,

(B.11)
H̃n,M = h̃n, H̃0,k = d0,k, H̃N,k = eN,kH̃N−1,k, (B.12)

where n = 1, 2, ..., N − 1, k = 1, 2, ...,M − 1, H̃n,k = H̃(n∆y, k∆t). The coefficients in (B.11)
correspond to coefficients in equation (B.6) and are computed using the solution H̃n,k+1, while
coefficients in (B.11) are obtained by replacing terminal condition (B.7) and boundary conditions
(B.8) and (B.10) by their finite-difference analogues. The system of equations in (B.11)–(B.12)
is then solved backwards in time, starting at k = M − 1. Given solution Hn,k+1 we compute all
the coefficients in (B.11) at step k + 1, and hence at step k function Hn,k for fixed k solves a
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system of linear algebraic equations. We then iterate backwards until the process converges to a
stationary time-independent solution.

Figure 1 shows the numerical solutions for wealth-consumption ratios plotted against con-
strained investors share of consumption, y, for plausible exogenous parameters. These numerical
solutions have the appearance of bounded and twice continuously differentiable on interval [0, 1]
functions irrespective of the grid parameter ∆y. Assuming that they are indeed twice continu-
ously differentiable, and given that they satisfy finite-difference equations (B.11)–(B.12), passing
to a limit ∆y → 0 indeed gives solutions to the HJB equations for wealth-consumption ratios.16

When risk aversion γ is less than unity wealth-consumption ratio H1t and its derivatives
become unbounded while σyt approaches zero, as y approaches unity. As a result, the assumptions
under which the boundary conditions (B.8) and (B.10) are derived are violated. However, it
turns out that function (1− y)H1t is bounded and equals zero when y = 1. Hence, we derive the
differential equation for (1− y)H1t and solve it using the methodology described above.

The model with heterogeneous beliefs in Section 4.1 is solved in a similar way. First, we
derive an HJB equation in terms of consumption share y, which is given by (B.6) in which µy is
replaced by µiy. Then, we obtain boundary conditions and solve the finite-difference equations
numerically.

16As an additional check we also verify by Monte-Carlo simulations that for both investors integrals in their
optimization problem (6) do not explode under optimal consumption policies in (48) and converge to the values ob-
tained by our numerical method. The convergence of those integrals also implies that the transversality conditions
for HJB equations (38) are satisfied.
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