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Abstract

We show that the cross-section of expected returns of stock portfolios sorted along the

book-to-market dimension can be explained using a factor, which we call the KLN factor,

that is a linear combination of (contemporaneous) forward rates. It has a correlation of 82%

with the Cochrane-Piazzesi (2005, CP) factor, itself a linear combination of the same (lagged)

forward rates. Since the CP factor is a strong predictor of future excess bond returns, the high

correlation between the KLN and the CP factors suggests a tight link between the cross-section

of stock returns and bond risk premia. Inspired by this finding, we develop a parsimonious

no-arbitrage stochastic discount factor model that can price both the cross-section of stock

and bond returns. Featuring only three priced factors, all of which are yields, the model

obtains a mean absolute pricing error of 40 basis points per year across 5 maturity-sorted

government bond portfolios, 10 book-to-market-sorted stock portfolios, and the aggregate

stock market. The CP factor is responsible for pricing the spread between stock portfolios,

the dividend yield prices the mean of stock returns, and the level of the term structure prices

the cross-section of bond returns. With two additional risk price parameters, the model also

replicates the dynamics of bond yields as well as the time-series predictability of stock and

bond returns. The value premium seems related to fundamental economic risk. Since the

returns on value stocks are high when CP is high, which typically occurs near the end of a

recession, value stocks carry high returns exactly when investors need it the least.
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comments and suggestions.
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The goal of this paper is to study a model that jointly accounts for stock and bond returns.

According to the inter-temporal capital asset pricing model of Merton (1973), assets’ exposures

to changing investment opportunities are important determinants of average returns, in addition

to the market beta. Variables that capture changes in the investment opportunity set should be

priced in the cross-section. For bonds, we know that the Cochrane and Piazzesi (2005) factor,

henceforth CP , is such a variable: it is the single best determinant of changes in future bond

returns. A high CP signals high future bond returns. Focusing on the cross-section of book-to-

market stock portfolios, we find that high book-to-market (value) stocks are assets that have high

returns when CP is high. Positive CP innovations signal improving investment opportunities: CP

typically reaches its lowest value at the start of a recession, increases sharply during the recession,

and reaches its peak as the recession draws to an end and good times are around the corner.

Hence, value stocks are a poor hedge against deteriorating investment opportunities; this makes

them command a high average return. Growth stocks do well when news comes in that future

bond returns are lower, making them desirable for the investor. In equilibrium, they carry a low

average return. We use this ICAPM insight as a starting point to build a no-arbitrage stochastic

discount factor (SDF) model that can account for the unconditional and conditional moments of

stocks and bonds. This unified SDF model is parsimonious in that it only contains three priced

risk factors, each of which is a linear combination of yields.

Yields are a natural place to look for information about the cross-section of stock and bond

returns. They reflect the state variables of the economy which govern the dynamics of the in-

vestment opportunity set. Innovations in these state variables are important sources of risk and

risk premia on risky assets provide compensation for bearing that risk. Section 1 spells out the

theoretical motivation for our focus on yields. In practice, we show that three priced yield factors,

two bond yields and one dividend yield, do a good job in explaining cross-sectional variation in

bond and stock returns.

Based on this theoretical motivation, Section 2, finds a linear combination of yields that best

fits the cross-section of stock returns. Specifically, we regress the return on the HML portfolio,

a zero investment portfolio which goes long in high book-to-market (value) stocks and short in

low book-to-market (growth) stocks on the contemporaneous one-year bond yield and the two-

through five-year forwards rates. We label the fitted value of this regression the KLN factor. The

regression R2 is only 2%, suggesting that the KLN factor is hardly correlated with the return on

the HML portfolio itself. It is therefore surprising that it captures nearly all of its ability to explain

cross-sectional variation in the ten book-to-market portfolios. The MAPE is 42 basis points.

Our main finding is that this KLN factor is highly correlated with the Cochrane and Piazzesi

(2005) (henceforth CP) factor. The latter is the fitted value of a regression of excess bond returns on

the lagged one-year bond yield and the two- through five-year forwards rates. It is the best-known
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predictor of future bond returns. The correlation between KLNt and CPt is 82% in monthly data.

This close connection between a factor that captures predictability in bond returns and a factor

that captures the relevant information for the cross-section of value returns suggests the existence

of a parsimonious model tying bond and stock returns together. The CP factor captures 81%

of the cross-sectional variation in the ten book-to-market portfolios and generates a MAPE of 63

basis points per year. It does nearly as well explaining the 25 size and value portfolios with an R2

of 78% and a MAPE of 97 basis points. While it prices the difference in portfolio returns, the CP

factor fails to capture the average risk premium. Adding a second yield-based factor, the dividend

yield on the aggregate stock market, turns out to solve this problem. Finally, we know from the

state-of-the-art term structure model of Cochrane and Piazzesi (2006) that it takes one yield-based

factor to explain cross-sectional variation in average returns on maturity-sorted bond portfolios.

That factor is the level of the term structure. We indeed price five CRSP bond portfolios with the

level factor, generating a cross-sectional R2 of 85% and a MAPE of 8 basis points per year.

These empirical results suggest a parsimonious unified model that can explain both the cross-

section of stock and bond returns. Section 3 develops such a model. The SDF takes the same form

as in the affine term structure literature. The state dynamics are governed by five factors: CP,

level, slope, and curvature of the term structure, and the dividend yield on the aggregate stock

market. We show that three non-zero prices of risk suffice to reduce the mean absolute pricing

error (MAPE) on ten book-to-market sorted stock return portfolios, the aggregate market return,

and five maturity-sorted government bond portfolios to 40 basis points per year. The price of

CP risk plays the role of pricing the difference between value and growth stock returns, the price

of dividend yield risk prices the level of stock returns, and the price of level risk plays the role

of pricing the level and cross-sectional variation in bond risk premia. With only one non-zero

coefficient in the dynamics of the price of risk vector, this SDF model also generates small pricing

errors on bond yields. Finally, the model matches the observed predictability of aggregate stock

returns by the dividend yield. The last two properties make it truly a model that captures not

only the cross-section but also the time-series of expected bond and stock returns.

Several interesting questions remain: What economic risk does the CP factor capture? What

explains why value stocks have higher exposure to the CP factor than growth stocks? Can the

pattern in CP-betas be traced back to the underlying dividend growth dynamics? We propose a

two-tiered answer to these questions. In Section 4, we study the empirical link between CP , the

business cycle, and value and growth returns. The CP factor displays interesting cyclical behavior.

It is typically very low at the beginning of a recession (or a period of economic turmoil such as

the summer of 1998), it increases during the recession, and peaks at the end of a recession. Hence,

bond risk premia increase dramatically from a very low (often negative) value to a very high value

over the course of a recession. The rewards to a value minus growth strategy differ dramatically
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over time. When CP is in its highest quartile of sample observations, the value spread is 16.7%

per year, while it is only 1.4% when CP is in the lowest quartile of its sample distribution. Under

the ICAPM intuition, times of high CP are times of good investment opportunities. Hence, value

stocks have high returns exactly when the marginal value of wealth is low. That makes them risky

and command a value risk premium.

In Section 5, we dig deeper an write down an equilibrium asset pricing model. We choose to

work in the long-run risk model of Bansal and Shaliastovich (2007) because it provides a tractable

laboratory to explore the connections between stock and bond returns. We show that an augmented

version of the model can quantitatively replicate the CP betas of and the excess returns on value

and growth stocks. The first insight from this model is that the CP factor measures economic

uncertainty, which increases during recessions. The second insight is that times of increasing

uncertainty are also times of higher future long-run growth prospects. This is what makes them

good times, and hence what makes the market price of CP risk positive. The last insight is that

value stocks’ expected long-run dividend growth rates are higher when CP is high and marginal

utility is low, which makes them risky assets to hold. Presumably, several other structural models

would have similar implications.

The remainder of the introduction discusses the related literature. The last twenty years have

seen dramatic improvements in economists’ understanding of what determines differences in yields

(Cox, Ingersoll, and Ross (1985), Duffie and Kan (1996), Dai and Singleton (2000, 2002)) and

returns on bonds, as well as what determines heterogeneity in stock returns which differ by charac-

teristics such as size and book-to-market value (Fama and French (1992)). Yet, these two literatures

have developed largely separately and employ largely different asset pricing factors. This is curious

from the perspective of a complete markets model because both stock and bond prices equal the

expected present discounted value of future cash-flows, discounted by the same stochastic discount

factor. This paper contributes to both literatures and helps to bridge the gap.

On the theory side, representative-agent endowment models have been developed that are

successful in accounting for many of the features of both stocks and bonds. Examples are the

external habit model of Campbell and Cochrane (1999), whose implications for bonds were studied

by Wachter (2006) and whose implications for the cross-section of stocks were studied separately by

Menzly, Santos, and Veronesi (2004) and Santos and Veronesi (2006). Likewise, the implications

of the long-run risk model of Bansal and Yaron (2004) for the term structure of interest rates

were studied by Piazzesi and Schneider (2006), while Bansal, Dittmar, and Lundblad (2005) and

Bansal, Dittmar, and Kiku (2007) separately study the implications for the cross-section of equity

portfolios. In more recent work, Bansal and Shaliastovich (2007) study some of the joint properties

of bond yields and stock returns, although not the ones we will focus on. Other recent work that

ties stock and bond markets together in a general equilibrium model is Bekaert, Engstrom, and
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Grenadier (2005), Bekaert, Engstrom, and Xing (2008), Lettau and Wachter (2007), Campbell,

Sunderam, and Viceira (2008), and Gabaix (2008).

On the empirical side, the nominal short rate or the yield spread is routinely used either as a

predictor of the aggregate return on the stock market or as a conditioning variable in an estimation

of a conditional beta model of the cross-section of stock returns. Cochrane and Piazzesi (2005)

show that a tent-shaped function of 5 forward rates forecasts not only nominal returns on bonds,

but also has some forecasting ability for future aggregate stock market returns. Ang and Bekaert

(2007) find some predictability of nominal short rates for future aggregate stock returns. Ferson

and Harvey (1991) study stock and bond returns’ sensitivity to aggregate state variables, among

which the slope of the yield curve. They conclude that time variation in equity risk premia is

important for understanding the cross-sectional variation in size and industry equity portfolios

and interest rate risk premia are important for understanding the cross-sectional variation in bond

return portfolios. Fama and French (1993) find tat three factors (market, size, and book-to-market)

account for the variation in stock returns and two bond factors (excess return on long-term bond

and a default spread) explain the variation in government and corporate bonds. They find that

all of their stocks load in the same way on the term structure factors. Petkova (2006) studies the

connection between the Fama-French factors and innovations in state variables such as the default

spread, the dividend-price ratio, the yield spread, and the short rate. Lustig, Van Nieuwerburgh,

and Verdelhan (2008) price both nominal bond yields and the aggregate stock market return in

a no-arbitrage model in order to measure the wealth-consumption ratio in the data; they do not

study the cross-section of bond nor stock returns. Finally, Baker and Wurgler (2007) show that

government bonds comove most strongly with “bond-like stocks,” which are stocks of large, mature,

low-volatility, profitable, dividend-paying firms that are neither high growth nor distressed. They

propose that stocks and bonds are driven by a common sentiment indicator.

1 Motivation

In this section, we argue that it is natural to use yields to price the cross-section of risky asset

returns. Yields reflect the state variables Xt that drive investment opportunities in the economy.

The innovations to these state variables εt+1 are key sources of risk entering in the risk premium of

risky assets. We consider a generic set-up where some N -dimensional state vector Xt is Markovian.

It drives the conditional mean and volatility of aggregate real consumption growth, inflation, and
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real dividend growth (lowercase letters denote logs):

∆ct+1 = µc + gc(Xt) + σc(Xt)ηt+1,

πt+1 = π̄ + gp(Xt) + σp(Xt)zt+1,

∆di
t+1 = µi

d + gi
d(Xt) + σi

d(Xt)u
i
t+1,

for some generic functions gc(·), gp(·), gi
d(·) and σc(·), σp(·), σi

d(·) that map the state variable Xt into

the real line or the positive part of the real line, respectively.

We assume the existence of a unique stochastic discount factor (SDF). Both complete mar-

kets models and endogenously incomplete markets models satisfy this assumption. Most utility

functions lead to a log stochastic discount factor of the form:

mt+1 = f(Xt, εt+1, ηt+1), (1)

where f(·) is a generic real-valued function of the state, the innovations in the state, and unexpected

consumption growth. The nominal log SDF satisfies m$
t+1 = mt+1 − πt+1. This class includes the

standard consumption-CAPM, external habit preferences, long-run risk preferences, just to name

a few. In these models, f measures be the log inter-temporal marginal rate of substitution of the

representative agent. Typically, f is additively separable in its arguments, but we do not impose

this.

The price of a τ -period nominal zero-coupon bond satisfies:

P $
t (τ) = Et

[
em$

t+1+···+m$
t+τ

]
.

The corresponding nominal bond yield is y$
t (τ) = − log(P $

t (τ))/τ . By the Markovian nature of X

and the law of iterated expectations, bond yields are (potentially non-linear) functions of those

state variables in Xt that affect the dynamics of real consumption growth and inflation. Innovations

in yields reflect innovations in these state variables (the relevant partition of ε).

Just like bond yields, the log dividend-price ratio on a stock is a “yield,” which reflects infor-

mation about the state variables X. To see this, note that the price of a stock at time t is the

sum of the prices of the claims to the dividend in each of periods t + j, j ≥ 1. These are the

prices of the equity strips. The price-dividend ratio of each strip is a function of Xt and so is the

price-dividend ratio of their sum. Hence, price-dividend ratios reflect those state variables in Xt

that affect the dynamics of real consumption growth (through the SDF) and real dividend growth.

Innovations to the dividend yield reflects innovations to those state variables.

The risk premium on any risky asset i is the conditional covariance of innovations to m and

innovations to that asset’s return. Both innovations depend on εt+1 shocks, but also on unexpected
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consumption growth, unexpected inflation, and unexpected dividend growth. Only the orthogonal

component of these shocks, (ηt+1, u
i
t+1, zt+1) ⊥ εt+1, is not reflected in either bond yields or the

dividend-price ratio. Hence, as long as this orthogonal component is not too highly priced, yields

(bond yields and dividend yields combined) should be very informative for risk premia on risky

assets. Below, we explore this intuition, and indeed find that we are able to account for most of

the cross-sectional variation in both stock and bond returns with only three yield factors.

The equilibrium asset pricing model of Section 5 provides a concrete example of the setting

described above. Both bond yields and the log dividend yield are affine in the model’s state

variables. Unexpected consumption growth contributes only modestly to the equity risk premium

in that model, even with a coefficient of relative risk aversion as high as 10. Hence, yields are very

informative to value risky asset returns inside that model.

2 Empirical Analysis

The previous section motivates us to explore the link between the returns on stocks and on bonds

and the term structure of interest rates. Section 2.2 shows that a single linear combination of

forward rates, which we call the KLN factor explains most of the variation in average returns

between BM sorted stock portfolios. Our main finding is that this factor is highly correlated with

the Cochrane-Piazzesi (henceforth CP) factor, a measure of the bond risk premium. Section 2.3

shows that the cross-section of bond returns can also be captured by a single yield factor. Hence,

both the cross-section of stocks and the cross-section of bonds each have a one-factor structure,

and in both cases the factor is a bond market variable. This suggests a unified model for pricing

both stocks and bonds, which is what we provide in Section 3. But first, we briefly discuss the

data and the construction of the KLN and CP factors.

2.1 The KLN and CP Projection Factors

We use Fama-Bliss yield data for nominal government bonds of maturities 1- through 5-years.

These data are available from June 1953 until December 2008. Following the procedure outlined

in Cochrane and Piazzesi (2005), we construct one- through five-year forward rates from the 1-

through 5-years bond prices. We do this at monthly, quarterly, or annual nominal frequency. To

understand whether the hypothesized link between stock returns and the term structure is present,

we focus on stocks sorted along a value dimension. In particular, we regress the return on the

HML portfolio, which goes long in value (high book-to-market) stocks and short in growth (low

book-to-market) stocks on the contemporaneous one-year bond yield and two- through five-year

forward rates. The HML return and all other stock return series we use in this paper are from

Kenneth French’ data library. This time series regression has an R2 of 2.0% in monthly data, 3.1%

6



in quarterly data, and 8.4% in annual data. These low R2 values show that the linear projection

does not merely capture the realized return on HML. We label this projection the KLN factor.

The dashed line in Figure 1 plots the time series of this factor.

[Figure 1 about here.]

Interestingly, the KLN factor is highly correlated with another linear combination of forward

rates, the one uncovered by Cochrane and Piazzesi (2005). We recall that they regress the equally-

weighted average of the one-year excess return on bonds of maturities of two, three, four, and five

years on a constant, the one-year yield, and the two- through five-year forward rates. The yields

are one-period lagged relative to the return on the left-hand side. The CP factor is the fitted value

of this predictive regression. The contemporaneous correlation between the KLN factor and the

CP factor is 82% in monthly data, 75% in quarterly, and 87% in annual data. The solid line in

the figure indeed confirms the tight link between the KLN and CP factor.

We recall that the CP factor is the best predictor of future bond returns currently known. The

R2 of the Cochrane and Piazzesi (2005) regression on our sample, which runs through the end

of 2008, is 20.4% with monthly, 24.6% with quarterly, and 27.8% with annual time-series. The

high correlation between the KLN and the CP factor therefore suggests a strong link between the

(best proxy for) the bond risk premium and the cross-section of stock returns, sorted along the

book-to-market dimension. Below, we explore in detail whether the variable that predicts future

bond returns also explains the cross-section of stock returns.

Another, often-used proxy for the bond risk premium is the yield spread. We define it as the

difference between the nominal yield on a five-year T-bond and the yield on a three-month T-bill.1

The R2 of a regression of the equally-weighted average of the one-year excess return of bonds of

maturities of two through five years on a constant and the yield spread gives an R2 of 10.9% with

monthly, 12.4% with quarterly, and 16.6% with annual time-series. The correlation between the

yield spread and the CP factor is 0.67 at monthly, 0.61 at quarterly, and also 0.66 at annual

frequency. While the yield spread certainly has some predictive power for one-year ahead excess

bond returns, it is a much weaker predictor than the CP factor. Hence, we will exclusively focus

on CP from Section 2 onwards.

As an aside, the yield spread plays a second role, which makes it more different form the CP

factor as the previous paragraph suggests. In particular, we ran a regression of the SMB return,

which goes long small (low market capitalization) stocks and short large (high market capitalization

stocks), on the contemporaneous one-year yield and the four forward rates. This regression has a

time-series R2 of only 1% in monthly data, making the SMB projection a poor proxy for the SMB

return itself. Interestingly, this SMB projection has a high correlation with the yield spread of 76%

1The results are very similar if we define the yield spread as the difference between the five-year yield and the
1-year T-note.
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in monthly data (69% in quarterly and 57% in annual data). Hence, while the value dimension in

stock returns seems to be associated with CP , the size dimension seems associated with the yield

spread. Because there is a much smaller return spread in size portfolios than in value portfolios,

and much of the difference between small and large company returns is situated in the month

of January, the size dimension is of less economic interest and we will mostly focus on the value

dimension.

2.2 Pricing the Cross-Section of Stocks with a Bond Factor

We now study nominal stock return data on 10 book-to-market sorted portfolios and on 25 size and

book-to-market portfolios. We use monthly, quarterly, and annual data. For each of the portfolio

returns i ∈ {1, · · · , N} in the cross-section, we construct log excess returns corrected for a Jensen

term: ri,e
t+1 ≡ ri

t+1 − y$
t (1) + .5V ar[ri

t+1], where the lowercase letters denote logs. We use log excess

returns with Jensen adjustment for ease of comparison with the model in Section 3. All our results

are quantitatively similar for gross excess returns and for gross returns. Our benchmark set of test

assets are 10 value-weighted decile portfolios sorted alongside the book-to-market dimension. The

value spread, measured as r10,e
t+1 − r1,e

t+1, is 5.12% per year. For comparison, the value premium for

gross returns is 5.16% per year. We use a standard two-step estimation procedure; see Fama and

MacBeth (1973) or Lettau and Ludvigson (2001). In the first step, we run N univariate time-series

regressions of returns on the KLN factor, the CP factor, or the yield spread and a constant in order

to estimate the factor beta. In the second step we run one univariate cross-sectional regression

of the N average returns on the betas from the first step and a constant in order to estimate the

market price of risk.

2.2.1 First-Stage Betas

The left panels of Figure 2 show that value firms are exposed more heavily to the KLN factor.

Each bar represents the slope coefficient (beta) of a time-series regression of a portfolio return on

the KLN factor. The data are monthly (1952.6-2008.12) in the top panel, quarterly in the middle

panel (1952.II-2008.IV), and annual in the bottom panel (1953-2008). The book-to-market ratio

increases reading from the most left bar to the most right bar. There is a clear pattern in these

betas: they are much larger for value than for growth firms. At monthly and annual frequency, the

KLN-beta for extreme growth is negative whereas it is high and positive at every frequency for the

extreme value portfolio. Even though the KLN factor is constructed as the projection of the HML

return on forward rates, it is nevertheless surprising how well the KLN-betas of the stock returns

line up. After all, the KLN factor is quite distinct form the HML return itself; their correlation

is only 14% and the R2 of the projection is only 2%. Maybe more interesting from an economic

point of view is that the pattern in CP betas, plotted in the right columns, is very similar to that
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of the KLN betas. This lends interpretation to the KLN factor as being closely related to the

bond risk premium.

[Figure 2 about here.]

The same pattern of exposures arises when we add a size dimension to the cross-section. Figure

3 shows the contemporaneous KLN (left) and CP betas (right) for the 25 market equity- and book-

to-market equity-sorted portfolios (5-by-5 sort). The first five bars are for the smallest quintile

of firms; the last five bars are for the biggest quintile of firms. Within each group of five, the

book-to-market ratio increases. There is the same clear pattern in these betas: they are much

larger for value than for growth firms. While the difference in exposure between the highest and

lowest book-to-market group is more pronounced for small firms than for big firms, there is less

variation in betas along the size dimension.

[Figure 3 about here.]

Finally, a similar pattern in betas also arises when we use the yield spread as an alternative

proxy for the bond risk premium. For both the 10 book-to-market portfolios and the 25 size and

value portfolios, we find that value stocks have a high positive loading on the yield spread, whereas

growth stocks have a much lower exposure. The difference is larger for small stocks. We summarize

these findings in Figure 4, which shows betas for these two sets of test assets at all three frequencies.

[Figure 4 about here.]

2.2.2 Second-Stage Regression

In a second stage, we run a cross-sectional regression of average excess stock returns on the first-

stage beta and a constant in order to estimate the market price of risk Λ̃. Table 1 shows the results;

the top panel is for the 10 BM portfolios, the bottom panel for the 25 size and BM portfolios. The

left panel uses the KLN factor, the middle panel uses CP , and the right panel uses the yield

spread. In each of the four panels, we report results at monthly (M), quarterly (Q), and annual

(A) frequency. For ease of comparison, the second-stage intercept α is expressed as a percent

per year by multiplying the monthly intercept by 12 and the quarterly intercept by 4. Likewise,

the mean absolute pricing error (MAPE) and the root mean squared pricing error (RMSE) are

expressed as a percent per year.

The price of KLN risk is consistently estimated to be positive, consistent with a positive risk

price attached to value exposure. Furthermore, this KLN factor explains between 79 and 94% of

the cross-sectional variation in book-to-market portfolio returns. This is about as much as what

the return on HML itself explains, despite the fact that the correlation between that return and
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the KLN factor is very low. Hence, the KLN factor turns out to capture all the relevant pricing

information that is in the HML return. Pricing errors on the 10 BM portfolios are as low as 40

basis points per year. The KLN factor also does a good job pricing the 25 size and BM portfolios

with MAPE and RMSE around 110 basis points. The monthly R2 is 67%, lower than for the 10

BM portfolios, but higher than the 40% one would obtain using the HML return itself to price the

25 size and BM portfolios.

Most importantly, the CP factor, a proxy for the bond risk premium, does about as good or

better a job at pricing the cross-section as the KLN factor. Using CP , we find a highly significant

market price of risk estimate between 1.3 (M) and 2.4 (A) for the 10 BM portfolios and between

2.1 (M) and 2.9 (A) for the 25 size and BM portfolios. Point estimates for this price of risk are

directly comparable across frequencies because of how CP is constructed, and indeed end up being

similar across regressions. The second-stage regression has a high R2 between 74 and 81%. The

pricing errors are small: the MAPE across the 10 portfolios is between 63 basis points per year

(M) and 70 basis points (A) for the 10 BM portfolios, the RMSE between 71 (M) and 87 (A) basis

points per year. For the 25 portfolios, the MAPE is between 94 and 116 and the RMSE between

108 and 138 basis points per year. Figure 5 plots average realized excess returns against predicted

excess returns, formed as α + βλ, where α is the second-stage regression intercept. The left row is

for the 10 BM, the right row for the 25 FF portfolios. The sampling frequency is monthly in the

top panels, quarterly in the middle panels, and annual in the bottom panels. It confirms visually

that a large fraction of the cross-sectional variation in stock returns is explained by their exposure

to the bond risk premium, as proxied by CP . Combining results from the two stages, value firms

(BM10) and growth firms (BM1) have a differential exposure to CP of .33 in the monthly data.

With a market price of risk of 1.30, this translates into an annual value premium of 5.16%, which

is essentially the entire value premium observed in the data.

[Table 1 about here.]

[Figure 5 about here.]

We repeat the analysis with the yield spread, in the right columns of Table 1. There too, we find

significantly positive market prices of risk. The pricing errors are somewhat larger at monthly and

quarterly frequencies, but somewhat smaller at annual frequency. The regression R2 vary between

47% and 82%. Because exposure to the yield spread carries a positive risk price, the differential

exposure of value and growth stocks leads to a value spread. The higher explanatory power for the

25 size and BM than for the 10 BM portfolios is partially due to the fact that the yield spread has

a high correlation with the size dimension (the SMB projection factor).

One advantage of the yield spread is that the second stage regression no longer has a significant

intercept α in the monthly data. The positive α’s in all other specifications, implies that not all
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cross-sectional variation is explained by the yield spread or the CP factor. In particular, there

seems to be a factor missing that increases the returns on all portfolios. We will introduce such a

“market level factor” in Section 3. Nevertheless, the small pricing errors throughout show that a

single bond factor, linked to the bond risk premium, can explain most of the variation around a

common market return. We consider the regression analysis of this section as preliminary evidence.

Section 3 explores the links between stock returns, bond returns, and bond yields in much more

detail.

2.2.3 Robustness

Sub-sample Analysis As a first robustness check, we repeat the analysis with returns instead of

excess returns. The results are very similar and are available upon request. As a second robustness

check, we conduct a sub-sample analysis and focus on CP as a pricing factor. We present two sets

of results in Table 2 for the 10 BM portfolios (top panel) and the 25 size and BM portfolios at

monthly frequency (bottom panel). The first set of results uses the CP factor constructed from the

full sample (left panel); the second set of results re-estimates the CP factor over the sub-sample

in question (right panel). If we start the analysis in 1963, an often used starting point for cross-

sectional equity analysis (e.g., Fama and French (1993)), we find somewhat stronger results. The

pattern in the betas is similar as in the full sample, but the market price of risk estimate increases

and so does the second-stage R2. For the 10 BM portfolios, the mean absolute pricing errors drop

from 63 to 26 basis points per year and the R2 increases from 80% to 96%. For the 25 size and BM

portfolios, the MAPE drops 12 basis points. We also split the full sample into two equally-sized

sub-samples: 1952-1980 and 1980-2008. The results remain strong in both sub-samples: pricing

errors generally remain below 1.5% per year and the cross-sectional R2s remain substantial. The

market price of risk estimates are remain significantly positive in every instance.

[Table 2 about here.]

Comparison with Three-Factor Model As a last robustness exercise, we compare our results

to the celebrated Fama-French three-factor and Carhart four-factor models. For brevity, we focus

on the 25 size and BM portfolios and on monthly data. The results for quarterly and annual data

are similar. The factors are the log excess return on the market including a Jensen adjustment

(5.94% per year on average), the log return on SMB (1.71% per year on average), the log return

on the HML (4.25% per year on average), and the log return on the UMD portfolio (9.56% per

year on average). The first two columns of Table 3 repeat the results for the models with only

CP or the yield spread as pricing factor. Columns 3 and 4 present the results from the standard

three-factor (3-f) and four-factor model (4-f). The main observation is that the pricing errors are

similar to, and if anything larger than, the pricing errors for our one-factor model with CP as
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factor, reported in Column 1. Additionally, the three-factor model in Column 3 has a negative

price of market risk, inconsistent with theory, and the cross-sectional intercept is very large. The

latter two issues are mitigated by including the momentum factor in Column 4.

Does the bond risk premium survive the inclusion of the three- or four-factor model’s risk fac-

tors? Columns 5 through 8 show that both the CP factor and the yield spread remain significantly

priced risk factors once the market, SMB, HML, and UMD are added. Adding the CP factor

to the 3-factor model lowers the MAPE from .91% per year to .80% per year and increases the

cross-sectional R2 from 74.9% (Column 3) to 83.3% (Column 5), a substantial improvement in fit.

Adding the CP factor to the 4-factor model lowers the MAPE from .89% to .79% and increases

the R2 from 80.6% (Column 4) to 85.9% (Column 7). Adding the yield spread leads to even big-

ger gains in R2 and bigger reductions in pricing errors. The MAPE of the resulting 4-factor and

5-factor models in Columns 6 and 8 are .54% and .52% per year, about 40 basis points lower than

in the corresponding models without the yield spread factor. The R2s are 93.5% and 94.1%.

[Table 3 about here.]

Results for Other Portfolios We briefly investigate the results for other cross-sections of equity

portfolios. We focus on monthly returns and the CP factor. First, the CP factor is able to explain

79% of the variation in the 10 size (market equity sorted) decile portfolios. The MAPE is 36 basis

points per annum and the RMSE 50 basis points. Moreover, the price of CP risk is estimated

to be 2.29 with a t-stat of 5.1. This estimate is similar to the one for the twenty-five portfolios.

Small stocks have a higher CP exposure than big stocks. Second, we look at the 100 size and

book-to-market portfolios (10 by 10 sort). The market price of CP risk is estimated to be 1.36

with t-stat of 7.14. The MAPE is 1.65% (RMSE is 2.26%) and the R2 is 34%.2 Finally, the CP

factor is able to explain 79% of the variation in earnings-price decile portfolios, with MAPE of

.94% per annum (RMSE of 1.11%). The market price of risk is significantly positive at 2.61 with

a t-stat of 5.52. High EP portfolios have a higher exposure than low EP portfolios. The difference

in the betas between the extreme portfolios multiplied by the estimated price of risk delivers a

spread of 6.27% per year, very close to the observed spread of 7.03%.

2.3 Pricing the Cross-Section of Bonds with a Bond Factor

While the CP factor is both a strong predictor of future bond returns and a strong explanatory

variable of differences between average returns of value and growth stocks, it is well known that it

2Some data are missing (240 observations out of 67,900). Since our analysis requires a full data set, we fill in the
missing data by interpolation. This introduces some measurement error, especially in the results for S1B1, S1B2,
and S10B9, and S10B10. Without these 4 portfolios, the R2 increases to 41% and the MAPE reduces to 1.50%
(RMSE of 1.99%).
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is not a good explanatory variable of differences between average returns on long- and short-term

bonds. Cochrane and Piazzesi (2006) show that a different bond factor, the level of the term

structure, has significant ability to explain the cross-section of bond returns. As a first measure of

the level factor, we use the five-year Fama-Bliss bond yield. As a second measure, we use the first

principal component of yields as the level factor, extracted from the cross-section of 1- through

5-year Fama-Bliss yields. We use CRSP excess bond returns on portfolios of maturities 1, 3, 5, 7,

and 10 years at monthly, quarterly, or annual frequency. Average excess returns are respectively

1.08%, 1.24%, 1.53%, 1.75%, and 1.38% per year. The sample is again June 1952 until December

2007.

Figure 6 shows the level betas of excess bond returns on the 5 maturity-sorted bond portfolios.

They are decreasing from short to long maturities and generally negative. Table 4 shows the

corresponding market prices of risk using y$(20) (on the left) and using the first principal component

(on the right). The market price of risk is estimated to be negative and significant, as predicted by

theory. Intuitively, investors are willing to pay for assets with high returns when yields increase,

which are times in which wealth decreases and marginal utility increases. Long bonds have more

negative level betas: their returns fall by more when yields increase and hence they earn higher

average returns. The pricing errors on the 5 bond portfolios are small; the MAPE is 8 basis

points and the RMSE 12 basis points per year. The explanatory power of the 20-quarter yield and

the standard level factor are similar. The cross-sectional R2 is around 85%. The negative betas

combined with the negative market price of risk allow this one-factor model to capture 0.70% of

the observed 0.51% spread between the excess return on the 10-year and the 1-year bonds.

Combined with the previous section, these results suggest that two term structure variables, a

proxy for the bond risk premium CP and a level factor, can help explain both the cross-section of

stock and bond returns. Section 3 will propose a model that can fit both. In addition to matching

cross-sectional variation, it will also seek to match the levels of the risk premia on stocks and

bonds. It will do so for a single market price of risk vector Λ̃, not a different one for stocks and

bonds.

[Figure 6 about here.]

[Table 4 about here.]

3 A Unified Model of Stock and Bond Returns

The previous analysis suggests that the level and the the cross-section of expected stock returns

are driven by the CP factor and a market factor, while the level, the cross-section, and the time-

variation of expected bond returns are driven by the level factor and the CP factor. In this
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section, we develop a parsimonious stochastic-discount factor (SDF) model that captures all of

these features. It also accommodates the time-variation in expected stock returns driven by the

dividend yield.3 We show that this model is also able to match the time-series and cross-sectional

properties of bond yields, thereby providing a unified pricing framework for stocks and bonds.

For brevity, we focus on the 10 book-to-market sorted stock portfolios and study returns at the

monthly frequency. Section 5 develops a general equilibrium model that starts from preferences

and from dividend growth rates on the stock portfolios. There, returns are generated inside the

model, while here, they are taken as given.

3.1 Setup

We model the monthly dynamics of the state vector X as:

Xt+1 = µX + ΓXt + εX
t+1, (2)

with Gaussian innovations εX
t+1 ∼ N (0, ΣX), i.i.d. The state vector contains five yield variables:

the CP factor, the level factor, the slope factor, the curvature factor, and the log dividend yield

on the aggregate stock market portfolio in order of appearance. To construct the level, slope, and

curvature factors, we regress Fama-Bliss forward rates on bonds of maturities 1-5 years (the same

rates that were used in the construction of CP ) on the CP factor. Level, slope, and curvature are

the first three principal components of the residuals of this regression, and therefore orthogonal

to CP . The first four factors have been suggested by Cochrane and Piazzesi (2006) to price the

nominal term structure of interest rates. Even though we use five factors, only three of them will

carry a non-zero price of risk in our preferred specification. The other factors are only relevant for

the expectations’ formation of future state variables (see equation 2).

The stochastic discount factor is modeled as in the affine term structure literature:

Mt+1 = exp

(
−y$

t (1) −
1

2
Λ′

tΣXΛt − Λ′

tε
X
t+1

)
, (3)

with y$
t (1) the 1-month short rate and market prices of risk that are affine in the state Λt =

Λ0 + Λ1Xt.

The no-arbitrage condition for each asset is given by:

log Et [Mt+1Rt+1] = 0,

3See for instance Fama and French (1988), Cochrane (2006), Lettau and Van Nieuwerburgh (2007), and Bins-
bergen and Koijen (2007).
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which implies, with re
t+1 = Et[r

e
t+1] + εR

t+1:

Et

[
re
t+1

]
= −covt

(
re
t+1, mt+1

)
= cov

(
εR

t+1, ε
X′

t+1

)
Λt = ΣXR (Λ0 + Λ1Xt) . (4)

Unconditional expected excess returns are computed by taking the unconditional expectation of

(4):

E
[
re
t+1

]
= ΣXR (Λ0 + Λ1E [Xt]) .

In what follows, we first show that a parsimonious model is able to price the cross-section of

unconditional expected stock and bond returns. We then show that this does not come at the

expense of pricing the time series and cross-section of bond yields.

Our test assets are the 10 portfolios sorted on their book-to-market ratio, the value-weighted

market return from CRSP, and bond returns with maturities 1, 2, 5, 7, and 10 years from CRSP.

Our estimation procedure estimates the dynamics of the state by OLS in a first step. It then finds

the market price of risk coefficients Λ0 that minimize the pricing errors on the test assets in a

second step. All 16 moments are weighted equally. In a third step, we estimate the parameters in

Λ1 to fit bond yields.

3.2 The Cross-section of Unconditional Expected Returns

We now focus on the cross-section of unconditional, i.e., average, expected stock and bond returns.

We switch off all time variation in risk prices (Λ1 = 0) and optimize over a subset of Λ0. As a point

of reference, we start by pricing the 16 securities with a risk-neutral SDF Mt+1 = exp
{
−y$

t (1)
}
.

That is, all prices of risk are zero: Λ0 = 0. The first column of Table 5, labeled SDF1, thus recovers

the risk premia we want to explain. The value spread (BM10-BM1) is 5.1% per year. Bond risk

premia are not monotone in maturity and smaller than equity risk premia. The MAPE across all

securities equals 5.5%.

Our first candidate SDF to explain the stock and bond risk premia is the one proposed by

Cochrane and Piazzesi (2006). This is a natural candidate because their model does a great job

pricing the nominal term structure of bond yields. Following Cochrane and Piazzesi (2006), we

only allow the market price of level risk to be non-zero. This implies one non-zero element in

Λ0. The second column of Table 5 shows that the best-fitting SDF, SDF2, is unable to jointly

explain the cross-section of stock and bond returns. The MAPE is 2.68%. All pricing errors on

the stock portfolios are large and positive, while all pricing errors on the bond portfolios are large

and negative. The reason that this bond pricing model does not do better for the bond return

portfolios is that the stock return risk premia command most attention because they are much

larger in magnitude. Consequently, the estimation concentrates its efforts on reducing the pricing
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errors of stocks. To illustrate that this bond kernel is able to price the cross-section of bonds, we

estimate the same model by minimizing only the bond pricing errors. The third column of Table

5 illustrates that the bond pricing errors are small in this case, but this pricing kernel SDF2 is not

able to price the cross-section of expected stock returns nor the expected return on the aggregate

stock market. The MAPE increases to 4.82%.

Our second candidate SDF to explain stock and bond risk premia is a version of the canonical

equity pricing model, the Capital Asset Pricing Model. The fourth column of Table 5 reports

pricing errors for the CAPM. The only non-zero price of risk is the one corresponding to the

dividend yield.4 This SDF3 model is again unable to jointly price stock and bond returns. The

MAPE is 1.50%. One valuable feature is that pricing errors of book-to-market portfolio returns go

through zero. This means that the model gets the level of all expected stock returns right. However,

their pattern clearly shows the value spread. Pricing errors on bond portfolios are sizeable as well

and are all positive.

Having concluded that both the bond SDF and the stock SDF offer crucial ingredients to price

bond returns and stock returns, but that neither is able to satisfactorily price both cross-sections,

we now turn to our unified model. We allow the price of risks of the CP factor, the level factor,

and the dividend yield to be non-zero. For pricing purposes, this is a three-factor model. The

three elements in Λ0 are estimated to minimize the 16 pricing errors. As before, there is no time

variation in the prices of risk: Λ1 = 0. We call this model SDF4; the fifth column shows the results.

There hardly is a value spread in the pricing errors: The spread between the extreme portfolios is

only 25bp per year. We also price the market portfolio well, and the bond pricing errors are much

lower than in the other models SDF1, SDF2, and SDF3. The MAPE falls to a low 40bp. This is

essentially the same magnitude pricing error we found in Section 2 for the 10 stock portfolios. But

now, we also price bonds, and all with one set of risk prices. Using one kernel with three price of

risk parameters only, we are able to match the level and the pattern in stock and bond risk premia

jointly. Finally, the price of CP risk is estimated to be positive, while the price of level factor risk

and dividend-yield risk are negative. These are the signs predicted by theory.

[Table 5 about here.]

3.3 Implications for the Yield Curve and Return Predictability

Prices of risk and estimation procedure The previous section showed that a parsimonious

SDF model was able to price unconditional excess returns on both stocks and bonds. An important

question is how well the same SDF4 model does in pricing the term structure of nominal bond

yields and matching return predictability of both bonds and stocks. It is well known that three

4We also considered a model in which the dividend yield is replaced by the aggregate stock market return. The
pricing errors are very similar to the results for SDF3.
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factors (level, slope, and curvature) are necessary to adequately describe bond yield dynamics, e.g.,

Dai and Singleton (2000, 2002). While the slope and curvature factor were unnecessary to price

average returns, as shown above, we included them in the state vector X because they are necessary

to adequately describe yields. They enter through the expectations formation in the state variable

dynamics in equation (2). Matching yield dynamics and return predictability requires three non-

zero elements in Λ1, only two of which are freely estimated. First, to match the predictability

of bond returns and the yield dynamics, we allow Λ1(2,1) to be non-zero, following Cochrane and

Piazzesi (2006). Second, we exactly match the predictability of the aggregate stock market return

by the dividend yield dpt. That is, geometric excess returns (including Jensen adjustment) on the

aggregate stock market, re,m
t+1, are modeled as:

re,m
t+1 = rm

t+1 − y$
t (1) +

1

2
vart

[
rm
t+1

]
= δ0 + δ1dpt + εm

t+1, (5)

with Gaussian innovations εm
t+1 ∼ N (0, σ2

m) and covariance matrix cov
(
εm

t+1, ε
X′

t+1

)
= σXm.5 This

predictive regression restricts Λ1 in the following way:

σ′

XmΛ1 =
(

0 0 0 0 δ1

)
. (6)

If we combine the predictability of bond and stock returns, Λ1 takes the following form:

Λ1 =




0 0 0 0 0

Λ1(2,1) 0 0 0 0

0 0 0 0 0

0 0 0 0 0

−Λ1(2,1)
σXm(2)

σXm(5)
0 0 0 Λ1(5,5)




, (7)

where Λ1(5,5) is implied by δ1 and the correlation between innovations to aggregate stock market

returns and the dividend yield:

Λ1(5,5) = δ1/σXm(5). (8)

The element Λ1(5,1) is chosen in such a way the conditional expectation of aggregate excess stock

market returns does not depend on CP . We can relax this assumption, but it does not significantly

improve the model fit.

Our SDF model implies an essentially affine term structure of yields (Duffee (2002)). We model

5We will assume that the Jensen adjustment 1

2
vart (rt+1) is a constant. This would arise under homoscedasticity

assumptions on return innovations. This adjustment is tiny in practise.
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the nominal short rate as

y$
t (1) = ξ0 + ξ′1Xt.

Then, the SDF implies that the price of a nominal bond of maturity τ is exponentially affine in

the state variables X:

P $
t (τ) = exp

{
A$(τ) + B$′(τ)Xt

}
.

By no-arbitrage, we have:

P $
t (τ) = Et

[
Mt+1P

$
t+1(τ − 1)

]

= exp
{
−ξ0 − ξ′1Xt + A$(τ − 1) + B$′(τ − 1)µX+

B$′(τ − 1)ΓXt − Λ′

tΣB$(τ − 1) +
1

2
B$′(τ − 1)ΣXB$(τ − 1)

}
,

which implies that A$(τ) and B$(τ) follow from the recursions:

A$(τ) = −ξ0 + A$(τ − 1) + B$′(τ − 1)µX − Λ′

0ΣXB$(τ − 1) +
1

2
B$′(τ − 1)ΣXB$(τ − 1),

B$′(τ) = −ξ′1 + B$′(τ − 1)Γ − B$′(τ − 1)ΣXΛ1,

with initial conditions A$(0) = 0 and B$(0) = 05×1.

We estimate the parameters in three steps. The first two steps are the same as in the uncon-

ditional analysis described above. The third step estimates ξ0, ξ1, and the first non-zero entry of

Λ1, Λ1(2,1), to match nominal bond yields. In particular, we minimize the distance between the five

annual yields from the Fama-Bliss data set (maturities 1 through 5 years) and the corresponding

yields implied by the SDF:

min
ξ0,ξ1,Λ1(2,1)

{
5∑

n=1

T∑

t=1

(
y$

t (12 × n) +
A$(12 × n)

12 × n
+

1

12 × n
B$′(12 × n)Xt

)2
}

,

where the factor “12” is introduced because we have a monthly model and we price annual yields.

In optimizing over Λ1, we modify Λ0 to Λ̄0 ≡ Λ0 − Λ1E [Xt] to ensure that the unconditional

asset pricing results from the previous section are unaffected. In related work, Adrian and Moench

(2008) match bond returns first and then study the implications for yields.

Yield curve dynamics The model SDF4 does a very nice job matching yields. The annualized

standard deviation of the pricing errors of yields equal 19bp, 9bp, 12bp, 22bp, and 28bp for 1-5

year yields. Figure 7 plots this model’s implications for the yields of maturities one through five

years. The parameter Λ1(2,1) is estimated to be negative (Λ̂1(2,1) = −714.67), consistent with the

results in Cochrane and Piazzesi (2006). A negative sign means that an increase in CP leads to
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higher bond risk premia because the price of level risk is negative and a higher CP makes it more

negative.

[Figure 7 about here.]

4 The Timing of Value and Growth Returns

The previous analysis suggests a key role for the CP factor as a predictor of bond returns and an

explanatory variable for the cross-section of value and growth returns. The unified SDF model of

Section 3 tied together the bond and stock returns. Since it admits no arbitrage opportunities,

arbitrageurs cannot earn the value premium and perfectly hedge out the risk with a position in

bonds. However, it leaves open a few important questions. What source of economic risk does

the CP factor capture? Why are value stocks more exposed to this risk? We provide a two-tiered

answer to these important questions. In the next section, we write down a simple equilibrium

asset pricing model that ties the CP factor to fundamental sources of risk (the marginal utility of

consumption). By specifying how value and growth firms’ cash flows are linked to these sources

of risk, it provides the connection between the bond risk premium and the value premium. This

connection is crucial because there is not a lot of evidence yet about the link between the value

premium and economic risk. Lakonishok, Schleifer, and Vishny (1994) study the timing of value-

growth returns and conclude that “It is impossible to conclude from this that value strategies did

particularly badly in recessions, when the marginal utility of consumption is especially high.” In

this section, we take a fresh look at the timing of value-growth returns in the data. We find that

value-growth returns are especially high at the end of a recession, when CP is high, investment

opportunities are great, and marginal utility of consumption is low. That makes them risky, and

suggests a risk-based explanation of the value premium.

4.1 CP and the State of the Economy

The bond risk premium proxies are clearly related to the state of the economy. Figure 8 plots

the CP factor (top panel) and the yield spread (bottom panel) against the NBER recession dates.

Both variables tend to be low at the beginning of a recession, increase substantially during a

recession, and tend to peak at the end of a recession. During the average recession in the sample,

CP increases by 128 basis points (1.11 standard deviations), typically from a negative to a positive

value. Likewise, the yield spread increases by 143 basis points (1.39 standard deviations) from a

negative to a positive value. The fact that the CP factor and the yield spread peak at the end of a

recession (the through of the business cycle), when good economic times are around the corner and

marginal utility growth for the representative investor is presumably low, can explain the positive
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price of CP or yield spread risk we found above. Note that by December 2008, the yield spread

already increased substantially (up 126 basis points from December 2007), while the CP factor

has not (yet) increased and is in fact at a very low value of -240 basis points in December 2008.

In fact, bond returns This suggests some interesting differences in the precise timing of the two

measures.

[Figure 8 about here.]

Returns on value and growth stocks are also linked to the cycle. An investment strategy which

is long value and short growth stocks has low returns when entered at the start of a recession and

high returns when entered at the end of a recession. Average monthly holding period returns on

the value-minus-growth strategy are only 2.39% during NBER recessions (15% of the months in

the sample) but 5.85% the rest of the time. So, the fortunes of a value-growth strategy reverse

over the course of a recession.

Not all periods with a high (low) CP factor or yield spread observations occur at the end

(beginning) of recessions. However, several of these low-to-high swings in the CP factor are also

associated with times of economic uncertainty, such as 1987 (stock market crash), 1998 (Asian

and Russian crisis, LCTM), or 2003 (jobless recovery). An even starker difference between the

returns on value and growth stock emerges when we condition on the top quartile of the CP

observations or the top quartile of yield spread observations. The CP factor cutoffs are -0.44%

(25th percentile), 0.57% (median), and 1.58% (75th percentile), while the yield spread cutoffs are

0.28% (25th percentile), 0.96% (median), and 1.68% (75th percentile). Figure 9 shows that the

value spread is highest when CP is high (first row, left panel) or when the yield spread is high (first

row, right panel). In that highest quartile, the value spread is a striking 16.7% for CP and 12.9%

for the yield spread. As the other rows show, there is little spread in the other quartiles. The value

spread is almost exclusively concentrated in periods of high CP or yield spread realizations.

[Figure 9 about here.]

This non-linear contemporaneous relationship between the value spread and the CP factor

naturally suggests a refinement of the cross-sectional stock return regression we studied in Section

2.2. Instead of using CPt+1 as an explanatory variable, it suggests using CPt+1ICPt+1>.0158, where

I denotes an indicator variable and .0158 is the cutoff for the fourth quartile of CP . In such

a specification, innovations to CP are only priced when CP is high. This occurs typically at

the end of a recession, when good times are around the corner. Using the ten book-to-market

sorted portfolios, the resulting market price of risk parameter in the second-stage Fama-McBeth

regression is 0.96 with a t-stat of 6.15. The pricing errors are 59 (MAPE) and 67 (RMSE) basis

points and the cross-sectional R2 is 82.5%. This model further reduces pricing errors by 4 (MAPE

20



and RMSE) basis points and further increases the R2 by 2 percentage points over the linear

specification. A bigger improvement occurs if we use the same non-linear function of the yield

spread, ysprt+1Iysprt+1>.0168. The MAPE goes down by 19 and the RMSE by 15 basis points, while

the cross-sectional R2 improves by 12 percentage points.

These quartile results show that the link between the bond risk premium and the value premium

is especially strong when the bond risk premium is high. The positive price of CP risk and the

economic intuition from the previous section indicate that these are good times, i.e., times of low

marginal utility. That makes value stocks risky assets, because they have high returns exactly

when the investor needs it the least.

4.2 Value-Growth Return Predictability

The fact that value-growth returns are so high when CP is high raises the question of whether the

value premium is predictability. After all, the covariance of the bond risk premium proxies CPt+1

or ysprt+1 with excess returns re
t+1 is the weighted average of two components: a covariance of

re
t+1 with innovations in the bond risk premium proxy and a covariance of re

t+1 with the lagged

bond risk premium proxy. Sofar we studied the overall covariance and the innovation covariance.

Predictability is about the covariance with the CPt or ysprt. To investigate this question, we use

monthly data and form cumulative, discounted holding period returns of horizons of 3 months

up to 5 years.6 The first 59 months are discarded so that all cumulative returns are computed

over the same sample. All cumulative results are expressed on a per annum basis so that the

slope coefficients have comparable magnitudes across holding periods. In linear regressions of

value-growth returns on CPt or ysprt, we found little evidence of such predictability. Only the

2-year horizon V-G return is predicted significantly by CPt (Newey-West t-stat of 2.05). At all

other horizons, we found a positive relationship but not enough significance for CP . For the yield

spread, the signs were only positive at horizons of 3-quarters to 2 years, and never significant.

However, the results above suggest that there only is a value premium in the months in which

CP is in the top quartile of the sample. This raises the question of whether the predictability

of the value minus growth return may also be non-linear. We indeed find strong evidence for

predictability of the CP factor for future value minus growth returns, but only in months in which

CP is in its highest quartile. Table 6 shows results from regressing the cumulative value-growth

returns on a constant and a non-linear function of the CP factor, CPtICPt>.0158, the lagged version

of the variable that did such a good job explaining the cross-section of book-to-market portfolio

returns. The left panel shows a positive coefficient which is statistically significant at horizons

of 1 quarter up to 3 years. The R2 are respectable, peaking at 5% at the 2-year horizon. For

6The discounting of future returns on each asset i is done by the constant (κi

1)
−1 = exp(Ai

0)/(1 + exp(Ai

0)),
where Ai

0 is the mean log price-dividend ratio on portfolio i.
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completeness, we repeat the exercise with a similar non-linear function of the yield spread (right

panel). We find similar improvements in the predictability of value minus growth compared to

the linear case, but the results are somewhat weaker. This is an important reason why we prefer

the CP measure. The main conclusion is that the same variable that explains the cross-section of

book-to-market portfolio returns also has time-series predictability for the high minus low book-

to-market portfolio. In future work, we plan to augment the stochastic discount factor model of

Section 3 to generate the non-linearity in the relationship between realized value-growth returns

and the CP factor.

[Table 6 about here.]

5 Equilibrium Model

In this final section, we study the fundamental determinants of the yield curve and the value

premium in a consumption-based asset pricing framework. Such an approach imposes additional

discipline: it requires that the CP betas of stock returns are linked to the CP betas of bond

returns and to the CP betas of dividend growth rates. We start by documenting the properties of

contemporaneous CP betas for the dividend growth rates on the various stock portfolios in Section

5.1, and show that they have a distinct pattern as well. Section 5.2 then introduces the equilibrium

asset pricing model which is able to match the value premium, the CP betas of stock returns, the

CP betas for dividend growth rates, and the predictability of bond returns by the CP factor.

We emphasize that our choice of the long-run risk framework is one of analytical convenience.

It allows for closed-form expressions of bond- and equity risk premia, as well as an affine term-

structure model, and has been shown to have good quantitative properties for stocks and bonds.

Presumably, several other structural asset pricing models would have similar implications.

5.1 Cash-flow Betas in the Data

For each of the ten book-to-market portfolios, we collect data on cum- and ex-dividend returns.

They allow us to construct a dividend growth series for each portfolio (see Appendix A for de-

tails). Figure 10 plots the dividend growth betas obtained from regressing dividend growth on the

contemporaneous bond risk premium. In the left column, we use the CP factor as a proxy for the

bond risk premium, in the right panel the yield spread. While the pattern is not perfectly mono-

tone, it does seem to be the case that growth firm’s dividend growth has a positive correlation

with contemporaneous CP and value firms’ dividend growth a strong negative correlation. We

find a similar pattern when we use the yield spread as proxy for the bond risk premium. Dividend

growth of value stocks is contemporaneously more negatively correlated with the yield spread than
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dividend growth of growth stocks. The patterns are similar for monthly, quarterly, and annual

frequencies.

[Figure 10 about here.]

This pattern of contemporaneous dividend growth betas deepens the puzzle. The high (low)

exposure of value (growth) stock returns to the CP factor does not seem to be coming from high

(low) exposure of dividend growth to the CP factor. In fact, the opposite seems to be true. When

CP is high (for example, at the end of recession), current cash-flow growth on value stocks is low,

while that of growth stocks is high. The model in the following sections will reconcile these facts

by appealing to the behavior of future dividend growth.

5.2 Equilibrium Asset Pricing Model

We now present a long-run risk (LRR) model along the lines of Bansal and Yaron (2004). The

three question we want to ask of this model are, first, whether it is able to generate the cross-

sectional variation in the exposures of excess returns on book-to-market-sorted stock portfolios

to the CP factor. We showed in Section 2 that there was a clearly increasing pattern in this

exposure from growth to value. Since this is an equilibrium model, stock returns are endogenous,

and only cash-flow growth can be specified exogenously. This leads us ask whether, second, the

model can match also the cross-sectional variation in the exposures of dividend growth rates of

book-to-market-sorted stock portfolios to the CP factor. Section 5.1 showed dividend growth CP

betas that were decreasing from growth (mildly positive) to value (strongly negative). Third, the

CP factor is a strong predictor of bond returns in the data; we ask whether the model can capture

this predictability quantitatively.

The LRR model combines Epstein and Zin (1989) preferences, which impute a concern for the

timing of the resolution of uncertainty, with a consumption growth specification that features a

small, but very persistent component as well as heteroscedasticity. The two state variables xt and

σ2
t − σ̄2 capture time-varying growth rates and time-varying economic uncertainty, and each follow

an AR(1). We prefer to think of xt as a low-frequency variable and σ2
t − σ̄2 as a variable that

operates at business-cycle frequency.7 Our main departure from the canonical LRR model is that

we introduce positive correlation between the two state variables xt and σ2
t − σ̄2. This new feature

will play an important role in the model’s ability to account for the CP betas. To think about

nominal bonds, we model inflation as in Wachter (2006), Piazzesi and Schneider (2006), and Bansal

and Shaliastovich (2007). This structure gives rise to a three-factor nominal term structure model;

the factors are xt, σ2
t − σ̄2, and demeaned expected inflation π̄t − µπ.

7This is different from Bansal and Yaron (2004) who make both state variables very persistent. In Bansal and
Shaliastovich (2007), economic uncertainty is actually more persistent than long-run growth.

23



The separate appendix shows that both the real and the nominal bond risk premium in the

model are affine in the state variable σ2
t − σ̄2. That is, the only source of time variation in

nominal bond risk premia is economic uncertainty: σ2
t is a perfect predictor of future excess bond

returns. Therefore, it is natural to associate the CP factor with σ2
t . To see the connection with

the construction of the CP factor (see Section ??), note that forward rates, like yields, are affine

functions of these three state variables. Hence, any three forward rates identify the three state

variables exactly at each time t. A linear combination of them identifies CPt:

CPt = c1f
$
t (4) + c3f

$
t (12) + c5f

$
t (20) = bCP (σ2

t − σ̄2),

for some constants (c1, c3, c5). In order to pin down the ratio of the standard deviation of CPt

relative to that of σ2
t , bCP , we form annual expected excess returns on nominal bonds of horizons

2-, 3-, 4-, and 5-years in the model. They only depend on σ2
t . We set the CP factor equal to

the equally-weighted average of these four returns, as we did in the data. Hence bCP is not a free

parameter but rather a function of the structural parameters of the model.

To construct equity risk premia, we specify a process for dividend growth rates for 10 book-

to-market portfolios as well as one for the aggregate stock market. We let expected dividend

growth rates for portfolio i depend on both xt and on σ2
t − σ̄2, with loadings that we will estimate.

Equity risk premia contain four parts: a compensation for bearing temporary consumption growth

shocks, shocks to long-run risk consumption growth, shocks to economic uncertainty, and a term

arising from the correlation between long-run growth and economic uncertainty. The market price

of temporary cash-flow risk equals the coefficient of relative risk aversion, which is positive. The

market price of long-run risk is also positive, while the market price of uncertainty risk is negative.

These signs make sense: when long-run risk is low (economic uncertainty is high), the marginal

utility growth for the representative investor is high, and she is willing to pay a high price for a

security that has high dividend growth in such states of the world. The new, fourth term lowers

the equity risk premium when the state variables are positively correlated. Indeed, when high

uncertainty goes hand in hand with high future growth, the world is a less risky place. Finally, as

for bond risk premia, the only source of time variation in equity risk premia is economic uncertainty

σ2
t .

With the definition of CP in hand, we can derive expressions for the CP betas of excess returns

and dividend growth rates for each stock portfolio. Because our goal is to understand the patterns

in CP betas and return, we refrain from a wholesale re-calibration or estimation of the model.

Instead, we estimate how expected dividend growth of each of the 10 book-to-market portfolios and

the aggregate market loads on the two state variables xt and σ2
t − σ̄2 (22 parameters), we estimate

the correlation between xt and σ2
t − σ̄2, and we estimate the persistence of σ2

t − σ̄2. All other

parameters are identical to those in Bansal and Shaliastovich (2007). These 24 parameters using
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non-linear least squares by minimizing the distance between model and data along the following 38

dimensions: 11 contemporaneous log excess stock return CP betas, 11 contemporaneous log real

dividend growth CP betas, 11 equity risk premia, and 5 lagged bond return CP betas for maturities

1-, 2-, 5-, 7-, and 10-years. We estimate positive loadings on xt and negative loadings on σ2
t − σ̄2

for expected dividend growth. They increase in absolute value from low to high book-to-market

portfolios. Importantly, we estimate a positive correlation between the two state variables of

about 20%, and we estimate less persistence in σ2
t . The lower persistence we estimate in economic

uncertainty facilitates the interpretation of σ2
t (or CPt) as a business cycle variable. Matching

these moments does not come at the expense of matching the moments of consumption, interest

rates, or inflation. This is because we kept all other parameters at their standard values. The

separate appendix lists the point estimates and tabulates the moments of consumption, inflation,

and interest rates.

Figure 11 shows that our model does a good job matching the patterns and magnitudes of

the CP exposures of excess stock returns (top left panel), dividend growth rates (top right), the

predictability of excess nominal bond returns by lagged CP (bottom left), while maintaining the

good fit for the value premium (bottom right).

[Figure 11 about here.]

What drives these results? First, economic uncertainty, and hence CP predicts future excess

returns, including nominal bond returns. Second, the pattern of negative and declining dividend

growth betas results from the negative loading of expected dividend growth on economic uncer-

tainty. According to this channel, stocks, and in particular value stocks, have lower expected

dividend growth when economic uncertainty, and therefore CP , is high. In addition, expected

dividend growth loads more heavily on xt for value than for growth. Hence, value stocks are risky

because their dividend growth is low in states of the world where long-run consumption growth

xt is low and/or economic uncertainty is high. These are states of high marginal utility growth

for the representative investor. Taken together, that explains the value premium. The positive

correlation between the two state variables we estimate is crucial to generate that times of high

CP are good times. We recall the positive market price of risk we found for CP in the data. The

positive correlation implies that times with higher economic uncertainty (which carries a negative

price of risk) are also times of higher future long-run growth (which carries a positive risk price).8

Because of the higher persistence of expected growth, the latter effect dominates, and high CP

times are times of good future investment opportunities. The positive correlation also helps to-

8Such a positive correlation arises endogenously in models of information production (Van Nieuwerburgh and
Veldkamp 2006). It also increases the correlation between expected returns and expected dividend growth.
(Binsbergen and Koijen 2007) estimate this correlation for the aggregate stock market and conclude it is posi-
tive.
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wards matching the excess return CP betas: the model with no correlation generates betas that

are too high and without discernible difference between value and growth.

Finally, an informative quantity is the difference between the return (not excess return) CP

beta and the dividend growth CP beta. The Campbell-Shiller decomposition implies that it equals

the difference between the CP beta of news about all future expected discounted dividend growth

rates ∆di,H
t+1 and the CP beta of news about all future expected discounted stock returns ri,H

t+1:

βrs − β∆d = β
[
CPt+1, ∆di,H

t+1 − κi
1∆di,H

t

]
− β

[
CPt+1, r

i,H
t+1 − κi

1r
i,H
t

]
(9)

The appendix provides an expression for each in terms of the structural parameters of the model.

In the data, the left hand side is positive for all portfolios and strongly increasing from growth

to value. This is the result of increasing contemporaneous return betas (βrs) and decreasing

contemporaneous dividend growth betas (β∆d). Our model also predicts a strongly increasing

pattern in the left-hand side of equation (9). The reason is that the first beta on the right-hand-

side is positive and increasing from growth to value. A high bond risk premium (CP is high, at

the end of a recession/the beginning of a boom) implies good news about future dividend growth,

and more so for value stocks than for growth stocks. The second term on the right-hand-side is

also positive and increasing. High future excess bond returns (at the end of a recession) coincide

with high future excess stock returns, and more so for value than for growth stocks. The cash-flow

effect dominates the discount rate effect, delivering the desired pattern. Hence value stocks are

risky because their is good news about future cash-flow growth exactly when investors need it the

least. The standard model with no correlation between the state variables has a zero first term on

the right-hand-side of equation (9) and a (counter-intuitively) negative second term. In addition,

there is no clear pattern in this beta difference as opposed to the strongly increasing pattern in

the data.

6 Conclusion

We document that differential exposure to the Cochrane-Piazzesi (CP) factor, a strong predictor

of future excess bond returns and hence a proxy for the bond risk premium, can help explain why

value stocks have higher average returns than value stocks. This connection between a bond market

and the cross-section of stocks leads us to develop a unified pricing model for stocks and bonds. We

propose a no-arbitrage stochastic discount factor model that combines the canonical three-factor

affine term structure model (level, slope, and curvature) with the CP factor, and a dividend yield

factor. Only three factors need to have non-zero prices of risk to account for average returns on

the book-to-market decile portfolios, the market portfolio, and maturity-sorted government bond

portfolios. The price of market risk captures the common level of equity risk premia, the price of
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level risk captures the cross-sectional spread between long-term and short-term bond returns, and

the price of CP risk captures the cross-sectional spread between value and growth stock returns.

This model also captures the dynamics of bond yields and expected excess stock returns well

when the market prices of risk change with the CP factor. We explore what sources of underlying

economic risk the CP factor captures in the context of the long-run risk model. We show that this

equilibrium asset pricing model is able to replicate the differential exposure of excess stock returns

to the CP factor of value and growth stocks. The CP factor is high at the end of a recession, periods

that are characterized by high economic uncertainty but also good long-term growth prospects. A

value-minus-growth strategy has high realized returns in periods when CP is high because value

stocks receive good news about future cash flow growth in such periods.
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A Constructing Quarterly Dividend Growth

To avoid seasonality in monthly (quarterly) data, we form the dividend-price ratio as the ra-

tio of the equally-weighted average of the current dividend and the dividends over the past

11 months (3 quarters) and the current price. We define dividend growth correspondingly so

that the adjusted dividend growth rate and change in the dividend price ratio gives back the

original cum-dividend return. In symbols, cum-dividend returns equal Rt+1 = DGt+1
PDt+1+1

PDt
,

where DGt+1 = Dt+1/Dt and PDt = Pt/Dt. Define the ex-dividend return as Rex
t+1 and con-

struct the dividend yield as the difference between the cum- and ex-dividend return: DYt+1 =

Rt+1 − Rex
t+1. This leads to the quarterly dividend Dt+1 = DYt+1P

ex
t . The ex-dividend price

index is updated recursively: P ex
t+1 = P ex

t (1 + Rex
t+1). For quarterly data, the adjusted vari-

ables, denoted with a tilde, are constructed as follows. The adjusted capital gain is defined as

R̃ex
t+1 = Rex

t+1− (Dt−2/4 + Dt−1/4 + Dt/4 − 3Dt+1/4) /P ex
t . The adjusted ex-dividend price index is

updated recursively: P̃ ex
t+1 = P̃ ex

t (1 + R̃ex
t+1). The adjusted dividend yield is D̃Yt+1 = Rt+1 − R̃ex

t+1.

Finally, the adjusted quarterly dividend is D̃t+1 = D̃Yt+1P̃
ex
t , dividend growth rate is D̃Gt+1, and

the adjusted price-dividend ratio is D̃Pt+1 = D̃Yt+1P̃
ex
t /P̃ ex

t+1. Of course, P̃Dt =
(
D̃Pt

)
−1

. One

can verify that this construction leaves gross returns unchanged: Rt+1 = D̃Gt+1
P̃Dt+1+1

P̃Dt
. The

construction of monthly data is similar.
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Table 1: Market Prices of Risk in the Data

This table reports slope and intercept estimates from the second-stage estimation of average returns on the 10 value portfolios (top

panel) or the 25 size- and value portfolios (bottom panel) on the bond risk factor exposures (from the first-stage estimation). The

intercept is in percent per year. The bond risk factor is the Cochrane-Piazzesi CP factor in the left panel and the 20-1-quarter yield

spread in the right panel. The intercept is expressed as a percent per year. The last four rows denote the mean absolute pricing error

(MAPE) and the root mean squared pricing error (RMSE) across the portfolios, also expressed as a percent per year. We also report

the cross-sectional R2 from the second stage estimation, and the sample length from the first-stage estimation. The different columns

denote different sampling frequencies. The sample runs from June 1952 until December 2008.

10 Value Portfolios (1952-2008)

predictor: KLN factor CP factor Yield Spread

M Q A M Q A M Q A

slope 0.27 0.86 4.34 1.30 2.18 2.38 1.47 1.48 1.39

[t − stat] [7.57] [11.44] [5.52] [5.74] [5.32] [5.55] [2.69] [4.01] [4.78]

intercept 5.27 7.51 9.18 4.63 3.97 7.15 2.60 3.59 6.73

[t − stat] [15.29] [54.65] [21.04] [8.49] [5.58] [22.96] [1.42] [3.52] [17.85]

MAPE 0.42 0.31 0.72 0.63 0.64 0.70 0.96 0.81 0.77

RMSE 0.56 0.39 0.87 0.71 0.76 0.87 1.16 0.93 0.97

R2 87.7 94.2 79.2 80.5 78.0 79.4 47.6 66.8 74.0

T 678 226 56 678 226 56 678 226 56

25 Size- and Value Portfolios (1952-2008)

predictor: KLN factor CP factor Yield Spread

M Q A M Q A M Q A

slope 0.43 1.16 4.47 2.05 2.79 2.85 1.40 1.29 1.73

[t − stat] [6.85] [8.65] [8.24] [9.02] [10.11] [8.02] [5.56] [7.27] [10.13]

intercept 4.33 7.22 9.83 3.09 3.06 7.49 2.01 3.26 6.06

[t − stat] [6.52] [23.73] [31.36] [4.87] [5.14] [23.34] [1.68] [4.10] [17.31]

MAPE 1.15 1.02 0.93 0.97 0.94 1.16 1.32 1.14 0.91

RMSE 1.45 1.23 1.34 1.19 1.08 1.38 1.65 1.39 1.15

R2 67.1 76.5 75.1 78.0 81.6 73.7 57.3 69.7 81.7

T 678 226 56 678 226 56 678 226 56
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Table 2: Cross-Sectional Equity Return Analysis: Subsamples

This table reports slope and intercept estimates from the second-stage estimation of average returns on the 10 value portfolios (top

panel) or the 25 size- and value portfolios (bottom panel) on the bond risk factor exposures from the first-stage estimation. The bond

risk factor is the Cochrane-Piazzesi CP factor. In the left panel, the CP factor is not re-estimated (same as in the full sample), whereas

in the right panel it is re-estimated on the sub-sample in question.

10 Book-to-market Portfolios (Monthly Frequency)

CP from full sample CP estimated on subsample

1963-2008 1952-1980 1980-2008 1963-2008 1952-1980 1980-2008

slope 1.90 1.10 0.93 2.30 0.76 0.95

[14.00] [3.00] [3.85] [14.38] [3.30] [3.64]

intercept 1.46 2.00 5.98 2.10 -3.06 5.80

[3.87] [0.97] [15.35] [6.50] [-0.91] [13.19]

MAPE 0.26 1.29 0.75 0.27 1.21 0.79

RMSE 0.37 1.43 0.90 0.36 1.35 0.93

R2 96.1 52.8 64.9 96.3 57.6 62.3

T 552 339 339 552 339 339

25 Size- and Value Portfolios (Monthly Frequency)

CP from full sample CP estimated on subsample

1963-2008 1952-1980 1980-2008 1963-2008 1952-1980 1980-2008

slope 2.42 1.02 1.90 2.95 0.77 1.88

[10.72] [3.81] [5.75] [9.48] [4.28] [5.08]

intercept 0.29 2.66 4.94 1.46 -3.21 5.42

[0.40] [1.48] [8.26] [2.09] [-1.08] [9.11]

MAPE 0.85 1.64 1.58 0.98 1.57 1.74

RMSE 1.16 1.93 2.06 1.28 1.84 2.20

R2 83.3 38.7 58.9 79.6 44.3 52.9

T 552 339 339 552 339 339
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Table 3: Cross-Sectional Equity Return Analysis: Comparison with 3-and 4-Factor Model

This table reports slope and intercept estimates from the second-stage estimation of average returns on the 25 size- and value portfolios

on the factor exposures from the first-stage estimation. The factors are the 3 Fama-French factors (first panel), the 4 Carhart factors

(second panel), the yield spread and the 3 Fama-French factors (third panel), and the yield spread and the 4 Fama-French factors (fourth

panel). The sample runs from June 1952 until December 2008.

25 Size- and Value Portfolios (1952-2008)

CP yspr 3-f 4-f CP+3-f yspr+3-f CP+4-f yspr+4-f

CP 2.05 1.44 1.19

[9.02] [3.18] [2.67]

yspr 1.40 1.50 1.39

[5.56] [7.54] [6.60]

Mkt -0.97 0.04 -0.55 -0.02 0.10 0.28

[-2.60] [0.06] [-1.62] [-0.10] [0.21] [0.89]

SMB 0.15 0.12 0.15 0.17 0.12 0.16

[3.14] [2.68] [3.56] [6.78] [3.13] [6.08]

HML 0.39 0.44 0.39 0.39 0.43 0.41

[6.41] [7.52] [7.65] [12.31] [8.21] [12.21]

UMD 3.97 2.70 1.25

[2.42] [1.79] [1.24]

intercept 3.09 2.01 18.00 6.59 13.18 6.72 5.93 3.43

[4.87] [1.68] [3.85] [1.04] [3.14] [2.34] [1.07] [0.95]

MAPE 0.97 1.32 0.94 0.89 0.80 0.54 0.79 0.52

RMSE 1.19 1.65 1.27 1.11 1.03 0.65 0.95 0.61

R2 81.9 57.3 74.9 80.6 83.3 93.5 85.9 94.1
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Table 4: Contemporaneous Betas of Bond Portfolios in the Data

This table reports slope and intercept estimates from the second-stage estimation of average returns on the 5 CRSP bond portfolio

returns on the level factor betas from a first-stage estimation. The intercept is in percent per year. The level factor is the 5-year

Fama-Bliss yield in the left panel and the first principal components of the 1- through 5-year Fama-Bliss yields in the right panel. The

last four rows denote the mean absolute pricing error (MAPE) and the root mean squared pricing error (RMSE) across the 25 portfolios.

Both are expressed in percent per year. We also report the cross-sectional R2 from the second stage estimation, and the sample length

from the first-stage estimation. The different columns denote different sampling frequencies. The sample is June 1952 until December

2008.

5 CRSP Bond Portfolio Returns

predictor: 5-Year Bond Yield factor Level Factor

M Q A M Q A

slope -1.22 -1.07 -1.01 -2.47 -2.14 -2.01

[t − stat] [-4.24] [-4.19] [-4.41] [-4.11] -4.13 -4.24

intercept 1.15 0.78 0.59 1.09 0.73 0.55

[t − stat] [9.92] [5.49] [5.02] [8.13] [4.71] [4.25]

MAPE 0.08 0.08 0.08 0.09 0.09 0.08

RMSE 0.12 0.12 0.12 0.12 0.13 0.12

R2 85.7 85.4 86.6 84.9 85.0 85.7

T 678 226 56 678 226 56
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Table 5: Unified SDF Model for Stocks and Bonds - Pricing Errors

Panel A of this table reports pricing errors on 10 book-to-market sorted stock portfolios, the value-weighted market portfolio, and five

bond portfolios of maturities 1, 2, 5, 7, and 10 years. They are expressed in percent per year. Each column corresponds to a different

SDF model, as described in the text, apart from the second and third column. In the third column, we only use the bond returns to

estimate the same stochastic discount factor as in the second column. The main text contains further details. The last row reports the

mean absolute pricing error across all 11 securities (MAPE). Panel B reports the estimates of the prices of risk. In all specifications, we

set Λ1 = 0. The data are monthly for 1952.6 until 2008.12.

Panel A: Pricing Errors

SDF 1 SDF 2 SDF 2 SDF 3 SDF 4

(bonds

only)

BM1 4.90 3.42 4.55 -3.28 0.01

BM2 5.79 2.14 4.83 -1.85 -0.33

BM3 6.58 2.25 5.43 -0.83 0.04

BM4 6.31 2.23 5.23 -0.99 -0.05

BM5 7.25 2.67 6.02 0.55 0.78

BM6 7.30 1.93 5.85 0.40 0.26

BM7 7.30 0.06 5.31 0.76 -1.15

BM8 9.05 1.76 7.07 2.34 0.27

BM9 9.65 2.38 7.67 2.77 0.71

BM10 10.02 2.98 8.15 2.35 0.26

Market 5.95 1.72 4.82 -1.56 -0.76

1-yr 1.12 -1.78 0.31 1.00 -0.44

2-yr 1.32 -2.97 0.13 1.15 -0.57

5-yr 1.69 -4.62 -0.06 1.43 -0.20

7-yr 2.00 -4.64 0.15 1.61 0.39

10-yr 1.63 -5.33 -0.30 1.09 0.18

MAPE 5.49 2.68 4.82 1.50 0.40

Panel B: Estimates of Prices of Risk (Λ0)

SDF 1 SDF 2 SDF 2 SDF 3 SDF 4

(bonds

only)

CP factor 0 0 0 0 45.90

Level factor 0 -59.22 -16.40 0 -24.00

Slope factor 0 0 0 0 0

Curvature factor 0 0 0 0 0

dp 0 0 0 -3.46 -1.94
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Table 6: Non-Linear Predictability in the Value-Growth returns in the Data

This table reports slope and intercept estimates from a predictability regression of cumulative (discounted) BM10-BM1 excess returns

on a non-linear function of the bond risk premium. The non-linear function of the bond risk premium is constructed as CPtICPt>.0160

in the left panel and ysprtIysprt>.0168 in the right panel. The first column denotes the holding period over which returns are cumulated.

The first 59 months are discarded so that all returns are computed over the same sample. All cumulative results are expressed on a per

annum basis so that the slope coefficients have comparable magnitudes across rows. The full sample is monthly data from June 1952

until December 2007. T-stats are computed using Newey-West standard errors with k − 1 lags, where k is the horizon in months.

predictor: CP factor Yield Spread

k slope t-stat R2 slope t-stat R2

1-qtr 3.06 2.29 1.62 4.43 2.12 1.80

2-qtr 2.15 1.85 1.47 3.20 1.70 1.73

3-qtr 2.14 1.91 2.11 3.38 1.89 2.80

1-yr 2.38 2.09 3.43 3.62 2.02 4.22

2-yr 2.04 2.11 5.14 2.72 2.13 4.88

3-yr 1.36 2.10 3.87 1.27 1.27 1.78

4-yr 0.80 1.48 1.88 0.36 0.43 0.20

5-yr 0.32 0.63 0.40 -0.06 -0.08 0.01
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Figure 1: Nominal Bond Risk Premia

The KLN factor is the fitted value of a regression of the return on the HLM stock return portfolio (long value short growth) on a
constant, the one-year nominal yield and the 2- through 5-year forward rates. The CP factor is the projection of by regression of the
equally-weighted average of the one-year excess return on bonds of maturities of two, three, four, and five years on a constant and the
one-period lagged one-year nominal yield and the 2- through 5-year forward rates. The data run from June 1952 until December 2008.
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Figure 2: Exposure of 10 Book-to-Market Portfolio Excess Returns to the KLN and CP Factors

The figure plots the factor exposures (betas) of the 10 book-to-market portfolio returns r
i,e
t+1 ≡ ri

t+1 − y$
t (1) + .5 ∗ V ar[ri

t+1] to the
contemporaneous KLNt+1 (left panels) or CPt+1 factor (right panels). Each bar denotes the slope coefficient of a time-series regression
of one portfolio return on the KLN or CP factor. The left bar is for growth stocks (log book-to-market), the right bar for value stocks
(high book-to-market). The top panel uses monthly return data, the middle panel uses quarterly return data, and the bottom panel
uses annual data. The data run from June 1952 until December 2008.
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Figure 3: Exposure of 25 Size and Book-to-Market Portfolio Returns to the KLN and CP Factors

The figure plots the factor exposures (betas) of the 25 size- and value portfolio returns to the contemporaneous KLNt+1 (left panels)
or CPt+1 factor (right panels). Each bar denotes the slope coefficient of a time-series regression of a portfolio return on the CP factor.
The first five bars are for the smallest quintile of firms; the last five bars are for the biggest quintile of firms. Within each group of
five, the book-to-market ratio increases. The top panel uses monthly return data, the middle panel uses quarterly return data, and the
bottom panel uses annual data. The data run from June 1952 until December 2008.
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Figure 4: Exposure to the Yield Spread

The figure plots the factor exposures (betas) of the 10 book-to-market portfolio returns (left panels) and the 25 size- and value portfolio
returns (right panel) to the yield spread. The data are monthly for June 1952 until December 2008 (top row), quarterly (middle row),
and annual (bottom row).
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Figure 5: Average Realized vs Predicted Returns: CP Factor

Scatter diagram of average realized versus predicted excess returns. The predicted excess return is generated by the OLS estimation
with the CP factor as only explanatory variable. The test assets are the 10 book-to-market portfolio returns (top panel) and the 25
size- and value portfolio returns (bottom panel). The solid line is the 45 degree line. The data run from June 1952 until December 2008.
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Figure 6: Exposure of 5 Bond Portfolio Excess Returns to the Level Factor in Data

The figure plots the factor exposures (betas) of five CRSP bond portfolio returns (1-yr, 2-yr, 5-yr, 7-yr, and 10-yr maturities) to the
contemporaneous level factor, measured as the 5-year nominal bond yield y$(20). Each bar denotes the slope coefficient of a time-series
regression of one portfolio return on the level factor. The left bar is for the shortest maturity bond, the right bar for longest maturity
bonds. The top panel uses monthly return data, the middle panel uses quarterly return data, and the bottom panel uses annual data.
The data run from June 1952 until December 2008.
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Figure 7: SDF Model-Implied Yields

This figure plots annual yields on nominal bonds of maturities 1- through 5 years as implied by stochastic discount factor model estimated
in Section 3.3. The data are Fama-Bliss yields on nominal bonds of maturities 1- through 5 years.
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Figure 8: NBER Recessions, the CP Factor and the Yield Spread

Cochrane-Piazzesi Factor and NBER Recession
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Figure 9: Value versus Growth Returns By CP Factor and Yield Spread Quartiles

The left panels denote average monthly returns on the 10 book-to-market portfolios, multiplied by 1200, by CP quartile. The right
panels denote average monthly returns on the 10 book-to-market portfolios, multiplied by 1200, by yield spread quartile. The top row
is for the top quartile, the second row for the 50-75 percentile, the third row for the 12-50 percentile, and the bottom row for the lowest
25 percent CP or yield spread realizations.
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Figure 10: Exposure of 10 Book-to-Market Portfolio Dividend Growth rates to the CP and Yield
Spread Factor in Data

The figure plots the factor exposures (betas) of the 10 book-to-market portfolio dividend growth rates δdt+1 to the contemporaneous
CPt+1 factor (left panels) and yield spread (right panels). Each bar denotes the slope coefficient of a time-series regression of one
portfolio dividend growth rate on the CP factor or the yield spread. The left bar is for growth stocks (log book-to-market), the right
bar for value stocks (high book-to-market). The top panel uses monthly return data, the middle panel uses quarterly return data, and
the bottom panel uses annual data. The data run from June 1952 until December 2008.
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Figure 11: Risk Premia and CP Betas in Equilibrium Model
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Long-Run Risk Model in Detail: Technical Appendix

February 25, 2009

This appendix provides a complete derivation of our modified long-run risk model in section A.
It calibrates the model in Section B and discusses the results in Section C.

A The Model

A.1 Setup

Preferences The long-run risk literature works off the class of preferences due to Kreps and
Porteus (1978), Epstein and Zin (1989), and Duffie and Epstein (1992). These preferences impute
a concern for the timing of the resolution of uncertainty. A first parameter α governs risk aversion
and a second parameter ρ governs the willingness to substitute consumption inter-temporally. In
particular, ρ is the inverse of the inter-temporal elasticity of substitution (EIS). Bansal and Yaron
(2004) show that the stochastic discount factor can be written as a function of consumption growth
and the return to the wealth portfolio:

Mt+1 = β
1−α
1−ρ

(
Ct+1

Ct

)
−ρ 1−α

1−ρ (
Rc

t+1

) ρ−α

1−ρ . (1)

The return on a claim to aggregate consumption, the total wealth return, can be written as

Rc
t+1 =

Wt+1

Wt − Ct

=
Ct+1

Ct

WCt+1

WCt − 1
.

We start by using the Campbell (1991) approximation of the log total wealth return rc
t = log(Rc

t)
around the long-run average log wealth-consumption ratio Ac

0 ≡ E[wt − ct].
1

rc
t+1 = κc

0 + ∆ct+1 + wct+1 − κc
1wct, (2)

where we define the log wealth-consumption ratio wc as

wct ≡ log

(
Wt

Ct

)
= wt − ct.

The linearization constants κc
0 and κc

1 are non-linear functions of the unconditional mean wealth-
consumption ratio Ac

0:

κc
1 =

eAc
0

eAc
0 − 1

> 1 and κc
0 = − log

(
eAc

0 − 1
)

+
eAc

0

eAc
0 − 1

Ac
0. (3)

1Throughout, variables with a subscript zero denote unconditional averages.

1



Using the definition of the total wealth return, one can then show that the log SDF becomes:

mt+1 =
1 − α

1 − ρ
[log β + κc

0] − κc
0 − α∆ct+1 −

α − ρ

1 − ρ
(wct+1 − κc

1wct) (4)

Technology We mostly adopt the consumption growth specification of Bansal and Yaron (2004):

∆ct+1 = µc + xt + σtηt+1, (5)

xt+1 = ρxxt + ϕeσtet+1, (6)

σ2
t+1 = σ̄2 + ν1(σ

2
t − σ̄2) + σwσtwt+1, (7)

where (ηt, et, wt) are i.i.d. standard normal innovations. Consumption growth contains a low-
frequency component xt and is heteroscedastic, with conditional variance σ2

t . The two state vari-
ables xt and σ2

t − σ̄2 capture time-varying growth rates and time-varying economic uncertainty.
The two changes we make relative to Bansal and Yaron (2004) are that (1) the innovation in
equation (7) is not σwwt+1 but σwσtwt+1, and (2) we assume that xt and to σ2

t − σ̄2 have a non-
zero conditional correlation χ. We engineer this through a non-zero unconditional correlation χ
between the contemporaneous shocks et+1 and wt+1:

Corr[et+1, wt+1] = Cov[et+1, wt+1] = E[et+1wt+1] = χ.

All other shocks have zero correlation with each other at all leads and lags. To find the correlation
between xt and to σ2

t − σ̄2, start by working out

Et[xt+1(σ
2
t+1 − σ̄2)] = Et[(ρxxt + ϕeσtet+1)(ν1(σ

2
t − σ̄2) + σwσtwt+1)],

= ρxν1xt(σ
2
t − σ̄2) + ρxxtσwσtEt[wt+1],

+ϕeσtν1(σ
2
t − σ̄2)Et[et+1] + ϕeσ

2
t σwEt[et+1wt+1],

= ρxν1xt(σ
2
t − σ̄2) + ϕeσwχσ2

t .

The conditional covariance between xt+1 and σ2
t − σ̄2 equals:

Covt[xt+1, σ
2
t+1 − σ̄2] = Et[xt+1(σ

2
t+1 − σ̄2)] − Et[xt+1]Et[(σ

2
t+1 − σ̄2)],

= ρxν1xt(σ
2
t − σ̄2) + ϕeσwχσ2

t − ρxν1xt(σ
2
t − σ̄2),

= ϕeσwχσ2
t .

It follows that the conditional correlation between xt+1 and σ2
t − σ̄2 is also χ:

Corrt[xt+1, σ
2
t+1 − σ̄2] =

Covt[xt+1, σ
2
t+1 − σ̄2]

Stdt[xt+1]Stdt[σ2
t+1 − σ̄2]

,

=
χϕeσwσ2

t

ϕeσwσ2
t

= χ.

The unconditional variance of xt+1 and σ2
t − σ̄2 is:

V [xt+1] = E[x2
t+1] =

ϕ2
eσ̄

2

1 − ρ2
x

,

V [σ2
t+1 − σ̄2] = E[(σ2

t+1 − σ̄2)2] =
σ2

wσ̄2

1 − ν2
1

.

2



The unconditional covariance between xt+1 and σ2
t − σ̄2 equals:

Cov[xt+1, σ
2
t+1 − σ̄2] =

χϕeσwσ̄2

1 − ρxν1

The unconditional correlation between xt+1 and σ2
t − σ̄2 equals:

Corr[xt+1, σ
2
t+1 − σ̄2] =

Cov[xt+1, σ
2
t+1 − σ̄2]

Std[xt+1]Std[σ2
t+1 − σ̄2]

,

=

χϕeσwσ̄2

1−ρxν1

ϕeσ̄√
1−ρ2

x

σwσ̄√
1−ν2

1

= χ

√
1 − ρ2

x

√
1 − ν2

1

1 − ρxν1
.

The unconditional correlation between these two state variables is zero at all other leads and lags.

Dividend Growth We specify dividend growth processes for various assets or portfolios i, mak-
ing two important modifications to the specification in Bansal and Yaron (2004):

∆di
t+1 = µi

d + φi
d,xxt + φi

d,σ(σ2
t − σ̄2) + ϕi

dσtu
i
t+1 (8)

In Bansal and Yaron (2004), the shock ut is assumed orthogonal to (η, e, w) and φi
d,σ = 0. Then,

correlation between consumption and dividend growth comes through the two state variables xt

and σt. Instead, we allow for a correlation ιi between ηt+1 and ui
t+1. All other correlations are

kept at zero. This opens up an additional channel of correlation and is a modification also made
by (Bansal and Shaliastovich 2007). It turns out to be immaterial for our purposes. Much more
important is the non-zero loading of dividend growth on economic uncertainty φi

d,σ 6= 0. Its role
will become clear below.
Defining returns ex-dividend and using the Campbell (1991) linearization, the log return on a claim
to the dividend of portfolio i can be written as:

ri
t+1 = ∆di

t+1 + pdi
t+1 + κi

0 − κi
1pdi

t,

with coefficients

κi
1 =

eAi
0

eAi
0 − 1

> 1, and κi
0 = − log

(
eAi

0 − 1
)

+
eAi

0

eAi
0 − 1

Ai
0,

which depend on the long-run log price-dividend ratio Ai
0.

Inflation We follow Wachter (2006), Piazzesi and Schneider (2006), and Bansal and Shaliastovich
(2007), and model inflation as

πt+1 = π̄t + ϕπ,ησtηt+1 + ϕπ,eϕeσtet+1 + σπξt+1, (9)

where expected inflation π̄t = Et[πt+1] is given by

π̄t+1 = µπ + ρπ(π̄t − µπ) + φπxt + ζπ,ησtηt+1 + ζπ,eϕeσtet+1 + σzξt+1, (10)
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The innovation ξt is orthogonal to all other innovations (ηt, et, wt, u
i
t). Expected inflation mean-

reverts, it carries long-run risk with loading φπ, and its innovations are correlated with unexpected
inflation, and with the temporary and persistent component of consumption growth.
The nominal SDF is given by:

m$
t+1 = mt+1 − πt+1.

Expected inflation (demeaned), π̄t−µπ, is a third state variable that drives the nominal yield curve.
We are interested in understanding its variance and covariance with the other two state variables
xt+1 and σ2

t − σ̄2. First, we calculate

Cov[xt+1, π̄t+1 − µπ] = ρxρπCov[xt, π̄t − µπ] + ρxφπE[x2
t ] + ζπ,eϕ

2
eσ̄

2,

=

ρxφπ

1−ρ2
x

+ ζπ,e

1 − ρxρπ
ϕ2

eσ̄
2.

The covariance with economic uncertainty is

Cov[σ2
t+1 − σ̄2, π̄t+1 − µπ] = ν1ρπCov[σ2

t − σ̄2, π̄t − µπ] + ν1φπCov[xt, σ
2
t − σ̄2] + χζπ,eϕeσwσ̄2,

= χ

ν1φπ

1−ρxν1
+ ζπ,e

1 − ν1ρπ

ϕeσwσ̄2.

We can now calculate the unconditional variance of expected inflation

E[(π̄t+1 − µπ)2] = ρ2
πE[(π̄t − µπ)2] + φ2

πE[x2
t+1] + ζ2

π,ησ̄
2 + ζ2

π,eϕ
2
eσ̄

2 + σ2
z + 2φπρπE[xt, π̄t − µπ],

=

ζ2
π,ησ̄

2 +

[
φ2

π

1−ρ2
x

+ ζ2
π,e + 2φπρπ

ρxφπ

1−ρ2
x

+ζπ,e

1−ρxρπ

]
ϕ2

eσ̄
2 + σ2

z

1 − ρ2
π

.

A.2 Equity pricing

Euler Equation The starting point of the analysis is the Euler equation Et[Mt+1R
i
t+1] = 1,

where Ri
t+1 denotes a gross return between dates t and t + 1 on some asset i and Mt+1 is the SDF.

In logs:

Et [mt+1] + Et

[
ri
t+1

]
+

1

2
V art [mt+1] +

1

2
V art

[
ri
t+1

]
+ Covt

[
mt+1, r

i
t+1

]
= 0. (11)

The same equation holds for the real risk-free rate yt(1), so that

yt(1) = −Et [mt+1] −
1

2
V art [mt+1] . (12)

The expected excess return becomes:

Et

[
re,i
t+1

]
= Et

[
ri
t+1 − yt(1)

]
+

1

2
V art

[
ri
t+1

]
= −Covt

[
mt+1, r

i
t+1

]
= −Covt

[
mt+1, r

e,i
t+1

]
, (13)

where re,i
t+1 denotes the excess return on asset i corrected for the Jensen term.

4



The Consumption Claim In what follows we focus on the return on a claim to aggregate
consumption, denoted rc, where

rc
t+1 = κc

0 + ∆ct+1 + wct+1 − κc
1wct,

and derive the five terms in equation (11) for this asset.
Taking logs on both sides of the non-linear SDF expression in equation (1) delivers an expression
of the log SDF as a function of log consumption changes and the log total wealth return

mt+1 =
1 − α

1 − ρ
log β −

1 − α

1 − ρ
ρ∆ct+1 +

(
1 − α

1 − ρ
− 1

)
rc
t+1. (14)

We conjecture that the log wealth-consumption ratio is linear in the two states xt and σ2
t − σ̄2,

wct = Ac
0 + Ac

1xt + Ac
2

(
σ2

t − σ̄2
)
.

As BY, we assume joint conditional normality of consumption growth, x, and the variance of
consumption growth. We verify this conjecture from the Euler equation (11).
Using the conjecture for the wealth-consumption ratio, we compute innovations in the total wealth
return, and its conditional mean and variance:

rc
t+1 − Et

[
rc
t+1

]
= σtηt+1 + Ac

1ϕeσtet+1 + Ac
2σwσtwt+1

Et

[
rc
t+1

]
= r0 + (1 − (κc

1 − ρx)Ac
1)xt − Ac

2(κ
c
1 − ν1)

(
σ2

t − σ̄2
)

Vt

[
rc
t+1

]
=

[
1 + (Ac

1ϕe)
2 + (Ac

2)
2σ2

w + 2Ac
1ϕeA

c
2σwχ

]
σ2

t

r0 = κc
0 + Ac

0(1 − κc
1) + µc

Substituting in the expression for the log total wealth return rc into the log SDF, we compute
innovations, and the conditional mean and variance of the log SDF:

mt+1 − Et [mt+1] = −ασtηt+1 −
α − ρ

1 − ρ
Ac

1ϕeσtet+1 −
α − ρ

1 − ρ
Ac

2σwσtwt+1,

Et [mt+1] = m0 +

(
−α +

α − ρ

1 − ρ
Ac

1(κ
c
1 − ρx)

)
xt +

α − ρ

1 − ρ
(κc

1 − ν1)A
c
2

(
σ2

t − σ̄2
)

Vt [mt+1] =

[
α2 +

(
α − ρ

1 − ρ

)2 {
(Ac

1ϕe)
2 + (Ac

2σw)2 + 2χAc
1ϕeA

c
2σw

}
]

σ2
t

m0 =
1 − α

1 − ρ
log β −

α − ρ

1 − ρ
[κc

0 + Ac
0(1 − κc

1)] − αµc (15)

The conditional covariance between the log consumption return and the log SDF is given by the
conditional expectation of the product of their innovations

Covt

[
rc
t+1,mt+1

]
= Et

[
rc
t+1 − Et

[
rc
t+1

]
,mt+1 − Et [mt+1]

]

=

[
−α −

α − ρ

1 − ρ

{
(Ac

1ϕe)
2 + (Ac

2σw)2 + 2χAc
1ϕeA

c
2σw

}]
σ2

t
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Using the method of undetermined coefficients and the five components of equation (11), we can
solve for the constants Ac

0, Ac
1, and Ac

2:

Ac
1 =

1 − ρ

κc
1 − ρx

, (16)

Ac
2 = .5

(1 − ρ)(1 − α)

κc
1 − ν1

[
1 +

(Ac
1ϕe)

2 + (Ac
2σw)2 + 2χAc

1ϕeA
c
2σw

(1 − ρ)2

]
, (17)

0 =
1 − α

1 − ρ
[log β + κc

0 + (1 − κc
1)A

c
0] + (1 − α)µc +

1

2
(1 − α)2

[
1 +

(Ac
1ϕe)

2 + (Ac
2σw)2 + 2χAc

1ϕeA
c
2σw

(1 − ρ)2

]
σ̄2 (18)

The first equation is the same as in the case of no correlation between the state variables. The
second and third equations are implicit functions of Ac

2 and Ac
0. Because κc

0 and κc
1 are non-linear

functions of Ac
0, this system of three equations needs to be solved simultaneously and numerically.

Our computations indicate that the system has a unique solution. This verifies the conjecture that
the log wealth-consumption ratio is linear in the two state variables.

The Consumption Risk Premium According to (13), the risk premium (expected excess
return corrected for a Jensen term) on the consumption claim is given by

Et

[
rc,e
t+1

]
= −Covt

[
rc
t+1,mt+1

]

=

[
α +

α − ρ

1 − ρ

{
(Ac

1ϕe)
2 + (Ac

2σw)2 + 2χAc
1ϕeA

c
2σw

}]
σ2

t

= (λm,η + λm,eA
c
1ϕe + λm,wAc

2σw + 2χλm,eλm,w)σ2
t , (19)

with the market price of risk vector Λ = [λm,η , λm,e, λm,w] given by

λm,η = α,

λm,e =
α − ρ

1 − ρ
Ac

1ϕe =
α − ρ

κc
1 − ρx

ϕe,

λm,w =
α − ρ

1 − ρ
Ac

2σw.

Note that the market price of temporary consumption growth shocks ηt+1 is positive and equal
to the risk aversion coefficient α, the market price of long-run consumption growth shocks et+1 is
positive, and the market price of economic uncertainty (innovations wt+1 in σ2 − σ̄2) is negative

because Ac
2 will turn out to be negative.

Correlations expected consumption growth and expected total wealth return Expected
total wealth returns and expected consumption growth rates are equal to:

Et

[
rc
t+1

]
= rc

0 + ρxt − Ac
2(κ

c
1 − ν1)(σ

2
t − σ̄2), (20)

Et [∆ct+1] = µc + xt. (21)

The unconditional variance of these quantities is:

V
[
Et

[
rc
t+1

]]
= ρ2V [xt] + [Ac

2(κ
c
1 − ν1)]

2V [σ2
t − σ̄2] − 2ρAc

2(κ
c
1 − ν1)Cov[xt, σ

2
t − σ̄2],

V [Et [∆ct+1]] = V [xt].
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The unconditional covariance between expected returns and expected consumption growth rates is

Cov
(
Et

[
rc
t+1

]
, Et [∆ct+1]

)
= ρV [x] − Ac

2(κ
c
1 − ν1)Cov[xt, σ

2
t − σ̄2]

This then leads to the unconditional correlation, which is straightforward to compute.

The Dividend Claims We conjecture, as we did for the wealth-consumption ratio, that the log
price dividend ratio on a stock i, where the notation i is suppressed, is linear in the two state
variables:

pdi
t = Ai

0 + Ai
1xt + Ai

2(σ
2
t − σ̄2).

As we did for the return on the consumption claim, we compute innovations in the dividend claim
return, and its conditional mean and variance:

ri
t+1 − Et

[
ri
t+1

]
= ϕi

dσtu
i
t+1 + Ai

1ϕeσtet+1 + Ai
2σwσtwt+1

Et

[
ri
t+1

]
= ri

0 + [φi
d,x − Ai

1(κ
i
1 − ρx)]xt + [φi

d,σ − Ai
2(κ

i
1 − ν1)]

(
σ2

t − σ̄2
)

Vt

[
ri
t+1

]
=

[
(ϕi

d)
2 + (Ai

1ϕe)
2 + (Ai

2σw)2 + 2χAi
1ϕeA

i
2σw

]
σ2

t ,

ri
0 = κi

0 + Ai
0(1 − κi

1) + µi
d

Finally, the conditional covariance between the log SDF and the log dividend claim return is

Covt

[
mt+1, r

i
t+1

]
= −

[
ιiαϕi

d +
α − ρ

1 − ρ

{
Ac

1A
i
1ϕ

2
e + χAc

1A
i
2ϕeσw + χAc

2A
i
1ϕeσw + Ac

2A
i
2σ

2
w

}]
σ2

t .

From the Euler equation for this return Et [mt+1]+Et

[
ri
t+1

]
+1

2Vt [mt+1]+
1
2Vt

[
ri
t+1

]
+Covt[mt+1, r

i
t+1] =

0 and the method of undetermined coefficients, we can use the same procedure as above, and solve
for the constants Ai

0, Ai
1, and Ai

2:

Ai
1 =

φi
d,x − ρ

κi
1 − ρx

,

Ai
2 =

[
α−ρ
1−ρ

Ac
2(κ

c
1 − ν1) + φi

d,σ + .5H i
]

κi
1 − ν1

,

0 = m0 + κi
0 + Ai

0(1 − κi
1) + µi

d + .5H iσ̄2

where

H i =
{
α2 + (ϕi

d)
2 − 2ιiαϕi

d

}
+
{
(Ai

1ϕe)
2 + (Ai

2σw)2 + 2χAi
1ϕeA

i
2σw

}

+

(
α − ρ

1 − ρ

)2 {
(Ac

1ϕe)
2 + (Ac

2σw)2 + 2χAc
1ϕeA

c
2σw

}

−2
α − ρ

1 − ρ

{
Ac

1A
i
1ϕ

2
e + χAc

1A
i
2ϕeσw + χAc

2A
i
1ϕeσw + Ac

2A
i
2σ

2
w

}
(22)

Again, this is a non-linear system in three equations and three unknowns, which we solve numeri-
cally.
The equity risk premium on dividend claim i is:

Et

[
re,i
t+1

]
=

[
ιiαϕi

d +
α − ρ

1 − ρ

{
Ac

1A
i
1ϕ

2
e + χAc

1A
i
2ϕeσw + χAc

2A
i
1ϕeσw + Ac

2A
i
2σ

2
w

}]
σ2

t . (23)
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Equation (23) shows that the equity risk premium consists of a compensation for bearing temporary
shock risk (first term), long-run risk (second term) and uncertainty risk (third term). The fourth
term is new and only arises when there is non-zero correlation χ between the two state variables.
The market price of temporary cash-flow risk is α > 0, the market price of long-run risk is Ac

1ϕe > 0,
and the market price of uncertainty risk is Ac

2σw < 0. These signs make sense: when long-run risk
is low (economic uncertainty is high), the marginal utility growth for the representative investor is
high, and she is willing to pay a high price for a security that has high dividend growth in such
states of the world. The new, fourth term in (23) lowers the equity risk premium when the state
variables are positively correlated because Ac

1A
i
2 + Ac

2A
i
1 < 0. Indeed, when high uncertainty goes

hand in hand with high future growth, the world is a less risky place. Finally, we note that the
only source of variation in equity risk premia over time is economic uncertainty σ2

t .

Correlations expected dividend growth and expected return Expected stock returns and
expected dividend growth rates on any portfolio i are equal to:

Et

[
ri
t+1

]
= ri

0 + ρxt + [φi
d,σ − Ai

2(κ
i
1 − ν1)](σ

2
t − σ̄2), (24)

Et

[
∆di

t+1

]
= µi

d + φi
d,xxt + φi

d,σ(σ2
t − σ̄2). (25)

The unconditional variance of these quantities is:

V
[
Et

[
ri
t+1

]]
= ρ2V [xt] + [φi

d,σ − Ai
2(κ

i
1 − ν1)]

2V [σ2
t − σ̄2] + 2ρ[φi

d,σ − Ai
2(κ

i
1 − ν1)]Cov[xt, σ

2
t − σ̄2],

V
[
Et

[
∆di

t+1

]]
= (φi

d,x)2V [xt] + (φi
d,σ)2V [σ2

t − σ̄2] + 2φi
d,σφi

d,xCov[xt, σ
2
t − σ̄2].

The unconditional covariance between expected stock returns and expected dividend growth rates
is

Cov
(
Et

[
ri
t+1

]
, Et

[
∆di

t+1

])
= φi

d,xρV [xt] + φi
d,σ[φi

d,σ − Ai
2(κ

i
1 − ν1)]V [σ2

t − σ̄2]

+
(
ρφi

d,σ + φi
d,x[φi

d,σ − Ai
2(κ

i
1 − ν1)]

)
Cov[xt, σ

2
t − σ̄2]

This then leads to the unconditional correlation, which is straightforward to compute.
The important thing to note is that this covariance is (1) asset-specific because it depends on both
φi

d,x and φi
d,σ, and (2) it can be positive or negative depending on φi

d,x and φi
d,σ, holding fixed χ. In

the standard LRR model, the covariance between the state variables is zero and φi
d,σ = 0. In that

case, the sign of the covariance between expected returns and expected dividend growth depends
on the sign of φi

d,xρ, which is positive.
The unconditional correlation between expected and unexpected dividend growth is zero for all
portfolios by the law of iterated expectations:

Corr
(
Et

[
∆di

t+1

]
,∆di

t+1 − Et

[
∆di

t+1

]
) = Corr(φi

d,xxt + φi
d,σ(σ2

t − σ̄2), ϕi
dσtut+1

)
= 0.

Likewise, the correlation between expected and unexpected returns is zero. This is the same as in
the standard BY model.
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A.3 Bond Pricing

The Risk-free Rate According to equation (12), the expression for the risk-free rate is given by

yt(1) = −A(1) − B(1)xt − C(1)(σ2
t − σ̄2) (26)

A(1) = m0 + .5Γ(0)σ̄2,

B(1) = −ρ,

C(1) =
α − ρ

1 − ρ
(κc

1 − ν1)A
c
2 + .5Γ(0),

where the notation Γ(0) is defined as:

Γ(0) ≡ α2 +

(
α − ρ

1 − ρ

)2 {
(Ac

1ϕe)
2 + (Ac

2σw)2 + 2χAc
1ϕeA

c
2σw

}
(27)

The Real Yield Curve The price of a τ -period real zero-coupon bond satisfies:

Pt(τ) = Et

[
emt+1+log Pt+1(τ−1)

]
.

This defines a recursion with Pt(0) = 1. The corresponding bond yield is yt(τ) = − log(Pt(τ))/τ .
It is easy to show that the LRR model gives rise to a affine real term structure (Bansal and
Shaliastovich 2007):

yt(τ) = −
A(τ)

τ
−

B(τ)

τ
xt −

C(τ)

τ
(σ2

t − σ̄2),

The coefficients A(τ), B(τ), and C(τ) satisfy the following recursions:

A(τ + 1) = m0 + A(τ) + .5Γ(τ)σ̄2, (28)

B(τ + 1) = ρxB(τ) − ρ, (29)

C(τ + 1) = ν1C(τ) +
α − ρ

1 − ρ
(κc

1 − ν1)A
c
2 + .5Γ(τ) (30)

where

Γ(τ) ≡ α2 +

[
B(τ) −

α − ρ

κc
1 − ρx

]2

ϕ2
e +

[
C(τ) −

α − ρ

1 − ρ
Ac

2

]2

σ2
w

+2χ

[
B(τ) −

α − ρ

κc
1 − ρx

]
ϕe

[
C(τ) −

α − ρ

1 − ρ
Ac

2

]
σw, (31)

and where the recursion is initialized at A(0) = 0, B(0) = 0, and C(0) = 0.

Proof. Guess and verify

Pt(τ + 1) = Et[exp{mt+1 + log (Pt+1(τ))}]

= Et[exp{mt+1 + A(τ) + B(τ)xt+1 + C(τ)(σ2
t+1 − σ̄2)}]

= exp{m0 + A(τ) + (B(τ)ρx − ρ) xt +

[
ν1C(τ) +

α − ρ

1 − ρ
(κc

1 − ν1)A
c
2

] (
σ2

t − σ̄2
)
} ×

Et

[
exp

{
−ασtηt+1 +

[
B(τ) −

α − ρ

κc
1 − ρx

]
ϕeσtet+1 +

[
C(τ) −

α − ρ

1 − ρ
Ac

2

]
σwσtwt+1

}]
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Note that the conditional expectation term is equal to exp{.5Γ(τ)σ2
t }, where Γ(τ) is defined in (31).

The rest follows from recognizing that

log Pt(τ + 1) = A(τ + 1) + B(τ + 1)xt + C(τ + 1)(σ2
t − σ̄2)

and matching up coefficients.

Real Bond Returns Define the 1-period log return on a real bond of maturity τ as:

rb
t+1(τ) = τyt(τ) − (τ − 1)yt+1(τ − 1).

The one-period excess return subtracts the real short rate:

rb
t+1(τ) − yt(1) = τyt(τ) − (τ − 1)yt+1(τ − 1) − yt(1).

In general, the excess log return on buying an τ -period real bond at time t and selling it at time
t + m as an τ − m period bond is:

τyt(τ) − (τ − m)yt+m(τ − m) − myt(1).

The same expression holds for nominal excess bond returns, which we denote with a $ superscript.
Innovations in one-period real bond returns are given by

rb
t+1(τ) − Et

[
rb
t+1(τ)

]
= (τ − 1) (−yt+1(τ − 1) + Et [yt+1(τ − 1)]) ,

= B(τ − 1)ϕeσtet+1 + C(τ − 1)σwσtwt+1.

The conditional variance of the bond return therefore equals:

Vt

[
rb
t+1(τ)

]
=

{
[B(τ − 1)ϕe]

2 + [C(τ − 1)σw]2 + 2χB(τ − 1)ϕeC(τ − 1)σw

}
σ2

t .

The real bond risk premium (the expected excess return with Jensen adjustment) is:

Et

[
rb,e
t+1(τ)

]
= τyt(τ) − (τ − 1)Et [yt+1(τ − 1)] − yt(1) + .5Vt

[
rb
t+1(τ)

]
,

= [.5Γ(0) − .5Γ(τ − 1) + .5
{

[B(τ − 1)ϕe]
2 + [C(τ − 1)σw]2 + 2χB(τ − 1)ϕeC(τ − 1)σw

}
]σ2

t

=

{
B(τ − 1)

α − ρ

κc
1 − ρx

ϕ2
e + C(τ − 1)

α − ρ

1 − ρ
Ac

2σ
2
w

+χB(τ − 1)ϕe
α − ρ

1 − ρ
Ac

2σw + χC(τ − 1)ϕe
α − ρ

κc
1 − ρx

σw

}
σ2

t

We have verified that this risk premium equals −Covt

[
mt+1, r

b
t+1(τ) − Et

[
rb
t+1(τ)

]]
.

The Nominal Yield Curve The price of a τ -period nominal zero-coupon bond satisfies:

P $
t (τ) = Et

[
em$

t+1+log P $
t+1(τ−1)

]
.
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This defines a recursion with P $
t (0) = 1. The corresponding bond yield is y$

t (τ) = − log(P $
t (τ))/τ .

Nominal bond yields are also affine in the state vector (Bansal and Shaliastovich 2007):

y$
t (τ) = −

A$(τ)

τ
−

B$(τ)

τ
xt −

C$(τ)

τ
(σ2

t − σ̄2) −
D$(τ)

τ
(π̄t − µπ),

The coefficients A(τ), B$(τ), and C$(τ) satisfy the following recursions

A$(τ + 1) = m0 − µπ + A$(τ) + .5
[
−σπ + D$(τ)σz

]2
+ .5Γ$(τ)σ̄2, (32)

B$(τ + 1) = B$(τ)ρx − ρ + D$(τ)φπ, (33)

C$(τ + 1) = C$(τ)ν1 +
α − ρ

1 − ρ
(κc

1 − ν1)A
c
2 + .5Γ$(τ), (34)

D$(τ + 1) = D$(τ)ρπ − 1, (35)

initialized at A$(0) = 0, B$(0) = 0, C$(0) = 0, and D$(0) = 0, and where

Γ$(τ) ≡
[
−α − ϕπ,η + D$(τ)ζπ,η

]2
+

[
B$(τ) −

α − ρ

κc
1 − ρx

− ϕπ,e + D$(τ)ζπ,e

]2

ϕ2
e

+

[
C$(τ) −

α − ρ

1 − ρ
Ac

2

]2

σ2
w + 2χ

[
B$(τ) −

α − ρ

κc
1 − ρx

− ϕπ,e + D$(τ)ζπ,e

]
ϕe

[
C$(τ) −

α − ρ

1 − ρ
Ac

2

]
σw.

Proof. We conjecture that the t+1-price of a τ -period bond is exponentially affine in the state and
solve for the coefficients in the process of verifying this conjecture using the Euler equation:

P $
t (τ + 1) = Et[exp{m$

t+1 + log
(
P $

t+1(τ)
)
}]

= Et[exp{mt+1 − πt+1 + A$(τ) + B$(τ)xt+1 + C$(τ)(σ2
t+1 − σ̄2) + D$(τ)(π̄t+1 − µπ)}]

= exp{m0 − µπ + A$(τ) +
[
B$(τ)ρx − ρ + D$(τ)φπ

]
xt

+

[
C$(τ)ν1 +

α − ρ

1 − ρ
(κc

1 − ν1)A
c
2

] (
σ2

t − σ̄2
)

+
[
D$(τ)ρπ − 1

]
(π̄t − µπ)} ×

Et

[
exp{

[
−α − ϕπ,η + D$(τ)ζπ,η

]
σtηt+1}×

{+

[
−

α − ρ

κc
1 − ρx

− ϕπ,e + B$(τ) + D$(τ)ζπ,e

]
ϕeσtet+1}×

{+

[
−

α − ρ

1 − ρ
Ac

2 + C$(τ)

]
σwσtwt+1 +

[
−σπ + D$(τ)σz

]
ξt+1}

]

We use the joint standard normality of the four mutually-orthogonal shocks. Taking logs and
collecting terms, we obtain a linear equation for log(P $

t (τ + 1)) where the coefficients A$(τ + 1)
through D$(τ + 1) satisfy (32)- (35).

We have verified that the one-period nominal short rate satisfies:

y$
t (1) = −Et[m

$
t+1] − .5Vt[m

$
t+1] = −Et[mt+1 − πt+1] − .5Vt[mt+1 − πt+1]

for the coefficients A$(1) through D$(1) in (32)- (35).
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Inflation Risk Premium The expected excess return on a one-period nominal bond over a
one-period real bond measures the inflation risk premium at the short end of the term structure.
It is given by −covt[mt+1, πt+1], where

−covt[mt+1, πt+1] =

(
αϕπ,η +

α − ρ

κc
1 − ρx

ϕπ,eϕ
2
e + χ

α − ρ

1 − ρ
Ac

2σwϕπ,eϕe

)
σ2

t .

In principle, the inflation risk premium can be either negative or positive depending on the sign of
χ. However, it takes the same sign for all periods. When ϕπ,η = 0 and χ = 0, which is the case in
(Bansal and Shaliastovich 2007), the inflation risk premium equals the second term.

Nominal Bond Returns Define the 1-period log return on a nominal bond of maturity τ as:

rb,$
t+1(τ) = τy$

t (τ) − (τ − 1)y$
t+1(τ − 1),

= −A$(τ) − B$(τ)xt − C$(τ)(σ2
t − σ̄2) − D$(τ)(π̄t − µπ)

+A$(τ − 1) + B$(τ − 1)xt+1 + C$(τ − 1)(σ2
t+1 − σ̄2) + D$(τ − 1)(π̄t+1 − µπ)

Expected nominal bond returns are:

Et

[
rb,$
t+1(τ)

]
= A$(τ − 1) − A$(τ) +

[
B$(τ − 1)ρx + D$(τ − 1)φπ − B$(τ)

]
xt

+
[
C$(τ − 1)ν1 − C$(τ)

]
(σ2

t − σ̄2) +
[
D$(τ − 1)ρπ − D$(τ)

]
(π̄t − µπ).

Innovation in nominal bond returns are:

rb,$
t+1(τ) − Et

[
rb,$
t+1(τ)

]
= (τ − 1)

(
−y$

t+1(τ − 1) + Et

[
y$

t+1(τ − 1)
])

,

= D$(τ − 1)ζπ,ησtηt+1 +
[
B$(τ − 1) + D$(τ − 1)ζπ,e

]
ϕeσtet+1

+C$(τ − 1)σwσtwt+1 + D$(τ − 1)σzξt+1.

Expected excess bond returns adjusted for a Jensen term, or nominal bond risk premia, are given
by:

Et

[
rb,e,$
t+1 (τ)

]
≡ −Covt

[
m$

t+1, r
b,e,$
t+1 (τ)

]

= Covt

[
πt+1, r

b,e,$
t+1 (τ)

]
− Covt

[
mt+1, r

b,e,$
t+1 (τ)

]

= rb,e,$
0 (τ) + F $(τ)(σ2

t − σ̄2)

where

rb,e,$
0 (τ) = D$(τ − 1)σzσπ + F $(τ)σ̄2

F $(τ) = (ϕπ,η + α) D$(τ − 1)ζπ,η +(
ϕπ,e +

α − ρ

κc
1 − ρx

)[
B$(τ − 1) + D$(τ − 1)ζπ,e

]
ϕ2

e +
α − ρ

1 − ρ
Ac

2C
$(τ − 1)σ2

w +

χ
α − ρ

1 − ρ
Ac

2σw

[
B$(τ − 1) + D$(τ − 1)ζπ,e

]
ϕe + χ

α − ρ

κc
1 − ρx

ϕeC
$(τ − 1)σw

12



We have used the fact that:

Covt

[
πt+1, rx

$
t+1(τ)

]
=

{
ϕπ,ηD

$(τ − 1)ζπ,η + ϕπ,e

[
B$(τ − 1) + D$(τ − 1)ζπ,e

]
ϕ2

e

+χϕπ,eϕeC
$(τ − 1)σw

}
σ2

t + D$(τ − 1)σzσπ

Covt

[
mt+1, rx

$
t+1(τ)

]
=

{
−αD$(τ − 1)ζπ,η −

α − ρ

κc
1 − ρx

[
B$(τ − 1) + D$(τ − 1)ζπ,e

]
ϕ2

e

−
α − ρ

1 − ρ
Ac

2C
$(τ − 1)σ2

w − χ
α − ρ

1 − ρ
Ac

2σw

[
B$(τ − 1) + D$(τ − 1)ζπ,e

]
ϕe

−χ
α − ρ

κc
1 − ρx

ϕeC
$(τ − 1)σw

}
σ2

t .

In sum, nominal expected excess bond returns (nominal bond risk premia) only vary over time
because economic uncertainty (σ2

t − σ̄2) varies. The loading F (τ) measures their sensitivity to this
factor; it depends on the maturity of the bond.

The Cochrane-Piazzesi Factor Define the nominal forward rate for a loan between period t+τ
and t + τ + 1 as usual from nominal bond prices:

f$
t (τ) = log P $

t (τ − 1) − log P $
t (τ).

In the model, the forward rate is

f$
t (τ) =

(
A$(τ − 1) − A$(τ)

)
+
(
B$(τ − 1) − B$(τ)

)
xt +

(
C$(τ − 1) − C$(τ)

)
(σ2

t − σ̄2) +
(
D$(τ − 1) − D$(τ)

)
(π̄t − µπ)

Given that the nominal model has three state variables, we can invert the state variables from any
three forward rates, say f$

t (1), f$
t (3), and f$

t (5). Put differently, one linear combination of forward
rates is perfectly correlated with (σ2

t − σ̄2). This is the linear combination of interest, because this
state variable is the only source of time variation in bond and stock risk premia. Hence, this linear
combination is the best predictor of future bond returns. It is perfectly correlated with expected
bond returns. We call in the Cochrane-Piazzesi factor because the weights (c1, c3, c5) display a
tent-shaped function as in Cochrane and Piazzesi (2005):

CPt = c1f
$
t (1) + c3f

$
t (3) + c5f

$
t (5) = bCP (σ2

t − σ̄2). (36)

In order to pin down the ratio of the standard deviation of CPt relative to that of σ2
t , bCP , we form

annual expected excess bond returns on nominal bonds of horizons 2-, 3-, 4-, and 5-years in the
model. They only depend on σ2

t . We set the CP factor equal to the equally-weighted average of
these four returns, as we did in the data. Hence bCP is not a free parameter but rather a function
of the structural parameters of the model.

A.4 CP Betas

The question we want to ask of the long-run risk model is whether it is able to generate the cross-
sectional variation in the exposures of excess returns of book-to-market-sorted stock portfolios to

13



the CP factor. We showed in the main text that there is a clearly increasing pattern from growth to
value. Since this is an equilibrium model, stock returns are endogenous, and only cash-flow growth
can be specified exogenously. This leads us to impose the additional discipline that the model
must match also the cross-sectional variation in the exposures of dividend growth rates of book-to-
market-sorted stock portfolios to the CP factor. We also showed dividend growth betas that were
decreasing from growth (mildly positive) to value (strongly negative). Third, the CP factor is a
strong predictor of bond returns in the data; we want to capture this predictability quantitatively.
We now provide closed-form expressions for the contemporaneous return and dividend growth betas
and for lagged-CP betas for excess bond returns. We start from the expressions for expected stock
returns, expected excess stock returns, and expected dividend growth rates on stock portfolios in
equation (24)-(25).

Stock Returns and Excess Returns The unconditional, contemporaneous, CP beta for excess

stock returns is equal to:

βres ≡ β
(
re,i
t+1, CPt+1

)
= ν1β

res
Lagged + βres

Innov, (37)

βres
Lagged =

φi
d,σ − Ai

2(κ
i
1 − ν1) + α−ρ

1−ρ
Ac

2(κ
c
1 − ν1) + .5Γ(0)

bCP
, (38)

βres
Innov =

(
χAi

1

ϕe

σw

+ Ai
2

)
1 − ν2

1

bCP

, (39)

where the expression for Γ(0) was given earlier in this appendix. The contemporaneous CP-beta
of excess returns is the sum of the lagged beta , multiplied by the persistence of CP , ν1, plus the
innovation beta. The latter arises from the fact that pd innovations and CP innovations are both
driven by the shock wt+1 and from the fact that innovations to wt+1 and et+1 may be correlated
(χ 6= 0).
Likewise, the unconditional, contemporaneous, CP beta for stock returns is equal to:

βrs ≡ β
(
ri
t+1, CPt+1

)
= ν1β

rs
Lagged + βrs

Innov, (40)

βrs
Lagged =

ρ

bCP

Cov[xt, σ
2
t − σ̄2]

V [σ2
t − σ̄2]

+
φi

d,σ − Ai
2(κ

i
1 − ν1)

bCP
, (41)

βrs
Innov =

(
χAi

1

ϕe

σw

+ Ai
2

)
1 − ν2

1

bCP

. (42)

The unconditional lagged CP-beta for realized returns is the same as for expected returns: β
(
ri
t+1, CPt

)
=

β
(
Et

[
ri
t+1

]
, CPt

)
. The reason is that unexpected returns have a zero unconditional correlation

with CPt by the law of iterated expectations.

Dividend Growth Rates The contemporaneous CP beta for dividend growth rates, denoted
with a superscript ∆d, can be shown to equal:

β∆d ≡ β
(
∆di

t+1, CPt+1

)
= ν1β

∆d
Lagged, (43)

β∆d
Lagged = =

(
χ

φi
d,x

1 − ρxν1

ϕe

σw

1 − ν2
1

bCP
+

φi
d,σ

bCP

)
. (44)
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The contemporaneous CP-beta for dividend growth is proportional to the lagged CP-beta, with
a constant of proportionality of ν1. The reason is that dividend growth innovations are orthog-
onal to CP innovations because ut+1 and wt+1 are uncorrelated. The unconditional covariance
between realized dividend growth rates ∆dt+1 and CPt is the same as the covariance with expected
growth rates because unexpected dividend growth rates have a zero correlation with CPt because
Cov

(
ϕ2

dσtu
i
t+1, σ

2
t − σ̄2

)
= 0, again because of the law of iterated expectations.

Bond Returns and Excess Returns For comparison, we also work out the betas of nominal
excess bond returns with respect to CP:

βreb(τ) ≡ β
(
rb,e,$
t+1 (τ), CPt+1

)
= ν1β

reb
Lagged(τ) + βreb

Innov(τ), (45)

βreb
Lagged(τ) =

.5Γ$(0) − .5Γ$(τ − 1)

bCP
, (46)

βreb
Innov(τ) =

(
χ
[
B$(τ − 1) + D$(τ − 1)ζπ,e

] ϕe

σw
+ C$(τ − 1)

)
(1 − ν2

1)

bCP
, (47)

where the expression for Γ$(τ), for τ ≥ 0, is given above. We will focus on the excess bond return
predictability by CP, by matching lagged excess return bond betas (equation 46) in model and
data.
Finally, the contemporaneous CP beta of nominal bond returns is given by:

βrb(τ) ≡ β
(
rb,$
t+1(τ), CPt+1

)
= ν1β

rb
Lagged(τ) + βrb

Innov(τ), (48)

βrb
Lagged(τ) =

ρ

bCP

Cov[xt, σ
2
t − σ̄2]

V [σ2
t − σ̄2]

+
1

bCP

Cov[π̄t − µπ, σ2
t − σ̄2]

V [σ2
t − σ̄2]

+
−α−ρ

1−ρ
(κc

1 − ν1)A
c
2 − .5Γ$(τ − 1)

bCP
, (49)

βrb
Innov(τ) =

(
χ
[
B$(τ − 1) + D$(τ − 1)ζπ,e

] ϕe

σw
+ C$(τ − 1)

)
(1 − ν2

1)

bCP
. (50)

(51)

Note that the first term of βrb
Lagged(τ) is common with the beta of stock returns; it is a yield curve

effect. The second term is also a yield curve effect. Both disappear if we look at excess returns.

Beta decomposition Recall the definition of a return

ri
t+1 = κi

0 + ∆di
t+1 + pdi

t+1 − κi
1pdi

t

and the definition of the pd ratio:

pdi
t = Ai

0 + Ai
1xt + Ai

2(σ
2
t − σ̄2)

Therefore, the contemporaneous return beta is:

βrs − β∆d = −
Ai

1(κ
i
1ν1 − 1)

bCP

Cov[xt, σ
2
t − σ̄2]

V [σ2
t − σ̄2]

−
Ai

2(κ
i
1ν1 − 1)

bCP
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If κi
1ν1 − 1 > 0, which is a statement about the relative persistence of x and σ2

t − σ̄2, and χ < 0,
then both terms on the RHS are positive because Ai

1 > 0 and Ai
2 < 0. Since value stocks have

higher Ai
1 and more negative Ai

2, this explains the increasing pattern in the LHS from growth to
value.
Another way to understand this is by using

pdi
t =

κi
0

κi
1 − 1

+ ∆di,H
t − ri,H

t ,

Therefore, the contemporaneous return beta is:

βrs
CP − β∆d = β

[
CPt+1,∆di,H

t+1 − κi
1∆di,H

t

]
− β

[
CPt+1, r

i,H
t+1 − κi

1r
i,H
t

]
(52)

The first beta on the RHS measures the covariance of innovations of CPt+1 with news about future
dividend growth rates. It equals:

β
[
CPt+1,∆di,H

t+1 − κi
1∆di,H

t

]
= −

φi
d,xν1

bCP

Cov[xt, σ
2
t − σ̄2]

V [σ2
t − σ̄2]

−
φi

d,σν1

bCP

(53)

+

{
χ

φi
d,x

(κi
1 − ρx)

ϕe

σw
+

φi
d,σ

(κi
1 − ν1)

}
(1 − ν2

1)

bCP
(54)

The second beta on the RHS measures the covariance of innovations of CPt+1 with news about
future stock returns. It equals:

β
[
CPt+1, r

i,H
t+1 − κi

1r
i,H
t

]
=

−ρν1

bCP

Cov[xt, σ
2
t − σ̄2]

V [σ2
t − σ̄2]

−

[
φi

d,σ − Ai
2(κ

i
1 − ν1)

]
ν1

bCP
(55)

+



χ

ρ

(κi
1 − ρx)

ϕe

σw
+

[
φi

d,σ − Ai
2(κ

i
1 − ν1)

]

κi
1 − ν1





(1 − ν2
1)

bCP
(56)

It is easy to verify that the difference between these two betas delivers the first expression we
derived for β̂r

CP − β̂∆d
CP .

A.5 The Relationship Between Stocks and Bonds

The Equity Risk Premium and the Campbell-Shiller Decomposition Expected dis-
counted future equity returns and dividend growth rates are given by:

ri,H
t ≡ Et




∞∑

j=1

(
κi

1

)−j
ri
t+j


 =

ri
0

κi
1 − 1

+
ρ

κi
1 − ρx

xt +

[
φi

d,σ − Ai
2(κ

i
1 − ν1)

]

κi
1 − ν1

(σ2
t − σ̄2) (57)

∆di,H
t ≡ Et




∞∑

j=1

(
κi

1

)
−j

∆di
t+j


 =

µi
d

κi
1 − 1

+
φi

d,x

κi
1 − ρx

xt +
φi

d,σ

κi
1 − ν1

(σ2
t − σ̄2) (58)

From these expressions, it is easy to see that

pdi
t =

κi
0

κi
1 − 1

+ ∆di,H
t − ri,H

t ,
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and to compute the elements of the variance-decomposition:

V [pdi
t] = Cov[pdi

t,∆di,H
t ] + Cov[pdi

t,−ri,H
t ] = V [∆di,H

t ] + V [ri,H
t ] − 2Cov[∆di,H

t , ri,H
t ].

We can also derive an expression for the expected future real bond yield (the risk-free rate):

yH
t (1) ≡ Et




∞∑

j=1

(
κi

1

)−j
yt+j−1(1)


 =

−A(1)

κi
1 − 1

+
ρ

κi
1 − ρx

xt +
−C(1)

κi
1 − ν1

(σ2
t − σ̄2) (59)

(60)

This makes it clear that the first term in the expected future stock return expression is a risk-free
rate effect. It drops out once we look at expected excess returns:

ri,e,H
t = ri,H

t − yH
t (1) =

ri
0 + A(1)

κi
1 − 1

+

[
φi

d,σ − Ai
2(κ

i
1 − ν1) + C(1)

]

κi
1 − ν1

(σ2
t − σ̄2)

The covariance between expected future dividend growth and expected future returns:

Cov
(
ri,H
t ,∆di,H

t

)
=

φi
d,xρ

(κi
1 − ρx)2

V [xt] +
φi

d,σ[φi
d,σ − Ai

2(κ
i
1 − ν1)]

(κi
1 − ν1)2

V [σ2
t − σ̄2]

+
ρφi

d,σ + φi
d,x[φi

d,σ − Ai
2(κ

i
1 − ν1)]

(κi
1 − ρx)(κi

1 − ν1)
Cov[xt, σ

2
t − σ̄2].

It is similar to that of expected one-period ahead dividend growth and expected returns in equation
(57). Indeed, if ρx = ν1, then it equals the latter covariance divided by (κi

1 − ρx)2 = (κi
1 − ν1)

2.
Note that when χ = 0 and φi

d,σ = 0, only the first term survives in the covariance between expected

returns and expected growth rates. Because ρ > 0 and φi
d,x > 0, it is always positive. Furthermore,

this is a pure risk-free rate effect: the correlation between the expected excess return and expected
dividend growth rate is exactly zero when χ = 0 and φi

d,σ = 0. In our model, this is no longer

necessarily the case because of the additional cash-flow effect coming through φi
d,σ 6= 0:

Cov
(
ri,e,H
t ,∆di,H

t

)
=

φi
d,σ[φi

d,σ − Ai
2(κ

i
1 − ν1) + C(1)]

(κi
1 − ν1)2

V [σ2
t − σ̄2]

+
ρφi

d,σ + φi
d,x[φi

d,σ − Ai
2(κ

i
1 − ν1) + C(1)]

(κi
1 − ρx)(κi

1 − ν1)
Cov[xt, σ

2
t − σ̄2].

Finally, for the consumption claim, we get the following expected future return, excess return, and
growth expressions:

rc,H
t =

rc
0

κc
1 − 1

+
ρ

κc
1 − ρx

xt − Ac
2(σ

2
t − σ̄2) (61)

∆cH
t =

µc

κc
1 − 1

+
1

κc
1 − ρx

xt (62)

rc,e,H
t =

rc
0 − A(1)

κc
1 − 1

+

α−1
1−ρ

Ac
2(κ

c
1 − ν − 1) + .5Γ(0)

(κc
1 − ν − 1)

(σ2
t − σ̄2) (63)
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The Term Structure of Equity We derive the price of dividend strips (or zero-coupon equity),
the price of a claim to unit of dividends of firm i at some future date t. See also Lettau and Wachter
(2007). Recall the log-linearized stock return expression for security or portfolio i:

ri
t+1 = κi

0 + ∆di
t+1 + pdi

t+1 − κi
1pdi

t. (64)

Log price-dividend ratios on dividend strips of horizon τ , p̃d
i

t(τ), are affine in the state vector:

p̃d
i

t(τ) = Am(τ) + Bm(τ)xt + Cm(τ)(σ2
t − σ̄2),

where the coefficients Am(τ), Bm(τ), and Cm(τ) follow recursions

Am(τ + 1) = Am(τ) + m0 + µi
d +

1

2
Γm(τ)σ̄2,

Bm(τ + 1)′ = ρxBm(τ) + φi
d,x − ρ,

Cm(τ + 1)′ = ν1C
m(τ) + φi

d,σ +
α − ρ

1 − ρ
(κc

1 − ν1)A
c
2 +

1

2
Γm(τ),

Γm(τ) = α2 + ϕ2
d − 2αϕdι +

[
Bm(τ) −

α − ρ

1 − ρ
Ac

1

]2

ϕ2
e +

[
Cm(τ) −

α − ρ

1 − ρ
Ac

2

]2

σ2
w

+2χ

[
Bm(τ) −

α − ρ

1 − ρ
Ac

1

] [
Cm(τ) −

α − ρ

1 − ρ
Ac

2

]
ϕeσw

initialized at Am(0) = 0, Bm(0) = 0, and Cm(0) = 0.

Proof. We conjecture that the log t + 1-price of a τ -period strip, scaled by the dividend in period
t + 1, is affine in the state

p̃d
i

t+1(τ) = Am(τ) + Bm(τ)′xt+1 + Cm(τ)(σ2
t+1 − σ̄2)

and solve for the coefficients Am(τ + 1), Bm(τ + 1), and Bm(τ + 1) in the process of verifying this
conjecture using the Euler equation:

exp p̃d
i

t(τ + 1) = Et

[
exp{mt+1 + ∆di

t+1 + p̃d
i

t+1(τ)}
]

= exp{m0 + µi
d + Am(τ) + (φi

d,x − ρ + Bm(τ)ρx)xt +

[
φi

d,σ +
α − ρ

1 − ρ
(κc

1 − ν1)A
c
2 + Cm(τ)ν1

] (
σ2

t

Et

[
exp{−ασtηt+1 +

[
Bm(τ) −

α − ρ

1 − ρ
Ac

1

]
ϕeσtet+1 +

[
Cm(τ) −

α − ρ

1 − ρ
Ac

2

]
σwσtwt+1 + ϕdσtut+1

We use the log-normality of the shocks to work out the expectation. Taking logs and collecting
terms, we obtain the conjectured linear expression for pdi

t(τ + 1) where the recursions are as given
above.

B Calibration

Our goal is to ask whether the model can quantitatively account for the patterns in CP betas and
returns we document in the main text. Therefore, we refrain from a wholesale re-calibration or
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estimation of the long-run risk model and make minimal deviations from the literature. Table 1
compares our calibration in the first column to the calibration in Bansal and Shaliastovich (2007)
(Column 2) and that of the original Bansal and Yaron (2004) (Column 3). All parameters are
quarterly since we solve the model at quarterly frequency and compare it to quarterly data. This
avoids complications arising from time aggregation. Our parameters are identical to those in Bansal
and Shaliastovich (2007), with the following exceptions. First, we introduce heteroscedasticity in
σ2

t − σ̄2. That is, we replace σwwt+1 by σwσtwt+1 in equation (7), and multiply our value of
σw by σ̄ to keep the unconditional variance of economic uncertainty the same. This change is
inconsequential. Second, we estimate ν1, the autocorrelation coefficient of economic uncertainty
σ2

t − σ̄2. Third, we estimate the parameter χ, which governs correlation between shocks to xt and
σ2

t . Fourth, we estimate the loadings of dividend growth φi
d,σ on σ2

t − σ̄2 and φi
d,x on xt for each

portfolio. We use 10 “book-to-market” portfolios and 1 “market” portfolio. Prior to the estimation,
we set the unconditional mean log real dividend growth rate, µi

d, equal to its observed value in the
data for each of the 11 portfolios. We then estimate 2+2×11 = 24 parameters in order to minimize
the distance between model and data along the following 38 dimensions: 11 contemporaneous log
excess stock return CP betas, 11 contemporaneous log real dividend growth CP betas, 11 equity
risk premia, and 5 lagged bond return CP betas for maturities 1-, 2-, 5-, 7-, and 10-years. The
estimation is by non-linear least squares.

B.1 Mapping from Monthly to Quarterly Parameters

The Bansal-Yaron model is calibrated and parameterized to monthly data. Since we want to
use data on quarterly consumption and dividend growth, and a quarterly series for the wealth-
consumption ratio, we recast the model at quarterly frequencies. We assume that the quarterly
process for consumption growth, dividend growth, the low frequency component and the variance
has the exact same structure than at the monthly frequency, with mean zero, standard deviation
1 innovations, but with different parameters. This appendix explains how the monthly parameters
map into quarterly parameters. We denote all variables, shocks, and all parameters of the quarterly
system with a tilde superscript. Our parameter values are listed at the end of this section, together
with details on the simulation approach.
Obviously, the preference parameters do not depend on the horizon (α̃ = α and ρ̃ = ρ), except for
the time discount factor β̃ = β3. Also, the long-run average log wealth-consumption ratio at the
quarterly frequency is lower than at the monthly frequency by approximately log(3), because log
of quarterly consumption is the log of three times monthly consumption.
We accomplish this by matching the conditional and unconditional mean and variance of log con-
sumption and dividend growth. Log quarterly consumption growth is the sum of log consumption
growth of three consecutive months. We obtain ∆c̃t+1 ≡ ∆ct+3 + ∆ct+2 + ∆ct+1

∆c̃t+1 = 3µc +(1+ ρx + ρ2
x)xt +σtηt+1 +σt+1ηt+2 +σt+2ηt+3 +(1+ ρx)ϕeσtet+1 +ϕeσt+1et+2 (65)

Log quarterly dividend growth looks similar:

∆d̃t+1 = 3µd+φ(1+ρx+ρ2
x)xt+ϕdσtut+1+ϕdσt+1ut+2+ϕdσt+2ut+3+φ(1+ρx)ϕeσtet+1+φϕeσt+1et+2

(66)
First, we rescale the long-run component in the quarterly system, so that the coefficient on it in
the consumption growth equation is still 1:

x̃t = (1 + ρx + ρ2
x)xt.
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Table 1: Quarterly Calibration

Parameter Our model BS 2008 BY 2004

Preferences
α 8 8 10
ρ 2/3 2/3 2/3
β .9961 .9961 .9970

Consumption Process

µ .0048 .0048 .0045
σ̄ .0056 .0056 .0135
ρx .9732 .9732 .9383
ϕe .1617 .1617 .1264
ν1 EST .9880 .9615
σw .1984e-5/σ̄ .1984e-5 .3932e-5
χ EST NA NA

Dividend Process

µm

d
.0045 .0048 .0045

ϕm

d
5.9860 5.9860 4.4960

φm

d,x
EST 1.5 3

ιm .10 .10 NA
φm

d,σ
EST NA NA

Inflation Process

µπ .0096 .0096 NA
ϕπ,η 0 0 NA
ϕπ,e -2 -2 NA
σπ .0061 .0061 NA
ρπ .5718 .5718 NA
φπ -.35 -.35 NA
ζπ,η 0 0 NA
ζπ,e -1 -1 NA
σz 6.9282e-6 6.9282e-6 NA

Notes: This Table lists our benchmark parameter choices. All parameters are expressed in quarterly units. See Appendix B.1

on how we go from the monthly parameters of Bansal and Shaliastovich (2007) to the quarterly values in the second column

and from the monthly values of Bansal and Yaron (2004) to the quarterly values in the third column.

Second, we equate the unconditional mean of consumption and dividend growth :

µ̃ = 3µ, µ̃d = 3µd.

These imply that we also match the the conditional mean of consumption growth:

Et[∆ct+3 + ∆ct+2 + ∆ct+1] = 3µ + (1 + ρx + ρ2
x)xt = µ̃ + x̃t = Et[∆c̃t+1]

Third, we also match the conditional mean of dividend growth by setting the quarterly leverage
parameter φ̃ = φ.
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Fourth, we match the unconditional variance of quarterly consumption growth:

V [∆c̃t+1] = (1 + ρx + ρ2
x)2V [xt] + σ2

[
3 + (1 + ρx)2ϕ2

e + ϕ2
e

]

= (1 + ρx + ρ2
x)2

ϕ2
eσ

2

1 − ρ2
x

+ σ2
[
3 + (1 + ρx)2ϕ2

e + ϕ2
e

]

=
ϕ̃2

eσ̃
2

1 − ρ̃2
x

+ σ̃2

The first and second equalities use the law of iterated expectations to show that

V [σt+jηt+j+1] ≡ E
[
Et+j

{
σ2

t+jη
2
t+j+1

}]
− (E [Et+j {σt+jηt+j+1}])

2 = E
[
σ2

t+j

]
− 0 = σ2

and the same argument applies to terms of type V [σt+jet+j+1]. Coefficient matching on the variance
of consumption expression delivers expressions for σ̃2 and ϕ̃e:

σ̃2 = σ2
[
3 + (1 + ρx)

2ϕ2
e + ϕ2

e

]

ϕ̃2
e = ϕ2

e

(1 − ρ̃2
x)(1 + ρx + ρ2

x)2

1 − ρ2
x

σ2

σ̃2

=
(1 − ρ6

x)(1 + ρx + ρ2
x)2

1 − ρ2
x

ϕ2
e

3 + (1 + ρx)2ϕ2
e + ϕ2

e

,

where the third equality uses the first equality. Note that we imposed ρ̃x = ρ3
x, which follows from

a desire to match the persistence of the long-run cash-flow component. Recursively substituting,
we find that the three-month ahead x process has the following relationship to the current value:

xt+3 = ρ3
xxt + ϕeσt+2et+3 + ρxϕeσt+1et+2 + ρ2

xϕeσtet+1

which compares to the quarterly equation

x̃t+1 = ρ̃xx̃t + ϕ̃eσ̃tẽt+1

The two processes now have the same auto-correlation and unconditional variance.
Fifth, we match the unconditional variance of dividend growth. Given the assumptions we have
made sofar, this pins down ϕd:

ϕ̃2
d =

3ϕ2
d + φ2(1 + ρx)2ϕ2

e + φ2ϕ2
e

3 + (1 + ρx)2ϕ2
e + ϕ2

e

Sixth, we match the autocorrelation and the unconditional variance of economic uncertainty σ2
t .

Iterating forward, we obtain an expression that relates variance in month t to the one in month
t + 3:

σ2
t+3 − σ2 = ν3

1(σ2
t − σ2) + σwν2

1wt+1 + σwν1wt+2 + σwwt+3

By setting ν̃1 = ν3
1 and σ̃2

w = σ2
w(1 + ν2

1 + ν4
1), we match the autocorrelation and variance of the

quarterly equation
σ̃2

t+1 − σ̃2 = ν̃1(σ̃
2
t − σ̃2) + σ̃ww̃t+1
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C Results

We now discuss the estimation results in detail. The main text of the paper summarizes the findings,
focussing on the intuition.

C.1 Standard LRR Model

As a benchmark, Figure 1 shows these 38 moments for the Bansal and Shaliastovich (2007) calibra-
tion, henceforth B-S calibration. This calibration sets χ = 0 and φi

d,σ = 0. It also features a high
value for ν1, so that economic uncertainty is very persistent, in fact more persistent than long-run
growth (ν1 > ρx). To give this model its best chance at matching the value premium, we estimate
φi

d,x in order to match risk premia on each portfolio, following Bansal, Dittmar, and Lundblad
(2005), Bansal, Kiku, and Yaron (2006), and Hansen, Heaton, and Li (2008). The bottom right
panel shows that the model is flexible enough to exactly match not only the equity risk premium
on the market portfolio but also the risk premia on each of the 10 book-to-market portfolios. The
calibration accomplishes this by having value stocks carry more long-run risk: φi

d,x is higher for
value than for growth. In other words, value stocks are risky because their dividend growth is
high in states of the world where long-run consumption growth xt is high. These are states of low
marginal utility growth for the representative investor. Panel A of 2 shows that φi

d,x ranges from

3.3 for BM1 to 5.3 for BM10. It is 3.5 for the market portfolio. A higher φi
d,x translates in a higher

Ai
1, which increases the equity risk premium through the second term in equation (??).

However, inspection of the two top panels of Figure 1 shows that this calibration fails to generate
the observed relationship between the CP factor and excess stock returns and dividend growth
rates. First, equation (43) shows that when both φi

d,σ = 0 and χ = 0, the contemporaneous
dividend growth betas are zero for all portfolios. Because expected dividend growth does not
depend on economic uncertainty σ2

t , it is uncorrelated with CP (which perfectly correlates with
economic uncertainty). Second, the excess stock return betas do not show the increasing pattern
we found in the data, and they are at least a factor of five too big. Equation (37) helps us
understand why. The innovation betas are all negative because χ = 0 and Ai

2 < 0. They become
increasingly negative from growth to value: from -8 to -16. The lagged excess return betas in (38)
are the sum of φi

d,σ, −Ai
2(κ

i
1 − ν1), which increases from 360 to 630 from growth to value, and

α−ρ
1−ρ

Ac
2(κ

c
1−ν1)+ .5Γ(0) = −993+1, 046 = 53. Given bCP = 35, when φi

d,σ = 0, these lagged excess
stock return betas range from 11 to 19. Combining the two results in contemporaneous betas that
are too high without a pronounced pattern from growth to value. Finally, he first beta on the right
hand side of equation (??) is zero when χ = 0 and φi

d,σ = 0. The second term is negative: high
bond risk premia (or positive innovations in CP) coincide with negative innovations in expected
future stock returns, which seems counter-intuitive. In addition, there is no clear pattern in this
beta difference as opposed to the strongly increasing pattern in the data.

C.2 Results for Our Calibration

Our estimation sets χ = .2048 > 0 and φi
d,σ < 0 in order to match the 38 moments. It also

substantially lowers the value for ν1 from .9880 to .9296 (ν1 < ρx). The lower persistence we
estimate in economic uncertainty facilitates the interpretation of σ2

t (or CPt) as a business cycle
variable. Figure 2 shows that our calibration does a good job matching the patterns and magnitudes
of the CP exposures of excess stock returns, dividend growth rates, while maintaining the good
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Figure 1: Risk Premia and Betas for χ = 0 and φi
d,σ = 0
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fit for the value premium. What drives these results? First, a sufficiently negative φi
d,σ directly

generates a negative dividend growth beta. Panel B of Table 2 shows that the estimation chooses
negative loadings φi

d,σ for all portfolios. They range from -537 for growth (BM1) and decrease
monotonically to -883 for value (BM10). According to this channel, stocks, and in particular value
stocks, have lower expected dividend growth when economic uncertainty, and therefore CP , is high.
Second, this makes them risky because they have low cash flow growth exactly when marginal utility
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Table 2: Cash-Flow Parameters and the Value Premium
In Panel A, we use the benchmark calibration of Bansal and Shaliastovich (2007). In panel B, we use our own
calibration. The first column reports the unconditional mean dividend growth rate. The second column reports the
loading of dividend growth on the long-run risk state variable xt. The third column reports the loading of dividend
growth on the economic uncertainty state variable σ

2
t . The fourth column reports the equity risk premium, the

expected excess log stock return (including a Jensen adjustment). The last column reports the mean price-dividend
ratio.

Panel A: B-S Calibration

µi

d
φi

d,x
φi

d,σ
Risk premium PD

market 1.79 3.52 0 6.82 16.56

BM1 0.60 3.30 0 6.01 15.13
BM2 1.65 3.45 0 6.65 16.53
BM3 2.08 3.70 0 7.24 16.54
BM4 1.41 3.82 0 7.14 15.07
BM5 3.16 3.85 0 7.97 18.21
BM6 2.69 4.09 0 8.14 16.48
BM7 2.49 4.31 0 8.39 15.57
BM8 3.17 5.17 0 10.01 14.83
BM9 3.86 5.05 0 10.20 16.16
BM10 4.89 5.33 0 11.21 17.39

Panel B: Own Calibration

µi

d
φi

d,x
φi

d,σ
Risk premium PD

market 1.79 4.42 -575.17 6.81 17.17

BM1 0.60 4.17 -536.69 6.09 15.30
BM2 1.65 4.35 -558.70 6.66 17.05
BM3 2.08 4.71 -615.94 7.32 17.11
BM4 1.41 4.74 -614.86 7.13 15.64
BM5 3.16 4.92 -655.90 8.02 19.31
BM6 2.69 5.16 -687.54 8.18 17.43
BM7 2.49 5.39 -716.69 8.43 16.49
BM8 3.17 6.28 -854.99 9.97 16.30
BM9 3.86 6.22 -851.68 10.22 17.96
BM10 4.89 6.39 -883.53 11.00 20.48

growth is high. Hence the value premium. This φi
d,σ effect reinforces the φi

d,x effect. Panel B shows
that value stocks continue to have higher loadings on long run growth xt than growth stocks, just
as in Panel A. The dividend growth properties of the market portfolio resemble those of the third
growth decile portfolio, consistent with the finding in Jurek and Viceira (2006) that growth stocks
make up about 70% of the U.S. market capitalization.

Because χ is estimated to be .20, xt and σ2
t have a conditional correlation of 20%. Positive

correlation between the two state variables implies that times with higher growth are also times
with more economic uncertainty. Such an economy is less risky relative to the one with χ = 0
because the shocks to uncertainty (which causes prices to fall) are hedged by a higher long-term
growth rate. The interest rate increases (slightly) because the demand for bonds is lower because of
reduced precautionary savings motives. Because the economy is less risky, the price dividend ratios
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on all assets are higher and the risk premia lower. This reduction in risk is why all φi
d,x values are

somewhat higher in Panel B (χ = 0.2) than in Panel A (χ = 0). Third, the positive χ helps to
increase the excess stock return innovation betas, while the negative φi

d,σ helps to lower the lagged
excess stock return betas. Both help to match the observed magnitude of the contemporaneous
excess stock return betas. A positive χ suggests that economic uncertainty is highest at the end
of a recession, when growth is about to resume. Such a positive correlation arises endogenously in
models of information production (Van Nieuwerburgh and Veldkamp 2006). It also increases the
correlation between expected returns and expected dividend growth. (Binsbergen and Koijen 2007)
estimate this correlation for the aggregate stock market and conclude it is positive. In both our
model and the B-S calibration, the lagged excess bond return betas are somewhat too high. This is
not surprising, in the model bond returns and CP are both driven by σ2

t , with no offsetting effect
from cash-flow growth as in the case of stocks. Finally, our calibration predicts a strongly increasing
pattern in the beta difference of equation (??), just as in the data. The first beta on the right hand
side is positive and increasing from growth to value. A high bond risk premium (at the end of a
recession or the beginning of a boom) implies good news about future dividend growth, and more
so for value stocks than for growth stocks. The second term is also positive and increasing. A high
bond risk premium (at the end of a recession) coincides with a high equity risk premium, and more
so for value than for growth stocks. The cash-flow effect dominates the discount rate effect.

Matching these betas does not come at the expense of matching the moments of consumption,
interest rates, or inflation, for the most part because we kept these parameters at their standard
values. Table 3 plots unconditional means, standard deviations (both expressed in percent per
year), and quarterly autocorrelation in the benchmark B-S calibration (first 3 columns) and in our
calibration (last 3 columns). The moments in our model are both close to the ones in the B-S
calibration and close to the data.
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Figure 2: Risk Premia and Betas for χ > 0 and φi
d,σ < 0
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Table 3: Other Moments of Interest
This table reports unconditional means (expressed in percent per year), standard deviations (expressed in percent
per year), and the quarterly first-order autocorrelation in the benchmark B-S calibration (first 3 columns) and in our
calibration (last 3 columns). The moments reported for stocks are for the market portfolio, and are denoted with a
m superscript. The notation follows the main text.

Panel A: B-S Calibration Panel B: Our Calibration
mean stdev ac(1) mean stdev ac(1)

x 0.00 0.78 0.97 0.00 0.78 0.97
σ2 0.0123 0.0026 0.99 0.0123 0.0011 0.93

π̄ − µπ 3.84 0.84 0.84 3.84 0.84 0.84

∆c 1.92 1.36 0.32 1.92 1.36 0.32
∆dm 1.79 7.20 0.14 1.79 7.50 0.21

π 3.84 1.52 0.29 3.84 1.52 0.29

y(1) 2.19 0.54 0.97 2.34 0.52 0.97
y$(1) 6.18 0.52 0.63 6.33 0.51 0.62

y$(20) 6.30 0.15 0.92 6.48 0.14 0.91
y$(20) − y$(1) 0.12 0.73 0.11 0.15 0.73 0.11

Et

[
rb,e,$

t+1 (20)
]

-0.94 0.20 0.99 -0.76 0.07 0.93

Et

[
rb,e,$

t+1 (20)
]

0.21 0.04 0.99 0.26 0.02 0.93

CP 0.45 0.09 0.99 0.57 0.04 0.93

WC 67.75 5.66 0.98 74.83 4.29 0.97
PDm 16.56 32.77 0.98 16.89 34.77 0.97

rm

t+1 − yt(1) 5.68 15.15 0.01 5.42 17.23 0.00
Et[r

m

t+1 − yt(1)] 5.68 1.17 0.99 5.42 0.73 0.95
Et[∆dm

t+1] 1.79 2.75 0.97 1.79 3.46 0.97
Et[r

e,m

t+1 ] 6.82 1.42 0.99 6.90 0.60 0.93
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