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ABSTRACT

This paper develops and applies a framework in which to carefully assess the true

forecasting power of economic variables in predictive regressions in a large universe

of individual hedge funds. We shed light on the sources and economic interpreta-

tion of predictor models that generate superior out-of-sample performance. Using

monthly returns for more than 15,000 funds during the period January 1994 through

December 2008, we �nd strong evidence of predictability in the hedge fund industry.

We show that the economic value of predictability can be improved by employing

a strategy that combines forecasts from several single predictive regressions instead

of relying on single or multiple predictive regressions. We investigate the economic

and statistical sources of such a combination strategy�s superior performance by ex-

amining the signal to noise ratio in di¤erent components of the predictive regression

relationship and by examining the characteristics of funds selected by the strategy.

Finally, we use the �nancial crisis of 2008 as a natural out-of-sample test and show

that the combination strategy produces superior risk-adjusted performance during

the crisis.
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I Introduction

This paper develops and applies a framework in which to carefully assess the true fore-

casting power of economic variables in predictive regressions in a large universe of in-

dividual hedge funds. We shed light on the sources and economic interpretation of

predictor models that generate superior out-of-sample performance. Using monthly re-

turns for more than 15,000 funds during the period January 1994 through December

2008, we �nd strong evidence of predictability in the hedge fund industry. We show

that the economic value of predictability can be improved by employing a strategy that

combines forecasts from several single predictive regressions instead of relying on single

or multiple predictive regressions. We investigate the economic and statistical sources

of such a combination strategy�s superior performance by examining the signal to noise

ratio in di¤erent components of the predictive regression relationship and by examining

the characteristics of funds selected by the strategy. Finally, we use the �nancial crisis of

2008 as a natural out-of-sample test and show that the combination strategy produces

superior risk-adjusted performance during the crisis. We carefully address issues related

to potential small sample bias, illiquidity, inference in a large cross-section of funds and

show that our results are robust to alternative fund inclusion criteria as well as realistic

portfolio rebalancing procedures.

The study of asset return predictability typically consists of assessing the predictive

power of various economy-wide variables (e.g., Keim and Stambaugh (1986), Campbell

(1987), and Fama and French (1989)) as well as determining whether predictability is

consistent with rational asset-pricing by decomposing predictability into its main com-

ponents, such as time-varying risk premia and factor loadings (Ferson and Harvey (1991,

1999), Kirby (1998), and Avramov (2004)). While these important questions have been

raised on several occasions for broad-based stock and bond indices, as well as for mutual

funds (Ferson and Schadt (1996)), little is known on hedge fund return predictabil-

ity. The hedge fund universe is a natural choice to look for predictability due to the

quite �exible strategies implemented by hedge fund managers, at least relative to mu-

tual funds and other conservative investment vehicles. Other papers have examined

hedge fund index level returns (e.g., Amenc, El Bied, and Martellini (2003), Hamza,

Kooli, and Roberge (2006)). Our focus on individual hedge fund returns is motivated

by the fact that by simply averaging the slope coe¢ cients across funds, we would lose

a lot of information on the predictive ability of each predictor j on the cross-section

of funds. While recent papers uncover the bene�ts from utilizing predictability in the
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portfolio selection process (e.g. Avramov, Kosowski, Naik, and Teo (2008)), they are

not particularly informative regarding the prevalence of predictable hedge funds in the

entire population, as well as the importance of di¤erent variables in predicting hedge

fund returns and alphas (interpreted as managerial skills in market timing and security

selection).

This paper proposes an in-depth analysis of the ability of a wide range of predictive

variables to forecast returns in a large universe of individual hedge funds. Speci�cally,

for any economic variable that is a potential candidate for forecasting future hedge fund

returns, our approach allows to 1) measure the proportions of hedge funds in the pop-

ulation having truly predictable returns, 2) determine the components of predictability

by estimating the proportions of funds exhibiting true alpha predictability.

Measuring such proportions from data seems a priori straightforward. One can

simply count the number of funds with su¢ ciently high (low) estimated regression co-

e¢ cients, bb; with respect to any given predictive variable (i.e., funds with signi�cant bb).
Essentially, in implementing such a procedure, we conduct a multiple-hypothesis test,

since we simultaneously examine the coe¢ cient of each hedge fund in the population

(instead of just one fund). Thus, a simple count of these signi�cant funds is incorrect,

as it includes "false discoveries", i.e., funds for which the predictive variable is thought

to have some predictive ability, while in reality its true forecasting power is nonexistent

(i.e., its true slope coe¢ cient in the predictive regression is zero). One important con-

tribution of our paper is to correctly account for these "false discoveries", leading to a

major adjustment from the initial count of signi�cant funds up to 60%.1

Moreover, we apply an econometric framework to account for the small sample bias in

the fund estimated regression coe¢ cient, bb (e.g., Nelson and Kim (1993), Stambaugh

(1999)). Small-sample bias is a major concern for hedge funds as their return history is

typically short. Indeed, if a large number of fund-estimated coe¢ cients are biased, our

assessment of the predictive ability of di¤erent predictors can simply be erroneous. To

address this issue, we extend the single-asset approach of Amihud and Hurvich (2004;

AH hereafter) along two dimensions. First, we consider a large number of assets. Sec-

ond we formulate an asset pricing speci�cation with time varying parameters, a general

version of AH predictive regression. Ultimately we are able to considerably reduce the

1Empirically, we �nd that on average around 20% of the funds have predictable returns, while 80%
are unpredictable. Using a large signi�cance level such as 0.4 (so as to detect most predictable funds, the
total proportion of "false discoveries" amounts to 32% (0:8 �0:4). Since the total proportion of signi�cant
funds equals 52% (32+20), the "false discoveries" represent more than 60% of the signi�cant funds.
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bias in both return and alpha predictive regressions. Contrary to the bootstrap, the

AH approach is computationally much faster, which is the context of our work is an

important advantage due to the large cross-section of funds in our sample (more than

15,000). Using an extensive Monte-Carlo study across a wide range of speci�cations, we

carefully check whether the AH approach is robust to the speci�c features of individual

hedge fund returns (such as departure from normality). We �nd that the AH approach

accurately controls for the small-bias, and exhibit better properties than the bootstrap.

If some economic variables have true predictive ability, an obvious question is whether

this information can be utilized by a real-time investor (or a fund-of-fund manager)

seeking to improve performance. Indeed, we propose an extensive analysis of the out-of-

sample performance of hedge fund conditional strategies. Speci�cally, for each predictive

variable, we form decile portfolios containing the 10% of funds with the highest condi-

tional alpha t -statistics. This predictive signal automatically incorporates the signal of

both the unconditional and time-varying alphas in one single measure. In this context,

our approach extends previously introduced methodologies applied to asses mutual and

hedge fund persistence (e.g., Elton, Gruber, and Blake (1996), Carhart (1997), Kosowski,

Naik, and Teo (2007)). In particular, we apply a time-varying, as opposed to a purely

static, performance metric.

An essential concern with the performance of a single-predictor conditional strategy

is that the investor is subject to speci�cation uncertainty. That is, the investor does not

know ex ante which predictor will produce the best ex post performance (e.g., Pesaran

and Timmermann (1995)). To address this issue, we also measure the performance of a

"combination" strategy which pools the conditioning information across the entire set

of predictors, and across individual hedge funds.

Our empirical analysis examines the predictive ability of four economy-wide vari-

ables: the default spread, the dividend yield, the VIX range (de�ned as the one-month

high minus low VIX), and the monthly percentage �ows to the hedge fund industry.

Our universe of funds contains 15,922 funds across ten di¤erent investment categories

(Convertible Arbitrage, Emerging Markets, Long/Short Equity, Equity Market Neutral,

Event Driven, Fixed Income Relative Value, Fund of Funds, Macro, Managed Futures

and Multi-Strategy).

Using monthly returns spanning the period January 1994 through December 2008,

the strongest evidence of predictability is obtained with the default spread, the VIX,
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and fund �ows. For instance, we �nd that 22.1 percent of Macro funds and 26.6 per-

cent of Fixed Income Relative Value funds have a truly positive exposure to default

spread. This relation is consistent with the strategies followed by these two investment

categories, such as �xed-income arbitrage based or FX carry trades (Jylha, Suominen

and Lyytinen (2008)). Consistent with Naik, Ramadorai, and Stromquist (2007) who

show that past �ows negatively a¤ect future performance due to capacity constraints,

we �nd that a substantial proportion of funds (between 11 and 54 percent) are nega-

tively related to lagged �ows. Examining alpha predictability using the Fung and Hsieh

(2004) seven-factor model, we �nd that the proportions of funds exhibiting alpha pre-

dictability remain nearly unchanged. It implies that the bulk of return predictability is

due to time-varying alphas, as opposed to time-varying factor risk-premia.In robustness

checks we show that our results are robust to alternative fund inclusion criteria as well

as realistic portfolio rebalancing procedures and the use of lower frequency returns.

Measuring the out-of-sample performance of the hedge fund conditional portfolios

between January 1997 and December 2008, we �nd that the "combination" strategy

which selects funds based on their conditional alpha t-statistic across all predictors,

generates the highest performance, and consistently beats the unconditional strategy

across all investment categories. For instance, in the entire population, the annual al-

pha and Information Ratio di¤erentials are respectively equal to 1.4% (6.8-5.4) and 0.4

(2.5-2.1), and are both signi�cantly di¤erent from zero. This is consistent with the

previous literature (e.g., Bates and Granger (1969)) showing that combining forecasts

help to improve performance. The single-predictor strategies, which only use one single

predictor to predict the fund alphas, are generally not able to outperform the uncon-

ditional strategy. Empirically, we �nd that, for most funds, the signal to noise ratio is

much higher for the unconditional alpha than for the slope coe¢ cient. This explains

why the "combination" strategy selects funds with high unconditional t-statistics (to

generate high unconditional alphas), and, then, among these funds, overweights those

having a positive slope signal relative to any predictors. For single-predictor strategies,

high predictor values increase uncertainty, reduce the fund predictive signals and lead to

the selection of funds with lower performance than the unconditional portfolio. Finally,

we �nd that the lowest performance is achieved when using all predictors simultaneously

in a multiple predictive regression. One possible reason is that the multiple-predictor

estimated alpha is less robust, out-of-sample, than its single-predictor counterpart. Our

baseline predictability analysis is carried out for the 1994-2007 period, thus allowing

us to use the �nancial crisis of 2008 as a natural out-of-sample test. We �nd that the
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combination strategy generates a higher risk-adjusted performance and Sharpe Ratio in

2008 than the alternative strategies. Further sensitivity tests by investment category

show that the combination strategy performs particularly well among the two largest

hedge fund categories (Long/Short Equity and Funds of Funds), which goes some way in

explaining why the strategy generates superior out-of-sample performance in a sample

of all funds.

The paper is structured as follows. In Section II we discuss the methodology. Section

III describes the data. Section IV reports our empirical results regarding in-sample pre-

dictability and the economic value of incorporating genuine predictability into portfolio

formation base on out-of-sample tests. Section V concludes.

II Hedge Fund Predictability

A Predictability in a Multiple Fund Setting

A.1 Return Predictability

To begin, let us consider a cross-section of M individual hedge funds. For each fund i

in the population (i = 1; :::;M); we use a set of J economic variables, Zj;t (j = 1; :::; J);

observed at time t to predict its excess return, ri;t+1, (over the riskfree rate) between

time t and t+ 1 :

ri;t+1 = bi;0 +

JX
j=1

bi;j � Zj;t + ui;t+1; (1)

where bi;0 is the intercept and each slope coe¢ cient, bi;j ; determines the relation between

fund i and predictor j�fund i is predictable with respect to Zj;t if bi;j is di¤erent from

zero: Finally, ui;t+1 denotes the fund innovation term.

Since individual funds follow di¤erent strategies and trade di¤erent assets, the sign

and magnitude of the slope coe¢ cient, bi;j , is likely to vary across funds. One objective of

the paper is to propose a measure of predictability that accounts for this cross-sectional

diversity. Speci�cally, for each predictor j (j = 1; :::; J); we decompose the entire fund

population into two distinct predictability categories:

�The proportion of unpredictable funds having no relation with predictor j (bi;j = 0):
We denote this proportion by �0(j):

�The proportion of predictable funds having a non-zero relation with predictor j
(bi;j 7 0). We denote by ��A(j) and �

+
A(j) the proportion of funds having a negative

and a positive relation, respectively.
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Of course, we cannot observe the (true) slope coe¢ cient, bi;j ; and, therefore, we

need to infer the proportions of predictable funds, ��A(j) and �
+
A(j); from the data. One

obvious procedure is to compute the estimated slope coe¢ cient, bbi;j ; for each fund i, and
then consider as predictable the funds in the population with su¢ ciently low or high bbi;j
(i.e, funds with signi�cant bbi;j).

The problem is that, with a limited sample of data, the predictable funds cannot

be fully distinguished from the unpredictable ones. To illustrate, Figure 1 shows the

hypothetical distribution of the estimated slope coe¢ cient, bbi;j ; of a given fund i across
the three possible relation with predictor j (negative, zero, and positive relation): After

choosing a signi�cance level, �, we observe whether bbi;j lies outside the thresholds
implied by � (denoted by b�� and b

+
�), and label fund i "signi�cant" if its bbi;j falls into

the signi�cance region. As shown by the black and grey areas in Figure 1, a fund with

no predictability (bi;j = 0) has a positive probability of being a "false discovery", i.e., a

fund with a signi�cant estimated slope coe¢ cient, bbi;j ; while its (true) slope coe¢ cient
bi;j equals zero. Because we look for predictability across a very large number of funds

to look for predictability, this procedure is bound to make some "false discoveries".

Please insert Figure 1 here

Speci�cally, if we consider the funds with positive bbi;j , we expect the proportion
of signi�cant funds, denoted by E(S+�(j)); to be the sum of: 1) the proportion of

predictable funds having a positive relation with predictor j, �+A (j) (that we want to

estimate); and 2) a group of "false discoveries", denoted by E(F+�). To measure these

false discoveries, we rely on the approach proposed by Barras, Scaillet, and Wermers

(2009;BSW hereafter). We know that, at the signi�cance level �; the probability that

an unpredictable fund exhibits a positive and signi�cant bbi;j ; equals �=2 by de�nition
(as shown in Figure 1). Multiplying this probability by the proportion of unpredictable

funds in the population, �0 (j) ; we obtain the expected proportion of "false discoveries"

with a positive estimated slope coe¢ cient, bbi;j :
E(F+�(j)) = �0 (j) � �=2: (2)

Then, to determine the proportion of predictable funds having a positive relation with

predictor j, we simply need to deduce these false discoveries from the signi�cant funds:

�+A (j) = E(S
+
�(j))� E(F+�(j)) = E(S+�(j))� �0 (j) � �=2: (3)
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Based on the same procedure, the proportion of predictable funds having a negative

relation with predictor j is given by

��A (j) = E(S
�
�(j))� E(F��(j)) = E(S��(j))� �0 (j) � �=2; (4)

where E(S��(j)) denotes the expected proportion of funds with signi�cant and negativebbi;j ; and E(F��) is the expected proportion of "false discoveries" having a negative bbi;j :2
The procedure to estimating Equations (3) and (4) is straightforward, as it only

requires an estimate of the proportion of unpredictable funds in the population, b�0 (j) ; as
well as the signi�cance level �. Both of them are obtained through simple manipulations

of the individual fund p-values associated with the estimated slope coe¢ cient bbi;j . We
provide a brief overview of this estimation procedure in Appendix A, and refer to BSW

for further details.

To measure the proportions ��A(j) and �
+
A(j) accurately, we need to set a large sig-

ni�cance region (i.e., a high level �), so as to maximize the probability of detecting

the truly predictable funds (as shown in Figure 1). But since the proportion of "false

discoveries" increases with � (see Equation (2)), it is essential to control for them as

they may represent a very important portion of the signi�cant funds. To illustrate,

our empirical results (to be presented) reveal that the estimated proportion of unpre-

dictable funds, b�0(j); equals 68% on average (across predictors), while � = 0:4 is a

common value. Based on these values, the total proportion of "false discoveries" in the

population, E(F� (j)) = E(F�� (j)) + E(F
+
� (j)); amounts to 27.2% (0:68 � 0:4); and

the total proportion of signi�cant funds, E(S�(j)) = E(F� (j)) + �
�
A (j) + �

+
A (j) ; is

equal to 59.2% (27.2+(100-68.0)). An estimation of the predictable funds only based

on the number of signi�cant funds would be completely misleading, since more than

40% of them (27.2/59.2=46%) are simply false discoveries (i.e., funds that are in reality

unpredictable).

A.2 Alpha Predictability

While Equation (1) examines predictability in fund returns, an important issue for in-

vestors is to decompose this predictability into its components such as alpha versus risk

factor predictability. First, hedge fund managers may have time-varying skills accord-

ing to the state of the economy (see Christopherson, Ferson, and Glassman (1998), or

Avramov and Wermers (2006) for such evidence in the mutual fund industry). Second,

2Note that E(F��(j)) = E(F+�(j)) as it should be for a equal-tail two-sided test of predictability:
H0;i : bi;j = 0 versus HA;i : bi;j 6= 0 (see BSW for further discussion).
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predictability may be driven by the time-varying premia of the risk factors to which

hedge funds are exposed.3 Using a given asset pricing model (such as the Fung and

Hsieh (2004) seven-factor model), we can extend our methodology to disentangle these

two sources of predictability by modelling the return of each fund i (i = 1; :::;M) as

ri;t+1 = �i;t + �
0
Ft+1 (Zt) + �t+1 = ai;0 +

JX
j=1

ai;j � Zj;t + �
0
Ft+1 (Zt) + �t+1: (5)

Similar to Shanken (1990) and Avramov (2004), we model the fund i time-varying

alpha as a linear function of the predictors, �i;t = ai;0 +
PJ
j=1 ai;j � Zj;t; where ai;0 is

the intercept, and ai;j is the alpha slope coe¢ cient associated with each predictor j

(j = 1; :::; J). We denote by Ft+1 (Zt) the K � 1 vector of portfolio-based factor excess
returns having risk premia expressed as a function of the J � 1 vector of predictors,
Zt = [Z1;t; :::; ZJ;t]

0; by � the K � 1 vector of (time-invariant) fund exposure to the K
risk factors, and by �t+1 the idiosyncratic fund-speci�c term.

The procedure to measuring the proportions of funds in the population that exhibit

alpha predictability is the same as the one outlined above for return predictability: For

a given predictor j; (j = 1; :::; J); we estimate the alpha slope coe¢ cient, ai;j ; for each

fund i in the population (i = 1; :::;M): Then, we count the number of signi�cant funds

(i.e., funds with a signi�cant estimated alpha slope coe¢ cient, bai;j) and deduce the "false
discoveries" (i.e., funds with signi�cant bai;j ; while their true alphas, ai;j ; are equal to
zero).

B The Economic Value of Predictability

B.1 Forming Predictability-Based Portfolios

If some individual hedge funds exhibit predictability, an important question is to know

whether this information can be used in real-time by investors (e.g., institutional in-

vestors, fund-of-fund managers) to improve performance. To address this issue, we

follow the previous literature on mutual and hedge fund performance by forming decile

portfolios (e.g., Elton, Gruber, and Blake (1996), Carhart (1997), Kosowski, Naik, and

Teo (2007)). But instead of sorting funds according to a static performance metric

(such as the average past return or the estimated alpha), we use the fund time-varying

3While there is a large literature on the predictability of broad-based equity and bond factors (e.g.,
Fama and French (1989), Ilmanen (1995)), as well as size and book-to-market portfolios (e.g., Avramov
(2004)) evidence of predictability for the option-based factors considered in hedge fund pricing models
(Fung and Hsieh (2001), Agarwal and Naik (2004)) is, to our knowledge, not documented.
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expected returns.

At the beginning of a given rebalancing time t; we compute, for each existing fund i

(i = 1; :::;Mt) its estimated conditional excess mean (over the riskfree rate) for the next

period, b�i;t, along with its variance, dvar(b�i;t): Speci�cally, if we use a single predictor,
say predictor j; to forecast future alphas, we obtain

b�i;t = bbi;0 +bbi;jZj;t; dvar(b�i;t) = X 0
t
bV �bbi;0;bbi;j�Xt, (i = 1; :::;Mt); (6)

where bbi;0 and bbi;j denote the estimated intercept and slope coe¢ cient, respectively, Xt =
[1; Zj;t]

0; and bV �bbi;0;bbi;j� is the 2�2 estimated covariance matrix of the regression coe¢ -
cients (Appendix B.3 explains how to compute bV �bbi;0;bbi;j�): Then, we use the t-statistic
of the conditional mean as the fund predictive signal: bt �b�i;t� = b�i;t= �dvar(b�i;t)� 12 . Af-
ter ranking all funds according to this signal, we form a decile portfolio including the

funds with the highest values. This porfolio is held over the next period, after which

the selection procedure is repeated (based on the new predictor value at time t + 1).

The t-statistic can be interpreted as a signal-to-noise ratio which explicitly accounts for

the uncertainty surrounding the estimation of the conditional alpha. Such adjustment

is crucial, since hedge funds have varying lives and portfolio volatilities depending on

their strategy. As a result, the precision of their estimated conditional alphas can di¤er

substantially across funds.4

There are two di¤erent signals embedded in the fund predictive signal bt �b�i;t�: the
unconditional and the slope signals. The unconditional signal measures the fund un-

conditional performance based on the t-statistic of its unconditional estimated mean,b�i : bt (b�i) = b�i= (dvar(b�i)) 12 : By contrast, the slope signal measures the fund pre-
dictable mean component based on the t-statistic of the estimated slope coe¢ cient,bbi;j : bt�bbi;j� = bbi;j=�dvar(bbi;j)� 1

2
. To see this decompositon more clearly, we can use the

demeaned predictor value, denoted by zj;t; to express the fund predictive signal as

bt �b�i;t� = b�i;t�dvar(b�i;t)� 12 =
b�i +bbi;jzj;t�dvar(b�i) + z2j;tdvar(bbi;j)� 1

2

; (7)

where we use the fact that b�i and bbi;j are uncorrelated (see Davidson and MacKinnon
(2004), p. 63). When z1;t = 0 (the predictor equals its average), the fund predictive

4 In the empirical results to be presented, we also rank funds according to their time-varying condi-
tional alphas. The procedure is exactly the same as the one outlined in Equation (6), except that the
coe¢ cients, bbi;0;bbi, are replaced with the alpha coe¢ cients shown in Equation (5)
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signal only depends on the unconditional signal, i.e., bt �b�i;t� = bt (b�i) : On the contrary,
as zj;t grows large (and has the same sign as bbi;j); the predictive signal is mostly driven
by the slope signal, as bt �b�i;t� tends towards bt�bbi;j� :

Equation (7) reveals that the investor can boost the performance of his portfolio

by either selecting funds with high unconditional performance (i.e., high unconditional

signals) or by detecting funds which exhibit time-varying conditional mean (i.e., high

slope signals). This highlights a crucial point: if we happen to �nd some predictable

funds in the population, this is a necessary, but not su¢ cient condition to generate

a positive economic value. In a multi-fund setting, we have to determine whether a

portfolio containing these predictable funds can outperform an unconditional (passive)

strategy that selects funds using their unconditional signals only.5

B.2 The Combination Strategy

One concern with the single-predictor model shown in Equation (6) is that it is subject

to misspeci�cation risk, as the true data generating process is likely to be more complex.

Even if this model is correct at a given point in time, its predictive ability may disap-

pear over time due to the investor�s learning process or to structural changes in the data

(e.g., Timmermann (2007)). When the model is misspeci�ed, the time-varying mean

component, bbi;jzj;t; conveys little information about future performance, and contami-
nates the fund predictive signal bt �b�i;t�. By using a poor model, the investor tends to
exclude funds with high unconditional signals from the portfolio, and replace them with

funds whose realized future performance is far from the initial forecast. A second and

related concern is that the single-predictor model is subject to speci�cation uncertainty,

since there is no theoretical ground to help the investor choose which predictor to use.

Therefore, even if a given model performs well out-of-sample, it is not clear whether the

investor could have been able to select it in real-time (e.g., Pesaran and Timmermann

(1995), Barras (2007)).

An obvious way to address these two issues is to consider a richer predictive model

that contain all predictors simultaneously: However, the additional coe¢ cients of this

model may not be precisely estimated with the short return history typically available in

hedge fund databases. If these estimates are too noisy, they produce low slope signals,

and lead again to a poor fund selection.

5This contrasts with the single-asset case, where there is a close link between the presence of pre-
dictability and its economic value. For instance, Cochrane (1999) shows that the maximum Sharpe ratio,
S�; achieved using a linear predictive model depends on its predictive R2 : S� = [(S2 +R2)=(1�R2)] 12 ;
where S is the Sharpe ratio of the single asset. In a multi-asset setting, such a link may not exist as
assets with high predictability may also have low unconditional expected returns.
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Alternatively, we implement a "combination" strategy which consists in combining

the predictive signals obtained from each individual predictor. Using a simple average,

we compute the "combined" predictive signal for each fund i (i = 1; :::;M) as

btcom �b�i;t� = 1

J

JX
j=1

btj �b�i;t� (8)

where btj �b�i;t� is the predictive signal of fund i based on predictor j (j = 1; :::; J).6 As
explained in Clemen (1989) and Timmermann (2006), such forecast combining is an e¢ -

cient way to robustify the forecast against the misspeci�cation of the individual models.

In particular, Hendry and Clements (2002) show evidence that combining provides a

good hedge against structural breaks. Finally, the combination strategy is less a¤ected

by speci�cation uncertainty, as the investor does not face the di¢ cult task of choos-

ing among the set of J predictors.7 After ranking all existing funds according to their

combined t-statistic, we select the top decile of funds to form the combination strategy.

By reducing speci�cation risk, the combination strategy is more likely to select high

unconditional alpha funds having, at the same time, a positive predictable alpha compo-

nent. To illustrate this point with a simple example, let us consider a given fund i having

a very high unconditional signal�we set bt (b�i) = 5:0; which corresponds in our data to the
empirical average of the top decile of funds with the highest unconditional signals. Now

what happens if the investor decides to incorporate predictability in his fund selection?

Using Equation (7), we plot in Figure 2 the relation between the fund predictive signal,btj �b�i;t� ; and the predictor value, zj;t; used to generate the signal: To ease interpretation,
zj;t is expressed in standardized form, such that zj;t = 1 indicates that predictor j is

one standard deviation higher than its average. Suppose that at time t; the investor

observes three di¤erent predictors, z1;t; z2;t; and z3;t (i.e., J = 3): The high value taken

by predictor 1 (z1;t = 2); coupled with its low associated slope signal; bt�bbi;j� ; produces
a very low predictive signal, bt1 �b�i;t� ; equal to 1.2. Based on this forecast, the investor
would certainly not include this fund in this portfolio, although this fund generates a

positive unconditional mean almost surely.8 On the contrary, the forecasts based on

predictors 2 and 3 suggest that this fund may provide a positive time-varying mean

6While other weighting schemes are possible, the weights have to be estimated from the data. Since
the simple average in Equation (8) does not imply any estimation procedure, it often performs better
empirically (e.g., Timmermann (2006)).

7Forecast combining is also related to Bayesian model averaging, which consists in averaging the
model forecast based on a model prior distribution (see Avramov (2002) and Cremers (2002)).

8 If the fund estimated unconditional mean is and the t-statistic,bt (b�i), is equal to 5.0, the probability
that the fund has a true mean, �i; equal to zero is equal to 2.8e

�7.

11



component in addition to its unconditional mean. Their slope signals are higher than

the one observed for predictor 1, and lead to an increase in the fund predictive signal

above the unconditional level (bt2 �b�i;t� = 5:4 and bt3 �b�i;t� = 5:1): By considering many
di¤erent sources of information, the combination strategy is more robust to the poor

predictive signals generated by potentially misspeci�ed models. In our example, the

combined predictive signal obtained from Equation (8) is quite high (btcom (b�i;t) = 3:9);
and indicates that this fund is an excellent candidate for fund selection after all.

Please insert Figure 2 here

C Estimation Issues

C.1 Accounting for Small Sample Bias

It is well-known that the estimated slope coe¢ cient, bbi;j ; in Equation (1) is subject to the
small-sample bias when its expected value di¤ers from the true value, i.e., E(bbi;j) 6= bi;j
(Nelson and Kim (1993), Stambaugh (1999)). This bias arises under two frequently met

conditions: 1) the J � 1 predictor vector, Zt+1; is persistent, and has an autoregressive
structure, such as a VAR(1): Zt+1 = � + �Zt + �t+1; where � is the J � J companion
matrix, and �t+1 is the J�1 predictor innovation vector; 2) the hedge fund i innovation,
ui;t+1; is contemporaneously correlated with �t+1: E (ui;t+1 j�t+1 ) = �0i�t+1; where �i
denotes the J � 1 innovation coe¢ cient vector.9 In this case, the J � J estimated

companion matrix, b�; is biased in small samples (because E (�t+1 jZ0; :::; ZT ) 6= 0), andbbi;j inherits some of the bias in b�:
While this bias disappears in large samples, it is an important concern for hedge

funds because their return history is typically short (72 months on average in our sam-

ple). Since the estimated slope coe¢ cients may di¤er radically from their true values,

distinguishing between predictable and unpredictable funds from the data can be very

di¢ cult.

When multiple predictors are used as in Equation (1), Amihud and Hurvich (2004;AH

hereafter) show that the bias in the estimated slope coe¢ cient associated with predictor

j (j = 1; :::; J); can be written as

bias(bbi;j) = E(bbi;j � bi;j) = JX
k=1

E
�b�k;j � �k;j��i;k; (9)

9 If Zt truly predict future returns, we expect to see a contemporaneous correlation between �t+1 and
ui;t+1. The predictor innovation, �t+1; captures changes in expected returns, which in turn induces a
shock to the contemporaneous hedge fund return.
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where b�k;j and �k;j denotes the kth row, jth column element of the matrices b� and �;
respectively, and �i;k is the k

th element of the innovation vector �i: Equation (9) can be

interpreted as an omitted variable bias, since bbi;j captures the in�uence of the omitted
innovation vector, �t+1; on ri;t+1 (represented by the vector �i): The bias in bbi;j depends
on each bias term, E

�b�k;j � �k;j� ; which in turn is a complex function of � and the

covariance matrix of �t+1 (Nicholls and Pope (1988)). Therefore, it is generally di¢ cult

to understand the drivers of this bias; and to predict its sign (Ang and Bekaert (2007)).

However, many papers �nd that � is nearly diagonal as most predictors exhibit high level

of persistence (e.g., Campbell (1991) or AH). In this case, the analytical bias formula

proposed by Stambaugh (1999) in the single-predictor case, �(1+3�j)Ti
�i;j ; can be used to

approximate Equation and reveals that the bias in bbi;j is high (in absolute value) when
1) the (true) persistence coe¢ cient, �j ; is high; 2) the (true) innovation coe¢ cient, �j ;

is high (in absolute value); and 3) the number of fund i return observations, Ti; is low.

To correct for small-sample bias in the data, we use the simple approach proposed

by AH. The intuition behind this approach is to �nd a proxy, denoted by �ct+1; for the

unobservable innovation vector �t+1 that causes the bias. This approach consists in

three steps. First, we estimate the parameters of the VAR(1), and apply an analytical

bias correction to obtain the bias-corrected estimates, b�c and b�c (the details are shown
in Appendix B.1). Second, we compute the proxy as �ct+1 = Zt+1 � b�c � b�cZt: Finally,
we insert the J � 1 vector �ct+1 into Equation (1) as an additional explanatory vector:

ri;t+1 = b
c
i;0 +

JX
j=1

bci;jZj;t + �
0
i�
c
t+1 + ei;t+1; (10)

where bci;0 is the intercept, b
c
i;j the bias-corrected slope coe¢ cient associated with pre-

dictor j (j = 1; :::; J), and ei;t+1 is the innovation term. Since we use a proxy for �t+1
(instead of its true value), the bias-corrected estimated estimated coe¢ cient, bbci;j is not
bias-free. However, the remaining bias, given by E(bbci;j�bi;j) =PJ

k=1E
�b�ck;j � �k;j��i;k;

is driven to zero as the bias-corrected values, b�ck;j ; get closer to the true values, �k;j .
In Appendix B, we show how to apply the same procedure for the alpha predictive

regression in Equation (5), and how to compute the slope coe¢ cient t-statistics and

p-values used to measure the proportions of predictable funds and to form the hedge

fund portfolios:

While an alternative bootstrap approach would be possible, the AH approach is

computationally much faster. This computational e¢ ciency has strong appeal because

of the great number of funds that we examine in the paper (more than 15,000). To
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determine wether the AH approach is robust to the speci�c distributional features of

hedge funds, such as non-normality (e.g., Kosowski, Naik, and Teo (2007)), we run a

extensive Monte-Carlo analysis calibrated on hedge fund data. The results described

in Appendix C show that accounting for the small sample bias is important, especially

for highly persistent predictors, and that the AH approach compares favorably with the

bootstrap.

C.2 Accounting for Illiquidity

While many hedge funds invest in traditional asset classes, some of them also trade

more speci�c assets, such as emerging market debt, asset-backed securities, or over-

the-counter derivatives. While these illiquid assets are a¤ected by non-synchronous

trading and stale prices, they also facilitates return misreporting documented by Bollen

and Pool (2009). For these reasons, illiquidity tends to smooth returns over time, and

induce serial correlation (Getmansky, Lo, and Makarov (2004)).10 While the presence

of serial correlation in the residuals, ei;t+1; in Equation (10) does not change the value

of estimated slope coe¢ cient, bbci;j ; it a¤ects its associated t-statistic and p-value.
To explicitly account for this potential correlation, we use an AR speci�cation.

Speci�cally, for each fund i in the population (i = 1; :::;M), we �rst compute the

residual from Equation (10), and regress it on its own lagged values to obtain consistent

estimators of AR coe¢ cients. Our analysis detailed in Appendix B shows that 26.2%

and 37.0% of the funds have a non-zero �rst and second lag coe¢ cients, respectively.

Consistent with Getmansky, Lo, and Makarov (2004), we �nd that investment categories

such as Convertible Arbitrage, Emerging Markets, and Fixed Income Arbitrage have the

highest proportion of funds with non-zero �rst lag coe¢ cient (65.5%, 35.7%, and 35.5%,

respectively). However, we �nd little evidence of third lag correlation�only 2.1% of the

funds in the population have a third-lag coe¢ cient di¤erent from zero (this �nding is

con�rmed across the di¤erent investment categories). Based on these results, we model

the dependence structure with an AR(2) speci�cation: ei;t+1 = �i;1ei;t+�i;2ei;t�1+�i;t+1.

III Description of the Data

We evaluate the performance of hedge funds using monthly net-of-fee returns of live and

dead hedge funds reported in the BarclayHedge, TASS, HFR, CISDM and MSCI and

10Another reason for the presence of serial correlation is spurious regression (Ferson, Sarkissian, and
Simin (2003)). If the predictive model in Equation (1) is misspeci�ed and the true (unobservable) ex-
pected return is persistent over time, the fund residual inherits this persistence, and is serially correlated.
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BarclayHedge datasets over January 1990 to December 2008 - a time period that covers

both market upturns and downturns, as well as relatively calm and turbulent periods.

The union of the TASS, HFR, CISDM, MSCI databases represents the largest known

dataset of the hedge funds to date. Our initial fund universe contains more than 15,000

live and dead hedge funds. While there are overlaps among the hedge fund databases,

there are many funds that belong to only one database. This highlights the advantage

of obtaining our funds from a variety of data vendors.

To allow a detailed interpretation of predictability results by strategy we choose

to group funds into �ner categories than many previous studies. We group funds into

10 categories: Convertible Arbitrage, Emerging Markets, Long/Short Equity, Equity

Market Neutral, Event Driven, Fixed Income Relative Value, Fund of Funds, Macro,

Managed Futures and Multi-Strategy.

Convertible Arbitrage funds exploit mispricing in the convertible bond market such

as underpriced implied volatility, for example. Emerging Markets funds pursue a range

of (historically mostly long-only) strategies in emerging markets. Long-Short Equity

funds take long and short positions in undervalued and overvalued stocks, respectively,

and reduce systematic risks in the process. Equity Market Neutral funds are similar

to Long/Short Equity funds in that they take long and short positions but di¤er in

that they typically follow more high frequency signals and systematic trading strategies.

Event Driven funds which include Merger Arbitrage funds monitor corporate events

and restructurings and employ multiple strategies usually involving investments in op-

portunities created by signi�cant transactional events, such as spin-o¤s, mergers and

acquisitions, bankruptcy reorganizations, recapitalizations, and share buybacks.

Fixed Income Relative Value funds follow a range of spread strategies in di¤erent

parts of the �xed income market to bene�t from relative mispricing related to credit

risk or the shape of the yield curve. Macro funds di¤er from Fixed-Income Relative

Value funds in that they often take directional positions in �xed income markets that

depend on global macroeconomic variables and often re�ect a medium to long-term

outlook. Managed Futures Funds share some similarities with macro funds in that they

use relatively liquid instruments such as futures and often pursue directional strategies,

but they di¤er in the type of signals used which tend to be more high frequency and

quantitative in nature. Multi-strategy funds are similar to funds of funds in that they

attempt to achieve diversi�cation across strategies, but unlike the latter they often

follow more specialized strategies that - given fewer constraints on redemptions and

in�ows than fund of funds - can respond quickly to tactical signals.

The total population amounts to 15,922 funds. The majority of them belong to
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the Funds of Funds (3611 funds) and Long/Short Equity categories (3,007), followed

by Multi-Strategy (1883), Managed Futures (1174), Fixed Income Relative Value (673),

Event Driven (608), Emerging Markets (600), Macro (599), Equity Market Neutral (463),

and Convertible Arbitrage (279). Other categories account for the remaining 3025 of

the 15,922 funds. For rest of the paper, we focus on the funds in one of the 10 major

categories above.

The �ner classi�cation of hedge fund categories is important for a detailed economic

interpretation of any predictive relationships that we uncover. It is also useful for di-

agnostic tests such as serial correlation that may be related to the holding of illiquid

securities. The category Event Driven, for example, may be expected to a priori exhibit

stronger return serial correlation due to relatively illiquid securities. The opposite can

be expected from the category Managed Futures.

It is well known that hedge fund data are associated with many biases (Fung and

Hsieh (2000)). These biases are driven by the fact that due to lack of regulation, hedge

fund data are self-reported, and hence subject to self-selection bias. To ensure that

our �ndings are robust to incubation and back�ll biases, we repeat our analysis by

excluding the �rst 12 months of data. These adjustments do not change our conclusions

quantitatively and are available from the authors upon request.

In addition, since most database vendors started distributing their data in 1994, the

datasets do not contain information on funds that died before December 1993. This

gives rise to survivorship bias. We mitigate this bias by examining the period from

January 1994 onwards in our baseline results. We require each fund to have at least

36 monthly return observations in order to estimate the coe¢ cients of the (return and

alpha) predictive regressions in Equation (1) and (5).

We use four instruments to predict future hedge fund returns: default spread, div-

idend yield, VIX and �ows. Default spread is the yield di¤erential between Moodys

BAA-rated and AAA-rated bonds. It captures conditions in �xed income markets and

is closely correlated with the term spread. The dividend yield is the total cash dividends

on the value-weighted CRSP index over the previous 12 months divided by the current

level of the index. The dividend yield and the default spread are included since they

are closely related to the business cycle. The dividend yield tends to peak in recessions.

The VIX is de�ned as the one-month lagged VIX from the CBOE11. We include the VIX

since volatility helps to capture some of the non-linear in hedge fund returns such as

that observed in trend-following funds. Flows are the monthly capital �ows into hedge

funds, calculated as the value-weighted percentage in- and out�ows into the hedge funds

11See http://www.cboe.com/micro/vix/historical.aspx.
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in our database. The inclusion of capital �ows is economically motivated by the poten-

tial existence of capacity constraints in the hedge fund industry (Naik, Ramadorai, and

Stromqvist (2007)).

Figure 3 shows that during the �nancial crisis of 2008 the predictor variables such

as dividend yield, default spread and VIX exhibited extreme deviations from the long-

term historical average. When including 2008 we reject the hypothesis that all predictor

variables are stationary during the sample. For these reasons we choose our baseline

period as 1994-2007 and carry out a detailed robustness test with respect to the inclusion

of 2008. This allows us to use 2008 as an additional out-of-sample test of the predictive

relationships that we identify. Another reason for excluding 2008 is that the long-term

relationship between hedge fund returns and predictor variables may be better captured

by excluding the year 2008 which is an important but rare event.

Panel A of Table I reports descriptive statistics for the hedge funds included in our

sample between January 1994 and December 2007. For each hedge fund category, we

report the cross-sectional median of the annualized fund mean excess return (over the

riskless rate), the standard deviation of the fund excess return, as well as skewness and

kurtosis. Long/Short Equity and Emerging Markets funds exhibit the highest median

return while Emerging Markets and Managed Futures exhibit the highest volatility over

the period. Consistent with the previous literature, the average FH alpha is positive

across all investment categories. Its highest level is observed for Multi-process funds

(� = 7:2 percent per year), and Long/Short Equity funds (� = 6:7 percent).

Please insert Table I here

In Panel B, we show descriptive statistics for the predictor variables.

The degree of predictor persistence has an important impact on the small-sample

properties of the estimated slope coe¢ cient (Section II.B). Consistent with previous

studies, we �nd that the default spread, dividend yield and VIX12 exhibit high positive

autocorrelation (� = 0:96; 0:97 and 0:84) while fund �ows exhibit low autocorrelation

(� = 0:26).

Finally, Panel C contains summary statistics for the risk factors included in the

Fung and Hsieh (2004; abbreviated as FH) seven factor model. SNPMRF is the S&P

500 return minus risk free rate, SCMLC is the Wilshire small cap minus large cap

return, BD10RET is the change in the constant maturity yield of the 10�year Trea-

sury appropriately adjusted for duration, BAAMTSY is the change in the spread of

12See Drechsler and Yaron (2008) for VIX.
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Moody�s Baa minus the 10�year Treasury also adjusted for duration, PTFSBD is the

bond PTFS, PTFSFX currency PTFS, PTFSCOM is the commodities PTFS, where

PTFS is primitive trend following strategy (see FH). While the equity market and bond

factors generate positive risk premia, the average excess returns of the size factor as well

as the trend following strategies are strongly negative over our sample period.

IV Empirical Results

A Measuring Hedge Fund Predictability

A.1 Individual Fund-Level Predictability

We start our empirical analysis by examining individual fund-level excess return pre-

dictability (Equation (1)) over the entire period January 1994-December 2007. Other

papers have examined index level returns. However, by simply averaging the slope coef-

�cients across funds, we would lose a lot of information on the predictive ability of each

predictor j on the cross-section of funds.

In Panel A of Table II we report the proportions of funds in di¤erent hedge fund

categories that exhibit genuine predictability after accounting for "false discoveries"

in the predictive relationships. These estimated proportions, b��A(bj) and b�+A(bj); are
calculated using Equations (4) and (3), where the fund estimated slope coe¢ cients are

computed using the bias-corrected approach explained in the appendix.

Please insert Table II here

First, we �nd strong evidence of positive return predictability when using the default

spread as a variable in the multiple predictive regression. All but one category show a

high proportion of funds with positive return predictability with respect to the default

spread as captured by b�+A(bj). For instance, we �nd that 51.11 percent and 22.09 per-
cent of the Emerging Markets and Macro funds genuinely exhibit positive predictable

returns. This exposure is likely to be driven by the strategies followed by these funds.

The Macro category includes global macro funds that, among other strategies, follow

carry trade strategies in FX markets. A widening of credit spreads is likely to coincide

with an increase in risk aversion and unwinding of carry trades, which increases the

future expected returns on carry traders (Jylha, Suominen, and Lyytinen (2008), Brun-

nermeier, Nagel and Pedersen (2008)). Similarly, Emerging Markets funds are a¤ected

by �ights to quality that lead to out�ows from emerging debt and equity markets. Pre-

dictability in emerging sovereign debt markets based on the default spread has recently
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been documented by Jostova (2006).13 Convertible bond funds returns are also strongly

predicted by the credit spread. Since a long position in a convertible bond is exposed to

credit risk, a widening of credit spreads may be consistent with higher expected returns

on corporate bonds. Some standard �xed income fund strategies consist of leveraged

spread trades that exploit mispricing between low grade and high grade bonds, bonds

of di¤erent maturity or di¤erent parts of the �xed income market. As we would expect,

22.57% of Fixed Income Relative Value funds exhibit strong return predictability with

respect to the default spread.

To get a sense of the magnitude of the funds�exposure to the di¤erent predictors, we

also report, in columns adjacent to the proportion of negative and positive funds, the

cross-sectional average as well as 25th and 75th percentile (in parentheses) of the fund

bias-corrected estimated slope coe¢ cients, bbc. The estimated coe¢ cients are standard-
ized (by multiplying the original estimate by the predictor standard deviation), so that

they correspond to the change in fund monthly excess returns for a one standard devia-

tion increase in the predictor value. Except in the few cases (such as the 35 basis point

average exposure of Long/Short Equity funds to fund �ows and the 60 basis point expo-

sure of Emerging Markets funds to the default spread), we �nd that the average slope

coe¢ cients are of economically small magnitude. However, the cross-sectional standard

deviation is generally large, and implies that individual funds can be strongly impacted

by changes in the predictor values. Speci�cally, for some Emerging Markets funds, a

one standard deviation change in the credit spread changes their future expected excess

returns by approximately 1%.

Second, we �nd that increases in the VIX decrease the excess returns for a large

proportion of funds during next period. For instance, 40.50 percent of Emerging Mar-

kets funds and 41.08 percent of Event Driven funds exhibit negative predictability with

respect to the VIX. The Convertible Arbitrage and Fixed Income category (which con-

tains capital structure arbitrage funds) also exhibits predictability with respect to the

VIX. This is consistent with some of the non-linear return patterns documented for

these funds (Lhabitant (2006)). Convertible bond funds often exploit mispriced volatil-

ity in convertible bonds and can therefore be expected to be sensitive to changes in the

VIX (Agarwal, Fung, Loon and Naik, 2009). Increases in the VIX may indeed reduce

13Emerging market equity returns have higher serial correlation than developed
market returns. Serial correlation emerging markets equity returns has been attributed to infrequent

trading and slow adjustment to current information (Harvey, 1995; Kawakatsu and Morey, 1999). The
literature on stock selection in emerging markets suggests that relatively
simple combinations of fundamental characteristics can be used to develop portfolios
that exhibit considerable excess returns to the benchmark (Achour et al., 1999;
Fama and French, 1998; Rouwenhorst, 1999).
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opportunities of cheap volatility and therefore explain the 28.6 percent of convertible

bond fund that are negatively predicted by the VIX.

Third, the lagged aggregate �ows to the hedge fund industry has a negative impact

on future returns. This result is consistent with Naik, Ramadorai, and Stromquist

(2007), who �nd that capacity constraints caused by excessive in�ows lead to a decrease

in future performance. 53.08% and 41.87% of Emerging Markets and Long Short Equity

funds are negatively predicted by high fund �ows, as is the case for all fund categories.

In order to measure alpha predictability, we add the FH risk factors to the pre-

dictive regression (Equation (5)). For each category, Panel B of Table V shows the

estimated proportions of funds having alphas negatively and positively related to the

di¤erent predictors, b��A(aj) and b�+A(aj). For Long/Short Equity funds for example, a
large proportion of funds exhibit statistically signi�cant negative alpha predictability

with respect to fund �ows (29.13 percent) and the VIX (26.68 percent) and positive

alpha predictability with respect to the default spread (24.26 percent). The coe¢ cient

estimates show that a one standard deviation increase in fund �ows and volatility leads

to a 21 and 18 basis point decrease in Long/Short Equity fund returns respectively.

Similarly, a one standard deviation increase in the default spread increases fund returns

by 13 percent.

Comparing these results with those shown in Panel A, we �nd that the estimated

proportions remain relatively unchanged. This result implies that the bulk of return

predictability is due to time-varying alphas. This interpretation would be strengthened

if we found that hedge fund benchmark factors are nearly unpredictable and funds�

betas with respect to the benchmark factors were low. Indeed, this is what �nd in the

following Table III.

Table III shows the results of regressing each of the 7 FH benchmark factors on

four predictor variables. An examination of the resulting regressions is that there is

little evidence of factor predictability. In Panel A only three of the 28 slope coe¢ cient

p-values indicate statistically signi�cant predictability at the ten percent signi�cance

level. To assess how important predictability captured by the predictors is relative

to the unconditional alpha, we report the ratio of the two in Panel B of Table ??
(Columns 8 to 11). For each fund, we divide the absolute value of the slope coe¢ cient

by the absolute value of the alpha coe¢ cient. There are 10 individual categories and

4 predictors. For 31 of the 40 di¤erent combinations we �nd that ratio is less than 50

percent which indicates that the alpha coe¢ cient is economically more important the

the slope coe¢ cient. The �nding that most of the return predictability in hedge fund

returns is due to alpha predictability is consistent with results reported by Avramov,
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Kosowski, Naik and Teo (2008) who �nd that the portfolio of a Bayesian investor that

allows for alpha predictability outperforms that of an investor that does not allow for

alpha predictability.

Please insert Table III here

When examining return predictability there are two reasons for examining pre-

dictability at di¤erent return frequencies. First, since the realistic portfolio rebalanc-

ing frequency is annual, there are limits to exploiting the full predictability present at

monthly frequency. Second, the data generating process may di¤er depending on the

frequency. Hedge fund investors are likely to also take into account longer term returns,

since monthly returns may be a¤ected by temporary return �uctuations. Therefore, in

Table IV we compare return predictability at the quarterly frequency to our baseline re-

sults that use monthly returns. We �nd that the conclusions based on quarterly returns

are qualitatively similar to our baseline results. The predictability coe¢ cient at both

frequencies have usually the same sign and evidence of predictability at the monthly level

is generally stronger than at the quarterly level. 35 of the 40 regressions have higher

median coe¢ cients at the monthly than the quarterly level. A one standard deviation

increase in �ows leads to a 35 (22) basis point increase in fund returns at the monthly

(quarterly) level. A one standard deviation increase in the default spread increases the

return of macro funds next period by 13 (14) basis points using monthly (quarterly)

returns.

Please insert Table IV here

A.2 Price Impact of Unexpected Changes in Predictor Values

In Progress

Please insert Table V here

B Measuring the Economic Value of Predictability

B.1 Out-of-Sample Performance Analysis

In Section II.B, we discuss di¤erent conditional strategies that all consist of selecting

the top decile of funds with the highest conditional mean predictive signal de�ned asbt �b�i;t� = b�i;t= �dvar(b�i;t)� 12 ; where b�i;t denotes fund i conditional excess mean (over the
riskfree rate), and dvar(b�i;t) its estimated variance (see Equation (6)). The �rst set of
conditional strategies are single-predictor strategies in which the predictive signal is com-

puted using one of the four possible predictors (Dividend yield, Default spread, Volatility,
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Aggregate �ow). The second set of strategies are based on multiple predictors. While

the "All predictor" strategy estimates the predictive signal using all predictors simulta-

neously in a multiple regression, the combination strategy computes the fund predictive

signal by averaging across the four single-predictor signals (see Equation (8)). Each

of these conditional strategies is compared to the unconditional strategy, which simply

ranks funds based on their unconditional mean predictive signal, bt (b�i) = b�i= (dvar(b�i)) 12 ;
where b�i denotes fund i unconditional excess mean, anddvar(b�i;t) its estimated variance.

The construction of the di¤erent portfolios proceeds as follows. At the end of each

year, we estimate the predictive and unconditional signals of each existing fund using

the past three-year returns. The �rst portfolio formation date is December 31, 1996,

while the �nal formation date is December 31, 2007 (the �rst 3 years of our sample

between January 1994 and December 1996 are used to obtain the initial estimations).

If a selected fund does not survive during the holding period, its weight is reallocated

to the remaining funds to mitigate survival bias. In the out-of-sample analysis we pay

particular attention to practical constraints that an investor may face if she implemented

the strategy. Institutional investors and Funds of Funds cannot invest in closed funds

and typically do not invest in small funds. Therefore we exclude closed funds and the

smallest third of funds as described in Section II. Funds are ranked each year by Assets

under Management (AuM) and the bottom third of fund is excluded. Some previous

studies excluded funds with less than $20 million AuM. The advantage of our dynamic

�lter is that it implicitly takes into account in�ation and the growth in average AuMs.

Moreover, in 2002 our dynamic requirement leads to the exclusion of the same number

of funds as the static $20 million AuM �lter used in previous studies. Since the out-of-

sample tests simulate a funds of funds approach we also excluded funds of funds and

focus on hedge funds. To make sure that the constructed portfolios would be feasible in

practice we also impose a constraint of 20 and 100 funds on the minimum and maximum

number of funds included in the portfolio.14 In sensitivity tests shown below, we �nd

that speci�cation changes to this baseline case do not change our results qualitatively.

In Panel A of Table VI, we compare the out-of-sample performance of the uncon-

ditional and conditional portfolios for all funds in the population. We report the an-

nualized excess return, b� (minus the riskfree rate); total standard deviation, b�tot, and
Sharpe ratio, SR= b�=b�tot, the estimated annualized Fung and Hsieh (FH) alpha, b�;
residual standard deviation, b�res, and information ratio, IR= b�=b�res: For each of these
performance metrics, we report in parentheses the one-sided p-values indicating whether

14These are conservative diversi�cation bounds, as the typical number of funds included in funds of
funds is around 40 funds (Lhabitant (2007)).
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the conditional strategy outperforms the unconditional strategy. We also compute the

5 and 95 percent quantiles of the monthly portfolio returns. While the Sharpe ratio

indicates the risk-return pro�le of the strategy, the Information ratio determines how

the Sharpe ratio of an uninformed strategy formed with the basis assets (i.e., the FH

risk factors) increases after optimally combining it to the conditional portfolio (Treynor

and Black (1973)).

Table VI shows that the unconditional portfolio�s out-of-sample annualized alpha and

IR are 5.4% and 2.1, respectively. This is much higher than the performance of the value-

weighted and equal-weighted hedge fund indices. Are the conditional strategies able to

provide any additional performance? Examining the single-predictor portfolios, we �nd

that, while some of them (such as Default or Flows) generate signi�cantly higher alphas

than the unconditional strategy, they do not outperform the unconditional strategy

in terms of risk-return tradeo¤ or Information ratio. Even worse, using all predictors

simultaneously to predict fund alphas (the "All predictors" strategy) leads to the worst

performance (IR = 1:4). One possible interpretation is that since the hedge fund return

history is generally low, conditional means using multiple regression may be poorly

estimated, leading to noisy predictive signals.

There is one conditional strategy�the combination strategy�which dominates the

unconditional portfolio and all the other single and multiple predictor strategies in terms

of Information ratio and Sharpe ratio (SR=1.8, IR=2.5). The combination strategy�s

estimated annual alpha is almost 6.8% and is thus the second highest (after Volatility).

Please insert Table VI here

This superior performance comes with several other advantages from the investor

perspective. First, as explained in Section II.B, this strategy is immune to speci�cation

uncertainty, since the investor does not have to choose among predictive variables. It

is important to note that we would not expect the combination strategy to outperform

every year since in certain years one predictor may play a more important role than other

predictors. However, if model uncertainty plays an important role on average - as many

studies document (see Avramov (2002), for example) - then we would expect combination

strategy to generate superior performance. Second, this conditional strategy does not

involve extensive (and possibly unrealistic) portfolio turnover as Panel B shows. The

combination strategy has the second lowest (58.7%) turnover of constituent funds among

the seven strategies considered while the "all predictors" strategy generates the highest

and therefore potentially most costly turnover (of 89.6%). An examination of the risk
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exposures in Panel B shows that the combination strategy portfolio has the lowest

exposure to the size factor (�size =0.07), the term spread factor (�term =0.03) and the

second lowest exposure to the market factor (�market =0.11).

B.2 Sources of the Superior Performance of the Combination Strategy

Unconditional versus Slope Signals

To shed further light on the relative performance of the di¤erent strategies we analyze

the importance of the slope coe¢ cient in the predictive regression relative to the uncon-

ditional mean. As an alternative to our conditional strategies based on the conditional

mean predictive signal, we therefore rank funds according to their slope signals. The

results shown in Table VII reveal that only using the slope signal generates lower al-

phas and information ratios than the baseline strategies. In addition, the combination

strategy generates an Information ratio of 0.9 (compared with a value of 2.5 in the base-

line case in Panel A). Hence, in order to generate positive performance, the conditional

strategy must use the information signals contained in both the unconditional mean, as

well as its time-varying components.

Why do the slope signal strategies perform so poorly? One way to answer this ques-

tion is to compare the characteristics of the funds included these portfolios. Speci�cally,

for each month t, we measure the fund average unconditional mean for each portfolio:b�p;t = (1=Nt)PNt
i=1 b�i; where Nt is the number of funds included in the portfolio, and b�i

its estimated unconditional mean (over the previous three-year period). By averagingb�p;t over time, we obtain a measure b�p of the unconditional mean for the "average fund"
included in the portfolio. Proceeding along the same line, we can examine the exposure

to each predictor. For each month t, we measure the fund average slope coe¢ cient

for each portfolio: bbp;t = �
(1=Nt)

PNt
i=1
bbi;j� IZj;t�Z ; where Nt is the number of funds

included in the portfolio, bbi;j is the fund estimated slope coe¢ cient (over the previous
three-year period), IZj;t�Z is a function that take the value 1 if the predictor is above

average and -1 otherwise. bbp;t is positive only if the portfolio has the right exposure to
the predictor j : to bene�t from potential predictability, the portfolio must select funds

with positive bbi;j when the predictor is above average (and vice-versa). By averagingbbp;t over time, we obtain a measure bbp of the slope coe¢ cient for the "average fund"
included in the portfolio (i.e., a measure of exposure to the predictor).

The main reason for the poor performance of the "slope signal" portfolios is that they

tend to select funds with much lower unconditional mean than those in the "predictive

signal" portfolios. By trying to bet more aggressively on potential predictability, these
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strategies lose between 0.28% and 0.48% per month compared to the "predictive signal"

strategies. In addition, they fail to generate a much stronger exposure to the predictor,

as bbp is even higher for the "predictive signal" strategies in two cases (Dividend yield
and Aggregate �ow). One possible explanation is the annual rebalancing. Over one

year, the predictor might change substantially, implying that the funds selected initially

might not have the correct exposure anymore (this is especially true for Aggregate �ow,

which is the least persistent variable)

Please insert Table VII here

Single-Predictor versus Combination Strategy

Our previous results reveal that few single-predictor strategies are able to signi�cantly

outperform the unconditional strategy. One possible reason is that the predictive signal

of these strategies is too low to generate consistent performance over time. To address

this issue, we examine the relation between the portfolio predictive signal and perfor-

mance.

During each month from January 1997 to December 2008, we compute the portfolio

predictive signal, btp;t; as the average signal of the funds it includes: btp;t =PNt
i=1
bt �b�i;t� ;

where Nt is the number of funds included in the portfolio at time t. We use the label

signal in this context since each strategy uses btj to select funds into portfolios. After
calculating the signal of the unconditional portfolio, btu;t = PNt

i=1
bt (b�i) ; we measure

the monthly Predictive Signal Di¤erential (PSD) as btp;t � btu;t: Then, we rank these
signal di¤erences in increasing order, and form two groups of equal length. The months

corresponding to the lowest values are included in the low signal state (L), while those

with the highest values belong to the high signal state (H). In row 1 of Table VIII,

we report the average value of PSD in the low and high states across predictors and

investment categories. In the two states (low and high), we �nd that the PSD is most

of time negative, indicating that the funds slope signals, btj �bbi;j� ; are generally lower
than their unconditional signals, bt (�i). While PSD is mostly negative, we still observe
a huge increase as we move from the low to high state�while most values range between

-1.6 and -2.6 in the low state, they get closer to zero in the high state (generally between

-0.2 and 0.2).

In Row 2 of Table VIII, we analyze the absolute value of each predictor, jzj;tj ; in the
low and high state. The predictor is standardized, so that a value jzj;tj = 1 indicates

that the predictor value, Zj;t; is one standard deviation above or below its average.

Our main �nding is that the predictor always takes more extreme values during the
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low state. Intuitively, one might expect that a higher jzj;tj has a positive impact on
performance, as the time-varying component in alphas gets larger. However, in a world

where the unconditional signal is more precise than the slope signal, high values for

jzj;tj are associated with increased uncertainty, reduce the fund predictive signals (see
Figure 2), and ultimately lead to the selection of funds with lower performance than the

unconditional portfolio.

Row 3 reports, in each state, the change in weights between the conditional and un-

conditional portfolios, measured for each month as jwc;t � wu;tj =2; where wc;t and wu;t
denote the Nc;t � 1 and Nu;t � 1 weight vectors of the conditional and unconditional
portfolios, respectively. There is a greater composition change (from the unconditional

strategy) in the low state. This result is consistent with Row 2�in the low state, the pre-

dictor takes more extreme values, which in turns makes the slope signal more important

than the unconditional signal in the portfolio formation process.

Rows 4 to 7 show the out-of-sample di¤erence in Information Ratio between the

conditional and unconditional strategies, IRc�IRu; in each state (low and high). There
is a clear relation between the level of the predictive signal (reported in Row 2) and the

di¤erent performance measures. For every single predictor variable, the performance

measures in the high state are higher than in the low state. Note that the high state in

this context corresponds to months with a high di¤erence between the conditional and

unconditional signal and a low value of the predictor itself. Thus, the poor predictive

signal of the single-predictor strategies is an indicator of lower performance.

The analysis in Table VIII also sheds light on the superior performance of the com-

bination strategy. The combination strategy has a lower PSD (�1:6) in the low state
than all other single predictor strategies whose PSD�s range from -2.6 to-1.9. In the low

state the value of the predictor (0:7) associated with the combination strategy is also

lower than for the single predictors (which range from 0.8 to 1.0). Based on our rea-

soning above, we would therefore expect the combinations strategy to have a superior

information ratio in the low states than all other single predictor strategies. As row

7 of Table VIII shows this is indeed the case. The combination strategy achieves an

information ratio of 1.8 in the low state. Its information ratio in the high state (2.7)

is about the same as that of the volatility predictor strategy (2.8). This suggests that

the superior performance of the combination strategy comes from its performance in

low state months. To summarize, the performance of the combination strategy can be

traced back to a lower di¤erential between the unconditional and conditional signal,

a lower predictor value in the low state months and therefore less deviation from the

unconditional portfolio. This interpretation is corroborated by the change in portfolio
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weights. The values for the combination strategy are 0.30 and 0.20 in the low and high

state respectively and thus lower than all the other states.

Please insert Table VIII

B.3 Sensitivity Analysis

So far our results indicate that the combination strategy generates better risk-adjusted

performance and a higher information ratios than all the other strategies. Our baseline

result in Table VI are based on all funds and total return predictability. Is this result

robust to alternative speci�cations? In Table IX we report a range of sensitivity checks.

First we if we examine alpha instead of total return predictability our conclusions do

not change qualitatively. The combination strategy still generates a higher information

ratio (2.4) than the unconditional strategy (2.2). This is consistent with our discussion

in Table II and III which showed that most in-sample total return predictability was

driven by alpha predictability. One crucial constraint that any investor would face when

attempting to rebalance a portfolio of hedge funds is that of notice periods. Notice

periods imply that an investor that would like to redeem his investment in December

would have to give notice to the fund several weeks in advance. Based on the average

notice period across funds in our data, we therefore carry out a robustness check in which

predictive regressions are estimated with data up to September of each year. Funds are

rebalanced only in December based on the ranking produced in September. This is

more consistent with portfolio rebalancing in practice. We �nd that taking into account

notice periods in this way does not a¤ect the �nding that the combination strategy

outperforms the unconditional strategy.

Our baseline results imposed a dynamic minimum Assets under Management (AuM)

requirement that excludes small funds. Table IX shows that repeating our analysis with

all funds still leads to an outperformance of the combination strategy, although the

outperformance is lower than in the more realistic baseline case. Our conclusions are

also unchanged by increasing the maximum number of funds in each strategies�portfolio

from 100 to 200 or by requiring a minimum number of 60 observations. In both cases

the combination strategy beats the unconditional strategy.

Please insert Table IX

So far we have documented that the combination strategy generates better risk-

adjusted performance than the alternative strategies. Is this predictability driven by
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a particular group of hedge funds? To shed further light on the source and economic

interpretation of predictability we report the baseline results by investment objective

in Table X. We �nd that the combinations strategy performs particularly for the two

largest hedge fund categories (Long/Short Equity and Funds of Funds). The superior

performance of the combination strategy can therefore be traced back to this subgroup

of funds.

Panel A reports results for Long/Short Equity Funds and shows that the combination

strategy outperforms all other strategies with an Information Ratio of 1.3 and a p-value

of 0.00. The next best strategy is the strategy based on the default spread that generates

an Information Ratio of 1.3 and a p-value of 0.06. In terms of the Sharpe Ratio the

combination strategy performs as well as the several of the other strategies but generates

a statistically more signi�cant Sharpe Ratio with a p-value of 0.02. For Market-Neutral

funds the combinations strategy generates the highest Information Ratio after the single

predictor strategy based on the dividend yield and the VIX, respectively. Panel C

reports results for Managed Futures Funds and shows that the combination strategy

only outperforms the multiple predictor and the single predictor (�ows) strategy in

terms of Sharpe Ratio. Similarly for Macro funds the combination strategy does not

uniformly outperform (see Panel D). Panel E shows that the combination strategy is

again useful in maximizing the performance of an portfolio of emerging markets funds.

The combination strategy achieves the highest Information Ratio (0.7) and Sharpe Ratio

(0.7). Similarly, the combination strategy dominates all other strategies in terms of

Sharpe Ratio and Information Ratio when applied to convertible bond funds (Panel F).

For Event Driven (Panel G) and Fixed Income (Panel H) funds the combination strategy

does not generate the highest Information Ratio. For Fixed Income Funds the VIX and

the Dividend Yield lead to the best risk-adjusted out-of-sample performance. Panels I

and J show that for investors choosing among Funds of Funds and Multi-Strategy funds,

respectively, the combination strategy adds value. For both categories the combination

strategy generates the highest Information Ratio. For Multi-Strategy funds the VIX

predictor strategy leads to an equally strong Information ratio and performs better in

terms of Sharpe Ratio.

Please insert Table X

B.4 Impact of the 2008 Crisis

We have so far shown that the combination strategy leads to superior out-of-sample

performance for a range of hedge fund categories during the 1994-2007 period. A nat-

ural additional out-of-sample test is to examine how the combination strategy performs
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during the 2008 hedge fund crisis. It is also of great practical importance for investors to

know which strategy would have helped to best anticipate the events of 2008. Since our

tests are constructed out-of-sample, our tests may identify a strategy that could have

steered a portfolio of hedge funds clear of the hedge fund crisis of 2008 without the bene�t

of hindsight. As we noted above, we would not a priori expect the combination strategy

to outperform the alternative strategies in any given year. Although the combination

strategy is less a¤ected by model uncertainty than alternative strategies, an individual

predictor may play a more important role in any given year than the alternatives.

In Table XI we report the performance of the single predictor strategies and the

combination strategy during 2008. In the �rst two columns of Table 10 we report the

ex post excess return and Sharpe Ratio for di¤erent portfolios for the period 1994-

2007. The combination strategy achieves the highest Sharpe Ratio (2.5) followed by

the unconditional strategy (Sharpe Ratio of 2.3). Columns three and four show our the

coe¢ cients change as we add the year 2008 to the sample. The combination strategy�s

Sharpe Ratio falls by 0.7 to 1.8 for the period 1994-2008. The Sharpe Ratio of the VIX

strategy falls from 2.0 to 1.8. while the unconditional strategy falls from 2.3 to 1.4. For

comparison the Sharpe Ratio of the S&P500 falls from 0.4 to 0.1. When we examine the

cumulative (geometric) return of the di¤erent strategies during the 2008 period we �nd

that the combination strategy provides the third lowest return in both cases (dominated

by the Dividend Yield and the VIX strategy).

To shed light on why di¤erent strategies perform well we also report the cross-

sectional average of the unconditional alpha of funds in each portfolio in Column 8. One

reason for the relatively strong performance of the VIX predictor strategy is that it se-

lects funds with a high conditional mean on average (0.89). This is even high than for the

combination strategy (0.84). Another instructive metric is provided by the statistic that

captures when funds included in di¤erent strategies have the correct exposure to predic-

tor variables. We calculate this statistic as in Table VII. For each month t, we measure

the fund average slope coe¢ cient for each portfolio: bbp;t = �
(1=Nt)

PNt
i=1
bbi;j� IZj;t�Z ;

where Nt is the number of funds included in the portfolio, bbi;j is the fund estimated
slope coe¢ cient (over the previous three-year period), IZj;t�Z is a function that take

the value 1 if the predictor is above average and -1 otherwise. bbp;t is positive only if the
portfolio has the right exposure to the predictor j. Column 9 reports the cross-sectional

average of the signed slope. It shows that one of the reasons why the VIX strategy

performs well is that it has a positive sign of 0.16 on average so that most funds in this

portfolio are correctly positioned. The default spread on the other hand has the wrong

exposure (-0.52) given the predicted value and this goes some way towards explained its
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poor performance in 2008.15 Similarly, the combination portfolio on the other hand has

a cross-sectional average of -0.30 suggesting that many of the funds in the portfolio are

not correctly positioned.

Please insert Table XI

The results in Panel A of Table XI are based on annual rebalancing which is likely

to be realistic in practice. However, annual rebalancing does not allow the portfolios

to quickly react to changes in predictor variables and predictor signals. Therefore in

Panel B we examine the performance in 2008 of the di¤erent strategies when allowing

for monthly rebalancing. Even if this may not be achievable in practice due to lockup

and notice periods it is nevertheless instructive to examine the potential for superior

performance due to more frequent rebalancing. As we would expect we �nd that all

strategies would have generated superior and indeed uniformly positive performance

during the fourth quarter of 2008 that marked the hedge fund crisis. The combination

strategy would have achieved cumulative return of 3.4 in 2008 if monthly rebalancing

was permitted. This compares with -15.8 (-37.8) percent in 2008 for a value-weighted

portfolio of hedge funds (the S&P 500). Column 9 also again helps us shed light on why

funds perform well when monthly rebalancing is allowed. Those strategies with a lower

signed slope (0.13) such as the default spread also tend to produce a lower total return

in 2008 (-0.5).

To better understand the performance of the combination strategy in 2008, we ex-

amine the cumulative return across hedge fund categories in Table XII. For Long/Short

Equity Funds the lowest losses are achieved by the VIX predictor followed by Flows

and the combination strategy. Overall the VIX seems to be the best predictor overall

in terms of cumulative 2008 returns. It generates the best performance for Long/Short

Equity Funds, Managed Futures Funds, Macro Funds, Emerging Markets Funds, Event-

Driven Funds, Funds of Funds and Multi-Strategy Funds. The Second-best predictor

is the dividend yield that leads to the highest cumulative return for categories Fixed

Income and Market Neutral.

Please insert Table XII

15The signed slope for the aggregate �ows predictor does not shed much light on the relatively low
2008 performance of the portfolio based on the fund �ow predictor. This may be partly due to the
fact that the signed slope is calculated based on 12 months of day and the fact that the aggregate �ow
predictor is the least persistent predictor in the sample.
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V Conclusions

This paper develops and applies a framework in which to carefully assess the true fore-

casting power of economic variables in predictive regressions in a large universe of indi-

vidual hedge funds. We shed light on the sources and economic interpretation of predic-

tor models that generate superior out-of-sample performance. Speci�cally, we measure

the proportions of hedge funds in the population having truly predictable returns with

respect to any predictive variable. In addition, we examine whether predictability is

due to time-varying alphas (i.e., managerial abilities), or to time-varying factor risk

premia. Our econometric approach carefully accounts for "false discoveries", that is,

funds that have a signi�cant estimated exposure, bb; to the predictor, while its true ex-
posure is equal to zero (b = 0). We also carefully account for the small-sample bias

by extending the bias-corrected approach of Amihud and Hurvich (2004). We carefully

address issues related to illiquidity and show that our results are robust to alternative

fund inclusion criteria as well as realistic portfolio rebalancing procedures and the use

of lower frequency returns.

Using monthly returns for more than 15,000 funds during spanning the period Janu-

ary 1994 through December 2008, we �nd strong evidence of predictability in the hedge

fund industry, in particular for the default spread, the VIX, and fund �ows. Since hedge

fund risk factor are nearly unpredictable during our sample period, we �nd that the

bulk of return predictability is due to time-varying alphas. We show that the economic

value of predictability can be improved by employing a strategy that combines forecasts

from several single predictive regressions instead of relying on single or multiple pre-

dictive regressions. We extend the literature on mutual and hedge fund persistence by

forming portfolios according to a time-varying performance metric�the fund conditional

alpha t -statistics. This predictive signal, computed using a single predictor or all pre-

dictors simultaneously, automatically incorporates the signal of both the unconditional

and time-varying alphas in one single measure. To account for speci�cation uncertainty,

we also implement a "combination" strategy which pools the conditioning information

across the entire set of predictors, and across individual hedge funds.

Turning to the out-of-sample performance of the conditional hedge fund strategies,

we �nd that the "combination" strategy which selects funds based on their conditional

alpha t-statistic across all predictors, generates the highest risk-adjusted performance in

1994-2007 as well as 1994-2008, and consistently beats the unconditional strategy across

all investment categories. The single-predictor strategies, which only use one single

predictor at a time, are not able to outperform the unconditional strategy. We �nd that
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the conditional strategy which uses all predictors to predict fund alphas produces the

lowest performance.We shed light on the source of this superior performance by showing

that the combination strategy outperforms among the two largest hedge fund categories

in our sample (Long/Short Equity and Funds of Funds). Finally, we use the �nancial

crisis of 2008 as a natural out-of-sample test and show that the combination strategy

produces superior risk-adjusted performance during the crisis.
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VI Appendix

A Measuring the Proportions of Unpredictable and Predictable Funds

We start with the estimation of the proportion �0 (j) of unpredictable funds associated

with predictor j (j = 1; :::; J): Since these funds satisfy the null hypothesis H0 : bi;j = 0;

their slope coe¢ cient p-values are uniformly distributed over the interval [0; 1] (see Bar-

ras, Scaillet, and Wermers (2009;BSW hereafter)): To recover this uniform distribution,

we simply take a su¢ ciently high threshold �� beyond which the vast majority of p-

values come from the unpredictable funds. After measuring the proportion bw (j; ��) of
p-values above ��; we extrapolate it over the entire interval [0; 1] by multiplying it by

1=(1� ��) : b�0 (j) = bw (j; ��) � (1� ��)�1: (11)

To choose the optimal threshold ��;we use the bootstrap procedure proposed by

Storey (2002) and Storey, Taylor, and Siegmund (2004).16 This resampling approach

consists in minimizing an estimate of the Mean-Squared Error (MSE) of b�0 (j; �) ; de-
�ned as E(b�0 (j; �)� �0 (j))2. First, we compute b�0 (j; �) using Equation (11) across a
range of � values (� = 0:30; 0:35; :::; 0:70): Second, for each possible value of �; we form

1,000 bootstrap replications of b�0 (j; �) by drawing with replacement from the M � 1
vector of fund p-values: These are denoted by b�b0 (�), for b = 1; :::; 1; 000: Third, we

compute the estimated MSE for each possible value of �:

\MSE (j; �) =
1

1; 000

1;000X
b=1

�b�b0 (j; �)�min
�
b�0 (j; �)�2 : (12)

We choose �� such that �� = argmin�\MSE (j; �) :
To estimate the proportions of predictable funds, ��A(j) and �

+
A(j), we use a sim-

ilar approach which minimizes the estimated mean-squared error of their respective

estimators. Based on Equation (4), we compute b��A () across a range of  values
( = 0:30; 0:35; :::; 0:50): b��A(j) = bS� (j) � b�0(j) � =2; where bS� (j) is the observed
proportions of signi�cant funds with negative estimated slope coe¢ cient, bbi;j ; (at the
signi�cance level ); and b�0 (j) is the estimated proportion of unpredictable fund (from
Equation (11)). Second, we form 1,000 bootstrap replications of b��A () for each possible
value of : These are denoted by b�b�A (j; ) ; for b = 1; :::; 1; 000: Third, we compute the

16The main advantage of this procedure is that it is entirely data-driven. However, in a study on
mutual fund performance, BSW �nd in that b�0 is not overly sensitive to the choice of ��. A simple
approach which �xes the value of �� to intermediate levels (such as 0.5 or 0.6) produces similar estimates.
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estimated MSE for each possible value of :

\MSE
�
(j; ) =

1

1; 000

1;000X
b=1

�b�b�A (j; )�max

b��A (j; )�2 : (13)

We choose � such that � = argmin \MSE
�
(j; ) : We use the same data-driven

procedure for b�+A (j; ) to determine + = argmin \MSE+ (j; ). Ifmin \MSE� (j; ) <
min \MSE

+
(j; ) ; we set b��A (j) = b��A (�) : To preserve the equality 1 = �0+�+A+��A;

we set b�+A (j) = 1 � b�0 � b��A (j) : Otherwise, we set b�+A (j) = b�+A (+) and b��A (j) =
1� b�0 � b�+A (j) :
B The Bias-Corrected Approach of Amihud and Hurvich (2004;AH)

B.1 Basic Framework

For each hedge fund i in the population (i = 1; :::;M); we use the following predictive

system:

ri;t+1 = bi;0 + b
0
iZt + ui;t+1;

Zt+1 = � +�Zt + �t+1; t+ 1 = 1; :::T (14)

where ri;t+1 the fund i excess return between t and t + 1; Zt is the J � 1 vector of
predictors observed at time t; bi;0 is the intercept, bi = [bi;1; :::; bi;J ] is the J�1 vector of
slope coe¢ cients, and � is the J � J companion matrix of the VAR(1). ui;t+1 denotes
the fund return innovation term, and �t+1 is the J � 1 predictor innovation vector. We
assume that ui;t+1 = E (ut+1 j�t+1 ) + ei;t+1 = �0i�t+1 + ei;t+1; where �i is the J � 1
innovation coe¢ cient vector, and ei;t+1 is the residual term orthogonal to �t+1. While

�t+1 is modelled as an i.i.d. process, we allow ei;t+1 to be autocorrelated (e.g., to account

for the potential hedge fund illiquidity). Replacing ui;t+1 in Equation (14), we obtain

ri;t+1 = bi;0 + b
0
iZt + �

0
i�t+1 + ei;t+1: (15)

By adding �t+1 as an additional variable, the orthogonality condition holds (i.e.,

E (ei;t+1 jZ0; :::; ZT ; �1; :::; �T+1 ) = 0); and the estimated coe¢ cients, bbi;0; bbi, and b�i;
are unbiased.17 However, since �t+1 is unobservable, the main issue is to �nd a proxy

for �t+1; denoted by �ct+1: The solution proposed by AH is to compute �
c
t+1 using the

17This is the main di¤erence with the standard predictive regression in Equation (1), ri;t+1 = bi;0 +
b0iZt + ui;t+1; where the orthogonality condition fails (i.e., E (ui;t+1 jZ0; :::; ZT ) 6= 0):

38



bias-corrected estimates of the VAR system in Equation (14), b�c and b�c:
Starting with the estimation of b�cand b�c; we �nd, as in previous studies (e.g., Camp-

bell (1991)), that there is weak evidence of cross-e¤ects between our set of predictors.18

Therefore, we pursue by assuming that the companion matrix � is diagonal, as sug-

gested by AH.19 We estimate the AR(1) model for each predictor j (j = 1; :::; J):

Zj;t+1 = b�j+b�jZj;t+b�j;t+1: Then, each (unobservable) innovation term, �j;t+1 is proxied
with �cj;t+1 = Zj;t+1�b�cj �b�cjZj;t; where b�cj is the second-order bias corrected autocorre-
lation coe¢ cient b�cj = b�j+(1+3b�j)=Ti+3(1+3b�j)=T 2i ; b�cj = b�j� (b�cj�b�j)Zj ; Ti denotes
the number of return observations, and Zj is the predictor sample average. Finally,

replacing �j;t+1 = �cj;t+1 + (b�cj � �j) + (b�cj � �j)Zj;t into Equation (15), we have
ri;t+1 = b

c
i;0 +

JX
j=1

bci;jZj;t +
JX
j=1

�i;j�
c
j;t+1 + ei;t+1; (16)

where bci;0 = bi;j+
PJ
j=1 �i;j(

b�cj��j) and bci;j = bi;j+�i;j �b�cj � �j� : Based on a simple OLS
estimation of Equation (16), we obtain the bias-corrected estimated slope coe¢ cient, bbci;j ;
along with the estimated innovation coe¢ cients, b�i;j (j = 1; :::; J):While b�i;j is unbiased
(i.e., E(b�i;j) = �i;j); AH show that the bias inbbci;j does not completely disappear; because
we use a proxy, instead of the (true) innovation vector �t+1. However, they show using

a Monte-Carlo analysis that the magnitude of this remaining bias is very low. This

result is con�rmed by our own Monte-Carlo experiment, which is speci�cally designed

to reproduce the salient features of hedge fund data (see Appendix C).

B.2 Extending the Approach to Alpha Predictability

While AH focus on return predictability, it is straightforward to extend their approach

to examine alpha predictability. In this case, we simply add the risk factors to the set

of explanatory variables in Equation (15):

ri;t+1 = ai;0 + a
0
iZt + �

0
i�t+1 + �

0
iFt+1 + �i;t+1; (17)

18To be inserted some stats!...Among the 20 o¤-diagonal elements of b�, we �nd that only three of them
are signi�cantly di¤erent from zero at the 10% level. Using the Bonferroni threshold equal to 0.10/20 to
account for multiple-testing, we �nd that none of them remain signi�cant. , during our sample period
1994-2008,
19They show that when the (true) companion matrix � is diagonal and we fail to impose this condition

on the estimated matrix b�; their approach leads to a much lower bias reduction in the estimated slope
coe¢ cients, bbi:
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where Ft+1 is the K � 1 vector of portfolio-based factor excess returns, �i denotes the
K� 1 vector of fund exposure to the K risk factors, and �i;t+1 is the idiosyncratic term.

Replacing �t+1 with �ct+1 in Equation (17), we have:

ri;t+1 = a
c
i;0 +

JX
j=1

aci;jZj;t + �
c0
i Ft+1 +

JX
j

�i;j�
c
j;t+1 + ei;t+1; (18)

where aci;0 = ai;j +
PJ
j=1 �i;j(

b�cj � �j)Zj ; and aci;j = ai;j + �i;j
�b�cj � �j� : Using the

standard OLS estimation Equation (18), we obtain the bias-corrected estimated alpha

slope coe¢ cient, baci;j ; along with the estimated innovation coe¢ cients, b�i;j (j = 1; :::; J):
Note on Petkova innovation to proxy for the factors?

B.3 Estimating the Slope Coe¢ cient t-statistic and p-value

Following AH, the estimated variance of fund i (i = 1; :::;M) bias-corrected slope coef-

�cient bbci;j associated with predictor j (j = 1; :::; J) equals
dvar(bbci;j) = b�2i;jdvar(b�cj) +dvarols(bbci;j); (19)

where dvar(b�cj) = (1 + 3=T + 9=T 2)2dvar(b�j); and dvarols(bbci;j) is the (j + 1) diagonal
element of the (2J + 1) � (2J + 1) OLS estimated covariance matrix bVols(bbci;0;bbci ; b�i) of
the coe¢ cients in Equation (16). bVols is equal to (X 0X)�1

�
X 0 bViX��1 (X 0X)�1 ; where

X = [x01; :::; x
0
T ]
0; x1 = [1; z01; �

c0
2 ]; and bVi is the T �T estimated covariance matrix of the

residual vector ei = [ei;2; :::; ei;T+1]
0 :

To estimate Vi; we determine the dependence structure in the fund residuals, ei;t+1;

based on an AR speci�cation: Speci�cally, for each fund i; we compute the estimated

innovations, bei;t+1, based on Equation (16), and use them to obtain consistent estima-

tors of the following AR(3) model: ei;t+1 = �i;1ei;t + �i;2ei;t�1 + �i;3ei;t�2 + �i;t+1 (see

Davidson and MacKinnon (2004), p. 277): Based on the p-values associated with the

estimated coe¢ cients, b�i;1; b�i;2; and b�i;3, we also determine the proportions of funds in
the population which exhibit non-zero serial correlation at the three di¤erent lags using

the same approach as the one outlined in Appendix A:

The results across the di¤erent investment categories are shown in Table XIII. The

leftmost columns contain the cross-sectional median of the estimated �rst lag autocor-

relation, b�i;1; along with its 25% and 75%-quantiles (in parentheses), as well as the

estimated proportion of funds with non-zero �rst lag autocorrelation (i.e., funds with

�i;1 6= 0); and its associated standard deviation (in parentheses). The remaining columns
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repeat the analysis for the second and third lags.

Please insert Table AI

Starting with the analysis of the entire fund population, we see that 26.2% and 37.0%

of the funds have a non-zero serial correlation at the �rst and second lags, respectively.

On the contrary, only 2.1% of the funds have a third lag coe¢ cient di¤erent from zero.

This is con�rmed by the estimated values, b�i;3; which are, for most funds, close to zero.
The empirical �ndings remain qualitatively unchanged when we examine the di¤erent

investment categories. Based on these results, we therefore model the dependence in the

fund residual, ei;t+1; using an AR(2).

Following Greene (1994, p. 544), we compute the estimated residual covariance

matrix as bVi =dvar(b�i;t+1)�b	0ib	i��1 ; where b	i is de�ned as

b	i =

266666666664

�
(1+b�i;2)[(1�b�2i;2)�b�i;1]

1�b�i;2
� 1

2

0 0 0 ... 0 0 0

b�i;1(1�b�2i;1) 12
1�b�i;2 �

1� b�2i;2� 12 0 0 ... 0 0 0

�b�i;2 �b�i;1 1 ... 0 0 0

... ... ... ... ... 0 1 0

0 0 0 0 ... �b�i;2 �b�i;1 1

377777777775
(20)

The estimated t-statistic of the jth bias-corrected slope coe¢ cient is de�ned asbt�bbci;j� = bbci;j=�dvar(bbci;j)� 1
2
: The fund p-value used to compute the proportions of unpre-

dictable and predictable funds (Appendix A) is computed as bp(bbci;j) = 2(1�FN (���bt(bci;j)���));
where FN is the cumulative function of the t-statistic distribution with T � (2J + 1)
degrees of freedom.

Finally, to compute the joint test of predictability using all predictors simultane-

ously, we use the Wald test suggested by Amihud, Hurvich, and Wang (2009): bw(bbci ) =bbc0i bV �bbci��1bbci ; where bV �bbci� is the J �J estimated covariance matrix of the J �1 slope
coe¢ cient vector, bbci :While the diagonal elements of bV �bbci� are given by Equation (19),
Amihud, Hurvich, and Wang (2009, p. 420) provide a similar expression for the covari-

ance terms, ccov(bbci;j ;bbci;k). The p-value associated with this joint test is computed asbp(bbci ) = 1�FN ( bw(bbci )); where FN is the cumulative function of a �2 distribution with J
degrees of freedom:
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B.4 Estimating the Conditional Mean t-statistic

We start with the single-predictor case discussed in Section I.C. Using predictor j; we

de�ne the estimated conditional excess mean of fund i (i = 1; :::;M) over the riskfree rate

between time t and t+1 as b�i;t = bbci;0+bbci;jZj;t; and its estimated variance asdvar(b�i;t) =
X 0
t
bV �bbci;0;bbci;j�Xt; whereXt = [1; Zj;t]0 and bV �bbci;0;bbci;j� is the 2�2 estimated covariance

matrix of bbci;0 and bbci;j . The estimated variance of the intercept bbci;0 is computed as
dvar(bbci;0) = b�2i;jdvar(b�cj) +dvarols(bbci;0); (21)

where dvar(b�cj) = dvar(bvcj)=Ti + Z2jdvar(b�cj); and dvarols(bbci;0) is the upper-left element ofbVols(bbci;0;bbci ; b�i). The estimated covariance between bbci;0 and bbci;j is given by
ccov(bbci;0;bbci;j) = b�2i;j ccov(b�cj ;b�cj) + ccovols(bbci;0;bbci;j); (22)

where ccov(b�cj ;b�cj) = �Zjdvar(b�cj); and ccovols(bbci;0;bbci;j) is the second row-�rst column ele-
ment of bVols(bbci;0;bbci;j ; b�i): Finally, the estimated variance of the estimated slope coe¢ cientbbci;j is given by Equation (19). Using this result, we can compute the estimated t-statistic
of the conditional alpha as bt �b�i;t� = b�i;t= �dvar(b�i;t)� 12 :

In the multi-predictor case, computing the variance of the intercept and its covariance

with the alpha slope coe¢ cients is more complicated since bbci;0 is a function of all J
predictor intercepts, i.e., bci;0 = bi;0 +

PJ
j=1 �i;j(

b�cj � �j): However, the logic behind the
approach remains unchanged.

B.5 Estimating the Slope Coe¢ cient at the Quarterly Horizon

In Progress

C Monte-Carlo Analysis

In Progress
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Table I

Descriptive Statistics

Panel A shows, for each investment category, the number of funds (in parentheses), as well as
the fund cross-sectional median and the 25-75% quantiles (in parentheses) of the annualized
excess mean over the riskfree rate (both excluding and including 2008), standard deviation,
skewness and kurtosis. Panel B displays the (monthly) mean and standard deviation, �rst-order
autocorrelation, and correlation matrix of the four variables used to predict fund returns. Panel
C displays the (annualized) excess mean and standard deviation, as well as the correlation matrix
of the Fung and Hsieh seven risk factors. All statistics are computed using monthly observations
between January 1994 and December 2008.

Panel A Fund Excess Returns
Mean (Ann.) Std (Ann.) Skewness Kurtosis

includ. 2008
Long-Short (3,007) 9.3 (5.0,14.2) 6.4 (2.4,11.3) 11.9 (8.4,16.6) .09 (-.19,.38) 3.5 (2.8,4.4)
Mkt. Neutral (463) 5.2 (1.5,8.7) 4.2 (0.8,7.6) 7.6 (4.7,9.8) .03 (-.31,.38) 3.6 (2.8,5.0)
Man. Fut. (1,174) 5.0 (0.7,9.9) 4.8 (0.7,9.4) 14.5 (9.2,20.2) .25 (-.03,.54) 3.4 (2.8,4.4)
Macro (599) 6.7 (2.8,10.9) 5.5 (1.1,9.8) 12.1 (8.5,17.3) .21 (-.09,.51) 3.5 (2.9,4.5)
Emerging (600) 11.4 (5.0,20.6) 7.2 (1.6,14.9) 16.9 (10.0,22.7) -.03 (-.29,.22) 3.1 (2.5,4.2)
Convertible (279) 5.4 (2.9,7.8) 4.7 (1.6,6.9) 5.8 (3.8,8.8) -.11 (-.69,.34) 4.4 (3.3,6.3)
Event-Driven (608) 7.6 (4.6,11.2) 5.8 (2.5,9.8) 7.3 (4.6,11.0) .02 (-.50,.40) 4.6 (3.4,6.3)
Fixed Income (673) 5.1 (2.2,8.6) 3.6 (0.0,7.0) 6.1 (3.8,8.9) -.04 (-.81,.42) 4.4 (3.3,7.7)
F. of Funds (3,611) 5.8 (3.5,8.9) 2.2 (-0.3,4.8) 7.3 (4.3,9.3) -.09 (-.55,.23) 3.4 (2.8,4.8)
Multi-Strat. (1.883) 7.0 (3.9,11.0) 6.3 (3.1,10.5) 9.0 (5.4,14.2) .11 (-.25,.41) 3.2 (2.7,4.6)

All Funds (15,922) 6.9 (3.4,11.2) 4.7 (1.1,9.0) 9.4 (6.0,14.9) .06 (-.32,.38) 3.5 (2.8,4.8)

Panel B Predictors
Correlation matrix

Mean (Mon.) Std. (Mon.) Autocorr Dividend Volatility Agg. Flow
Default spread 0.8 0.2 0.95 -.26 .30 .07
Dividend yield 2.0 0.4 0.97 -.48 .01
Volatility (VIX) 19.5 6.7 0.43 -.07
Aggregate Flow 0.9 1.8 0.25

Panel C Risk Factors
Correlation matrix

Mean (Ann.) Std.(Ann.) Size Term Def. T. Bond T. Cur. T. Com.
Equity Market 7.2 13.9 -.06 -.11 .30 -.14 -.12 -.09
Equity Size -2.7 13.1 -.15 .20 -.05 .02 -.02
Bond Term 2.4 7.1 -.33 .06 .14 .08
Bond Default 2.2 4.1 -.12 -.15 -.12
Trend Bond -17.2 51.6 .16 .16
Trend Currency -3.6 64.8 .26
Trend Commodity -8.8 46.1
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Table III

Return Versus Alpha Predictability

Panel A measures the predictive ability of the four variables (Default spread, Dividend yield,
Volatility, and Aggregate �ow) on the Fung-Hsieh seven risk factors. The estimated slope co-
e¢ cients and associated p-values (in parentheses) are obtained from a multiple regression after
applying the bias-corrected approach explained in the appendix. The �nal column contains the
p-value of joint signi�cance using all four predictors. The leftmost columns in Panel B shows, for
each investment category, the cross-fund median exposure (beta) to the Fung-Hsieh risk factors.
The rightmost columns reports for each predictor the cross-fund median of the di¤erence be-
tween return and alpha estimated slope coe¢ cients, (abs(bbi� (bai), as a percentage of the median
estimated alpha slope coe¢ cient. The results are based on monthly data between January 1994
and December 2007.

Panel A Risk Factor Predictability
Default Dividend Volatility Flow Joint p-val.

Equity Market -.34 (.01) .24 (0.49) .13 (.39) -.27 (.03) .01
Equity Size .40 (.19) -.35 (.30) -.49 (.16) -.57 (.04) .10
Bond Term -.12 (.39) .07 (.67) .28 (.11) .18 (.25) .43
Bond Default .25 (.00) .03 (.77) -.16 (.08) -.03 (.73) .04
Trend Bond -1.63 (.11) 2.67 (.02) 5.87 (.00) .78 (.44) .00
Trend Curren. 1.32 (.36) -.60 (.70) -.40 (.81) .13 (.93) .88
Trend Commo. -.71 (.44) -1.19 (.24) -.27 (.79) 1.13 (.25) .53

Panel B Fund Exposure to Systematic Risk
Exposure to FH factors Alpha vs Sytematic Risk (%)

Mark. Size Term Def. T.B. T.Cu. T.Co. Def. Div. Vol. Flow
Long-Short .30 .15 .01 .12 .00 .01 .01 39.2 55.4 46.3 51.0
Mkt. Neutral .04 .02 .03 .07 .00 .01 .00 38.0 62.4 39.8 42.3
Man. Future .03 .02 .11 .06 .02 .03 .01 48.4 44.6 67.9 52.2
Macro .10 .05 .09 .13 .01 .02 .01 51.6 45.9 60.3 53.2
Emerging .42 .15 .01 .45 .00 .01 .01 24.2 51.6 33.7 49.4
Convertible .02 .04 .01 .18 .00 .00 .00 40.9 49.9 43.3 23.8
Event-Driven .14 .10 .01 .23 .00 .00 .00 48.9 46.0 51.2 48.7
Fixed Income .04 .01 .04 .18 .00 .00 .00 39.0 37.2 43.3 40.6
F. of Funds .15 .05 .02 .18 .00 .01 .01 34.8 35.6 53.1 37.2
Multi-Strategy .12 .06 .06 .12 .00 .00 .01 34.0 42.2 53.4 38.9

All Funds .15 .07 .03 .15 .00 .00 .01 39.5 45.0 51.6 46.8
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Table IV

Individual Fund Return Predictability at the Quarterly Horizon

We measure the predictive ability of the four variables (Default spread, Dividend yield, Volatil-
ity, and Aggregate �ow) on individual fund quarterly excess returns (over the riskfree rate). For
each investment category, we report the cross-sectional median and 25-75% quantiles (in paren-
theses) of the estimated slope coe¢ cient, bbj , associated with each predictor. Each coe¢ cient
is divided by 3 and standardized (by multiplying the initial estimate by the predictor standard
deviation) so that it corresponds to the change in the fund monthly excess return (over the
next quarter) for a one standard deviation increase in the predictor value. The estimated slope
coe¢ cients and associated p-values are obtained from a multiple regressions using overlapping
return observations after applying the bias-corrected approach explained in the appendix. They
are computed using monthly overlapping returns between January 1994 and December 2007.

Default spread Dividend yield Volatility (VIX) Aggregate �ow
Long-Short .14 (-.25,.56) -.04(-.40,.40) -.08 (-.49,.31) -.22 (-.50,.02)
Mkt. Neutral .02 (-.26,.24) -.10 (-.30,.12) .01 (-.25,.28) -.07 (-.23,.10)
Man. Future .04 (-.29,.43) .03 (-.36,.50) .21 (-.13,.61) -.02 (-.27,.23)
Macro .14 (-.21,.55) -.09 (-.45,.26) .07 (-.31,.41) -.06 (-.30,.16)
Emerging .53 (.05,1.03) -.07 (-.28,.51) -.21 (-0.73,.21) -.31 (-.72,-.05)
Convertible .11 (-.04,.37) .02 (-.26,.21) .05 (-.21,.29) -.16 (-.30,-.02)
Event-Driven .07 (-.16,.30) -.01 (-.20,.19) -.05 (-.30,.19) -.12 (-.28,.03)
Fixed Income .07 (-.11,.32) -.03 (-.24,.17) .03 (-.22,.31) .00 (-.16,.15)
F. of Funds .23 (.03,.49) -.03 (-.21,.11) -.09 (-.29,.10) -.14 (-.27,-.01)
Multi-Strategy .19 (-.06,.50) -.01 (-.24,.21) .02 (-.21,.34) -.13 (-.33,-.06)

All Funds .15 (-.12,.49) -.02 (-.29,.24) -.03 (-.32,.30) -.13 (-.34,.06)
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Table VI

Economic Value of Predictability

In Panel A, we measure the out-of-sample performance of decile portfolios which select the 10%
of funds with the highest conditional mean predictive signal. While the single-predictor strate-
gies only use one of the four predictors (Default spread, Dividend yield, Volatility, and Aggregate
�ow), the "All predictors" strategy uses all of them simultaneously to compute the fund pre-
dictive signal. The combination strategy computes the predictive signal by averaging across the
single-predictor signals. We report the annualized excess mean (b�), standard deviation (b�tot),
Sharpe ratio (SR), Fung-Hsieh alpha (b�), residual standard deviation (b�res), Information ratio
(IR), as well as the 5-95% quantiles of the monthly excess return distribution. In parentheses are
the one-sided p-values indicating whether the conditional strategy outperforms the unconditional
strategy that ranks funds based on their unconditional signals only. All portfolios are formed
at the end of the year, and rebalanced annually. The initial formation date is on December 31,
1996, and the �nal one on December 31, 2007. For comparison purposes, we also report the
performance of hedge fund value-weighted (VW) and equally-weighted (EW) indices, as well
as the SP500. For each strategy, Panel B shows the annual turnover, along with the portfolio
exposure (beta) to the Fung-Hsieh seven risk factors.

Panel A Portfolio Performance
Return (Ann.) Fung-Hsieh Alpha (Ann.) Quantiles

Nb. funds: 94 b� b�tot SR b� b�res IR 5% 95%
Uncond. 5.8 4.1 1.4 5.4 2.6 2.1 -1.6 1.6
Single-Predic.
Default Spread 6.8(.12) 5.7 1.2(.83) 6.4(.14) 3.9 1.6(.88) -2.4 2.2
Dividend Yield 7.0(.04) 4.9 1.4(.39) 6.3(.10) 3.3 1.9(.56) -1.5 2.4
Volatility (VIX) 7.7(.01) 4.2 1.8(.10) 7.1(.01) 3.5 2.0(.43) -1.4 2.3
Aggregate Flow 6.9(.09) 4.2 1.6(.12) 6.8(.04) 3.2 2.1(.48) -1.6 2.3
Multiple-Predic.
All predictors 5.9(.41) 4.6 1.3(.54) 5.3(.52) 3.9 1.4(.90) -2.2 3.1
Combination 7.1(.01) 4.0 1.8(.00) 6.8(.00) 2.7 2.5(.03) -1.5 2.0

VW Index 3.7 5.7 0.6 2.8 4.1 0.7 -2.5 3.1
EW Index 4.4 5.7 0.8 3.6 3.8 0.9 -2.2 2.8
SP500 1.2 15.9 0.1 na na na -8.7 6.4

Panel B Portfolio Characteristics
Exposure to the Fung-Hiesh Risk Factors

Turnover Mark. Size Term Def. T.Bond T.Cu. T.Co.
Unconditional 56.3 .12 .07 .04 .20 -.01 .00 .00
Single-Predic.
Default Spread 73.5 .17 .08 .05 .23 -.01 .00 -.01
Dividend Yield 66.8 .17 .13 .10 .10 -.01 .00 .00
Volatility (VIX) 66.9 .11 .07 .06 .10 -.01 .00 .00
Aggregate Flow 62.1 .09 .08 .00 .18 -.01 .00 .00
Multiple-Predic.
All predictors 89.6 .14 .09 .06 .04 -.01 .01 .01
Combination 58.7 .11 .07 .03 .14 -.01 .00 .0050



Table VII

Performance Using Slope Signal Only

We measure the out-of-sample performance of decile portfolios which select the 10% of funds with
the highest slope signal associated with each of the four predictors (Default spread, Dividend
yield, Volatility, and Aggregate �ow), The combination strategy computes the slope signal by
averaging across the single-predictor signals. We report the annualized excess mean (b�), standard
deviation (b�tot), Sharpe ratio (SR), Fung-Hsieh alpha (b�), residual standard deviation (b�res),
Information ratio (IR), as well as the 5-95% quantiles of the monthly excess return distribution.
In parentheses are the one-sided p-values indicating whether the slope signal strategy outperforms
the predictive signal strategy that ranks funds based on their predictive signals (see Table VI).
All portfolios are formed at the end of the year, and rebalanced annually. The initial formation
date is on December 31, 1996, and the �nal one on December 31, 2007. The rightmost columns
report the di¤erence between the average unconditional mean and slope coe¢ cient of the funds
included in the "slope signal" and "predictive signal" portfolios, respectively.

Slope vs Predictive signals
Return (Ann.) FH Alpha (Ann.) Fund average di¤erenceb� SR b� IR uncond. mean slope coe¤.

Single-Predic.
Default Spread 6.6(.53) 0.9(.91) 6.1(.54) 1.1(.94) -.36 -.05
Dividend Yield 6.7(.57) 0.8(.99) 5.0(.84) 0.8(1.00) -.28 .30
Volatility (VIX) 6.3(.82) 0.9(.96) 5.3(.86) 0.8(1.00) -.43 .30
Aggregate Flow 0.8(.98) 0.1(.99) 1.1(.99) 0.2(1.00) -.49 -.14
Multiple-Predic.
Combination 5.7(.72) 0.8(.97) 5.2(.77) 0.9(1.00) -.40 .06
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Table VIII

Signal Quality and Portfolio Performance

For each single-predictor strategy (Default spread, Dividend yield, Volatility, Aggregate �ow), we
compute its monthly predictive signal di¤erential (against the unconditional predictive signal),
and form two groups of months according to the signal level: Low (L), and High (H). In each
state (L, H), we compute the average predictor absolute value, the change in the portfolio
composition (against the unconditional strategy), as well as the annualized excess mean, Sharpe
ratio, Fung-Hsieh alpha, and Information ratio. The predictor is standardized so that a value of
1 indicates that the original predictor value is one standard deviation above (below) its average.
For the combination strategy, we use a similar approach where the monthly predictive signal and
predictor value correspond to the simple averages of the single-predictor signals and predictor
values, respectively. Each column "Di¤" reports the di¤erence between the High and the Low
states.

Default spread Dividend yield Volatility (VIX) Aggregate �ow Combination
L/H Di¤ L/H Di¤ L/H Di¤ L/H Di¤ L/H Di¤

Predict. signal -2.6/0.0 2.6 -1.9/0.2 2.1 -2.2/-0.1 2.1 -1.9/-0.2 1.7 -1.6/0.2 1.8
(vs Uncond.)
Predict. value 0.9/0.4 -0.5 0.9/0.5 -0.4 0.8/0.6 -0.2 1.0/0.5 -0.5 0.7/0.6 -0.1
Port. weight .54/.33 -.21 .48/.33 -.14 .45/.32 -.13 .35/.31 -.4 .30/.20 -.10
(vs Uncond.)
Performance
Excess mean 5.6/8.0 2.4 4.1/10.0 5.9 5.6/9.8 4.2 4.7/9.1 4.4 5.0/9.2 4.2
Sharpe ratio 0.8/2.2 1.4 0.7/2.4 1.7 1.2/2.6 1.4 1.0/2.2 1.2 1.1/2.7 1.6
FH Alpha 5.3/7.7 2.4 4.5/8.2 3.6 5.9/8.6 2.7 5.2/8.4 3.3 5.8/8.0 2.2
Info. Ratio 1.0/2.4 1.4 1.1/2.4 1.3 1.4/2.8 1.4 1.5/2.5 1.0 1.8/2.7 0.9
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Table IX

Sensitivity Analysis

We compare the out-of-sample performance of the combination and the unconditional strategies
for di¤erent speci�cations. "Alpha Predictability" selects funds based on their alpha signals (as
opposed to their excess mean signals). "Notice Period" incorporates a three-month notice period
before rebalancing the portfolios (i.e., decisions are taken at the end of September instead of
December). "No AUM Limit" does not exclude the smallest funds from the sample. "Limit:
200 Funds" increases the upper limit of funds to be included in the portfolios from 100 to 200.
Finally, "Estimation: 60 Obs." requires a minimum of 60 monthly return observation (after the
�rst �ve years) to estimate the fund signals. For each speci�cation, we report the annualized
excess mean (b�), standard deviation (b�tot), Sharpe ratio (SR), Fung-Hsieh alpha (b�), residual
standard deviation (b�res), Information ratio (IR), as well as the 5-95% quantiles of the monthly
excess return distribution. In parentheses are the one-sided p-values indicating whether the
conditional strategy outperforms the unconditional strategy. All portfolios are formed at the
end of the year, and rebalanced annually. Except for "Notice Period", the initial formation date
is on December 31, 1996, and the �nal one on December 31, 2007.

Return (Ann.) Fung-Hsieh Alpha (Ann.) Quantilesb� b�tot SR b� b�res IR 5% 95%
Alpha Predictability
Unconditional 5.8 3.6 1.6 5.5 2.5 2.2 -1.6 1.6
Combination 6.7(.02) 3.8 1.8(.18) 6.5(.00) 2.7 2.4(.09) -1.5 2.0
Notice Period
Unconditional 5.1 4.4 1.2 4.5 2.9 1.6 -1.6 2.0
Combination 5.1(.47) 3.2 1.6(.06) 4.7(.34) 2.3 2.0(.08) -1.3 1.7
No AUM Limit
Unconditional 6.9 3.1 2.2 6.7 2.3 2.9 -1.0 1.5
Combination 8.0(.02) 3.5 2.3(.10) 7.7(.03) 2.4 3.1(.07) -1.1 2.0
Limit: 200 Funds
Unconditional 5.4 4.8 1.1 4.8 3.2 1.5 -2.3 2.1
Combination 6.9(.00) 4.8 1.4(.00) 6.4(.00) 3.2 2.0(.00) -1.4 2.3
Estimation: 60 Obs.
Unconditional 4.4 5.1 0.8 3.7 3.5 1.0 -1.8 2.4
Combination 5.8(.04) 5.6 1.0(.06) 5.1(.03) 3.9 1.3(0.9) -2.0 2.7
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Table X

Economic Value of Predictability across Investment Categories

For each investment category (Panels A to J), we measure the out-of-sample performance of
the unconditional, single-predictor, "All predictors" and combination strategies. We report the
annualized excess mean (b�), standard deviation (b�tot), Sharpe ratio (SR), Fung-Hsieh alpha (b�),
residual standard deviation (b�res), Information ratio (IR), as well as the 5-95% quantiles of the
monthly excess return distribution. In parentheses are the one-sided p-values indicating whether
the conditional strategy outperforms the unconditional strategy. All portfolios are formed at the
end of the year, and rebalanced annually. The initial formation date is on December 31, 1996,
and the �nal one on December 31, 2007.

Panel A Long-Short
Return (Ann.) Fung-Hsieh Alpha (Ann.) Quantiles

Nb. funds: 39 b� b�tot SR b� b�res IR 5% 95%
Uncond. 6.1 8.1 0.8 5.2 5.2 1.0 -3.8 4.1
Single-Predic.
Default Spread 9.0(.02) 9.7 1.0(.06) 8.2(.02) 6.4 1.3(.06) -3.9 4.8
Dividend Yield 9.1(.00) 9.3 1.0(.09) 7.8(.02) 6.3 1.2(.13) -3.7 4.7
Volatility (VIX) 7.5(.06) 7.6 1.0(.03) 6.8(.00) 5.6 1.2(.05) -3.2 4.0
Aggregate Flow 6.5(.39) 8.3 0.8(.44) 5.8(.31) 5.9 1.0(.50) -3.4 3.8
Multiple-Predic.
All predictors 6.7(.37) 8.3 0.8(.41) 6.7(.17) 5.4 1.2(.22) -3.6 4.4
Combination 8.5(.00) 8.7 1.0(.02) 7.6(.00) 5.6 1.3(.00) -3.2 4.5

Panel B Market Neutral
Return (Ann.) Fung-Hsieh Alpha (Ann.) Quantiles

Nb. funds: 20 b� b�tot SR b� b�res IR 5% 95%
Uncond. 2.8 3.2 0.9 2.4 2.8 0.9 -1.4 1.7
Single-Predic.
Default Spread 2.9(.43) 3.2 0.9(.49) 2.5(.37) 2.9 0.9(.47) -1.4 1.6
Dividend Yield 3.8(.02) 3.2 1.2(.05) 3.4(.00) 2.8 1.2(.01) -1.4 1.8
Volatility (VIX) 3.8(.01) 3.2 1.2(.03) 3.4(.00) 2.8 1.2(.04) -1.2 1.7
Aggregate Flow 3.0(.25) 3.3 0.9(.43) 2.6(.23) 2.9 0.9(.49) -1.3 1.8
Multiple-Predic.
All predictors 3.6(.08) 3.1 1.1(.11) 2.9(.17) 2.9 1.0(.23) -1.1 1.7
Combination 3.2(.08) 3.0 1.0(.09) 2.8(.07) 2.6 1.1(.09) -1.2 1.7
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Table X

Performance across Investment Categories (Continued)

Panel C Managed Futures
Return (Ann.) Fung-Hsieh Alpha (Ann.) Quantiles

Nb. funds: 20 b� b�tot SR b� b�res IR 5% 95%
Uncond. 5.2 5.6 0.9 3.9 5.0 0.8 -2.0 3.0
Single-Predic.
Default Spread 5.2(.55) 4.9 1.1(.28) 4.5(.33) 4.7 1.0(.23) -2.0 2.8
Dividend Yield 6.1(.25) 5.9 1.0(.30) 5.3(.09) 5.4 1.0(.17) -2.5 3.2
Volatility (VIX) 5.8(.32) 6.2 0.9(.52) 4.5(.30) 5.7 0.8(.54) -2.3 3.7
Aggregate Flow 4.1(.90) 5.5 0.7(.89) 3.1(.82) 5.1 0.6(.81) -2.4 2.9
Multiple-Predic.
All predictors 3.5(.88) 6.9 0.5(.94) 2.2(.90) 6.2 0.3(.93) -3.3 4.0
Combination 4.9(.77) 5.1 1.0(.47) 3.7(.66) 4.7 0.8(.52) -1.9 2.9

Panel D Macro
Return (Ann.) Fung-Hsieh Alpha (Ann.) Quantiles

Nb. funds: 20 b� b�tot SR b� b�res IR 5% 95%
Uncond. 3.2 5.9 0.5 1.7 5.2 0.3 -2.7 2.7
Single-Predic.
Default Spread 4.8(.06) 5.8 0.8(.06) 3.6(.02) 5.1 0.7(.02) -2.0 3.0
Dividend Yield 2.9(.57) 6.3 0.5(.65) 1.4(.57) 5.2 0.3(.54) -3.1 3.4
Volatility (VIX) 5.5(.01) 6.4 0.9(.02) 4.1(.00) 6.0 0.7(.00) -2.6 3.1
Aggregate Flow 4.3(.20) 6.0 0.7(.21) 3.3(.09) 5.6 0.6(.14) -2.7 3.3
Multiple-Predic.
All predictors 3.4(.40) 5.8 0.6(.62) 2.1(.33) 5.4 0.4(.38) -2.6 3.3
Combination 4.8(.00) 6.0 0.8(.01) 3.1(.01) 5.2 0.6(.01) -2.3 3.2

Panel D Emerging Markets
Return (Ann.) Fung-Hsieh Alpha (Ann.) Quantiles

Nb. funds: 20 b� b�tot SR b� b�res IR 5% 95%
Uncond. 7.7 12.0 0.6 6.1 9.8 0.6 -6.0 5.7
Single-Predic.
Default Spread 7.6(.51) 13.7 0.6(.74) 6.2(.45) 10.7 0.6(.58) -6.8 6.0
Dividend Yield 5.3(.90) 11.3 0.5(.85) 3.9(.88) 8.9 0.4(.81) -7.2 4.3
Volatility (VIX) 7.8(.39) 11.9 0.7(.35) 6.1(.47) 10.0 0.6(.49) -5.8 5.5
Aggregate Flow 6.0(.91) 12.4 0.5(.93) 4.9(.87) 10.4 0.5(.87) -6.9 5.9
Multiple-Predic.
All predictors 4.4(.96) 13.9 0.3(.98) 3.9(.89) 11.2 0.3(.93) -7.1 5.8
Combination 8.2(.21) 12.5 0.7(.34) 6.5(.28) 10.0 0.7(.32) -7.2 5.9
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Table X

Performance across Investment Categories (Continued)

Panel F Convertible Arbitrage
Return (Ann.) Fung-Hsieh Alpha (Ann.) Quantiles

Nb. funds: 20 b� b�tot SR b� b�res IR 5% 95%
Uncond. 3.2 6.3 0.5 2.4 4.7 0.5 -2.4 2.8
Single-Predic.
Default Spread 3.4(.26) 6.3 0.5(.28) 2.6(.32) 4.7 0.6(.38) -2.0 3.1
Dividend Yield 4.2(.00) 6.8 0.6(.04) 3.2(.02) 5.0 0.6(.07) -2.3 3.1
Volatility (VIX) 4.4(.02) 8.3 0.5(.30) 3.0(.10) 6.1 0.5(.41) -2.9 3.5
Aggregate Flow 1.9(.97) 6.0 0.3(.96) 1.6(.93) 4.6 0.3(.90) -2.7 2.2
Multiple-Predic.
All predictors 2.7(.59) 6.5 0.4(.67) 2.1(.58) 4.5 0.5(.58) -2.4 2.2
Combination 3.9(.00) 6.5 0.6(.02) 3.0(.01) 4.5 0.7(.01) -2.0 2.9

Panel G Event-Driven
Return (Ann.) Fung-Hsieh Alpha (Ann.) Quantiles

Nb. funds: 20 b� b�tot SR b� b�res IR 5% 95%
Uncond. 4.8 5.3 0.9 4.4 3.5 1.2 -2.4 2.2
Single-Predic.
Default Spread 5.7(.09) 5.7 1.0(.27) 5.1(.17) 3.6 1.4(.24) -2.7 2.5
Dividend Yield 6.2(.02) 5.3 1.2(.04) 5.8(.02) 3.5 1.6(.02) -2.2 2.7
Volatility (VIX) 6.4(.01) 4.9 1.3(.01) 5.9(.00) 3.6 1.6(.02) -2.1 2.7
Aggregate Flow 4.4(.78) 5.9 0.7(.96) 3.9(.88) 3.9 1.0(.95) -2.3 2.6
Multiple-Predic.
All predictors 6.2(.04) 5.5 1.1(.08) 5.7(.04) 4.0 1.4(.17) -2.2 2.6
Combination 5.8(.05) 5.3 1.1(.09) 5.4(.03) 3.9 1.4(.14) -2.3 2.5

Panel H Fixed Income
Return (Ann.) Fung-Hsieh Alpha (Ann.) Quantiles

Nb. funds: 20 b� b�tot SR b� b�res IR 5% 95%
Uncond. 2.8 4.6 0.6 2.8 3.6 0.8 -2.7 1.7
Single-Predic.
Default Spread 2.6(.46) 4.0 0.7(.23) 2.1(.73) 3.1 0.7(.44) -1.7 1.3
Dividend Yield 4.9(.02) 3.9 1.3(.01) 4.6(.01) 3.3 1.4(.03) -2.1 1.8
Volatility (VIX) 4.5(.00) 4.0 1.1(.03) 4.2(.00) 3.2 1.3(.00) -1.6 1.8
Aggregate Flow 2.8(.41) 4.8 0.6(.50) 2.7(.47) 3.6 0.8(.40) -2.5 1.9
Multiple-Predic.
All predictors 2.4(.62) 5.3 0.4(.72) 1.9(.78) 3.8 0.5(.75) -2.7 1.8
Combination 3.2(.24) 3.7 0.8(.08) 2.8(.38) 3.1 0.9(.17) -1.6 1.4
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Table X

Performance across Investment Categories (Continued)

Panel I Funds of Funds
Return (Ann.) Fung-Hsieh Alpha (Ann.) Quantiles

Nb. funds: 47 b� b�tot SR b� b�res IR 5% 95%
Uncond. 3.7 4.9 0.8 3.2 3.7 0.9 -2.4 2.1
Single-Predic.
Default Spread 5.5(.02) 5.7 0.9(.01) 5.0(.01) 4.4 1.1(.02) -2.5 2.9
Dividend Yield 5.5(.00) 5.4 1.0(.00) 4.8(.00) 4.2 1.1(.02) -1.9 2.8
Volatility (VIX) 4.8(.01) 4.8 1.0(.01) 4.2(.01) 3.8 1.1(.03) -2.0 2.3
Aggregate Flow 4.1(.21) 5.3 0.8(.43) 3.7(.14) 4.2 0.9(.48) -2.3 2.7
Multiple-Predic.
All predictors 3.7(.38) 5.8 0.6(.67) 3.1(.42) 4.3 0.7(.65) -2.7 2.6
Combination 5.1(.00) 4.7 1.1(.00) 4.5(.00) 3.7 1.2(.00) -1.9 2.3

Panel J Multi-Strategies
Return (Ann.) Fung-Hsieh Alpha (Ann.) Quantiles

Nb. funds: 25 b� b�tot SR b� b�res IR 5% 95%
Uncond. 7.5 4.3 1.8 6.9 3.5 2.0 -1.6 2.3
Single-Predic.
Default Spread 7.4(.63) 4.6 1.6(.79) 6.9(.58) 4.0 1.7(.85) -1.5 2.5
Dividend Yield 7.1(.77) 4.6 1.5(.78) 6.5(.76) 3.9 1.7(.88) -1.3 2.6
Volatility (VIX) 9.1(.09) 4.8 1.9(.34) 8.4(.05) 4.4 1.9(.52) -1.1 2.7
Aggregate Flow 6.1(.98) 4.6 1.3(.99) 5.7(.97) 3.8 1.5(.97) -1.5 2.2
Multiple-Predic.
All predictors 6.8(.61) 5.5 1.2(.75) 6.0(.77) 5.0 1.2(.97) -2.3 3.4
Combination 7.4(.58) 4.0 1.8(.35) 6.8(.60) 3.6 1.9(.63) -1.1 2.2
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Table XI

Performance during the 2008 Crisis

In Panel A, we measure the impact of the 2008 crisis on the out-of-sample performance of the
unconditional, single-predictor, and combination strategies based on annual rebalancing. The
leftmost columns show the annualized excess mean (b�) and the Sharpe ratio (SR) up to 2007,
as well as the changes due to the 2008 crisis. We also report the 2008 cumulative returns over
the entire year (Total), and over two subperiods (January-August, and September-December).
The �nal columns report the average estimated unconditional mean and slope coe¢ cient of the
funds included in each portfolio in 2008. For comparison purposes, we also report the 2008
performance of hedge fund value-weighted (VW) and equally-weighted (EW) indices, as well as
the SP500. Panel B repeats the analysis by allowing the unconditional, single-predictor, and
combination strategies to be rebalanced monthly.

Panel A Predictive Signal�Annual Rebalancing (baseline case)
Perf.(2007) Change(2008) Cumulative returns(2008) Cross-fund avg.(2008)b� SR b� SR Jan.-Aug. Sep.-Dec. Total mean slope

Uncond. 7.6 2.3 -1.7 -0.9 -1.7 -10.9 -12.4 .98 na
Single-Predic.
Default Spread 9.4 2.0 -2.5 -0.8 -7.4 -13.3 -19.7 .68 -.52
Dividend Yield 8.4 1.8 -1.4 -0.4 -0.4 -7.4 -7.8 .67 -.32
Volatility (VIX) 8.2 2.0 -0.5 -0.2 4.0 -1.6 2.3 .89 .16
Aggregate Flow 8.6 2.3 -1.8 -0.7 -2.9 -9.5 -12.1 .89 .10
Multiple-Predic.
Combination 8.6 2.5 -1.5 -0.7 -1.0 -8.5 -9.4 .84 -.30

VW Index 5.6 1.1 -1.9 -0.5 -6.9 -9.9 -15.8 na na
EW Index 6.1 1.1 -1.7 -0.3 -4.5 -8.6 -12.8 na na
SP500 5.4 0.4 -4.2 -0.3 -12.4 -29.0 -37.8 na na

Panel B Predictive Signal�Monthly Rebalancing
Perf.(2007) Change(2008) Cumulative returns(2008) Cross-fund avg.(2008)b� SR b� SR Jan.-Aug. Sep.-Dec. Total mean slope

Uncond. 8.7 2.6 -0.9 -0.4 -1.0 -0.9 �2.0 1.26 na
Single-Predic.
Default Spread 9.5 2.2 -0.8 -0.3 -4.1 3.8 -0.5 1.19 .13
Dividend Yield 9.9 2.0 -0.6 -0.2 -3.1 6.3 3.1 1.17 .27
Volatility (VIX) 9.4 2.4 -0.2 -0.2 2.0 4.9 7.0 1.18 .27
Aggregate Flow 8.7 2.5 -0.1 -0.2 0.9 6.6 7.6 1.21 .23
Multiple-Predic.
Combination 9.8 2.8 -0.5 -0.3 -1.4 4.9 3.4 1.21 .08
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Table XII

2008 Cumulative Returns across Investment Categories

For each investment category, we compute the total cumulative 2008 returns (as well as the
September-December cumulative returns in parentheses) for the unconditional, single-predictor,
and combination strategies. For each portfolio, the last rebalancing date in December 31, 2007.

Uncond. Default Dividend Volatility Agg. Flow Combination
Long-Short -17.7(-11.1) -21.8(-12.2) -17.5(-10.4) -6.0(-4.9) -13.6(-8.0) -17.1(-10.7)
Mkt. Neutral -6.4(-5.6) -4.6(-6.7) -0.7(2.2) -1.3(-3.0) -5.3(-6.0) -2.8(-4.5)
Man. Future 1.8(1.6) 0.0(2.2) 2.2(3.6) 8.3(9.9) 6.2(5.0) 0.4(1.6)
Macro -0.6(1.8) 1.5(0.8) -3.7(-0.5) 15.4(12.2) 1.7(3.3) 0.0(1.5)
Emerging -23.2(-18.6) -35.9(-21.5) -21.7(-14.7) -16.4(-9.1) -30.0(-21.3) -28.1(-18.1)
Convertible -24.8(-16.9) -20.7(-15.6) -21.6(-14.1) -21.6(-14.7) -26.8(-20.0) -21.7(-14.9)
Event-Driven -14.2(-13.3) -17.4(-14.5) -6.7(-6.6) -3.8(-6.2) -19.4(-17.5) -6.6(-6.8)
Fixed Income -17.9(-17.6) -14.8(-14.8) 0.1(-4.1) -5.9(-8.6) -21.7(-20.1) -8.1(-9.5)
F. of Funds -21.4(-15.9) -20.7(-13.9) -18.2(-11.6) -14.2(-10.2) -21.0(-16.7) -16.7(-11.3)
Multi-Strategy -8.1(-8.1) -10.9(-9.7) -6.0(-6.3) 15.4(5.8) -12.3(-11.8) -1.1(-4.5)
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Table XIII

Illiquidity Measurement

We measure hedge fund illiquidity by estimating an AR(3) using each fund innovations from
the predictive regression. For each investment category, we report the cross-sectional median
and 25-75% quantiles (in parentheses) of the estimated coe¢ cient, b�k, associated with lag k
(j = 1; :::; 3). We also compute the proportion of funds in the population which exhibit no serial
correlation for each lag k (associated standard deviation shown in parentheses). The results are
based on monthly data between January 1994 and December 2007.

First lag �1 Second lag �2 Third lag �1
Coe¢ cient Proportion Coe¢ cient Proportion Coe¢ cient Proportion

Long-Short .00 (-.13,.10) 26.8 (1.9) -.06 (-.18,.05) 29.6 (2.0) -.03 (-.11,.06) 5.2 (1.4)
Mkt. Neutral .01 (-.12,.14) 29.3 (3.8) -.09 (-.23,.01) 31.6 (3.8) -.02 (-.12,.06) 8.2 (3.8)
Man. Future -.06 (-.16,.04) 23.8 (3.4) -.12 (-.21,-.02) 42.7 (3.1) -.04 (-.13,.04) 8.9 (2.2)
Macro -.03 (-.15,.06) 23.2 (3.7) -.13 (-.22,-.01) 41.1 (3.7) -.03 (-.13,.05) 12.7 (4.9)
Emerging .05 (-.07,.16) 35.7 (3.8) -.05 (-.17,.06) 24.7 (2.9) -.01 (-.09,.06) 0.0 (2.6)
Convertible .21 (.08,.33) 65.5 (5.2) -.10 (-.23,.03) 35.5 (4.2) .00 (-.09,.06) 0.0 (3.8)
Event-Driven .07 (-.04,.16) 30.3 (3.9) -.01 (-.14,.09) 22.3 (3.1) -.02 (-.10,.06) 1.0 (3.3)
Fixed Income .08(-.06,.20) 35.5 (2.9) -.09(-.23,.03) 28.7 (3.4) -.02(-.11,.07) 3.4 (3.9)
F. of Funds .04 (-.06,.15) 21.1 (1.4) -.14 (-.28,-.02) 50.8 (1.5) .00 (-.07,.08) 0.0 (1.0)
Multi-Strategy .02 (-.10,.14) 26.9 (2.0) -.12 (-.26,.00) 44.0 (2.1) -.01 (-.09,.06) 0.0 (1.5)

All Funds .02 (-.10,.13) 26.2 (0.9) -.09 (-.22,.03) 37.0 (0.9) -.02 (-.10,.06) 2.1 (0.5)
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Figure 1

Detecting Predictability from the Data

The figure shows the distribution of the fund estimated slope coefficient, bb, in the three
cases where: 1) the fund is unpredictable (i.e., its true slope coefficient, b, equals zero);
2) is predictable and has a negative relation with the predictor (i.e., b<0); 3) 2) is pre-
dictable and has a positive relation with the predictor (i.e., b>0). To determine whether
the fund is predictable from the data, we set up the significance level, γ∗, and the im-
plied thresholds, b−γ∗ and b+γ∗ , that form the boundaries of the two significance regions

(on the left and right side of zero). If the estimated slope coefficient, bb, falls into one
of the two significance regions (i.e., bb is significant), the fund is considered as predictable.
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Figure 2

Predictive Signal and Predictor Value

We examine the relation between the fund predictive signal, bt(μi,t) (i.e., its conditional
mean t-statistic), and the predictor value, zj,t generating the signal across three different
predictors (J=3). zj,t is standardized so that a value of zt = 1 indicates the predictor
is one standard deviation above its average. We assume that the fund unconditional
signal, bt(μi), is equal to 5.0 (as in our empirical results to be presented). The low
slope signal of predictor 1 combined with the high predictor value (signal 1) leads to a
very low predictive signal. On the contrary, the slope signals of predictors 2 and 3 are
higher and lead to an increase in the predictive signal from its unconditional value of 5.0.
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Figure 3

Evolution of the Predictors

Each panel shows the time-variation of the different variables used to predict individual fund
returns. Default spread is the yield differential between Moodys BAA-rated and AAA-rated
bonds. Dividend yield is the total cash dividends on the value-weighted CRSP index over the
previous 12 months divided by the current level of the index. Volatility is obtained from the
VIX., and Aggregate flows is calculated as the value-weighted percentage in- and outflows into
the hedge funds contained in our database. The graphs are based on monthly observations from
January 1994 to December 2008.
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(A) Default Spread
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(B) Dividend Yield
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(C) Volatility (VIX)
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