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ABSTRACT

We study an equilibrium asset pricing model with several Lucas (1978) trees subject to

event risk, that is, the possibility that trees experience unexpected disasters. We exploit the

market clearing mechanism, in the presence of multiple positive net supply assets, to show

that the implications of disasters for some cash-flows extend to the valuation of seemingly

unrelated ones. Price-dividend ratios, risk premia, credit-spreads depend on the share of

aggregate supply of each tree, but the endogeneity of risk neutral probabilities of disaster

implies that the asset pricing implications of event risk go beyond the effects analyzed by

the ‘multiple tree’ literature so far.
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I. Introduction

In an economy with multiple positive net supply assets, returns depends on the share of

aggregate endowment that each asset supplies. This remains true also in case assets pay

independent cash-flows. This issue has been investigated in Cochrane, Longstaff and Santa-

Clara (2007). If assets can experience disasters and cease to supply output for a given time

period, aggregate consumption decreases abruptly each time a disaster occurs. The likelihood

and relative size of these jumps in consumption is time-varying, in that it depends on the

extent to which consumption is diversified among supplying assets. This paper studies an

equilibrium asset pricing model with several Lucas (1978) trees subject to event risk. We

interpret ‘event risk’ as the possibility to experience a disaster, and to recover from this

disaster state. Each tree’s dividend stream is a constant multiple of unitary supply, described

by a geometric Brownian motion, but upon ‘disaster’ trees cease to supply dividends. Once

the trees recover from their disaster state, they resume their normal dividend supply. A

continuous-time Markov chain governs the transition from ‘regular supply’ to disaster states,

and conversely. The instantaneous probabilities of disaster of each tree can switch randomly

between a ‘high’ and a ‘low’ state, according to the state of the economy, however, the

representative agent faces incomplete information, because he doesn’t observe the current

state of these probabilities, but tries to infer them from past dividend observations.

The idea that the risk of rare disasters can help explain the equity premium, as well as

stock market volatility, has been applied successfully in Barro (2006), Wachter (2009) and

Gabaix (2009), among others. The influence of event risk in an economy with multiple sup-

plying trees is unexplored though. Indeed, the asset pricing implications of our framework

go beyond the event riskiness of each stand-alone tree, because risk premia depend on the

fraction of aggregate endowment that each tree supplies and on the perceived likelihood of

default of endowments. This highlights two mechanisms by which disaster or recovery events

of some assets impacts the evaluation of seemingly uncorrelated endowments. The perceived

probability of disaster increases as the agent observes more disasters, and decreases as re-

coveries occur. The share of a given endowment increases as different endowments undergo

disasters. Our analysis emphasizes the importance of event correlations - an assessment of

the likelihood to spend most of the time-horizon in the same disaster or ‘normal supply’ state

- because the term premium is the relevant risk compensation measure for securities that

do not expire instantaneously, and in our economy this measure is related to the expected

future market share values. A disaster of a given tree generates a contagion effect, hence a

negative return, for those securities that have high event correlation with the tree that has

experienced the disaster, because their share of event risk has increased dramatically in a

period where equilibrium state prices are also high, because of the aggregate consumption
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fall. Consistently with empirical findings, credit spreads experience upward jumps when

different securities default. The higher the event correlation between the endowments, the

higher the increase of the credit spread.

The article is organized as follows: Section II describes the economy. Section III analyzes

the learning mechanism of the representative agent. In Section IV we solve in closed-form

for security prices, risk premia and we study these quantities using parameters estimates

from a simple calibration exercise. Section V discusses correlations. Section VI analyzes the

term structure of credit spreads. Section VII concludes. All proofs are in the Appendices.

II. The Economy

On an infinite time horizon, we consider a standard pure exchange economy populated by a

single, representative agent who maximizes isoelastic utility of intertemporal consumption,

with Relative Risk Aversion coefficient γ and subjective discount rate δ:

U0 = E

[∫ ∞

0

e−δs
C1−γ
s

1 − γ
ds

]
(1)

The opportunity set of the investor comprises a locally risk-less security in zero net supply,

with rate of return rt (the interest rate), and N risky securities. These risky securities, or

‘trees’, are claim to a stochastic dividend process εit, i = 1, . . . , N .

Trees can be identified with the industries of a single-country economy. Alternatively,

they can be interpreted as single-country economies of a broader international framework.

The distinctive feature of our model is that trees are subject to ‘disasters’, meaning that with

some probability their dividend experiences an abrupt fall. To properly analyze the conse-

quences of this feature, we assume a simple endowment structure. The i−th tree supplies a

multiple xit of an ‘aggregate’ state variable Yt, which follows a geometric Brownian motion.

This multiple ‘normally’ assumes a value xih, and with a small instantaneous probability λit

can dramatically fall to zero. Empirical observations suggest that the dividend gradually

reverts back to normality,, therefore we assume that the dividend reverts to normality with

some probability ηit, the magnitude of which determines whether the ‘disaster’ state is more

or less persistent. From an economic standpoint, it is intuitive that our results are going

to be modulated by two opposing tensions - persistence of ‘normal’ against persistence of

‘disaster’ states. Individual endowments can be described as follows:

εit = xitYt i = 1, 2, . . . N (2)

dYt = Yt (µY dt + σY dZt) (3)
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Technically speaking, endowments’ disasters and recoveries are jump times of a continuous-

time Markov chain. Both Watcher (2009) and Gabaix (2009) discuss the importance of

time-varying disaster probabilities to match empirical regularities. We follow this direction

and assume that these probabilities (or intensities) satisfy the following simple factor model:1

λit = f i(zt), ηit = gi(zt) i = 1, 2, . . . N (5)

where f i( · ) and gi( · ) are positive functions of a factor process zt, which in turns evolves as

a two-state continuous-time Markov chain, with states zh and zl and transition matrix

I =

[
−kh(xt) kh(xt)

kl(xt) −kl(xt)

]

ki( · ), i = h, l are positive function of the current vector of multiples xt = (x1
t , x

2
t , . . . x

N
t )′.

In other words, in the infinitesimal time interval [t, t+∆], there is a probability ki(xt)∆ that

zt jumps from zi to zj, i = h, l, j = h, l, i 6= j. The role of the systematic variable zt is to

capture the state of the economy, therefore we assume that f i(zh) < f i(zl) and gi(zh) > gi(zl)

for any tree i, in accordance with the intuition that the probability of a disaster (recovery

from a disaster) should be higher (lower) in a ‘bad’ economic state. It is a well documented

fact that the ‘disaster’ condition of a few sectors could propagate endemically economy-wide.

This is essentially why we let the probability of a good (bad) state depend on disasters. The

representative agent observes Yt, disaster times of each tree and functional forms (f i, gi),

but does not observe the state of the economy zt, hence intensities of disaster and recovery.

He infers them in a Bayesian fashion from observations of individual endowments, and an

external vector of signals with dynamics:

dSf
t = f(zt)dt + Ω−1

f dBf
t f = (f1, f2, . . . fN)′

dSg
t = g(zt)dt + Ω−1

g dBg
t g = (g1, g2, . . . gN)′

where Bj
t , j = f, g is an N−dimensional standard Brownian motion and Ωj is a constant

diagonal matrix of signals precisions.

1In other words, the multiple xi
t has a transition matrix of the form

[
−λi

t λi
t

ηi
t −ηi

t

]

We could introduce an idiosyncratic component in the endowments’ intensities. For instance, we may have:

λi
t = f i(zt)ε

i i = 1, 2, . . .N (4)

where εi are i.i.d idiosyncratic shocks, uniformly distributed in the range [1−u, 1+u], u < 1. This additional

assumption would not alter significantly our conclusions.
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This is an endowment economy, so prices adjust until aggregate consumption Ct coincides

with the sum of the dividend processes:

Ct = Yt

N∑

i=1

xit (6)

III. Learning

The information set of the representative agent is the sigma field generated by the divi-

dend processes εit = Ytx
i
t and the signal processes Sf

t and Sg
t , henceforth denoted as Fx,S

t .

Individual disaster and recovery probabilities are unobservable and inferred in a Bayesian

fashion.

A. Belief Dynamics

Let pht = P (zt = zh|Fx,S
t ) denote the investor’s belief that the economy is in a ‘high’ state.

The expected instantaneous probability of disaster for the i−th endowment, conditional on

available information, is then

λ̂it = Et

[
λit
∣∣FH,S

t

]
= pht f

i(zh) + (1 − pht )f
i(zl) (7)

A similar expression holds for the expected probability of recovery, η̂it. We have the following

Proposition.

Proposition 1 Let ph0 denote investor’s prior belief that the economy is in a ‘high’ state,

and let also Hi
t = 1(xit = 0), so that dHi

t is 1 (−1) if a disaster (recovery from disaster)

occurs for tree i. Then

pht = ph0 +

∫ t

0

[kl(xs) + kh(xs)]

[
kl(xs)

kl(xs) + kh(xs)
− phs

]
ds +

∫ t

0

phs (1 − phs )
(
ΛfdB̃f

s + ΛgdB̃g
s

)
(8)

+

∫ t

0

phs (1 − phs )
N∑

i=1

[
(1 −Hi

s)
f i(zh) − f i(zl)

λ̂is
(dHi

s − λ̂isds)−

Hi
s

gi(zh) − gi(zl)

η̂is
(dHi

s + η̂isds)

]
(9)

where

dB̃f
t = Ωf [dSf

t − (pht f(z
h) + (1 − pht )f(z

l))] (10)

dB̃g
t = Ωg[dSg

t − (pht g(zh) + (1 − pht )g(zl))] (11)
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is a standard Brownian motion with respect to Fx,S
t . Furthermore,

Λf = [f(zh) − f(zl)]′ (12)

Λg = [g(zh) − g(zl)]′. (13)

Expression (9) comprises a locally deterministic component and an innovation component.

The former is a mean-reverting term that pulls phs towards kl(xt)/(kl(xt)+kh(xt)). If the cur-

rent shares of aggregate consumption supplied by each tree did not change, this term would

be the proportion of time that zt spends on a ‘high’ state in the long run. The ‘local’ speed of

mean reversion is the probability of occurrence of some regime switch, kl(xt)+kh(xt), because

convergence to the conditional long-run mean is faster if the frequency of regime transitions is

higher. The innovation component comprises an updating rule for signal realizations and an

updating rule for disaster and recovery observations. The former is proportional to the nor-

malized innovation processes B̃j, j = f, g, where the normalization assigns smaller weights

to less precise signals. The ‘reaction’ to these innovations, pht (1−pht )Λ
j , implies that a major

update occurs when the difference of disaster or recovery probabilities in the two states is

high, and when the uncertainty about the current state is maximal, pht = 0.5. Intuitively,

in this situation every innovation is interpreted as a univocal resolution of uncertainty. The

updating rule for disaster (recovery) observations is also proportional to the normalized in-

novation process (dHi− λ̂it)/λ̂
i
t (−(dHi− η̂it)/η̂

i
t). The normalization assigns a smaller weight

to innovations that pertain to a volatile disaster or recovery process. The ‘reaction’ these

events is also proportional to pht (1−pht )Λ, because when uncertainty is high and states of the

world imply a very heterogeneous instantaneous probability of disaster or recovery across

states, the agent is more willing to interpret an event as evidence of an high intensity state,

hence ‘bad’ economic state in case of disaster or ‘good’ state in case of recovery. Obviously,

a disaster event leads to a lower posterior probability of ‘good’ state, because the difference

of intensities, f i(zh) − f i(zl) is negative. The opposite is true for a recovery event.

B. Characteristics of Disaster and Recovery Processes

Disaster and recovery events are the main constituent of the asset prices’ behavior in our

simple economy. It is important to understand the main characteristics of these events.

What is the probability that some tree will not undergo a disaster before a given future

date T and what is the expected time until the next disaster ? Provided that a disaster has

occurred, how long does it take on average for the tree to recover ? Finally, which fraction

of time will the economy spend free of disasters ? The next proposition addresses these

questions.
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Proposition 2 Let D := {d1, d2, . . . , dL} and τdi denote a collection of L ≤ N trees and the

first disaster time for tree di, respectively. The posterior joint probability of no disaster for

the elements of D until time T , conditional on information at time s < T , is:

P (τd1 > T, τd2 > T, . . . τdL > T |Fx,S
s ) = 1(τd1 > s, τd2 > s, . . . τdL > s)×

[pht , 1 − pht , 0N−2] · exp (−A(T − s)) 1N (14)

where exp( · ) denotes the matrix exponential operator, 1· (0·) denotes a vector of ones (zeros),

N = 2N−L and matrix A is reported in the Appendix. Furthermore the expected time until

the disaster of any of the trees in group D is

E

[
min
i∈D

τ i − s

∣∣∣∣F
H,S
s

]
= [pht , 1 − pht , 0N−2] ·A

−11N

Let τ ir denote the first recovery time of a tree i that is currently in disaster state. The expected

time until recovery is:2

E
[
τ ir − s

∣∣Fx,S
s

]
= 1(τ ir > s)[pht , 1 − pht , 0N i−2] · (A

r)−11N i

The expected fraction of time on the horizon [s, T ] with no disaster state for members of

group D is:

[pht , 1 − pht , 0N−2] ·
(AH)−1

T − s

[
Id − exp(−AH(T − s))

]
WN (15)

where expressions for Ar, AH , and WN are reported in the Appendix, while N i = 2N−1.

The elements of the vector e−A(T−s)1N are the full information probabilities of no disaster,

conditional on any possible combination of disasters occurred. The probability of ‘survival’

of the L trees depends on the disaster history of the remaining trees, because the state of

the economy zt is influenced by the occurrence of disasters. To gauge more intuition about

expression (14), assume that disaster intensities λi are constant, so that I reduces to a matrix

of zeros. No-disaster probabilities then assume the familiar expression e−(T−s)
P
i∈D λi. But

disaster intensities in our model react to different states of the economy, therefore these

probabilities depend on the value of disaster intensities in ‘good’ or ‘bad’ states and on

the probability of a regime switch. Figure 1 reports the term structure of full information

survival probabilities for a given tree, assuming that the probability of an economic downturn

is independent of disasters, that is, matrix I is constant.

Insert Figure 1 about here

2We have assumed without loss of generality that only the i−th tree is in disaster state.
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Disaster intensities are very different across states of the economy, however in Panel 1 the

‘good’ state of the economy is very persistent, whereas the ‘bad’ state is scarcely persistent.

No-disaster probabilities are close. In Panel 2 we have assumed instead that the low state is

also very persistent, whereas intensity values f(zh) and f(zl) have been left unchanged. For

every time horizon, the no disaster probability conditional on a current ‘bad’ state (dotted

line) is sensibly lower than its high default state counterpart.

The no-disaster probability of a given tree depends in two ways on the disaster/recovery

record of other trees. i) Perceived probabilities are weighted averages of full information

conditional probabilities. If several trees have undergone disasters, then the posterior proba-

bility of a bad economic state is likely to be high, so that posterior probability of no-disaster

are lower. However, each recovery leads to an increase in the probability of a good state,

and to a higher posterior ‘survival’ probability. This channel acts ex-post and does not take

into account the future perspective of disasters and recoveries. ii) Disasters and recoveries

influence the likelihood of a good or bad economic state (entries of the matrix I), which

in their turn influence the probability of disasters and recoveries. ‘Survival’ probabilities

reported in (60) take this perspective feed-back into account. Figure 2 illustrates this point.

Insert Figure 2 about here

The dotted line is the posterior no-disaster probability of a given tree with probabilities of

regime switches as in Panel 2 of Figure 1. The solid line reports the no-disaster probability of

the same tree, when a disaster of a different tree causes a three-fold increase in the probability

of an economic downturn. This assumption captures the idea that a turmoil occurring in a

key economic sector can propagate economy-wise. In case of no feed-back the no disaster

probability is sensibly higher, to the extent that the expected first disaster time for the

tree drops from 31 years to 16 years, when feed-backs are taken into account. Parallely,

the expected recovery time from a disaster for the same tree increases, from 25 to 35 years

approximately. Figure 3 summarizes the general attitude to undergo disasters of a simple

illustrative economy, by plotting, for different time horizons, the expected fraction of time

that trees spend jointly free of disasters.

Insert Figure 3

As the horizon increases, the percentage of time with no disasters converges to zero. If the

disaster of a given tree negatively affects the state of the economy, this fraction decreases

much faster. This is especially apparent after a few years, when the ‘crucial’ tree has likely

experienced a prolonged disaster. Besides the illustrative purpose of this stylized example,

our framework can account for a number of realistic interactions.

8



IV. Model results

A. Aggregate Endowment and Endowment Share Dynamics

Aggregate consumption evolves continuously in time unless some tree experiences a disaster

(or a recovery from disaster), in which case the relative consumption fall (increase) is pro-

portional to the supply of the ‘disastered’ (‘recovered’) tree, relative to the aggregate supply

before the disaster (recovery):3

dCt

Ct
= µdt + σdZt −

N∑

i=1

(
Hi
t

xih∑
j 6=i x

j
t

+ (1 − Hi
t)

xih∑N
j=1 xjt

)
dHi

t (16)

Expected consumption growth is the resultant of expected growth in the unitary supply

Yt, and of a component due to expected disaster and recovery events. This component is

decreasing (increasing) in the instantaneous probability of disasters (recoveries) perceived

by the representative agent:

E

[
dCt

Ct

∣∣∣∣F
x,S
t

]
= µ −

N∑

i=1

[
(1 −Hi

t )
xih∑N
j=1 xjt

λ̂it − Hi
t

xih∑
j 6=i x

j
t

η̂it

]
(17)

Intuitively, if a high fraction of the aggregate product Yt
∑

i x
i
t is provided by a few sectors

perceived as highly prone to disasters and with high expected recovery times then expected

consumption growth is low. Consumption growth volatility is also time-varying:

Var

[
dCt

Ct

∣∣∣∣F
x,S
t

]
= σ2 +

N∑

i=1



Hi
t

(
xih∑
j 6=i x

j
t

)2 [
η̂it + pht (1 − pht )(g

i(zh) − gi(zl))2
]
+

(1 − Hi
t)

(
xih∑N
j=1 xjt

)2 [
λ̂it + pht (1 − pht )(f

i(zh) − f i(zl))2
]

 (18)

When trees are seen as scarcely likely to experience or recover from disasters, consumption

volatility is low. As a result of incomplete information: i) Volatility is high if there is high

uncertainty about the current state of the economy, hence likelihood of an event (pht =

0.5). ii) Volatility is high if by mistakenly assessing as likely a given state of the economy,

the estimation error for event probabilities is large. This happens when f i(zh) − f i(zl)

and gi(zh) − gi(zl) are large. When consumption is diversified between many supplying

endowments consumption volatility is intuitively low, because disaster or recovery events

lead to minor changes in consumption growth. More in general, it is clear that the relative

3Remind that since Hi
t = 1(xi

t = 0) is the indicator of a disaster for tree i, dH i
t = −1 if Hi

t = 1.
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size of a tree with respect to the market is an important quantity in this economy, and that

it deserves attention. The i−th endowment share process,

sit =
xit∑N
j=1 xjt

(19)

evolves as:

dsit =
∑

j 6=i

[
(1 − Hi

t)

(
xit∑
z 6=j xzt

−
xit∑N
z=1 xzt

)
−Hi

t

(
xit∑N
z=1 xzt

−
xit∑
z 6=j xzt

)]
dHj

t

−

[
(1 − Hi

t)s
i
t + Hi

t

xih∑N
z=1 xzt

]
dHi

t (20)

It is a pure jump process. If some tree j different from the i−th undergoes a disaster, the

i−th share gain (loss) is low if the ‘normal’ supply of j, xjh, is low relative to the aggregate.

If the i−th endowment undergoes a disaster, its share declines to zero. Since endowments

jump simultaneously in states of high or low disaster or recovery probability, the properties

of the i−th share process depend on how the i−th endowment disaster and recovery intensity

compares to intensities of the remaining trees in the same state. Intuitively, the expected

share increment is an increasing function of the estimated cumulative probability of disaster

of the remaining endowments, and a decreasing function of their expected recovery time.

It is also intuitively decreasing in the probability of disaster of the i−th endowment. In

the Appendix, we report for completeness the posterior conditional distribution of the i−th

endowment share.

B. Equilibrium interest rate and risk premia

According to the optimality conditions for the representative agent, the equilibrium state

price density ξt coincides with his marginal utility evaluated at aggregate consumption:

ξt = e−δtY −γ
t

(
N∑

i=1

xit

)−γ

(21)

The following proposition provides details of the equilibrium interest rate and market prices

of risk.

Proposition 3 Let κt denote the market price of diffusive risk and θit the market price of

event risk for the i−th dividend process.4 The equilibrium expressions for these prices of risk

4An event is a disaster if the tree is not in disaster state, i.e. Hi
t = 0, a recovery otherwise.
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and the interest rate are:

rt = δ + γµY −
1

2
γ(γ + 1)σ2

Y +
N∑

i=1

{
Hi
t

[
1 −

(
xih +

∑
j 6=i x

j
t∑

j 6=i x
j
t

)−γ]
η̂it+ (22)

(1 − Hi
t )

[
1 −

( ∑
j 6=i x

j
t

xih +
∑

j 6=i x
j
t

)−γ]
λ̂it

}
(23)

κt = γσY (24)

θit = Hi
t

(
xih +

∑
j 6=i x

j
t∑

j 6=i x
j
t

)−γ

+ (1 − Hi
t )

( ∑
j 6=i x

j
t

xih +
∑

j 6=i x
j
t

)−γ

i = 1, 2, . . . N (25)

In the expression for the interest rate, we can identify the usual consumption growth and

precautionary savings effects. The term in curly brackets in equation (22) summarizes the

impact of event risk on the interest rate. Disaster risk decreases the interest rate, while the

recovery possibility of a currently ‘disastered’ tree increases it. Intuitively, a high perceived

probability of disaster (recovery) for a tree with high output share substantially decreases

(increases) expected consumption growth, thereby decreasing (increasing) the interest rate.

Expression (24) is the usual risk compensation for aggregate diffusive risk, which is propor-

tional to the relative risk aversion coefficient and to the diffusive risk volatility. The market

price of event risk for the i− th tree is clearly a market price of recovery (disaster) risk if the

three is (not) in a disaster state. To interpret expression (25), we should note that in a risk

neutral world with complete information the disaster (recovery) instantaneous probability is

θitλ
i
t (θitη

i
t).

5 The agent demands a compensation for event risk by fictitiously considering a

different instantaneous probability for this event. This compensation depends on how the

event would affect his desired consumption plan, which is mainly a function of the market

share of the tree that experiences the event. Figure 4 shows this market premium for a given

tree as a function of the risk aversion coefficient, for two different pre-event share values of

the tree (sit = 1/6, dashed line, and sit = 1/10, solid line).

Insert Figure 4 about here

Panel 1 reports a price of recovery risk, because the tree is in disaster state, while Panel 2

plots the prices of disaster risk, because the tree is not in disaster state. A disaster always

entails a decrease in aggregate consumption, therefore the premium increases monotonically

with risk aversion, and this decrease is proportionally more severe the less aggregate dividend

is diversified across contributing trees, that is, the higher the share of the tree. The price

of disaster risk is always higher than one, because the compensation required by the agent

mandates that the risk adjusted probability of disaster, θitλ
i
t is higher than the objective

5The risk neutral posterior disaster intensity is then λ̂i
tθ

i
t, while the recovery intensity is η̂i

tθ
i
t.
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probability λit. Conversely, a recovery implies an increase in aggregate consumption, therefore

the price of recovery risk is smaller than one, decreasing in risk aversion, and it is small when

the share value of the tree is high. In a risk neutral world, the (instantaneous) likelihood of

each endowment’s default depends also on the disaster condition of different trees. For asset

pricing purposes, this is an important channel of contagion.

C. Price-Dividend Ratios, Risk Premia and Returns Volatility

The market portfolio is the security that pays the aggregate dividend process, Ct = Yt
∑N

i=1 xit,

while individual securities are claim to individual dividend process rates εit = Ytx
i
t. Prices

and the risk premia for these securities are reported in the next proposition:

Proposition 4 The equilibrium price of the market portfolio (V M
t ) and the price of the

claim to the i−th dividend process (V i
t ) are given by the following expressions:

V M
t = Ct

(
N∑

i=1

xit

)γ−1

[pht , 1 − pht , 0N−2] · (a + AH)−1C (26)

V i
t =

εit

sit

(∑N
i=1 xit

)1−γ [pht , 1 − pht , 0N−2] · (a + AH)−1Ci (27)

where 0· denotes a column vector of zeros, N = 2N , matrices AH and a, vectors C and Ci

are reported in the Appendix.

The equilibrium risk premia of the market portfolio (µMt ) and of the i-th individual secu-
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rities (µit) read:

µMt = γσ2
Y (28)

−
N∑

i=1

{
(1 − Hi

t)

[( ∑
j 6=i x

j
t

xih +
∑

j 6=i x
j
t

)−γ

− 1

] [( ∑
j 6=i x

j
t

xih +
∑

j 6=i x
j
t

)γ

× (29)

×




[
pht

f i(zh)
bλit

, (1 − pht )
f i(zl)
bλit

]
· V

M
(H − i)

[pht , 1 − pht ] · V
M

(H)


− 1


 λ̂it

+Hi
t

[(
xih +

∑
j 6=i x

j
t∑

j 6=i x
j
t

)−γ

− 1

] [(
xih +

∑
j 6=i x

j
t∑

j 6=i x
j
t

)γ

× (30)

×





[
pht

gi(zh)

bηit
, (1 − pht )

gi(zl)

bηit

]
· V

M
(H + i)

[pht , 1 − pht ] · V
M

(H)



− 1



 η̂it






µit = γσ2
Y (31)

−
N∑

j=1

{
(1 − Hj

t )

[( ∑
z 6=j xzt

xjh +
∑

z 6=j xzt

)−γ

− 1

] [( ∑
z 6=j xzt

xjh +
∑

z 6=j xzt

)γ

× (32)

×




[
pht

f j(zh)
bλjt

, (1 − pht )
f j(zl)
bλjt

]
· V

i
(H − j)

[pht , 1 − pht ] · V
i
(H)


− 1


 λ̂jt

+Hj
t

[(
xjh +

∑
z 6=j xzt∑

z 6=j xzt

)−γ

− 1

] [(
xjh +

∑
z 6=j xzt∑

z 6=j xzt

)γ

× (33)

×





[
pht

gj (zh)

bηjt
, (1 − pht )

gj(zl)

bηjt

]
· V

i
(H + j)

[pht , 1 − pht ] · V
i
(H)



− 1



 η̂jt






where vectors V
M

(H) (V
i
(H)), V

M
(H− i) (V

i
(H−j)), V

M
(H + i) (V

i
(H +j)) are reported

in the Appendix.

The components of the vector (
∑

z 6=j xzt )
γ−1V

M
(H−j) are the full information price-dividend

ratios for the market, after tree j has experienced a disaster, conditional on the state of the

economy zt. In particular, bivariate functions V
M

(H) and V
i
(H) are expected discounted

cash-flow streams from the market portfolio and individual securities. The empirical il-

lustrations that follow assume a simple economy with 6 supplying trees. Without loss of

generality, none of the trees is assumed to have yet undergone a disaster, unless otherwise

noticed. Parameters have been calibrated using the procedure outlined in Appendix B.
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C.1. Market price-dividend ratio and risk premium

Figure 5 reports prices and price-dividend ratios for the market portfolio corresponding to

different level of risk aversions and different number of disasters occurred among trees.

Insert Figure 5 about here

As deemed reasonable from an empirical standpoint, trees with the highest disaster intensities

λt are also the trees with lowest recovery intensity ηt. Dividends of the market portfolio are

perfectly negatively correlated with equilibrium state prices. When the agent is sufficiently

risk averse, as in Panel 2, the increase in marginal utility following a disaster is higher than

the corresponding consumption fall, because the agent is averse to extreme losses but does

not benefit from extreme gains. If a tree with high risk of disaster undergoes a default, trees

less prone to disaster risk are left to supply the output until the (unlikely) recovery of the

tree, and this forecasts a lower future dividend payments in states where the marginal utility

is high - because the likely disasters of riskier trees will cumulate. If, paradoxically, ‘higher

rated’ trees default sooner, a more steady consumption path is going to prevail, because

disasters will occur sooner, when the marginal utility is lower and ‘disastered’ trees might

have recovered. In other words, Panel 2 shows that, if the risk aversion is sufficiently high, a

disaster of a very risky tree generates a negative market return, while a positive return may

follow the disaster of a scarcely risky tree. The latter behavior is observed especially when

the number of remaining trees is small, because expected consumption growth is very high,

thanks to the likely recoveries, is a context where equilibrium state prices are also high. In

Panel 1 the risk aversion coefficient is too low, and post-disaster returns are always negative.

Note that this effect is scarcely dependent of the market share of each tree and largely due

to the perfect negative correlation between consumption and state-prices. Furthermore, the

effect mostly relies on the impact of disasters and recoveries on equilibrium state prices,

therefore it is not surprising that price-dividend ratios display this effect even when the risk

aversion is low, as in Panel 3.

Prices in Figure 5 are plotted assuming that a disaster for a given tree enhances dra-

matically the probability that the economy switches to a ‘bad’ state, because this tree is

crucial for the correct functioning of the rest of the economy. Figure 6 shows the effect of

this assumption on market prices.

Insert Figure 6 about here

When the assumption is removed and the state of the economy is purely exogenous the

economy is more likely to persist in a ‘good’ state, whereby disaster risk is lower. When the

most likely history of disasters occurs (solid line), the influence on the price of the market
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portfolio is very limited, because riskier trees default first and are scarcely likely to recover

in both states of the economy, as much as those left are scarcely likely to undergo disasters.

However, in the unlikely scenario where riskier trees default last, the price of the market

portfolio is higher with no feed-back, because ‘disastered’ trees are more likely to recover

soon and to generate high consumption growth, in a situation where equilibrium state prices

are high. As a matter of fact, in Figure 6 the price increases at each disaster when only a

few trees are left, despite the fact that the risk aversion is low.

We should emphasize that in an empirically relevant scenario disaster occur first for riskier

trees. In this respect, the predictions of this model are intuitively correct, with post-disaster

decreasing market prices and price dividend-ratios which decrease less.

We now turn to analyze the risk premium of the market portfolio. Equation (28) is

the compensation for the systematic diffusive risk Yt. Aggregate output shares supplied by

individual trees are subject to abrupt changes because of disasters and recoveries, and this

risk component demands two layers of reward. In the absence of incomplete information,

expression (32) becomes

−
N∑

i=1

{
(1 − Hi

t)

[( ∑
j 6=i x

j
t

xih +
∑

j 6=i x
j
t

)−γ

− 1

] [( ∑
j 6=i x

j
t

xih +
∑

j 6=i x
j
t

)γ (
V
M

(H − i)u

V
M

(H)u

)
− 1

]
λit

+Hi
t

[(
xih +

∑
j 6=i x

j
t∑

j 6=i x
j
t

)−γ

− 1

] [(
xih +

∑
j 6=i x

j
t∑

j 6=i x
j
t

)γ (
V
M

(H + i)u

V
M

(H)u

)
− 1

]
ηit

}
u = h, l

(34)

This term describes the compensation required for the direct impact of disaster and recover-

ies on the aggregate dividend. For every tree j that could undergo a disaster (recovery), the

premium is proportional to the risk-adjusted probability of disaster (recovery) θjtλ
j
t (θjtη

j
t ),

weighted by the market return response to disaster (recovery) shocks. This compensation

is increasing in cumulative disaster likelihood
∑

j(1 − Hj
t )λ

j
t and decreasing in the cumu-

lative recovery likelihood (
∑

j Hj
t λ

j
t ). Intuitively, covariance between returns and aggregate

consumption is increasing in the former and decreasing in the latter. Leaving market diver-

sification, hence the number trees and supplied multiples xt unaltered, an increase in the

likelihood of some disaster (recovery) requires additional (lesser) reward. For a given tree i,

the sign of this full information event premium is driven by

(1 − Hi
t)

( ∑
j 6=i x

j
t

xih +
∑

j 6=i x
j
t

)γ(
V
M

(H − i)u

V
M

(H)u

)

+ Hi
t

(
xih +

∑
j 6=i x

j
t∑

j 6=i x
j
t

)γ (
V
M

(H + i)u

V
M

(H)u

)
u = h, l (35)
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which is the ratio of the prices of the market portfolio after and before a potential disaster

(if Hi
t = 0) or recovery (if Hi

t = 1) of the i-th tree. If the tree is not in disaster state, and

this ratio is smaller than one, because the price of the market portfolio decreases after the

disaster, then disaster risk always demands a positive premium. On the other hand, recovery

risk demands a negative premium if the ratio in (35) is higher than one.

The investor realizes that his belief fluctuates randomly in response to disaster and re-

covery shocks, and the premium he charges is adjusted for this risk component. We discuss

the case of disasters, the intuition being similar for recovery events.

The effect of learning is captured by the partial information ratio of prices before and

after a disaster event:

( ∑
j 6=i x

j
t

xih +
∑

j 6=i x
j
t

)γ



[
pht

f i(zh)
bλit

, (1 − pht )
f i(zl)
bλit

]
· V

M
(H − i)

[pht , 1 − pht ] · V
M

(H)


 (36)

This expression is similar to the ratio of partial information market prices, with the difference

that after a disaster the investors regards the ‘bad’ economic state as more likely. The more

so, the more a disaster was regarded unlikely according to the ex-ante belief. If f i(zl)
bλit

is large,

a disaster event is interpreted as evidence that the disaster intensity is underestimated, so

that the economy is more likely to be in a ‘bad’ state. The agent takes this into account by

overweighting the post-default market price conditional on a ‘bad’ state. This price is higher

than its ‘good’ state counterpart when the risk aversion is greater than one, because the

utility function of the agent is bounded above. Since, for the market portfolio, dividends are

perfectly negatively correlated with marginal utility, a decrease in the dividend paid due to

a disaster is compensated by a higher percentage increase in marginal utility. However both

conditional prices can decrease or increase after a disaster, therefore the partial information

ratio (36) is not granted a priori to be smaller or greater than the full information ratio (35).

It follows that learning may increase or decrease the risk premium.

According to the familiar consumption-CAPM representation, the market instantaneous

risk premium is proportional to the instantaneous covariance of the market return with the

state-price deflator:

µMt = −E

[
dRM

t

RM
t

dξt
ξt

|FH,S
t

]

= −

(
E

[
dCt

Ct

dξt
ξt

|FH,S
t

]
+ E

[
d(V M

t /Ct)

(V M
t /Ct)

dξt
ξt

|FH,S
t

]
+ E

[
d(V M

t /Ct)dCt

(V M
t /Ct)Ct

dξt
ξt

|FH,S
t

])

(37)
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where RM
t denotes the market cum-dividend return.6 Expression (37) decomposes the risk

premium into the covariance between endowment growth and marginal utility of consump-

tion, a ‘cash-flow beta’, the covariance between price-dividend ratio and marginal utility of

consumption, a ‘valuation beta’, and the covariance between marginal utility and the prod-

uct of jumps in the price-dividend ratio and dividend growth. We call this last covariance

the ‘jump’ beta.7 The ‘cash-flow beta’ bears compensation for the systematic fluctuations of

the dividend paid by the market portfolio, due both to the volatility of the unitary output Yt

and to disaster or recovery occurrence. The latter component consists of the percentage loss

(gain) in consumption in case of a disaster (recovery) weighted by the risk adjusted prob-

ability that a disaster (recovery) occurs next instant. Since the market portfolio pays-off

aggregate consumption, its cash-flow is low when equilibrium state-prices are high, because

it is perfectly negatively correlated with marginal utility of consumption. The ‘cash-flow’

beta is then intuitively positive. The price-dividend ratio of the market portfolio is also

time-varying, because the fluctuations of marginal utility of consumption due to disasters

and recoveries cannot be hedged by holding the market portfolio alone. The ‘valuation beta’

captures the layer of compensation required by this fluctuations in the evaluation of states

of the world. It also comprises the compensation for learning risk. The agent knows that

his assessment about the likelihood of being in a ‘good’ state will react to random default

events, hence will covary with aggregate consumption and, consequently, marginal utility.

Since aggregate consumption is observable, learning risk acts entirely on the price-dividend

ratio, hence its premium is part of the ‘valuation beta’. The price-dividend ratio and the

aggregate consumption jump simultaneously as a disaster or recovery occurs. The market

return has an (instantaneously) unpredictable component proportional to this co-jump, and

this component Co-varies with marginal utility of consumption. This is the essence of the

‘jump beta’.

Figure 7 plots the market risk premium from Equations (28)-(32) as a function of the

6Equation (37) follows from the fact that returns can always be decomposed as the sum of the dividend

yield, dividend growth, the change in valuation or growth in the price-dividend ratio, and of an instantaneous

covariation term. Namely:

dRi
t =

Ct

V M
t

dt +
dCt

Ct

+
d(V M

t /Ct)

(V M
t /Ct)

+
d(V M

t /Ct)dCt

(V M
t /Ct)Ct

(38)

Note that by Ito’s lemma the covariation terms has a jump component, which will display a nonzero covari-

ance with the stochastic discount factor:

d(V M
t /Ct)dCt

(V M
t /Ct)Ct

= (...)dt +

(
[(V M

t /Ct) − (V M
t− /Ct−)][Ct − Ct−]

(V M
t− /Ct−)Ct−

)
dNt (39)

7Expression for these ‘betas’ are easily computed and they are not reported.
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number of disasters occurred. For this simple illustration, we have used the canonical case

reported in Figure 5, when riskier trees default first. The ‘betas’ are also reported.

Insert Figure 7 about here

As anticipated above, the ‘cash-flow beta’ is always positive. This component is relatively

more prominent when lesser disasters have occurred and there are more trees supplying

the endowment. In this situation, when a disaster (recovery) occurs, the relative share

of dividend payed by the market that goes lost (recovered) is close to the corresponding

increase (decrease) of equilibrium state prices. Contrarily, in a scarcely diversified economy

with only a few suppliers, each disaster or recovery event leads to a dividend variation that

is far outweighed by the equilibrium valuation of this dividend. It is therefore intuitive that

most part of the correlation of market returns with marginal utility is due to price-dividend

ratio changes, when only a few trees are not in disaster state. The learning component

of the ‘valuation beta’, however, is relatively less important after more disasters, because

uncertainty has been resolved towards a high disaster probability - hence ‘bad’ economic

state. With this uncertainty almost fully resolved, there is less reward for the risk that the

belief fluctuates.

If a given tree is not currently in disaster state, its market price of disaster risk is increas-

ing in its market share, because a potential disaster for this tree would lead to high relative

fall of consumption. If the tree is in disaster state, its market price of recovery is decreasing

in its share, because a potential recovery would lead to a high relative consumption gain,

thus requiring less compensation for risk. However, risk premia also depend on the posterior

instantaneous probability of disaster or recovery occurrence for each tree. As more riskier

trees undergo disasters, the likelihood of further disasters decreases at high rates, which

more than compensate the higher premium required ‘for unit of disaster risk’. At the same

time, the likelihood that some tree recovers is increasing, and the latter requires a negative

premium. This combined effect leads to a market risk premium that is decreasing in the

number of disasters. Note that, in the same setting, the market price and price-dividend

ratio also decrease when a disaster occurs. This apparently contradictory behavior of prices

and excess returns can be clarified by noting that instantaneous risk premia are not the

appropriate measure of reward to analyze the valuation ratio. The long-run excess return

should be considered instead.

As noted by Dumas, Kurshev and Uppal (2008), we need to consider the long-run response

of the stochastic discount factor to shocks occurring today, DHi,Z
t ξT , where Dt denotes the

Malliavin derivative operator with respect to the systematic diffusive shock dZ and the

18



disaster/shocks event dHi:

DHi,Z
t ξT
ξT

= −γσY + (1 − Hi
t)

[(∑N
j=1 xjT − xih∑N

j=1 xjT

)−γ

− 1

]
+ Hi

t

[(
xih +

∑N
j=1 xjT∑N

j=1 xjT

)−γ

− 1

]

(40)

The long-term response to systematic diffusive shocks coincides with the instantaneous re-

sponse, because of the IID nature of systematic consumption growth Yt. The response to

disaster or recover shocks, albeit also formally similar to the instantaneous response, de-

pends on future output supplied by remaining trees. The riskier8 the endowment i that

undergoes a disaster or recovery, the higher the expected number of trees that will not be

in disaster state at time T . If more ‘healthy’ trees are expected, and the expected residual

output
∑

j 6=i x
j
T is consequently higher, the response of state prices to a current disaster or

recovery is lower. To summarize, the term response is lower the higher the riskiness of the

tree that experiences the event. Thus, a disaster or recovery event of a risky tree forecasts

higher consumption in high marginal utility states. The long-term event risk premium on a

security that pays one unit of consumption at time T is proportional to the expected event

covariance of returns and marginal utility along the holding period return of the security.

This can be written as follows in terms of the long term response:

µMt,T =
N∑

i=1

E

[
E

[
DHi,Z
s (ξTCT )

∣∣∣FHi,S
s

] DHi,Z
s ξT
ξT

∣∣∣∣∣F
Hi,S
t

]
(41)

=

N∑

i=1

E


 (1 − Hi

t)



(

N∑

j=1

xjT − xih

)1−γ

−

(
N∑

i=1

xjT

)1−γ

×

[(∑N
j=1 xjT − xih∑N

j=1 xjT

)−γ

− 1

]
+ Hi

t




(

xih +

N∑

j=1

xjT

)1−γ

−

(
N∑

i=1

xjT

)1−γ


× (42)

[(∑N
j=1 xjT + xih∑N

j=1 xjT

)−γ

− 1

]∣∣∣∣∣F
Hi,S
t

]
s ∈ [t, T ] (43)

Each expectation is the contribution of a single tree’s event risk to the expected covariance

between returns and state prices. In light of the reasoning above, when a risky tree undergoes

a disaster, the reduction of cumulative event risk faced is small. However, the output is

now supplied by fewer trees, so that each remaining expected covariance term increases,

because aggregate consumption changes due to disaster or recovery shocks will be more

correlated with changes in marginal utility. It follows that the term premium increases if a

tree experiences a disaster, in situations where the price-dividend ratio decreases.

8We use the term ‘risky’ as synonymous of prone to disaster risk, therefore characterized by high disaster

and low recovery intensity.
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C.2. Prices and Risk Premia of Individual Dividend Claims

Figure 8 shows returns on individual securities prices immediately following the disaster of

a different tree.

Insert Figure 8 about here

When a disaster occurs, individual securities become more similar to the market portfolio,

because the covariance between dividends and state-prices increases. If the event risk of

a given tree is small, this tree is likely to be still supplying at full regime (xh) while the

remaining trees have already undergone disasters. If the risk aversion of the agent is high

(Panel 1), the security has a high pay-off in circumstances where equilibrium state prices

are high, because the output fall has risen marginal utility (Panel 1). Therefore a security

is positively evaluated by the market when its event risk is small relative to the aggregate.

When the riskiest tree experiences a disaster, the proportion of disaster risk beared by the

security increases dramatically, and the market determines a negative return for the security.

A contagion effect. If less risky trees default, the security benefits from a scarce increase in

(the absolute value of) its covariance with state-prices, and its return is higher, the smaller

the risk of the defaulted security. When the market share of the tree is high, its volatility due

to event risk is small, because disasters and recoveries will only marginally alter its current

share. Panel 3 shows disaster-induced returns on the claim to the tree with the higherst

event risk. In principle, the mechanism at work is the same, the higher the risk of the

defaulted tree the higher the return on the security. However, the risk share of this tree is

only marginally affected by any disaster, so returns are smaller in magnitude. When the risk

aversion of the agent is low, as in Panel 2 and 4, the market mechanism described is weaker,

because of the less pronounced response of equilibrium state prices to disaster events. In

Panel 2, for instance, the return on the safest security following a disaster is always negative,

because the increase in state prices is too limited to compensate the increase of the event

risk share carried by the dividend paying tree.
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The term premium of individual security prices has the following representation:

µit,T =
N∑

j=1

E

[
E

[
DHj ,Z
s (ξTCT )

∣∣∣FHj ,S
s

] DHj ,Z
s ξT
ξT

∣∣∣∣∣F
Hj ,S
t

]
(44)

=
N∑

j=1

E


 (1 − Hj

t )



(

N∑

z=1

xzT − xjh

)−γ

1(j 6= i)xiT −

(
N∑

i=1

xjT

)−γ

xiT


×

[(∑N
z=1 xzT − xjh∑N

z=1 xzT

)−γ

− 1

]
+ Hj

t



(

xjh +

N∑

z=1

xzT

)−γ

(1(i 6= j)xit + 1(i = j)xih)

−

(
N∑

z=1

xzT

)−γ

xiT



[(∑N

j=1 xjT + xih∑N
j=1 xjT

)−γ

− 1

]∣∣∣∣∣∣
FHi,S
t


 s ∈ [t, T ] (45)

These expected covariances are increasing in the expected market share of the endowment,

because lower share values imply less covariation between aggregate consumption and en-

dowment. If the endowment has the lowest propensity to experience a disaster, it is likely

to supply a high multiple of output when most of the remaining trees might be in disaster

state. However, if the most risky of the endowments experiences a disaster, and the disaster

risk share of the evaluated tree increases, the security is likely to provide a high dividend

when many of the trees are also supplying full output, aggregate consumption is high and

equilibrium state-prices are low. Hence, the disaster of the most risky tree forecasts a nega-

tive future covariance between the dividend of the security and state-prices, therefore it leads

to an increase of the term premium of the security. Conversely, disasters of less risky trees

imply a high and positive expected covariance between the dividend and state-prices, hence

lead to a decrease of the security’s term premium. When the risk aversion is low, however,

as in Panel 2 of Figure 8, the expected increase of equilibrium state prices is modest, and

the effect induced by the increased market share of the endowment dominates, leading to

higher term premia, and lower security prices.
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C.3. Returns volatility

The variance of returns on the i-th endowment claim reads:

Var

[
dV i

t

V i
t

∣∣∣∣F
H,S
t

]
= σ2

Y +

N∑

u=1

{
(1 − Hu

t )

[(∑
j 6=u xjt∑N
j=1 xjt

)γ

×

×




[
pht

fu(zh)
bλut

, (1 − pht )
fu(zl)
bλut

]
· V

i
(H − u)

[pht , 1 − pht ] · V
i
(H)


− 1




2

(λ̂ut + pht (1 − pht )(f
u(zh) − fu(zl))2)

+Hu
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

(∑N

j=1 xjt∑
j 6=u xjt

)γ

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[
pht

gu(zh)
bηut

, (1 − pht )
gu(zl)
bηut

]
· V

i
(H + u)

[pht , 1 − pht ] · V
i
(H)


− 1




2

×

(η̂ut + pht (1 − pht )(g
u(zh) − gu(zl))2))

}

+
N∑

j=1

(
(e1 − e2) · V

i

[pht , 1 − pht ] · V
i

)2

[pht (1 − pht )]
2[(f j(zh) − f j(zl))2 + (gj(zh) − gj(zl))2]

The terms

λ̂jt + pht (1 − pht )(f
j(zh) − f j(zl))2

η̂jt + pht (1 − pht )(g
j(zh) − gj(zl))2

denote, respectively, the posterior instantaneous variance of the j−th disaster event and of

the j−th recovery event. With full information, these terms would reduce to the instanta-

neous probability of disaster and recovery, λjt = f j(zt) and ηjt = gj(zt) . Partial information

determines an additional Jensen inequality adjustment, which is maximal in situations of

higher uncertainty about the current state of the economy, that is, when the agent regards

very different disaster or recovery probabilities as equally likely (pht = 0.5).

Periods of ‘excess volatility’ arise when the volatility of returns exceeds the volatility

of underlying dividend growth. When expected dividend growth is time-varying, this phe-

nomenon depends on the volatility of the stochastic discount factor, which impacts the

volatility of the valuation (price-dividend) ratio. If the risk aversion is high, the influence of

disaster risk on state-prices is higher than its influence on cash-flows. The full information

dividend variance reads

Var
[
dεit
∣∣Ft

]
= σ2

Y + (xih)
2[(1 − Hi

t)λ
i
t + Hi

tη
i
t], (46)

According to our discussion on the behavior of security prices, the reaction of price-dividend

ratios to disaster or recovery events is maximal when the market share of the evaluated

tree is small and the risk aversion is high. Comparing volatility of returns to volatility of
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dividend, we conclude that in this situation disaster risk is most likely to generate excess

volatility. If the risk aversion is moderate and the underlying tree provides a small output

share, the instantaneous volatility of returns is small, because the price-dividend ratio of the

security is scarcely responsive to event risk and dividend volatility is also small, unless the

instantaneous probability of default or recovery of the tree is disproportionally high.

Learning adds one more degree of uncertainty. A lower i−th market share due to a

high number of suppliers raises the number of signal to learn from, hence their cumulative

contribution to volatility of returns. But a lower i−th market share also raises the probability

of an update in the posterior price-dividend ratio due to event risk, hence raises the perceived

volatility of the price-dividend ratio.

Figure 9 reports instantaneous volatilities of returns for claims to the endowments bearing

the highest and lowest event risk, respectively. In Panel 1 and Panel 2, these volatilities are

plotted as functions of the number of disasters, under the canonical assumption that disasters

occur first for riskiest trees . Panel 3 and Panel 4 plot post-disaster volatilities for different

disaster events.

Insert Figure 9 about here

In Panel 1, the volatility of the least risky security increases as disasters of remaining trees

occur. To understanding this behavior, we should take into account two opposit effects.

While riskier trees default first and the post-disaster cumulative event risk decreases, the

post-disaster share of event risk characterizing the tree increases. The latter effect means

that the price-dividend ratio of the security is expected to be highly volatile, because the

likely disasters to occur will lead to high state prices when the security is still paying off a

conspicuous dividend. If the initial event risk share of the tree is small enough, so that the

tree is likely to be in ‘normal’ supply state while remaining trees are in disaster state, then

this effect dominates. This is the situation depicted in Panel 1. In Panel 2, the secutity has

the highest event risk, therefore its price dividend ratio is scarcely influenced by disasters of

remaining trees, so that the returns volatility decreases after a disaster. The only exception

is the disaster of the second to riskiest tree. The post-disaster variation of volatility is less

pronounced when the tree holds a high share of the market, because state-prices, hence the

price-dividend ratio of the security, are then scarcely influenced by a disaster of remaining

trees. Panels 3 and 4 show that a disaster of a scarcely risky tree leads to a higher volatility

increase. In light of the discussion above this is not surprising. The less risky the tree

that experiences a disaster, the smaller the increase in the event risk share of the tree,

while equilibrium state prices hace increased due to the consumption fall, hence the higher

the volatility of the price-dividend ratio. The learning component mentioned above has

marginal influence and does not alter the main intuition.
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‘Volatility leakage’ has been extensively investigated in the literature. Empirical evidence

acknowledges that shocks to volatilities of returns of some asset classes also affect the volatil-

ities of different asset classes returns. Our model copes well with this empirical regularity.

The analytical expression for the correlation between volatilities of returns on assets i and j

is cumbersome and difficult to interpret. Direct intuition is easier to convey. Common shocks

to volatilities are those that affect price-dividend ratios and posterior probabilities. If assets

i and j have scarce ‘excess volatility’, their volatilities will covary mainly because of posterior

probability updates. If the variance of the posterior probability of an ‘high’ economic state

is low, then the co-volatility will also be low and scarcely affected by market shares of the

endowments. This is the situation depicted in Panel 1 of Figure 10. This panel reports the

instantaneous correlation between retruns volatilities of the securities with the highest and

second to highest event risk. These assets have high likelihood of instantaneous disaster,

and scarce recovery chances, therefore display weak ‘excess volatility’, as noted above.

Insert Figure 10 about here

Panel 2 reports the same graph for the securities bearing the highest and second to high-

est event risk. These securities have significant ‘excess volatility’, therefore shocks to the

volatility of the stochastic discount factor propagate simultaneously to the volatility of their

price-dividend ratio. In Panel 2 the ‘volatility leakage’ is then higher and more sensitive to

endowments’ market share than in Panel 1.

V. Correlations

Returns of securities are correlated even if their dividends are scarcely correlated or in-

dependent. This is a feature of any equilibrium model where individual endowments are

correlated with aggregate output, albeit uncorrelated among them. In our set-up however

this phenomenon is very relevant.

Partial information implies that perceived (posterior) correlations between endowments

differ from correlations arising in a full information framework.

We analyze these aspects from the point of view of individual endowments and asset

returns.

A. Trees event correlations

The probability that two trees experience a disaster at the same time is zero. Therefore the

instantaneous covariance between endowments growth is entirely captured by the variance
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of unitary output, σ2
Y . On a finite time horizon [t, T ], the covariance is driven by the

cumulative variance of output σ2
Y (T − t) and by the event covariance, which provides an

assessment about the probability that trees will spend most of the time horizon in the same

disaster of ‘normal’ supply state. The latter is by far the most important component. Given

the observed information set Fx,S
t , the conditional event correlation between tree i and tree

j is reported in Proposition 8 of the Appendix. Figure 11, Panel 1, shows the behavior of

the posterior 6-month conditional event correlation between two endowments. The posterior

correlation is compared to the behavior of the full information conditional correlations.

Insert Figure 11 about here

These endowments are both scarcely prone to event risk, hence their full information cor-

relation is negligible when the economy is in a ‘high’ state, and moderate in a ‘bad’ state.

In general, security prices are averages of conditional full information security prices, with

weights given by posterior probabilities. However, the impact of incomplete information on

correlations is nonlinear. The posterior correlation is sensibly higher than full information

correlation when the uncertainty about the current state of the world is high, that is, for pht

around 0.5. In Panel 1, as in Panel 2, a starting value of pht = 0.5 is progressively updated

downwards after each disaster, and the partial information correlation slowly converges to

the full information counterpart. In this illustration, we have assumed that a given tree (the

6-th) is crucial for the rest of the economy, and that a disaster event for this tree enhances

the probability of a ‘bad’ economic state. Since the ‘bad’ state becomes extremely persistent

when a disaster occurs for the 6-th tree, the trees’ event risk experiences an upward jump,

and trees are more likely to persist in the same supply or ‘normal’ disaster state. Since the

‘high’ state of the economy is extremely transitory in this situation, the full information

correlation in this state is only remotely affected.

Figure 12, is the analog of Figure 11 for the risk neutral event correlation between the

same trees.

Insert Figure 12 around here

The market price of event risk for a given tree depends on the relative risk aversion and

on the output share that the tree is currently supplying (or would supply if it recovered).

With the degree of market concentration used in our exercise, where at most 6 trees supply

the aggregate endowment, the correlation premium is dramatic. When all 6 trees are yet to

default, the impact of each disaster on state prices is such that to price a security whose pay-

off depends on two objectively scarcely uncorrelated endowments, the relevant correlation

that the agent would use is 0.55 (as compared to an objective 0.26). It should be noted that

these figures are obtained with a relatively moderate risk aversion coefficient (γ = 5). Not
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surprisingly, Panel 1 shows that the risk adjusted correlation increases at each successive

disaster, because the market share of the trees is progressively increased. Without risk

adjustments, the only tree which affects correlations is the three whose state affects the

economy (the 6-th). Intuitively, in the risk adjusted world, every tree’s disaster has an

impact on correlation. Panel 2 shows that this influence is highest for disasters of trees with

the lower event risk (4th and 3rd), because the risk adjusted event risk share of the trees

increases dramatically in this case. Informally, we may say that the evaluated trees are ‘next’

to default.

B. Assets return correlations

The expression for the instantaneous covariance between returns is reported in the Appendix.

Event risk does not influence (instantaneous) endowments’ covariance, but it does influence

returns covariance by means of its impact on price-dividend ratios. Let us consider the

contribution of the z−th disaster event to the full information covariance between the i−th

and the j−th securities’ returns:
[(∑

u6=z xut∑N
u=1 xut

)γ
V
i
(H − z)v

V
i
(H)v

− 1

] [(∑
u6=z xut∑N
u=1 xut

)γ
V
j
(H − z)v

V
j
(H)v

− 1

]
λzt v = h, l. (47)

Terms in square brackets are full information returns on each security following the disaster

of tree z. We have pointed out that a security responds positively to disasters if the post-

disaster share of event risk has increased less than the output supply share of the underlying

tree. If tree z has very high (low) event risk, its disaster will homogeneously impact prices

of most securities, therefore contributing positively to correlation. We can conclude that:

i) After the disaster (recovery) of a risky or scarcely risky security correlation between any

two securities decreases (increases). ii) Correlation is high and positive for those securities

sharing similar event risk, that is, disaster and recovery probabilities, because their response

to shocks is homogeneous. This intuition is substantiated by Figure 13. Panel 1 reports

instantaneous correlation of returns between the security with smallest event risk and the

remaining, while Panel 2 reports instantaneous correlation of returns between the most event

risky security and the remaining. Market shares are homogeneous among securities.

Insert Figure 13 about here

C. Disaster Contagion and Security Price Contagion

Disaster contagion is related to the concept of event correlation that we have already ana-

lyzed. In our model, a given disaster event cannot directly cause an additional disaster, but
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it can modify the probability of disaster or recovery of remaining trees. If we consider in-

stantaneous probabilities, learning is fully in charge of this effect. Over a finite time-horizon

instead, the possibility to foster a ‘good’ or ‘bad’ economic state provides an additional

channel of contagion . Disaster events have also a direct impact on returns. It seems appro-

priate then to distinguish a ‘cash-flow’, or simply ‘disaster’ contagion, from the ‘’valuation’

contagion displayed by security prices.

C.1. Disaster contagion

Following Frey, Schmidt and Gabith (2007), we consider the following measure of disaster

contagion:

λ̂iτ j − λ̂iτ j− = phτ j−(1 − phτ j−)
[f i(zh) − f i(zl)][f j(zh) − f j(zl)]

λ̂j
τ j−

(48)

where τ j is a disaster time for tree j. According to the LHS of (48), disaster contagion is the

variation of the instantaneous posterior probability of disaster for tree i following a disaster

of tree j. This is given by the posterior covariance between λj
τ j− and λiτ j− (the numerator

of (48)), divided by the posterior disaster intensity of tree j. Intuitively, contagion increases

when the disaster of tree j leads to a major update in the posterior probability of being in

a ‘bad’ economic - and high disaster probability - state. This happens when there is high

uncertainty about the current state (pht = 0.5) and when the difference between disaster

intensities in the two states is large. In this case the default event is unambiguously inter-

preted as evidence of an high disaster likelihood state. Tthe more the disaster is unexpected

according to the current belief, because the posterior intensity λ̂j
τ j− is low, the larger the

update. If we consider finite horizon disaster probabilities instead of instantaneous proba-

bilities, then contagion effects are reacher, because a disaster event propagates to the state

of the economy, and this in turn influences the likelihood of disaster of remaining trees. In

Panel 1 of Figure 14 we have plotted the survival probability of a given tree after the disaster

of a ‘sector’ that is crucial for the economy, so that the likelihood of transition to a ‘bad’

state has increased dramatically.9

Insert Figure 14 about here

The probability of disaster for the given tree has increased substantially after the collapse of

the key sector. The pronounced difference with the pre-default situation is due to the fact

9The reported quantity,

P
(

τ i > T
∣∣Fx,S

τj

)
− P

(
τ i > T

∣∣Fx,S

τj
−

)

P
(

τ i > T | Fx,S

τj
−

) , (49)

can be written in closed-form, following expression (14).
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that the ‘crucial’ tree had scarce ex-ante probability of disaster.

C.2. Security price contagion

We have already discussed the response of asset prices to disaster events. It is instructive to

analyze the risk-neutral counterpart of the contagion measure reported in (48)

θτ j λ̂
i
τ j − θτ j−λ̂iτ j− =

( ∑
u6=i,j xut

xih +
∑

u6=i,j xut

)−γ
Cov[λiτ j−λj

τ j−|F
x,S
τ j−]

λ̂j
τ j−

(50)

+

[( ∑
u6=i,j xut

xih +
∑

u6=i,j xut

)−γ

−

(
xjh +

∑
u6=i,j xut

xih + xjh +
∑

u6=i,j xut

)−γ]
λ̂iτ j

The risk neutral disaster contagion measure for tree i is given by the objective contagion

scaled by the market price of disaster risk after the disaster of tree j, plus the jump in market

price of disaster risk due to the event, scaled by the posterior intensity of default of the i−th

asset. The market price of disaster risk is always above 1 and it increases when the market

share of the i−th tree increases. Therefore the jump of the market price of risk is positive

and it is increasing in the market share of the i−th tree. It follows that the risk-neutral

contagion is higher than the objective contagion, and the difference is larger the more the

aggregate output supply is concentrated. The behavior of the risk neutral probability of

default is reflected on security prices, which, as extensively commented above, depend on

the risk neutral survival probability of trees. Panel 2 of Figure 14 mimicks the exercise of

Panel 1, but shows that the increase in disaster probability after the disaster of the ‘crucial’

tree is much more pronounced in the risk-adjusted case.

VI. Term structure of credit-spreads

In our framework the i−th defaultable zero coupon bond with maturity T is the security

that pays one unit of consumption in T if the i−th tree has not undergone a disaster before

maturity. The i−th credit spread is defined as the yield of this bond in excess of the yield

of a default-free bond.

Proposition 5 The equilibrium price of a zero coupon bond with time to maturity T − t is:

P (t, T ) = eb(T−t)

(
N∑

i=1

xit

)γ
[
pht , 1 − pht , 0N−2

]
exp

(
−(T − t)AH

)
E (51)
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The equilibrium price of a defaultable zero coupon bond, linked to the default event of the

i−th tree, with zero recovery value and time to maturity T − t is:

P i(t, T ) = 1
(
τ i > t

)
eb(T−t)

(
N∑

j=1

xjt

)γ
[
pht , 1 − pht , 0N i−2

]
exp

(
−(T − t)AZD

)
ED (52)

where exp( · ) denotes the matrix exponential operator,

b = −δ − µY γ + σ2
Y

γ(γ + 1)

2
,

N = 2N , N i = 2N−1 and expressions for matrices AH , AZD, vectors ED and E are reported

in the Appendix. The equilibrium i−th credit spread at time t for maturity T is:

csit = −
log P i(t, T )

T − t
+

log P (t, T )

T − t
(53)

Figure 15 plots the term structure of credit spreads for the endowment with the highest

event risk and for the endowment with the lowest event risk.

Insert Figure 15 about here

To understand the behavior of these spreads, we should take two opposite effects into account.

A deferral of the pay-off of the bond implies a higher likelihood of default until maturity. The

spread is increasing with time to maturity because of this effect. Higher time to maturity,

however, implies also higher state prices at which the pay-off will be evaluated if default does

not occur, because some tree will likely have undergone disasters and aggregate consumption

will be lower. In Panel 1 the endowment is almost default-risk free, therefore its spread size

is small. The probability of no-disaster before 30 years is still high, to the extent that the

first effect dominates only until the 12-year maturity, approximately, thereby determining an

increasing pattern for the spread. After this maturity, the likelihood of disasters is high for

the worst rated trees, and the increasing state prices determine a decreasing pattern for the

spread. On the other hand, the no-disaster probability of the tree with the highest event risk

reaches quickly small values, so that a further deferral of the pay-off time beyond a critical

date does not add significant risk. The perspective of higher state prices in case of payments

dominates in fact, determining a decreasing pattern for the spread, with the exception of

matirities between 8 and 12 years, when the probability of no-disaster converges to zero.

Figure 16 shows the behavior of credit spreads for the same trees in relation to the number

of disasters occurred, assuming that more risky trees undergo a disaster first.

Insert Figure 16 about here
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Credit spreads are increasing in the endowment’s market share. The intuition is simple if we

keep in mind our discussion on disaster risk premia. The credit spread depends on the risk

neutral no-disaster probability of the endowment. The risk neutral intensity of disaster θtλ̂t

is increasing in the tree’s market share, so that a current higher share forecasts a steadily

higher future pattern for the risk neutral intensity and probability of default. In our simple

calibration exercise, indeed the dynamics of credit spreads can experience abrupt jumps.

Figure 17 shows a simulated path of a constant-time-to-maturity 1-year credit spread for a

given endowment.

Insert Figure 17 about here

VII. Conclusions

We have applied the classic Lucas-tree pure exchange framework to investigate the conse-

quences of having multiple supplying trees that are subject to event risk. As already pointed

out by Cochrane, Longstaff and Santa-Clara (2007), in such an economy results are driven

by random fluctuations of the share of aggregate consumption that each tree supplies. In

our paper, disaster and recovery events are solely responsible for market shares fluctuations.

Security prices react to default events according to the magnitude of their event correlation

with the tree that has experienced the disaster. The higher the event correlation, the more

pronounced the contagion effect, that is, the lower the return shock. Incomplete information

provides a source of ‘perceived’ contagion, because the agent updates upwards the proba-

bility of an high disaster intensity state when some disaster event occur. Consistently with

empirical findings, credit spreads experience upward jumps when different securities default.

The higher the event correlation between the endowments, the higher the increase of the

credit spread.

We conclude with a brief, heuristic discussion about the robustness of our results to the

presence of an arbitrary high number of trees, infinite in fact. Assume that output multiples

xi is such that aggregate output Y
∑∞

i=1 xi is finite. Since each output share is then arbitrary

small, the full information response of the i−th security return to a disaster for the j−th

security,
(∑

z 6=j xzt∑∞
z=1 xzt

)γ (
V
P i

(H − j)

V
P i

(H)
− 1

)
(54)

is also arbitrary small. The partial information response must obey the same rule. However,

we should take into account that the overall disaster and recovery ‘activity’ also increases

unboundedly, unless event probabilities depend of the number of trees, because

lim
N→∞

N∑

i=1

(1 − Hi
t )λ̂

i
t = ∞ (55)
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Asset returns will then be subject to high frequency jumps of smaller magnitude. Indeed,

the market price of default risk θt will vanish with an infinite number of trees, but the event

risk premium on the i−th security, being the sum of an infinite number of vanishing sources

of risk, will converge to a positive limit or diverge to infinity, depending on trees posterior

disaster and recovery intensities.
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Appendix A: Proofs

Proof of Proposition 1

Let Hi
t = 1(xit = 0). Note that the continuous-time Markov chain xit can be equivalently written as the pure jump process:

xit = xih −

Z t

0
xihdH

i
s

where the Ft−intensity of the compound Poisson process dHi
t is

−Hi
tη
i
t + (1 −Hi

t )λ
i
t

Then let ψt = [H1
t , H

2
t , . . . ,H

N
t , S

f ′

t , Sg
′

t ]′ denote the vector of observation processes. Let also Fψt denote the sigma field that

the observation process generates. This is equivalent to the sigma-field Fψt = Fx,St used in the text. It follows from Theorem

18.3 and Theorem 7.17 in Lipster and Shyriaev (2001) that

eBjt = Ωj
“
Sjt −

h
P (zt = zh|Fψt ) � j(zh) + P (zt = zl |Fψt ) � j(zl)

i”
j = f, g (56)

is an Fψt -Brownian motion and Hi
t is an Fψt −point process with compensator

bλHi

t = −Hi
t [g

i(zh)P (zt = zh|Fψt ) + gi(zl)P (zt = zl|Fψt )] + (1 −Hi
t )[f

i(zh)P (zt = zh|Fψt ) + f i(zl)P (zt = zl |Fψt )] (57)

The representation of the signal vector process Sjt , j = f, g, with respect to the observation filtration becomes

dSjt =
h
P (zt = zh|Fψt ) � j(zh) + P (zt = zl|Fψt ) � j(zl)

i
+ Ω−1

j d eBjt

The following Proposition is a straightforward adaptation of Theorem 19.1 and Theorem 5.17 in Lipster and Shyriaev (2001).

Proposition 6 Any Fψt − martingale Yt admits the representation:

Yt = Y0 +

Z t

0
hfs · d eBfs +

Z t

0
hgs · d eBgs +

Z t

0

NX

i=1

fH
i

s (dHi
s − bλH

i

s ds)

where adapted processes hft and hgt satisfy the integrability conditions in Theorem 5.17 and Theorem 19.1, respectively, of

Lipster and Shyriaev (2001).

The following Proposition is Lemma 9.2 in Lipster and Shyriaev (2001)

Proposition 7 For j = h, l, the random process

yjt = 1(zt = zj) − 1(z0 = zj ) −

Z t

0
[−1(zs = zj)kj(xs) + 1(zs = zj

c

)kjc (xs)]ds

is an Ft−martingale, where jc denotes the complement of j.

Taking conditional expectations with respect to Fψt in the definition of x
j
t , we obtain:

P (zt = zj |Fψt ) = P (z0 = zj |Fψt ) +

Z t

0
[−P (zs = zj |Fψt )kj(xs) + P (zs = zj

c

|Fψt )kjc (xs)]ds+ E[y
j
t |F

ψ
t ] (58)

We can now apply the martingale representation theorem above to the martingale E[yjt |F
ψ
t ] and by conditional independence

of the vector processes Hi
t and Sjt identify stochastic integrands as in Lipster and Shyriaev (2001), Theorem 19.5 and Theorem

9.2. We end up with the representation given in the Proposition. This ends the proof.
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Proof of Proposition 2

Let Ht = [H1
t , H

2
t , . . . ,H

N
t ]′ and assume, without loss of generality, that none of the N trees is in a disaster state at time s,

so that Hs = 0′N , an N−dimensional vector of zeros. Note that ‘survival’ probabilities for individual trees are obtained as a

special case of this methodology, when set D is a singleton. We can write:

P (τd1 > T, τd2 > T, . . . τdL
> T |Fx,Ss ) = E

h
P (τd1 > T, τd2 > T, . . . τdL

> T |Fs)|F
x,S
s

i
(59)

Assume zs = zh. By the law of iterated expectations the inner expectation is an Fs−martingale, therefore the ‘drift’ component

of its Ito representation must vanish. By the Markov property we must have

P (τd1 > T, τd2 > T, . . . τdL
> T |Fs) = 1(τd1 > s, τd2 > s, . . . τdL

> s)V h(s,Ht) (60)

Let SD (N − L,K) denote the set of combinations of the N − L available trees excluding those in D, into groups of K, and let

SD (N−L,K)h denote the h−th element of this set. The set SD will be used to denote the trees that are not in a disaster state.

We use the notation S
D

(N − L,K)h to denote the complement of the h−th element, that is, the trees that are in a disaster

state. We apply Ito’s lemma to the RHS of (60), take conditional expectations and impose the martingale property, according

to which the conditional mean of the RHS of (60) must vanish. Applying this argument also to the probability conditional on

the low state of the economy, zl, we obtain the following system of ordinary differential equations:

∂

∂s

"
V h(s,Hs)

V l(s,Hs)

#
=

 "PN
j=1 f

j(zh) 0

0
PN
j=1 f

j(zl)

#
− I

!"
V h(s,Hs)

V l(s,Hs)

#
−

2
4
P#(SD(N−L,N−L−1))
j=1 f j(zh)V h(s,SD (N − L,N − L− 1)j)

P#(SD(N−L,N−L−1))
j=1 f j(zl)V l(s,SD (N − L,N − L− 1)j)

3
5 (61)

The system involves all functions V conditional on any combination of supply xit for the N trees excluding those L for which

we want to compute the probability of no-disaster. This system of equations can be written compactly in vectorial notation.

d

ds

2
66666666666666664

V(s,Hs)

V(s,SD(N − L,N − L− 1)1)

.

..

V(s,SD (N − L,N − L− 1)N−L)

V(s,SD(N − L,N − L− 2)1)

.

..

V(s,SD (N − L, 1))

V(s,SD )

3
77777777777777775

= A

2
66666666666666664

V(s,Hs)

V(s,SD(N − L,N − L− 1)1)

.

..

V(s,SD (N − L,N − L− 1)N−L)

V(s,SD(N − L,N − L− 2)1)

.

..

V(s,SD (N − L, 1))

V(s,SD)

3
77777777777777775

(62)

where V(s, · ) = [V h(s, · ), V l(s, · )]′, and V(s,SD ) denotes the function V conditional on all trees excluding those in D being

in a disaster state.

A = diag[ΥN−L,ΥSD(N−L,N−L−1)1 , . . . ,ΥSD(N−L,N−L−1)N−L ,ΥSD(N−L,N−L−2)1 ,

. . . ,ΥSD(N−L,1)N−L ,ΥSD

] −

2
64

0 F1 F2 . . . FN−L 0 . . . 0 . . .

G1 0 0 . . . 0 F2 F3 . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

3
75 (63)

with

Fi = diag[f i(zh), f i(zl)]

Gi = diag[gi(zh), gi(zl)]

ΥSD(K,K−1)j = diag[
X

u∈D

fu(zh),
X

u∈D

fu(zl)] + diag[
X

u∈SD(K,K−1)j

fu(zh),
X

u∈SD(K,K−1)j

fu(zl)]

+diag[
X

u∈S
D

(K,K−1)j

gu(zh),
X

u∈S
D

(K,K−1)j

gu(zl)] − I

ΥN−L = diag[
NX

u=1

fu(zh),
X

u∈D

fu(zl)] − I

ΥSD

= diag[

N−LX

u=1

gu(zh),

N−LX

u=1

gu(zl)] + diag[
X

u∈D

fu(zh),
X

u∈D

fu(zl)] − I,
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and 0 = diag[0,0]. The terminal condition is V (T ) = 1. The solution of this system is immediately characterized in terms of

matrix exponential operator, so that:

P (τd1 > T, τd2 > T, . . . τdL
> T |Fx,Ss ) = 1(τd1 > s, τd2 > s, . . . τdL

> s)[pht , 1 − pht ,0N−2] · exp (−A(T − s)) 1N (64)

where N = 2N−L

The expected time until the next disaster of any of the trees in group D is given by

E

»
min
i∈D

τ i − s

˛̨
˛̨Fx,Ss

–
=

Z ∞

s

u
∂

∂u

h
1 − P (τd1 > u, τd2 > u, . . . τdL

> u|Fx,Ss )
i
du

=

Z ∞

s

−u
∂

∂u
P (τd1 > u, τd2 > u, . . . τdL

> u|Fx,Ss )du− s (65)

= 1(τd1 > s, τd2 > s, . . . τdL
> s) ×

[pht , 1 − pht ,0N−2] ·

»Z ∞

s

uA exp(−A(u− s)) du

–
1N − s

= [pht , 1 − pht ,0N−2] ·A
−11N

Given a tree i which is currently in disaster state, i.e. Hi
t = 1, its expected recovery time is computed with a similar

methodology. Without loss of generality we assume that all remaining trees are not in a disaster state. Any different combination

of state can be accomodated with obvious modifications. Let τ ir be the first recovery time of tree i. We have

P (τ ir > T |FH,Ss ) = 1(τ ir > s)[pht , 1 − pht ,0N−2] · exp (−Ar(T − s)) 1N i (66)

where N i = 2N−1

Ar = diag[ΥN−1
r ,Υ

Si(N−1,N−1)1
r , . . . ,Υ

Si(N−1,N−1)N−1
r ,Υ

Si(N−1,N−2)1
r , . . . ,Υ

Si(N−1,1)N−1
r ,ΥSi

r ]−
2
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with

Fi = diag[f i(zh), f i(zl)]

Gi = diag[gi(zh), gi(zl)]

Υ
Si(N−1,K)j
r = diag[gi(zh), gi(zl)] + diag[

X

u∈Si(N−1,K)j

fu(zh),
X

u∈Si(N−1,K)j

fu(zl)]

+diag[
X

u∈Si(N−1,K)j

gu(zh),
X

u∈Si(N−1,K)j

gu(zl)] − I

ΥN−1
r = diag[gi(zh), gi(zl)] +

X

j 6=i

diag[f j(zh), f j(zl)] − I

ΥSi

r =

NX

i=1

diag[gi(zh), gi(zl)] − I,

and 0 = diag[0,0]. Notation is the same used for no-disaster probabilities, with the exception that Si(N − 1,K) now denotes

the set of combinations of the N − 1 trees that have not yet undergone a disaster - excluding the ith - in groups of K. The

expected time until recovery for tree i is then:

E

h
τ ir − s

˛̨
Fx,Ss

i
=

Z ∞

s

u
∂

∂u
P (τ ir ≤ u|Fx,Ss )du− s

=

Z ∞

s

−u
∂

∂u
P (τ ir > u|Fx,Ss )du − s (68)

= 1(τ ir > s)[pht , 1 − pht , 0N i−2] ·

»Z ∞

s

Ar exp (−Ar(u− s)) du

–
1N i − s

= 1(τ ir > s)[pht , 1 − pht , 0N i−2] · (A
r)−11N i
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We apply once again a similar methodology to compute the expected fraction of time spent in a disaster state. Assume

without loss of generality that none of the N trees is currently in a disaster state. We remind that Hi
t = 1(xit = 0). For a

collection D = {d1, d2, . . . dL} of trees, we have

P (Hd1
T

= 0,Hd2
T

= 0, . . . H
dL
T

= 0|Fx,Ss ) = [pht ,1 − pht , 0N−2] · exp
“
−AH(T − s)

”
WN (69)

where WN is the column vector with j−th element 1(D ∈ S(N,K)j) and dimension given by N = 2N

AH = diag[ΥN
H ,Υ

S(N,N−1)1
H , . . . ,Υ

S(N,N−1)N−1

H ,Υ
S(N,N−2)1
H , . . . ,Υ

S(N,1)
H ,ΥS

H ]−
2
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with

Fi = diag[f i(zh), f i(zl)]

Gi = diag[gi(zh), gi(zl)]

Υ
S(N,K)j

H = diag[
X

u∈S(N,K)j

fu(zh),
X

u∈S(N,K)j

fu(zl)] + diag[
X

u∈S(N,K)j

gu(zh),
X

u∈S(N,K)j

gu(zl)] − I

ΥN
H =

NX

i=1

diag[f i(zh), f i(zl)] − I

ΥS
H =

NX

i=1

diag[gi(zh), gi(zl)] − I,

and 0 = diag[0,0]. S(N,K) now denotes the set of combinations of all the N trees in groups of K. The expected fraction of

time on the horizon [s, T ] with no disaster state for members of group D is then:

1

T − s
E

»Z T

s

1(Hd1
u = 0, Hd2

u = 0, . . . Hd2
u = 0)

˛̨
˛̨Fx,Hs du

–
=

1

T − s

Z T

s

P (Hd1
u = 0, Hd2

u = 0, . . . Hd2
u = 0|Fx,Ss )du

=
[pht , 1 − pht ,0N−2]

T − s
·

»Z T−s

0
exp

“
−AHτ

”
dτ

–
WN = [pht , 1 − pht , 0N−2] ·

(AH)−1

T − s

h
Id − exp(−AH(T − s))

i
WN

(71)

This ends the proof of the proposition.

Conditional probabilities of i-th share

Thanks to the proof of Proposition 1, it is immediate to identify the conditional distribution for the market share of the i− th

tree. As before, for T > v, assume without loss of generality that none of the N threes has yet (at time v) undergone a disaster.

We have, for K = 1, . . . , N − 1 and j = 1, . . . ,#(Si(N − 1, K)) :

P
“
siT = 0

˛̨
Fx,Sv

”
= 1 − P

“
Hi
T = 0

˛̨
Fx,Sv

”

P

 
siT =

xi
hP

u∈Si(N−1,K)j
xu
h

˛̨
˛̨
˛F

x,S
v

!
= P

“
Hi
T = 0, Hu

T = 0,Hz
T = 1

˛̨
Fx,Sv

”
,

u ∈ Si(N − 1,K)j , z ∈ S
i
(N − 1,K)j

where

P
“
Hi
T = 0,Hu

T = 0,Hz
T = 1

˛̨
Fx,Sv

”
= [pht , 1 − pht ,0N−2] · exp

“
−AH(T − v)

”
WN (72)

where WN is the column vector with k−th element 1(i ∪ Si(N − 1,K)j ∈ S(N,K)k) and dimension given by N = 2N
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Proof of Proposition 3

We remind that Hi
t = 1(xit = 0), therefore dHi

t = 1 if a disaster occurs, i.e. Hi
t = 0, and dHi

t = −1 if a recovery occurs, i.e.

Hi
t = 1.

The state-price density is:

ξt = e−δtY −γ
t

 
NX

i=1

xit

!−γ

(73)

On the other hand, the state-price density must also obey:

ξt = exp

 
−

Z t

0
(rs +

κ2
s

2
)ds−

Z t

0
κsdZs +

Z t

0

NX

i=1

bλHi

s (1 − θis)ds+

Z t

0

NX

i=1

−sgn(Hi
t) log(θis)dH

i
s

!
(74)

where sgn(Hi
t ) = −1 if Hi

t ≤ 0 and sgn(Hi
t ) = 1 if Hi

t > 0. Furthermore

bλHi

t = −Hi
t bηi + (1 −Hi

t )
bλit

By applying Ito’s lemma to (74) we obtain:

dξt = −ξtrtdt − ξtκdZt + ξt

"
NX

i=1

−sgn(Hi
t)(θ

i
s − 1)(dHi

t − bλH
i

t )

#
(75)

By Ito’s lemma applied to (73) we obtain the alternative representation:

dξt = −δξt − γµY ξtdt+
1

2
γ(γ + 1)σ2

Y ξtdt + ξt

NX

i=1

2
4(1 −Ht)

h
(
P
j 6=i x

j
t )

−γ − (
PN
j=1 x

j
t )

−γ
i

(
PN
j=1 x

j
t )

−γ
bλit

+Ht

h
(
PN
j=1 x

j
t )

−γ − (
P
j 6=i x

j
t )

−γ
i

(
P
j 6=i x

j
t )

−γ
bηit

3
5− γξtσY dZt + ξt

NX

i=1

2
4(1 −Ht)

h
(
P
j 6=i x

j
t )

−γ − (
PN
j=1 x

j
t )

−γ
i

(
PN
j=1 x

j
t )

−γ
(dHi

t − bλit)

−Ht

h
(
PN
j=1 x

j
t )

−γ − (
P
j 6=i x

j
t )

−γ
i

(
P
j 6=i x

j
t )

−γ
(dHi

t + bηit)

3
5

which, compared with (74) yields the expressions reported in the text. This ends the proof.

Proof of Proposition 4

We assume without loss of generality that none of the N trees has yet (at time t) undergone a disaster. The price of the market

portfolio is:

VMt =
1

ξt
E

»Z ∞

t

ξsCsds

˛̨
˛̨FH,St

–
(76)

=
Yt

(
PN
i=1 x

i
t)

−γ
E

2
4
Z ∞

t

e−δ(s−t)
„
Ys

Yt

«1−γ
 
NX

i=1

xis

!1−γ

ds

˛̨
˛̨
˛̨F

H,S
t

3
5 (77)

=
Yt

(
PN
i=1 x

i
t)

−γ
E

2
4E

2
4
Z ∞

t

e−a(s−t)

 
NX

i=1

xis

!1−γ

ds

˛̨
˛̨
˛̨Ft

3
5
˛̨
˛̨
˛̨F

H,S
t

3
5 (78)

where

a = δ − µY (1 − γ) +
σ2
Y

2
(1 − γ)γ

The last step follows from the independence of Yt and from the law of iterated expectations. Similarly, the price of the claim

to the i−th endowment process is:

V it =
1

ξt
E

»Z ∞

t

ξsYsx
i
sds

˛̨
˛̨FH,St

–
(79)

=
Yt

(
PN
i=1 x

i
t)

−γ
E

2
4E

2
4
Z ∞

t

e−a(s−t)sis

 
NX

i=1

xis

!1−γ

ds

˛̨
˛̨
˛̨Ft

3
5
˛̨
˛̨
˛̨F

H,S
t

3
5 (80)
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where sit is the i−th tree market share at time t.

Assume zt = zh, and let V h(Ht) denote the inner (full information) conditional expectation in (78). The inner expectation

in (80) is computed similarly after the obvious modifications. By the law of iterated expectations

Z t

0
e−δs

 
NX

i=1

xis

!1−γ

ds+ e−δtV h(Ht) (81)

is an Ft−martingale, therefore the ‘drift’ component of its Ito representation must vanish. We use the same notation of the

proof of Proposition 2 to identify the collection of trees that are in disaster state and those that are not. We apply Ito’s lemma

to (81), take conditional expectations and impose the martingale property. Applying this argument also to the full information

price of the market portfolio conditional on the low state of the economy, zl, we obtain the following system of equations:

"
0

0

#
=

 "
−a −

PN
j=1 f

j(zh) 0

0 −a −
PN
j=1 f

j(zl)

#
+ I

!"
V h(Ht)

V l(Ht)

#
+

"P#(S(N,N−1))
j=1 f j(zh)V h(S(N,N − 1)j)P#(S(N,N−1))
j=1 f j(zl)V l(S(N,N − 1)j)

#
+

2
4
“PN

i=1 x
i
h

”1−γ

“PN
i=1 x

i
h

”1−γ

3
5 (82)

Using notation the notation of the proof of Proposition 2, this system of equations can be written compactly in vectorial

notation.
2
666666666666664

0

0

..

.

0

0

.

..

0

3
777777777777775

= −(a + AH)

2
66666666666666664

V(Ht)

V(S(N,N − 1)1)

.

..

V(S(N,N − 1)N )

V(S(N,N − 2)1)

.

.

.

V(S(N,1))

V(S)

3
77777777777777775

+ C (83)

where V( · ) = [V h( · ), V l( · )]′, V(S) denotes the function V conditional on all trees being in disaster state, and

C =

2
666666666666666664

“PN
i=1 x

i
h

”1−γ
12“PN

i=2 x
i
h

”1−γ
12

.

..“PN−1
i=1 xi

h

”1−γ
12“PN

i=3 x
i
h

”1−γ
12

..

.

(0)1−γ12

3
777777777777777775

. (84)

where 12 is a 2-dimensional column vector of ones. Finally:

VMt = Yt

 
NX

i=1

xit

!γ
[pht , 1 − pht , 0N−2] · (a + AH)−1C (85)

V it = Yt

 
NX

i=1

xit

!γ
[pht , 1 − pht , 0N−2] · (a + AH)−1Ci (86)
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where N = 2N and

Ci =

2
666666666666666666666664

xi
hP

N
j=1 x

j

h

“PN
j=1 x

j
h

”1−γ
12

xi
hP

N
j=2

x
j
h

“PN
j=2 x

j
h

”1−γ
12

.

..

0P
j 6=i x

j
h

“P
j 6=i x

j
h

”1−γ
12

.

.

.
xi

hPN−1
j=1 x

j
h

“PN−1
i=1 xi

h

”1−γ
12

..

.

(0)1−γ12

3
777777777777777777777775

. (87)

and a is a N -dimensional diagonal matrix with a on the main diagonal. In the Proposition, we have denoted by V
M

(H) the

expected full-information discounted cash-flow of the market portfolio, i.e

V
M

(H) = [V h(Ht), V
l(Ht)] = [[1,0N−1] · (a + AH)−1C, [0, 1,0N−2] · (a + AH)−1C]]

We have also denoted by V
M

(N − j) (V
M

(N + j)) the same quantity conditional on tree j having undergone a disaster (a

recovery from disaster). This is the entry of the vector (a + AH)−1C corresponding to the specific combination of trees in

disaster and ‘normal’ state. A similar definition holds for V
i
(H) and V

i
(H − j) (V

i
(H + j)).

The risk premium of the market portfolio is:

µMt = E

»
dVMt
VMt

˛̨
˛̨FH,St

–
+

Ct

VMt
− rt (88)

The expression reported is obtained by applying Ito’s lemma to the formula for the price process, taking expectations and taking

into account the expression for the equilibrium interest rate. The risk premium of claims to individual endowment processes is

computed similarly.

This concludes the proof.

Proposition 8 and its proof.

Proposition 8 The conditional event correlation between trees i and j on the horizon [t, T ] is defined as:

ρijt,T =
P
“
Hi
T = 0, H

j
T = 0

˛̨
˛Fx,St

”
− P

“
Hi
T = 0

˛̨
Fx,St

”
P
“
H
j
T = 0

˛̨
˛Fx,St

”

r
P
“
Hi
T

= 0
˛̨
Fx,St

”“
1 − P

“
Hi
T

= 0
˛̨
Fx,St

””
P
“
Hj
T

= 0
˛̨
˛Fx,St

”“
1 − P

“
Hj
T

= 0
˛̨
˛Fx,St

”” (89)

Let PQ
“
· | Fx,St

”
denote the conditional probability operator under the risk neutral measure. The risk neutral conditional

default correlation between tree i and tree j on the horizon [t, T ] is given by equation (89) with risk neutral probabilities instead

of objective probabilities. The risk neutral joint probability of ‘high’ economic state for trees of an L-dimensional group D

reads explicitly as follows:

PQ(Hd1
T

= 0, Hd2
T

= 0, . . . H
dL
T

= 0|Fx,Ss ) = [pht , 1 − pht , 0N−2] · exp
“
−AQ(T − s)

”
WN (90)

where WN is the column vector with j−th element 1(D ∈ S(N,K)j) and dimension given by N = 2N

AQ = diag[ΥN
H ,Υ

S(N,N−1)1
H , . . . ,Υ

S(N,N−1)N−1

H ,Υ
S(N,N−2)1
H , . . . ,Υ

S(N,1)
H ,ΥS

H ]−
2
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with

Fi = diag

2
4f i(zh)

 P
j 6=i x

j
tPN

j=1 x
j
t

!−γ

, f i(zl)

 P
j 6=i x

j
tPN

j=1 x
j
t

!−γ
3
5

Gi = diag

2
4gi(zh)

 PN
j=1 x

j
tP

j 6=i x
j
t

!−γ

, gi(zl)

 PN
j=1 x

j
tP

j 6=i x
j
t

!−γ
3
5

Υ
S(N,K)j

H = diag[
X

u∈S(N,K)j

fu(zh)

 P
j 6=u x

j
tPN

j=1 x
j
t

!−γ

,
X

u∈S(N,K)j

fu(zl)

 P
j 6=u x

j
tPN

j=1 x
j
t

!−γ

]

+diag[
X

u∈S(N,K)j

gu(zh)

 PN
j=1 x

j
tP

j 6=u x
j
t

!−γ

,
X

u∈S(N,K)j

gu(zl)

 PN
j=1 x

j
tP

j 6=u x
j
t

!−γ

] − I

ΥN
H =

NX

i=1

diag[f i(zh), f i(zl)

 PN
j=1 x

j
tP

j 6=u x
j
t

!−γ

] − I

ΥS
H =

NX

i=1

diag[gi(zh)

 P
j 6=i x

j
tPN

j=1 x
j
t

!−γ

, gi(zl)

 PN
j=1 x

j
tP

j 6=u x
j
t

!−γ

] − I,

and 0 = diag[0,0]. S(N,K) now denotes the set of combinations of all the N trees in groups of K.

Expressions for probabilities in (89) are reported in ( 71). The corresponding expressions for the risk neutral probabilities are

computed along the same lines, once we take into account that the risk-neutral full information ‘event’ intensity of each tree is

(1 −Hi
t )λ

i
t

 P
j 6=i x

j
tPN

j=1 x
j
t

!−γ

−Hi
tη
i
t

 PN
j=1 x

j
tP

j 6=i x
j
t

!−γ

(92)

The covariance between returns on endowment claims

The covariance between returns on claims to the i−th and the j−th endowment reads.

E

"
dV it
V it

dV jt

V jt

˛̨
˛̨
˛F

H,S
t

#
= σ2

Y +
NX

u=1

 
(e1 − e2) · V

i

[pht , 1 − pht ] · V
i

! 
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j
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!
[pht (1 − pht )]2×
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Proof of Proposition 5

We assume without loss of generality that none of the N trees has yet undergone a disaster. The price of a zero coupon bond

that expires at time T is:

P (t, T ) = E
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b = −δ − µY γ + σ2
Y
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2

But E[(
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i
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)−γ|FH,St ] is immediately computed with the same methodology used to compute security prices. We finally

obtain:
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where exp( · ) denotes the matrix exponential operator and AH is reported in (70)

A similar line of reasoning yields to the following expression for the price of a defaultable zero coupon bond, linked to the

i−tree default event, with zero recovery value:
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where AZD corresponds to matrix A in (63) when D := {i}.

This concludes the proof.
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Appendix B: A Simple Illustrative Calibration

In the examples discussed in the text, we use a stylized economy populated by 6 trees. In this Appendix, we discuss the heuristic

procedure by which we identify parameter values for these trees. The transition between states of high and low intensity of

disaster or recovery is driven by the business cycle. In particular the intensity of disaster is low (high) in ‘good’ states of the

economy. In the absence of feed-backs between disasters and business cycle, Ribeiro and Veronesi (2002) estimate a quarterly

probability of 0.0501 of switching from “Peak” to “Trough”, and a probability of 0.2716 for the opposite transition. It follows

that:

exp

 "
−kh kh

kl −kl

#
1

4

!
=

"
1 − 0.0501 0.0501

0.2716 1 − 0.2716

#
(93)

that is "
−kh kh

kl −kl

#
=

"
−0.2418 0.2418

1.3109 −1.3109

#
(94)

To estimate disaster intensities in the two states of the world, we assume that the likelihood of disaster is assigned by an

‘agency’, similarly to credit-worthiness criteria. The ‘ratings’ for the trees are AA, A BBB, BB, B and CCC, respectively.

Moody’s historical 1-year average default probabilities (ADP) for these classes are 0.0001, 0.0004, 0.0029, 0.012, 0.0571 and 0.28

respectively. The historical standard deviations (SDP) for these probabilities are 0.00003, 0.00013, 0.0008, 0.0035, 0.016, 0.1.

We calibrate parameters f i(zh) and f i(zl), i = 1, . . . ,6 by matching the unconditional mean and variance of full information

default rates implied by our model, namely:

1 − E
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i
tdt
i
(1 − E

h
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i
tdt
i
) = (SDPi)2 i = 1, . . . ,6

where

E

h
e−

R 1
0 λ

i
tdt
i

= [πh,1 − πh] · exp(I − diag[f i(zh), f i(zl)]) · 12 (95)

and πh denotes the stationary probability of a “Peak” state, i.e.

πh =
kl

kh + kl
(96)

The following table reports calibrated intensities of default for each rating class:

f i(zh) f i(zl)

AA 0.00012 0.000065

A 0.00048 0.000020

BBB 0.0035 0.00029

BB 0.014 0.0041

B 0.0670 0.015

CCC 0.3670 0.150

We assume that trees with the lowest disaster intensities have the highest instantaneous chance to recover, once in disaster

state. For simplicity, we don’t estimate recovery intensities, but we simply assume: gi(zj) = 0.5 ∗ f6−i+1(zj), i = 1, . . . , 6,

j = h, l
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Figure 1. Full Information Survival Probabilities.

Term structure of survival probabilities for the tree with the highest disaster risk, when probabilities of regime switches

of the state of the economy are assumed constant. Panel 1 shows the survival probabilities conditional on a ‘bad’

(dotted line) and ‘good’ (solid line) state of the economy. In Panel 2 the same quantities are displayed with a regime

transition intensity 5 times smaller than in Panel 1, everything else being unchanged.
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Figure 2. No-disaster probabilities.

Term structure of survival probabilities for the same tree of Figure 1, when a disaster in a different tree enhances the

probability of an economic downturn (solid line). These survival probabilities are compared with those arising when

the state of the economy is exogenous and it is not influenced by disasters of the economic sectors (dotted line).
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Figure 3. Fraction of time spent with no disaster.

Fractions of time that a simple economy composed of 5 trees spends with no disasters for any tree, plotted for different

time horizons, when a disaster of one of the trees enhances the probability of an economic downturn (solid line). These

fractions are compared with those arising when the state of the economy is exogenous and it is not influenced by

disasters of the economic sectors (dotted line).
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Figure 4. Market Price of Default Risk.

Panel 1 : Equilibrium market price of recovery risk for a given tree plotted as a function of the Relative Risk Aversion

coefficient, for two share values: sit = 1/6 (dashed line) and sit = 1/10 (solid line). There are 6 trees supplying the

aggregate endowment and all remaining trees are not experiencing a disaster. Panel 2 : Equilibrium market price of

disaster risk for the same tree plotted as a function of the Relative Risk Aversion coefficient, for two share values:

sit = 1/6 (dashed line) and sit = 1/10 (solid line). There are 6 trees supplying the aggregate endowment and all trees

are not experiencing a disaster.
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Figure 5. Price of the Market Portfolio.

Price of the market portfolio for a different number of occurred disasters when 6 trees supply the endowment and

model parameters are calibrated as outlined in Appendix B. In Panel 1 we have assumed a RRA coefficient of 3, the

solid line is plotted assuming that trees with highest disaster risk experience a disaster first, while the dashed line

is plotted inverting the order of disasters. Panel 2 is as Panel 1, but the RRA coefficient is 7. Panel 3 plots the

price-dividend ratio of the market portfolio with a RRA coefficient of 3, while Panel 4 plots the same quantity for a

RRA coefficient of 7. Solid and dashed lines have the same interpretation as above.

47



0 1 2 3 4
5

10

15

20

25

30

35

40

Number of Disasters

P
ri
c
e

 o
f 

th
e

 M
a

rk
e

t 
P

o
rt

fo
li
o

Figure 6. Price of the Market Portfolio with and without feed-backs.

In addition to those reported in Panel 1 of Figure 5, market prices have been plotted assuming that the probability

of switching to a ‘good’ economic state, and viceversa, is independent of the disaster history of the economy (bold

lines).
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Figure 7. Market Risk Premium.

Equilibrium risk premium for the market portfolio plotted as a function of the number of disasters occurred in the

economy (solid line). Its ‘cash-flow beta’ (dashed line) and ‘valuation beta’ (dotted line) components are also reported.

‘Lowest rated’ trees experience a disaster first.
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Figure 8. Returns of Individual Endowment Claims.

Panel 1 shows returns on the claim to the endowment with the lowest disaster risk, immediately following a disaster of

a different tree. The x-axis reports the tree that has experienced a disaster. Initially there are 6 trees, and parameters

are calibrated as described in Appendix B. Bullet points correspond to a scenario where the ‘highest rated’ endowment

has a small market share (5%), whereas asterisks correspond to a market share of 40%. The RRA coefficient used is

7. Panel 2 reports the same exercise for a RRA coefficient of 3. Panel 3 reports the same quantities for returns on

the claim to the endowment with highest disaster risk, for a RRA coefficient of 7. Panel 4 is as Panel 3, when the

RRA coefficient is 3.
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Figure 9. Instantaneous Volatilities of Asset Returns.

Equilibrium instantaneous volatilities for returns on the least risky (Panel 1 and 3) and most risky (Panel 2 and 4)

endowment claims as a function of the number of disasters occurred (Panels 1 and 2), and of the tree that defaults

next (Panels 3 and 4). In Panels 1 and 2, values corresponding to a higher number of disasters have been obtained

assuming that riskier trees experince a disaster first. The initial number of trees is 6. Solid lines correspond to a small

share (5%) for the evaluated endowment, while dotted lines correspond to a high (40%) market share.
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Figure 10. ‘Volatility Leakage’ Effect.

Panel 1 shows the correlation coefficient between instantaneous volatilities of asset returns for the tree with the

highest and second to highest event risk. The correlation is plotted as a function of the number of trees which are not

in disaster state. Panel 2 shows the same quantity for the trees with the lowest and second to lowest disaster risk.
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Figure 11. Behavior of Event Correlation.

Panel 1 shows the posterior 6-month event correlation of a disaster between two endowments with different disaster

and recovery intensities, as a function of the number of disasters occurred in the remaining trees. Panel 2 reports

the same quantity after one disaster has occurred, as a function of the tree which experiences the disaster. The 6-th

tree is the most risky, meaning that has the highest disaster risk and the lowest recovery intensity. Solid line connect

partial information correlations, dotted (dashed) lines connect full information correlations conditional on a ‘high’

(‘low’) economic state. The number of currently supplying trees is 6.
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Figure 12. Behavior of Risk Neutral Event Correlation.

Panel 1 shows the posterior 6-month risk neutral event correlation of a disaster between two endowments with different

disaster and recovery intensities, as a function of the number of disasters occurred in the remaining trees. Panel 2

reports the same quantity after one disaster has occurred, as a function of the tree which experiences the disaster.

The 6-th tree is the most risky, meaning that has the highest disaster risk and the lowest recovery intensity. Solid

line connect partial information correlations, dotted (dashed) lines connect full information correlations conditional

on a ‘high’ (‘low’) economic state. The number of currently supplying trees is 6.
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Figure 13. Instantaneous Correlation of Asset Returns.

Panel 1 shows the conditional correlation coefficient between returns on the security with the lowest event risk and

the remaining securities, when 6 trees supply aggregate endowment and none has yet undergone a disaster. Panel

2 shows the same quantity for returns on the security with the highest event risk. Each security supplies the same

multiple xi of unitary output Y .
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Figure 14. Contagion Effect for No-Disaster Probabilities.

Panel 1 plots the term structure of no disaster probabilities for the tree with the second to highest disaster risk. The

solid line plots this term structure when 6 trees supply the aggregate endowment and parameters are calibrated as

outlined in Appendix B. The dotted line plots the term structure after the disaster of a given tree (the third in terms

of disaster risk), which is crucial for the economy, to the extent that after its disaster the probability of switching to a

‘bad’ economic state increases dramatically. Panel 2 reports no-disaster probabilities of Panel 1, together with their

risk neutral counterparts (bold lines).
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Figure 15. Term Structure of Equilibrium Credit-Spreads.

Term structure of credit spreads for the tree with the lowest event risk (first, Panel 1) and for the tree with the

highest event risk (6th, Panel 2). The number of trees currently supplying the aggregate endowment is 6, none of

which has yet undergone a disaster.
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Figure 16. Behavior of Credit-Spreads wrt Market Diversification.

Credit spreads for the endowment with the lowest event risk (Panel 1) and for the tree with the highest event

risk (Panel 2), plotted as a function of the number of disasters occurred, when initially there are 6 trees supplying

aggregate consumption and the riskier endowments default first.
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Figure 17. Evolution of Credit Spreads.

Simulated path of the equilibrium constant-maturity 1-year credit spread for the 5−th rated endowment. The number

of trees currently supplying the aggregate endowment is 6
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