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Abstract

I model how corporate bond prices are affected by search frictions and occa-
sional selling pressures, and test my predictions empirically. A key prediction in
my model is that in a distressed market with more sellers than buyers, the mid-
price (i.e. the average of bid and ask price) paid by institutional investors is lower
than that of retail investors. Using a structural estimation, the model is able
to identify liquidity crises based on the relative prices of institutional and retail
investors. I identify two liquidity crises (i.e. high estimated numbers of forced
sellers), namely the downgrade of GM and Ford in 2005 and the current crisis. I
also estimate that search costs for institutional investors increase strongly during
the subprime crisis, while search costs for retail investors appear stable. Finally,
search costs have the highest impact on yields for bonds with short maturities
according to the estimation.
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1 Introduction

The U.S. corporate bond market is a principal source of financing for U.S. firms. While

it is bigger than the U.S. Treasury market measured in amount outstanding, the trading

volume is more than twenty times lower.1 To trade a corporate bond an investor has

to sequentially contact one or several dealers over the telephone. Except for the most

actively traded bonds, dealers do not ”make a market” and a price quote is firm for

only a short period of time which limits the ability to obtain multiple quotations before

committing to a trade.2 Hence, prices reflect a bargaining process that depends on

the outside options of investors and dealers, including the relative number of investors

currently looking to sell or buy.

This paper seeks to capture these phenomena in a search model, and, using a struc-

tural estimation of the model, to identify empirically periods of liquidity shortage as

captured by large numbers of selling investors and fewer trading opportunities. A key

ingredient in the identification is the distribution of prices of the same bond on a given

day for buying vs. selling and retail vs. institutional investors. I find two periods where

a positive shock to the number of sellers occurred. The first is from March to May

2005 where there was an increasing number of sellers during the three months according

to calibration results. This is consistent with results in Acharya, Schaefer, and Zhang

(2008) who find that profit warnings of GM and Ford in March and April 2005 and

subsequent downgrade to junk bond status in May 2005 caused a large sell-off in their

bonds. Interestingly, the difference between institutional and retail mid-prices identifies

an excess number of sellers in other bonds with junk bond rating. A possible expla-

nation is that there was a sell-off in junk bonds, because some were being substituted

by Ford and GM bonds. The second period with a large number of sellers according

to the empirical results is the subprime crisis beginning in August 2007 and lasting to

the end of the sample in September 2008. Examining the relation between institutional

and retail investor mid-prices in this period shows that there has been a large number of

sellers across all ratings apart from the most risky bonds. In the remaining data sample

1Principal outstanding volume by the end of 2007 was $5,825bn in U.S. corporate bond market
and $4,855bn in the U.S. Treasury market while average daily trading volume in 2007 was $24.3bn in
the U.S. corporate bond market and $567.1bn in the U.S. Treasury market. Source: Securities and
Financial Markets Association (www.sifma.org).

2See Bessembinder and Maxwell (2008) for further details about the U.S. corporate bond market.
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average mid-prices for institutional investors are higher than those for retail investors.

I examine the extent to which search costs affect average yields by defining the

premium due to search costs as the midyield for an average investor minus the midyield

for an investor who can instantly find a trading partner. The premium represents average

yields in the corporate bond market versus average yields in the ultra-liquid Treasury

market. I find that for maturities less than one year the search premium is large for

both institutional and retail investors. Illiquidity of the corporate bond market has

been suggested as a possible explanation for the ’credit spread puzzle’, i.e. the assertion

that average yield spreads between corporate bonds and Treasury bonds are larger than

what can be explained by the default risk of corporate bonds. The ’puzzle’ is particularly

severe for short maturities (see for example Huang and Huang (2003)). The impact of

search costs on average yields is of a magnitude that explains the ’unexplained’ part of

credit spreads at short maturities, and the results suggest that search costs are important

to take into account when ”the credit spread puzzle” at short maturities is investigated.

In the calibration, the estimated search intensity for an investor is determined by

the size of average bid-ask spreads at which this investor transacts. I find that search

intensities of retail investors are fairly constant throughout the sample, while search

intensities of institutional investors decrease strongly after the onset of the subprime

crisis, i.e., it has been more expensive for institutional investors to trade during the

crisis, while costs of retail investors have not been significantly affected by the crisis.

The search model I set up is a variant of the model in Duffie, Gârleanu, and Ped-

ersen (2005) (DGP05). An asset is traded, and investors meet market makers with an

intensity that depends on the sophistication of the investor. A sophisticated (institu-

tional) investor has a high search intensity while an unsophisticated (retail) investor has

a low intensity. Investors are randomly hit by liquidity shocks, and gains from trade arise

when investors needing liquidity sell to investors with no liquidity need through a market

maker. Once an investor and market maker meet, they bargain over the terms of trade.

A market maker immediately unloads a bond in the inter-dealer market and therefore

has no inventory costs. There are two key differences between my model and that of

DGP05. First, there are cross-sectional differences in the search intensities of investors.

This cross-sectional variation leads to differences in prices of institutional investors vs.

retail investors, key to identifying the relative number of investors looking to buy or sell.
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Second, I assume that the asset has a finite maturity, while DGP05 the asset is infinitely

lived in DGP05. As assets mature, firms stand ready to issue new assets. The finite

maturity of the asset allows me to study search costs at different times-to-maturity, and

this turns out to have important implications.

If there is a shock in funding needs of investors, such that there are more sellers

than buyers, the model predicts that mid-prices of institutional investors are lower than

those of retail investors.3 Sellers and buyers bargain over prices with marketmakers as

intermediaries. With more sellers than buyers, prices are negotiated such that sellers are

indifferent between selling or keeping the bond. These prices are lower than before the

shock. When a shock occurs, I assume that institutional investors only trade with other

institutional investors and likewise for retail investors. When they bargain, buyers are in

a strong position and sellers in a weak position, because of the excess number of sellers.

Institutional investors have better outside options compared to retail investors, because

they can find new counterparties more quickly. The combination of strong buyers and

stronger outside options for institutional investors relative to retail investors, leads to a

stronger price impact of shocks on institutional bid and ask prices compared to those of

retail investors. As an example, we look at Figure 1. The left-hand graph shows how

the mid-price of institutional investors is higher than that of retail investors in a normal

market. The middle graph illustrates how mid-prices of institutional investors are lower

than those of retail investors in a market with more sellers than buyers. The right-hand

graph shows how mid-prices of institutional investors are markedly lower than prices of

retail investors in a day of crisis.

I derive equilibrium prices and calibrate the parameters of the model using more

than 1.5 million corporate bond transactions from the TRACE database for the period

October 2004 to September 2008. There are three key ingredients in the estimation.

First, roundtrip costs are measured using ’unique roundtrip trades’ (URT). If two or

three trades in a given bond with the same volume happens within 15 minutes and there

are no other trades with the same volume on that day, the transactions are part of a

URT. The intuition is that either a customer sells to a dealer who sells it to another

customer, or a customer sells to a dealer, who sells it to another dealer, who ultimately

3For an in-depth discussion of funding liquidity, and a model that links market liquidity and trader’s
funding liquidity, see Brunnermeier and Pedersen (2008).
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Figure 1: Small and large trades on a normal day, day of distress, and day of

crisis. This graph shows three examples of all trades for a bond during a day smaller
than $1,000,000 (marked with crosses) and trades of at least $1,000,000 (marked with
circles).

sells it to a customer. I assume the maximal price in a URT is the ask price and the

minimal price the bid price. This measure of transaction costs is most closely related to

Green, Hollifield, and Schürhoff (2007)’s ’immediate trades’, but their measure requires

information about the sell and buy side, which is not available in TRACE. Second, I

estimate the search intensity of investors who differ in their degree of sophistication by

letting trade size proxy for investor type. Third, I fit the model to demeaned yields-to-

maturity. Yields are less affected by the coupon of a bond than the price, so fitting to

yields rather than prices simplifies the estimation. More importantly, in a given bond

on a given day, I define a demeaned bid (ask) yield as a transaction bid (ask) yield part

of a URT minus the average yield across all bid and ask yields part of URTs on that day.

By fitting to demeaned yields, I focus on the size of bid-ask spreads and the relation

between bid and ask yields for different investors.

The outline of the paper is as follows. Section 2 contains the model and my theoret-

ical predictions. Section 3 describes the transaction data and the estimation methodol-

ogy. Section 4 reports the estimated model and my main empirical findings. Section 5

concludes.
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2 A search model for the OTC corporate bond mar-

ket

This section sets up a search model similar to the model in Duffie, Gârleanu, and Ped-

ersen (2005) with two differences that reflect the corporate bond market. First, the

asset has a finite maturity since bonds mature and become liquid at maturity. Second,

a corporate bond can default and the asset in my model reflects this.

I first derive equilibrium bid and ask prices facing investors with different levels of

sophistication in finding trading partners. I then define a liquidity shock as a shock

increasing the number of sellers relative to the number of buyers and find how such

a shock affects prices. Finally, I derive how a liquidity shock depress prices faced by

sophisticated investors more than prices faced by unsophisticated investors.

2.1 Model

The economy is populated by two kinds of agents, investors and market makers, who are

risk-neutral and infinitely lived. They consume a nonstorable consumption good used

as numeraire and their time preferences are given by the discount rate r > 0.

Investors have access to a risk-free bank account paying interest rate r. The bank

account can be viewed as a liquid security that can be traded instantly. To rule out

Ponzi schemes, the value Wt of an investor’s bank account is bounded from below.

In addition, investors have access to an over-the-counter corporate bond market for a

credit-risky bond paying coupons at the constant rate of 1 unit of consumption per year.

The bond has maturity T and a face value F , meaning that it matures randomly with

constant intensity λT = 1/T and pays F at maturity. The bond defaults with intensity

λD and pays a fraction (1 − f)F of face value in default. A bond trade can only occur

when an investor finds a market maker in a search process that will be described in a

moment.

Investors can hold at most 1 unit of the bond and cannot short-sell. Because agents

are risk-neutral, investors hold either 0 or 1 unit of the bond in equilibrium. Investors

are heterogeneous in two aspects. First, an investor is of type ”high” or ”low”. The

”high” type has no holding cost when owning the asset while the ”low” type has a

holding costs of δ per time unit. The holding cost can be interpreted as a funding
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liquidity shock that has hit the investor. An investor switches from ”low” to high” with

intensity λu and from ”high” to ”low” with intensity λd and the switching processes are

for all investors pair-wise independent. Second, investors differ in the ease with which

they find counterparties to trade with. A sophisticated investor quickly finds a trading

partner while an unsophisticated investor spends considerable time finding someone to

trade with. There are I levels of sophistication, which is made precise next.

I assume that there is a unit mass of independent non-atomic market makers who

maximize profits. An investor with level of sophistication i, i ∈ {1, 2, ..., I} meets a

market maker with intensity ρi, which can be interpreted as the sum of the intensity of

market makers’ search for investors and investors’ search for market makers. The search

intensity is observable to market makers. Without loss a generality I assume that ρi < ρj

when i < j, implying that investors with intensity ρ1 are the most unsophisticated and

those with intensity ρI are the most sophisticated. When an investor and a market maker

meet, they bargain over terms of trade. The bargaining will be described in the next

section. Market makers immediately unload their positions in an inter-dealer market, so

they have no inventory at any time.

I assume that bonds sold by an ”i”-investor, can only be bought by an ”i”-investor.

The motivation for this assumption is that a notional amount of say $5, 000 of a corpo-

rate bond sold by a retail investor is likely (through the market maker) to be bought

by another retail investor. Likewise a notional amount of say $5, 000, 000 sold by an

institutional investor is likely to (through the market maker) to be bought by another

institutional investor.4

The set of investors is Γ = {hoi, hni, loi, lni}Ii=1 where h/l refers to the ”high”/”low”

type and o/n to owner/non-owner. There is a continuum of investors and for investors

with sophistication level i, µiσ(t) denotes the fraction at time t of type σ. Since the

fractions of ”i”-investors add to 1 at any point in time we have

µiho(t) + µihn(t) + µilo(t) + µiln(t) = 1

for every t and any i = 1, ..., I. There is also a continuum of identical credit-risky firms

who issue bonds. If a firm defaults it is replaced by an identical new firm. They issue

4This assumption can be relaxed when deriving equilibrium prices, but becomes important when
examining prices during liquidity shocks.
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bonds through market makers when there is an excess demand in the market, i.e. when

µihn(t) > µilo(t) for some i, but the amount they issue is limited by the speed at which

market makers meet investors.

2.2 Search equilibrium

The model is solved in two steps. First, asset allocations are determined. This is possible

without reference to prices because only low-type owners are sellers and high-type non-

owners are buyers, and when a low-type owner or high-type non-owner meets a market

maker trade occurs immediately. That trade occurs immediately from bargaining theory

[Rubinstein (1982)]. In the following, i defining the level of sophistication is suppressed

since the arguments are the same for i = 1, ..., I.

The rate of change of mass µlo(t) of low-type owners is

·
µlo(t) = −ρµm(t) − (λT + λD)µlo(t) − λuµlo(t) + λdµho(t) (1)

where µm(t) = min{µhn(t), µlo(t)}. Market makers buy from lo investors and sell to

hn investors instantly through the inter-dealer market. If a lo investor meets a market

maker with intensity ρ and if µlo(t) ≤ µhn(t) all meetings lead to a trade and the lo

investor becomes a ln investor. However, if µlo(t) > µhn(t) not all meetings result in

a trade. The first term −ρµm(t) in (1) reflects this fact. A lo investor becomes a

ln investor if the owned bond either matures or defaults, and the second term in (1),

−(λT + λD)µlo(t), reflects this. The third term is present because lo investors switch

type to ho with intensity λu, and the last term is due to investors switching from type

ho to lo.

Derivations of the rates of change of mass of the other investor types are very similar.

The only slight difference is that although sellers might be rationed, buyers are not. If

there are not enough sellers, firms step in and issue more debt. The rates of change are

therefore given as

·
µho(t) = ρµhn(t) −(λT + λD)µho(t) + λuµlo(t) − λdµho(t) (2)

·
µhn(t) = −ρµhn(t) +(λT + λD)µho(t) + λuµln(t) − λdµhn(t) (3)

·
µln(t) = ρµm(t) +(λT + λD)µlo(t) − λuµln(t) + λdµhn(t), (4)
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and in Appendix A the steady state mass of the four investor types are given, that is

the state at which the masses are constant.

2.3 Equilibrium Prices

Next, we determine the prices that prevail in steady state: a) the bid price Bt at which

investors sell to market makers, b) the ask price At at which investors buy from market

makers, and c) the inter-dealer price. Each investor’s utility for future consumption

depends only on his current type σ(t) ∈ Γ and wealth Wt in his bank account. Lifetime

utility is

U(Wt, σ(t)) = sup
C,θ

Et

∫ ∞

t

e−rsdCt+s (5)

subject to

dWt = rWtdt− dCt + θt(1 − δ1{σθ(t)=lo})dt− P̂tdθt (6)

where C is a cumulative consumption process, θt ∈ {0, 1} is a feasible holding process,

σθ is the type process induced by θ, and at the time of a possible holding change,

P̂t ∈ {At, Bt, F, (1 − f)F} is the ”trade price”. From (5) and (6) we have that lifetime

utility is W (t) + Vσ(t) where

Vσ(t)(t) = sup
θ

Et[

∫ ∞

t

e−r(t−s)θs(1 − δ1{σθ(s)=lo})ds− e−r(s−t)P̂sdθs].

The appendix shows that the value functions satisfy the equations

�

Vln = rVln − λu(Vhn − Vln) (7)
�

Vhn = rVhn − λd(Vln − Vhn) − ρ(Vho − Vhn − A) (8)
�

Vlo = rVlo − λu(Vho − Vlo) − ρ(B + Vln − Vlo) − λT (F + Vln − Vlo)

−λD((1 − f)F + Vln − Vlo) − (1 − δ) (9)
�

Vho = rVho − λd(Vlo − Vho) − λT (F + Vhn − Vho)

−λD((1 − f)F + Vhn − Vho) − 1 (10)

A low-owner investor is willing to sell to a market maker if the price is at least ∆Vl =

Vlo − Vln while a high-nonowner is willing to buy from a market maker if the price is no

more than ∆Vh = Vho− Vhn. Likewise, the market maker is willing to buy if the price is
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no more than the inter-dealer price M (at which he immediately unloads the bond in the

inter-dealer market), and willing to sell if the price is no less than M. If sellers are not

constrained the bid price B can be any price between seller’s reservation value ∆Vl and

the inter-dealer price M . In contrast, if sellers are constrained the bid price is seller’s

reservation value, since sellers must be indifferent to trading or not if some trade and

others do not. Buyers are per construction not constrained since firms issue bonds if

there is a demand, and the ask price A is between buyer’s reservation value ∆Vh and the

inter-dealer price M . If sellers are not constrained, Nash bargaining between investor

and market maker leads to bid and ask prices

A = ∆Vhz +M(1 − z) (11)

B = ∆Vlz +M(1 − z) (12)

where z is the bargaining power of the market maker. Duffie, Gârleanu, and Peder-

sen (2007) show that a bargaining outcome if this kind can be justified by an explicit

bargaining procedure.

If sellers are constrained the bid B and inter-dealer price M equals the sellers’ reserva-

tion price ∆Vl. If they are not constrained, any inter-dealer price between ∆Vl and ∆Vh

can be an outcome in the model, and we let M = q̃∆Vh + (1 − q̃)∆Vl where 0 ≤ q̃ ≤ 1.

If q̃ is close to one, the ask price is close to the reservation value of the buyer and the

market can be interpreted as a sellers’ market, while a q̃ close to zero can be interpreted

as a buyers’ market. In case q̃ is high, the seller has the most gain and vice verse for a

low q̃.

A simple example illustrates the effect of z and q̃. Consider a buyer who is willing

to buy at a maximal price of ∆Vh = 103, a seller who is willing to sell at a minimal

prize of ∆Vl = 100, and a market maker who is intermediating the trade. The gains of

trade of 103-100=3 is to be split between the three agents. Assume that z = 0.5 and

q̃ = 0.75. The inter-dealer price is M = 0.75 ∗ 103 + 0.25 ∗ 100 = 102.25, the bid price is

100 ∗ 0.5 + 102.25 ∗ 0.5 = 101.125, and the ask price is 103 ∗ 0.5 + 102.25 ∗ 0.5 = 102.625.

The dealer gains the bid-ask spread 102.625 − 101.125 = 1.5 which is equal to z ∗ 3, so

z measures the part of the gain the dealer is receiving. The seller gains 101.125− 100 =

1.125 while the buyer gains 103 − 102.625 = 0.375, so q̃ determines how the rest of the

gain is split between buyer and seller. Consider now q̃ = 0.25. In this case the bid price
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is 100.375 and the ask price 101.875. The bid-ask spread is the same as before, but bid

and ask prices are lower.

The following theorem states the equilibrium bid and ask prices in the economy, and

a proof is given in the Appendix. Since I assume that a bond sold by an ”i”-investor

can only be bought by an ”i”-investor, the interdealer prices for bonds traded between

investors of different levels of sophistication could be different. However, I assume that

the interdealer price is the same for all bonds. Alternatively, I could relax the assumption

that bonds can only be traded (through a marketmaker) between ”i”-investors. In this

case it follows automatically that there is only one interdealer price and the results in

the following theorem holds as well.

Theorem 2.1. (Prices in equilibrium). Assume that there are I investors differing

in their search intensities ρ1, ..., ρI . The bid Bi and ask Ai prices for investor i with

search intensity ρi are given as

Ai = ∆V i
hz +M(1 − z)

Bi = ∆V i
l z +M(1 − z)

where

∆V i
l =

ρi(1 − z)M + λTF + λD(1 − f)F + 1

r + (1 − z)ρi + λT + λD

− δ(r + λT + λD + λd + (1 − z)ρi)

(r + λT + λD + ρi(1 − z))(λu + λd + ρi(1 − z) + r + λT + λD)

∆V i
h = ∆V i

l +
δ

r + (1 − z)ρi + λT + λD + λd + λu

M =
1 + λTF + λD(1 − f)F

r + λT + λD
− δ(λd + (1 − q̃)[r + (1 − z)ρ0 + λT + λD])

(r + λT + λD)(r + (1 − z)ρ0 + λd + λu + λT + λD)

and ρ0 = min(ρ1, ..., ρI) and 0 ≤ q̃ ≤ 1.

As an obvious but important consequence of the Theorem we have the following

Corollary.

Corollary 2.1. The bid-ask spread for investor i with search intensity ρi is given as

Ai −Bi =
zδ

λu + λd + ρi(1 − z) + r + λT + λD
(13)

There are several interesting implications regarding bid-ask spreads at which in-

vestors trade at. First, bid-ask spreads decrease with the level of investor sophistication

ρ. Sophisticated investors trade at tight bid-ask spreads while unsophisticated investors
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trade at wide bid-ask spreads. Prices are determined through a bargaining process. The

threat of cutting off negotiations and finding another trading partner is stronger for

sophisticated investors (they find a new trading partner more easily) and therefore they

negotiate tighter bid-ask spreads. This insight is also discussed in Duffie, Gârleanu, and

Pedersen (2005). Second, bid-ask spreads for a given issuer decrease in the maturity

of the bond 1/λT . When a bond matures, it becomes liquid, and this influences the

bargaining power of investors. A seller is almost indifferent between selling or not, since

the bond will soon be converted to cash. A buyer is almost indifferent between buy-

ing or not, since the buyer will have to search for a new bond to buy when the bond

matures. Therefore, as maturity goes to zero, so does the bid-ask spread. Third, the

bid-ask spread is decreasing in the default probability of the issuer. The reason for this

is the same as that of maturity; as default intensity increases, the firm is more likely to

default and a fraction of the notional of the bond is repayed. Thus, the bond becomes

”liquid” at default and is similar to a bond with short maturity.

Next, I define a liquidity shock to investors. I assume that the fractions of investors

are in steady state and a sudden liquidity shock occurs. If a shock of size 0 ≤ s ≤ 1

occurs a ”high”-investor (no liquidity need) becomes a ”low”-investor (liquidity need)

with probability s:

Definition 2.1. (Liquidity shock). Assume that the fractions of types of investors

with search intensity ρ are in steady state, denoted µssho, µ
ss
hn, µ

ss
lo , and µssln. When a liquid-

ity shock of size 0 < s ≤ 1 occurs, any high-investor becomes a low-investor with probabil-

ity s. The fractions of types immediately after the shock are µho(s) = (1−s)µssho, µhn(s) =
(1 − s)µsshn, µlo(s) = µsslo + sµho, and µln(s) = µssln + sµhn.

Prices following a liquidity shock are given in the following theorem and a proof is

in the Appendix.

Theorem 2.2. (Prices after a liquidity shock). Assume that a liquidity shock of size

0 < s ≤ 1 occurs to all investors type and that ρi + λT + λD > λd + λu. If s ≤ λT +λD

ρi+λT +λD

bid and ask prices do not change after the liquidity shock. If s > λT +λD

ρi+λT +λD
bid and ask

prices immediately after the shock are

Bi(s) = e−t
i
s(r+λD+λT )∆V i

l + (1 − e−t
i
s(r+λD+λT ))∆V i,imb

l

Ai(s) = B +
zδ

λu + λd + ρi(1 − z) + r + λT + λD

where ∆V i
l is given in Theorem 2.1,

∆V i,imb
l =

1 + λTF + λD(1 − f)F

r + λT + λD
− δ(r + λT + λD + λd + (1 − z)ρi)

(r + λT + λD)(λu + λd + ρi(1 − z) + r + λT + λD)
,
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and tis is the unique solution to

0 = 1 − se−(λu+λd)tis − ρi

ρi + λT + λD
e−(λT +λD)tis .

The reservation price ∆V i,imb
l in the theorem is the reservation price of an ”i”-investor

in a situation where there are more sellers than buyers at all points in the future. Thus,

it is the price a seller would be willing to sell at, if she knew that she would be constantly

constrained. The theorem shows that seller’s reservation price is a linear combination

of this reservation price and that in equilibrium where sellers are not constrained. We

have that ∆V i
l > ∆V i,imb

l and the weight on ∆V i,imb
l depends on the amount of time

that sellers are constrained after the shock. The larger the shock s is, the longer the

period of constrained sellers is, and the lower the prices following the shock are.

From the theorem we also see that bid-ask spreads after the shock is the same as

those in equilibrium, which is important result and stated in the theorem below. Thus,

while prices change following a shock, bid-ask spreads do not. The decrease in prices

facing unsophisticated and sophisticated investors is not the same. As the next theorem

shows, the midprice (i.e. average of bid and ask price) facing sophisticated investors

decreases more than the midprice facing unsophisticated investors.

Theorem 2.3. (Relation between prices after a liquidity shock). If a liquidity

shock of size 0 < s ≤ 1 occurs to any two investors of type i and j where ρi < ρj, the

following holds:

1. Bid-ask spreads of investors are not affected by the liquidity shock.

2. If λu >
1−z
z
λd and ρi and ρj are sufficiently high5, midprices M(s) = 1

2
(A(s)+B(s))

at which investors trade satisfy

• for any 0 < s ≤ 1 we have Mi(s) −Mj(s) ≥Mi(0) −Mj(0).

• For any λT +λD

min{ρi,ρj}+λT +λD
< s ≤ 1 Mi(s) −Mj(s) is increasing in s.

The theorem shows that for any size of liquidity shock the difference between the

midprice of unsophisticated investors minus the midprice of sophisticated investors is

higher or equal to the difference in equilibrium. It also shows that if shocks are above

5The precise condition for ρi and ρj being ”sufficiently high” is that (1− z)ρλu(ρ+λT +λD)− (C +
λu + λd)

2(λu + λd) > 0. For realistic parameters this is trivially satisfied except for very short-term
bonds (say a maturity of one month or less). For these bonds, prices are not affected by liquidity shocks
unless the shock is large anyway.
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a minimum threshold, the difference is a monotonously increasing function of the shock

size. This threshold is for most cases quite small. For a 10-year bond where the default

intensity of the issuing bond is 3%, and the most unsophisticated investor has a search

intensity of ρ = 40, this threshold is a shock size of 0.3%. However, as the maturity of

the bond goes to zero (λT → ∞), the shock size needed to move prices goes to 1. This

underscores the importance of taking into account maturity when modelling search costs

in corporate bonds. Not only do bid-ask spreads become smaller as maturity decreases,

also the minimum size of a liquidity shock needed to move prices becomes larger.

3 Estimation Methodology

Corporate bond transactions data only recently became available on a large scale. Since

January 2001 FINRA6 members are required to report their secondary over-the-counter

corporate bond transactions through TRACE (Trade Reporting and Compliance En-

gine). Because of the uncertain benefit to investors of price transparency not all trades

reported to TRACE where initially disseminated at the launch of TRACE July 1, 2002.

The first research papers using TRACE transactions data focus on the effect of enhanced

price transparency and find that dissemination of prices lowered transaction costs for

investors (Edwards et al. (2007), Goldstein et al. (2007), and Bessembinder et al.

(2006)). The dissemination starts in July 1, 2002 with dissemination of a small subset

of trades and from October 1, 2004 all trades are disseminated. Trades must be reported

within 15 minutes as of July 1, 20057. TRACE covers all trades in the secondary over-

the-counter market for corporate bonds and accounts for more than 99% of the total

secondary trading volume in corporate bonds. The only trades not covered by TRACE

are trades on NYSE which are mainly small retail trades.

I use a sample of non-callable, non-convertible, straight coupon bullet bonds with

maturity less than 30 years from October 1, 2004 to September 30, 2008. For each bond

the rating from Moody’s, Standard & Poors, and Fitch are downloaded from Bloomberg

and an average rating is calculated. The rating from Bloomberg is the rating at the end

of the sample period. For a bond to be included in the sample it most have a rating

6The Financial Industry Regulatory Authority formerly named National Association of Security
Dealers (NASD).

7This requirement has gradually been tightened from 1 hour and 15 minutes to 15 minutes. In
practice 80% of all transactions are reported within 5 minutes.
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from at least one of the rating agencies. The initial sample of bonds in TRACE is 35,124

and the final sample contains 9,532 bonds. For these bonds I collect the trading history

from TRACE covering the period from October 1, 2004 to September 30, 2008 and after

filtering out erroneous trades 7,272,454 trades are left. I use the filter in Dick-Nielsen

(2009) to filter out the error trades.

To estimate the search model outlined in the previous section I need an estimate

of roundtrip costs in the dealer market, i.e. the difference between the price at which

a dealer sells a bond to a costumer and the price at which a dealer buys a bond from

a customer. Two main approaches to estimate roundtrip costs exist in the literature.

The first is on a given day to average sell prices and subtract average buy prices (Hong

and Warga (2000) and Chakravarty and Sarkar (2003)). The second is a regression-

based methodology where each transaction price is regressed on a benchmark price and

a buy/sell indicator (Bessembinder et al. (2006), Goldstein et al. (2007), and Edwards

et al. (2007)). However, both approaches require a buy/sell indicator for each trade,

which is not publicly available.

The methodology for estimating roundtrip costs in this paper is based on unique

roundtrip trades (URT). For a given bond on a given day, if there are exactly 2 or 3 trades

for a given volume, I define them to be part of a URT. The intuition is that either 1) a

customer sells a bond to a dealer who sells it to another costumer, or 2) a customer sells

a bond to a dealer, who sells it to another dealer, who ultimately sells it to a costumer.

For a URT the roundtrip cost in terms of prices is defined as the maximal price minus

the minimal price. URTs are closely related is Green, Hollifield, and Schürhoff (2007)’s

”immediate matches”. An ”immediate match” is a pair of trades where a buy from a

customer is followed by a sale to a customer in the same bond for the same par amount

on the same day with no intervening trades in that bond. However, since there is no

information about the sides in the transactions in the TRACE database, ”immediate

trades” cannot be calculated. Also, URTs allow intervening trades, but restrict the

number of trades with the same par value to three. In the model in Section 2 dealers

do not have an inventory and therefore I restrict the sample to URTs where the trades

occur within 15 minutes. Of the 7,272,454 trades in the full sample, 1,593,052 are part

of a 15 minutes URT resulting in a 717,826 URTs.

To assess the accuracy of estimated transaction costs when using URTs, Table 1
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compares URT estimates of roundtrip costs with those in Edwards et al. (2007) who

use a regression-based methodology and have additional buy/sell information that is

not publicly available. For this table only the sample period is January 2003-January

2005 in order to match the period in Edwards et al. (2007). The roundtrip costs using

unique roundtrip trades executed within 15 minutes are lower than in Edwards et al.

(2007). For small trades the costs are about 60% lower while for large trades the costs

are around 10% lower. While transaction costs based on 15 minutes URTs likely reflect

only search costs, transaction costs for roundtrips for a longer period of time might also

reflect inventory costs and/or asymmetric information and thus be higher. Therefore,

the table also shows roundtrip costs based on URTs that occur within the same day, and

the cost estimates based on these trades are indeed higher and match those in Edwards

et al. (2007) fairly well8. The roundtrip costs for trade sizes of 100,000 are the same,

small trades are underestimated by around 25%, while large trades are overestimated by

roughly 10%. The deviations in trading costs can possibly be explained by differences

in the sample of bonds. Overall, the numbers in the table suggest that transaction costs

based on URTs are reasonable.

While transaction costs are most often measured in percentage of the price, liquidity

premia in corporate bonds are usually measured in terms of yields (Huang and Huang

(2003), Longstaff et al. (2005), and Covitz and Downing (2007) among others). In order

to be consistent with this literature, I will in the empirical section measure roundtrip

costs in terms of yield-to-maturity. This has the additional advantage that it is less

relevant to include information about the coupon of a bond, since size of coupon has

a smaller effect on yield-to-maturity than on prices. Roundtrip cost defined in terms

of yields is the yield-to-maturity based on the dealer’s buying price minus the yield-to-

maturity based on the dealer’s selling price.

Next, I explain the maximum likelihood procedure used to estimate model parameters

and how yields are demeaned before estimation. Furthermore, I describe how investor

sophistication is proxied by trade size, and finally identification of the parameters is

8Another possible explanation for higher estimated costs for all-day URTs compared to 15 minutes
URTs is that all-day URTs are upward biased because prices move during the day. However, Green,
Hollifield, and Schürhoff (2007) find that transaction costs for ”immediate trades” in the municipal
bond market are the same whether or not they control for market movements, so this explanation is
unlikely to cause the difference between 15 minutes and all-day URT costs.
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discussed.

One of the predictions of the search model in Section 2 is that investors with the

different degrees of sophistication have different roundtrip costs. Thus, it is tempting

to find the parameters of the model by fitting actual roundtrip costs to fitted roundtrip

costs. However, the model also predicts that the dispersion of bid yields for different type

investors might be very different from the dispersion of ask yields for those investors,

so there is important information lost if only roundtrip costs are fitted and instead I fit

the model to demeaned yields. Any bid or ask yield for a given bond on a given day

is demeaned with the average of all bid and ask yields for this bond on this day. That

is, if there are Ntb URTs on bond b on day t, and Atbi is the i’th ask yield and Btbi the

corresponding bid yield, the demeaned ask yield is defined as Atbi−ABtb and demeaned

bid yield as Btbi − ABtb where ABtb = 1
2Ntb

∑Ntb

i=1(Atbi +Btbmi).

For day t and bond b all demeaned bid and ask yields are denoted y1
tb, y

2
tb, ..., y

2Ntb−1
tb ,

y2Ntb

tb (the sorting does not matter). The demeaned fitted yields are denoted ŷ1
tb, ŷ

2
tb, ...,

ŷ2Ntb−1
tb , ŷ2Ntb

tb and they are calculated using the prices in Theorem 2.1. I assume that

each fitting error is normally distributed with zero mean and a standard deviation that

depends on the maturity of the bond

yitb − ŷitb ∼ N(0, wtbσ
2),

wtb =
1

min(1, T 2
tb)
,

where Ttb is the maturity of bond b on day t. For a bond with maturity shorter than

one year, the standard deviation is increasing as the time-to-maturity shortens. This is

due to the fact that small price deviations in bonds that are about to mature lead to

large changes in yields, and the standard deviation scaling avoids that too much weight

is put on transactions on bonds with maturity less than one year. We then have that

ǫitb =
yitb − ŷitb√

wtb
∼ N(0, σ2).

I define Θ as a vector with the parameters of the model and assume that errors are

independent, such the likelihood function is given as

L(Θ, σ|Y ) =
T
∏

t=1

Nb
∏

b=1

2Ntb
∏

i=1

1√
2πσ2

exp(−(ǫitb)
2

2σ2
)
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where Nb is the number of bonds in the sample. We therefore have that

−2 logL(Θ, σ|Y ) =
1

σ2

T
∑

t=1

Nb
∑

b=1

2Ntb
∑

i=1

(ǫitb)
2 +

T
∑

t=1

Nb
∑

b=1

2Ntb
∑

i=1

[log(σ2) + 2π] (14)

and maximizing the likelihood function therefore amounts to minimizing the sum of

squared weighted errors
∑T

t=1

∑Nb

b=1

∑2Ntb

i=1 (ǫitb)
2. Standard errors are calculated using

the outer product of gradients estimator.

The Appendix shows that the sum of squared errors in (14) equals

T
∑

t=1

Nb
∑

b=1

wtb

[

Ntb
∑

i=1

[(Atbi − Atb) − (AMtbi − A
M

tb )]2 (15)

+

Ntb
∑

i=1

[(Btbi −Btb) − (BM
tbi −B

M

tb )]2 (16)

+
Ntb

2
[(Atb −Btb) − (A

M

tb −B
M

tb )]2
]

. (17)

where the superscript M refers to fitted yields, Atb = 1
Ntb

∑Ntb

m=1Atbm, and Btb =

1
Ntb

∑Ntb

m=1Btbm. This shows that the fitting procedure of fitting bid and ask yields de-

meaned by the average mid-yield can be regarded as fitting ask prices demeaned by aver-

age ask price, bid prices demeaned by average bid price, and the average bid-ask spread.

In particular, if there is exactly one observation for each bond on each day (Ntb = 1 for

all t and b) the expression (15) reduces to
∑T

t=1

∑Nb

b=1wtb
1
2
[(Atb − Btb) − (AMtb − BM

tb )],

i.e. fitting bid-ask spreads.

Investors in the search model presented in Section 2 have different speeds with which

they meet a market maker. Unsophisticated investors have a low search intensity while

sophisticated have a high search intensity. I use trade size as a proxy for investor

sophistication. Specifically, there are six investor classes, who differ in their search

intensity ρ, and they trade in par values of $0−5, 000, $5, 000−20, 000, $20, 000−100, 000,

$100, 000 − 500, 000, $500, 000 − 1, 000, 000, and more than $1, 000, 000. In addition, I

split the bonds up in three rating classes, AAA−A, BBB, and speculative grade. The

bonds differ in their default intensity λD.

There are a number of parameters in the model and many of them are not separately

identified. The following parameters are fixed before estimation. The riskless rate is set

to r = 0.05, which is close to the average 10-year swap rate of 4.94% in the estimation

period. The bond pays a dividend stream of one, and the face value of a bond is set to
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F = 20, such that it corresponds to a bond with par value 100 paying a coupon of 5%.

The recovery rate on the bond in case of default is set to zero such that f = 1 and the

bargaining power of the market maker is 0.5. Finally, λd = 0.1 and λu = 1 such that an

investor is a a ”high” type 91% of the time.

4 Empirical results

In this section I discuss parameter estimates and the ability of the model to fit actual

yield roundtrip costs. Then, I examine time variations in search intensities and shocks

to funding liquidity, and finally I assess the impact of search costs on average yields at

different maturities.

4.1 Parameter estimates and model fit

Table 2 shows the parameter estimates. We see that search intensities increase as in-

vestor sophistication increases (proxied by trade size). Differences in roundtrip costs are

main determinants of differences in search costs between investors, and roundtrip costs

decrease in search intensity according to (13). Therefore, increasing search intensities

are consistent with results in Chakravarty and Sarkar (2003), Bessembinder, Maxwell,

and Venkaraman (2006) Edwards, Harris, and Piwowar (2007), who show that roundtrip

costs decrease in trade size. This fact is evident in Panel A of Table 3 where actual and

fitted roundtrip costs across trade sizes are shown. The model fits actual costs well ex-

cept for the largest trade sizes, where costs are estimated to be larger than actual costs.

The reason that search intensities of the most sophisticated investors are not higher,

such that roundtrip costs in Panel A are fit better is due to a tension between fitting

roundtrip costs and differences in roundtrip costs between large and small investors. A

larger search intensity for institutional investors lead to larger differences in midyield

between institutional and retail investors investors shown in Panel D. In Panel B we see

that roundtrip costs are fitted well across maturity.

The most unsophisticated investors (trading in sizes between 0 and $5, 000) have a

search intensity of 47. This implies that they need a week on average before they find

a market maker with whom to trade with. This can be viewed as the time it takes a

non-professional to learn how to trade in the corporate bond market and keep up-to-date
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about information relevant for trading. The most sophisticated investors (trading sizes

of more than $1, 000, 000) have a search intensity of 141 implying that it takes 1-2 days

to complete trades of large size.

We see in the table that default intensities are increasing as credit quality decreases.

The default intensity is 0.046 for AAA-A bonds, 0.076 for BBB bonds, and 0.145 for

speculative grade bonds. For comparison, Longstaff, Mithal, and Neis (2005) report a

default intensity of 0.0098 for AAA-A, 0.0288 for BBB, and 0.0956 for BB. Although

default intensities in this paper are somewhat higher, they are in the same order of

magnitude, and the higher estimates might reflect high default risk during the subprime

crisis. Note that although the model is highly stylized and default intensity estimates

are based on size of bid-ask spreads and not on level of yield spreads, the estimates

are reasonable. It might be surprising that default intensities are well identified given

that they affect bid-ask spreads in prices in a minor way since price spreads are given

as zδ
λu+λd+ρ(1−z)+r+λT +λD

according to equation (13). In this expression, the effect of λD

is small compared to ρ(1 − z). However, the default intensity effects the price level of

bonds, and since parameters are estimated by fitting bid-ask spreads in yields, given

by (A−B)1−FλT

AB
, we see that default intensity affect bid-ask yield spreads through the

denominator AB. Higher default intensity leads to lower prices which in turn causes

higher bid-ask yield spreads. Panel C in Table 3 shows that the model captures variations

in transaction costs well across ratings. Edwards et al. (2007) argue that the influence

of credit risk and maturity on transaction costs might be due to adverse selection and

inventory costs. The results in this paper show that taking into account the nonlinear

relations between investors heterogeneity, maturity, and the risk of default, search costs

can explain the variation. For example, the high average roundtrip cost in yields of 63

basis points for BB rated bonds partly reflects that more than 4% of the URTs in BB

bonds are in bonds with less than 6 months to maturity while it it less than 1% for all

other rating classes.

The parameter q̃ is estimated to be close to 1, which implies that in a trade the gains

of trade is split between seller and market maker, while the buyer receives very little.

The identification of q̃ is through two channels. The first is the size of bid-ask yield

spreads. Price spreads in equation (13) are not affected by q̃ but bid-ask yield spreads

are, because prices are affected by q̃ (similar to how default intensities affect bid-ask
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yield spreads). The second channel is through the relation between bid-ask spreads of

different investors. If q̃ = 1 seller receives the gains of trade relative to buyer and prices

are high. In this case, both retail and institutional buyers are almost indifferent between

trading or not, so they trade at similar prices, since their outside option - not to trade -

have similar value. Sellers are eager to sell because of high prices, so in bargaining, the

”threat” of buyers to cut off negotiations and let the seller wait until he meets another

counterparty, is particularly strong for retail investors and they accept a lower price

compared to the institutional investor. Overall, this means that mid-prices of retail

investors are lower than mid-prices of institutional investors. If q̃ = 0 buyer receives

the gains of trade relative to seller and prices are low. In this case sellers are almost

indifferent between trading or not, because the price is so low that sellers might as well

keep the bond and incur the extra cost of holding the bond. In contrast, buyers are

eager to buy, which means that retail investors are in a worse bargaining position and

buy at a higher price. In this case the mid-price of retail investors is higher than that of

institutional investors. Both search intensities, default intensities, and q̃ affect bid-ask

spreads, while only q̃ determine how bid-ask spreads of different investors are related

to each other, so it is likely that the latter channel of identification is the dominant for

determining the value of q̃. In Panel D in Table 3 we see that the model matches that

roundtrip costs in yields decreases in maturity and that the midyield of large trades

are smaller than midyields of small trades. The model cannot match the magnitude

of large-small differences at maturities less than six months, and at longer maturities

the model overestimates the average differences somewhat. The discrepancies between

estimated and actual differences at longer maturities are partly due to periods of distress

where the relation between small and large mid-prices are reversed, and we examines

this more in detail in the next Section.

The liquid market for credit default swaps might be a reason for a q̃ close to one.

There is an approximate arbitrage relation between corporate bonds and credit default

swaps: one can approximately create a bond with no default risk by buying a corporate

bond and insuring against default by buying protection through a credit default swap

(Duffie (1999), Longstaff, Mithal, and Neis (2005), and Blanco, Brennan, and Marsh

(2005)). If corporate bond prices are low relative to credit default swaps, one can

buy the bond and buy protection through a credit default swap contract and earn an
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abnormal profit. If prices are high relative to credit default swaps, one needs to short the

bond and sell protection through a credit default swap. It can be difficult and expensive

to short the bond as shown in Nashikkar and Pedersen (2007), so the arbitrage is easer

to carry out when corporate bond prices are low compared to when they are high.

4.2 Time variation in search intensities and shocks to funding
liquidity

The parameter estimates of the calibration reflect the average market over the estimation

period. However, the period has seen several significant events in the corporate bond

market, evidence for example by the fact that the 10-year spread between highly rated

AAA corporate bonds and Treasury bonds has ranged from a low of 64 basis points to

a high of 200 basis9. To examine the importance of shifting conditions in the market,

I estimate the time-variation in search intensities and possible shocks to the number of

investors in need of liquidity.

To simultaneous assess time variation in search intensities and estimate a possible

shock to the number of sellers, I do the following. For month m, I multiply all search

intensities by cm and assume a liquidity shock of size sm as defined in Definition 2.1

occurs. Holding all other parameters fixed, I find the optimal values of cm and sm

according to the likelihood procedure explained earlier. Prices are calculated according

to Theorem 2.2. I do this for every month in the sample.

Search intensities are determined primarily by the size of roundtrip costs, so varia-

tions over time in search intensities measure the cost of buying and selling the bond.

If there is a shock in funding needs of investors, such that there are more sellers than

buyers, the model predicts that mid-prices of institutional investors are lower than those

of retail investors. Bid and ask prices decrease in the size of the shock for both investor

types, since the bargaining position of buyers improve relative to that of sellers, and bid

and ask prices decrease more for institutional investors. Sellers are constrained and have

no bargaining power, so prices are set such that they are indifferent between trading or

keeping the bond. The outside option of waiting to buy is more valuable to institutional

buyers when they bargain, since they can quickly find a new counterparty, so institu-

9The yield spread is basis on monthly data from the Federal Reserve’s H.15 data. The AAA yield is
”Moody’s seasoned Aaa” while Treasury yield is the 10-year constant maturity rate.
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tional buyers benefit more from the shock than retail buyers. Consequently, bid and

ask prices of institutional investors decrease more in the shock size compared to bid and

ask prices of retail investors. Thus, shocks to funding liquidity is detected through a

higher than usual difference between retail mid-prices and institutional mid-prices, and

for significant shocks retail mid-prices are higher than institutional mid-prices.

Since conditions in the corporate bond market might affect retail and institutional

investors differently, I estimate the time variation in search intensities and liquidity

shocks for each investor type separately. that is, I split the data sample up in trades

of $50, 000 or less (retail) and more than $50, 000 (institutional) and carry out the

aforementioned time series estimation on each data set.

Figure 4 graphs the estimated liquidity shocks for institutional and retail investors.

For retail investors shocks occur in July and September of 2008. In this period Reuters

/University of Michigan index of consumer sentiment recorded the lowest values in more

than two decades. For institutional investors there are two periods with shocks occur-

ring. The first is in 2005, where a shock starts in March 2005 and peaks in May 2005,

whereafter the excess number of sellers disappears in June 2005. The shock can likely

be contributed to events on the automobile companies GM and Ford. Since GM issued

a steep profit warning in March 16, 2005, GM and Ford had been trading at or near

junk levels. Downgrade was imminent and many insurance companies, pension funds,

and other investment funds were restricted from investing in junk bonds and were forced

to liquidity GM/Ford bonds. Acharya, Schaefer, and Zhang (2008) find an increasing

imbalance between bid and offer quotes on GM and Ford bonds after the profit warning

in March lasting until a month after the downgrade to junk bond status in May 5.

Table 4 shows the differences in mid-price paid by institutional investors and retail

investors. The table supports the intuition that shocks are identified through this dif-

ference. Excluding the two crisis periods, differences are positive for all ratings except

the statistically insignificant coefficient for AAA. During the GM/Ford crisis mid-prices

for institutional investors are lower than those for retail investors for partly BB and

particularly B rating classes, higher for BBB while the rest of the rating classes have

similar magnitudes as those in a normal market. The rating of bonds is registered at the

end of the sample, and most GM/Ford bonds has a registered B rating, which explains

the strong sell signal that the institutional/retail mid-price difference implies.
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The second crisis according to the estimation results starts in August 2007 and lasts

until the end of the data sample in September 2008. Table 4 shows that in this period

mid-prices for institutional investors are smaller than those of retail investors for all but

the lowest rated bonds and with high statistical significance.

Time variations in intensities are shown in Figure 2. We see that search intensities

of retail investors are largely unaffected by the subprime crisis. In contrast, institution

investors see their ease of finding a trading partner decrease throughout the crisis. This

leads to higher transaction costs due to harder search efforts. Dick-Nielsen, Feldhütter,

and Lando (2008) find that market depth, measured by the Amihud measure, decrease

strongly after the onset of the subprime crisis. This is consistent with Figure 2 showing

that small trades can be carried out at normal roundtrip costs, while larger trades are

harder to execute and therefore reflect larger roundtrip costs.

4.3 Search premium

One of the most widely employed frameworks of credit risk, structural models, was

developed in the seminal work of Merton (1974). Structural models take as given the

dynamics of the value of a firm and values corporate bonds as contingent claims on the

firm value. In this model the spread between the yield on a corporate bond and the

riskless rate goes to zero as maturities shortens. However, yield spreads are typically

positive, also at very short maturities, and this has given rise to the ”credit spread

puzzle”, namely that corporate yield spreads, particularly at very short maturities, are

too high to be explain by the corporate bond issuer’s default risk (see for example Huang

and Huang (2003))10. This paper offers a possible explanation for the credit risk puzzle,

namely search costs11. To examine the impact of search costs on credit spreads, I define

the search premium for an investor as the midyield paid by this investor minus the yield

of an investor who can instantly find a trading partner (ρ = ∞) in which case the bid-

ask spread is zero. This mimics a trade in the corporate bond market versus a trade

in the ultra-liquid Treasury market. I do this for an average retail investor, where the

10Extensions to structural models that can explain the short-maturity credit spread puzzle include
jumps in firm value (Zhou (2001)) and incomplete accounting information (Duffie and Lando (2001)).

11The model in this paper is related to reduced-form models of credit risk, where there is an intensity
process governing the risk of default. Thus, it does nor predict a near zero contribution of default risk
to spreads at very short maturities as structural models, but nevertheless the implications of search
costs can be examined in the model.
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search intensity is the average of the search intensities for the three most unsophisticated

investors, ρ1, ρ2, and ρ3 in Table 2, and for an average institutional investor, where the

search intensity is the average of ρ4, ρ5, and ρ6 in the same table. Figures 3 graphs

the term structure of search premia. The figure shows that while the search premium

is modest at long maturities, it is high for both retail and institutional investors for

maturities less than one year and is in the three-digits range for very short maturities.

Covitz and Downing (2007) examine very short-term spreads in the commercial paper

market for the roles of credit risk and liquidity. The average trade size in their data

set is USD15 million, so the trades are a magnitude larger than those examined in this

paper. Consistent with the results here, they find that trade size plays a role in the

determination of commercial paper spreads and that the effect of trade size decreases

with maturity.

The following calculations provide an estimate of the additional cost due to search

that investors in the corporate bond market incur compared to that of the Treasury

market. The average maturity in the data sample is 5.5 years, so a 5-year is the most

representative bond for the corporate market. An estimate of the average bid-ask spread

as a percentage of the par value for a 5-year bond in the Treasury market is 0.0122 ac-

cording to Fleming (2003). For an average investor and average bond, i.e. an investor

with an average search intensity and a bond with an average default intensity, the corre-

sponding estimate for a 5-year bond in the corporate bond market is 0.0506 according to

the parameter estimates and equation (13). Thus, an estimate of the cost of search on a

roundtrip in the corporate bond market relative to the Treasury market is 0.0384 percent

of par value. The yearly trading volume in the corporate bond market was $6196.5 bil-

lion in 2007, so an estimate of the additional yearly costs investors bear in the corporate

bond market compared to the Treasury market is $6196.5 ∗ 0.000384 =$2.38 billion12.

Overall, the results in this section shows that search costs affects average yield spreads

strongly at short maturities, and can explain the credit spread puzzle where it is reported

to be most severe.

12Average daily volume was $24.3 billion according to footnote 1, so yearly was 255*$24.3 billion.
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5 Conclusion

The corporate bond market is an over-the-counter market where investors search for

counterparties and once there is a match, prices are determined through bargaining. I set

up a search model that captures the over-the-counter features, and estimate parameters

using transaction data from October 2004 to September 2008. The model is stylized but

captures well the empirical features of transaction costs across investors, maturity, and

rating.

The calibration results show that in a ”normal” market, mid-prices of institutional

investors are higher than those of retail investors. In distressed periods, where there is

an excess number of sellers, the relation is reversed. The model is thus able to identify

two distressed periods. The first period is in Spring 2005 where Ford and GM where

downgraded from investment grade to junk status. The second period begins in August

2007, where the subprime crisis starts, and lasts until the end of the data sample. The

first crisis was mainly concentrated in Ford/GM and bonds with similar credit quality,

while the second crisis has hit bonds across all but the lowest ratings. Results also shows

that it has become more expensive for institutional investors to trade in the corporate

bond market after the onset of the subprime crisis, while costs of retail investors have

remained fairly stable. Finally, I find that the impact of search costs on average yields

is high for maturities less than one year. This suggests that search costs are important

for understanding the determination of spreads in the short end of the yield curve.
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Figure 2: Time-variation in ease of finding a counterparty. This graph shows the
monthly time-variation in search intensity ρ for institutional and retail investors. Re-
tail investors are assumed to trade par amounts of $50, 000 or less while institutional
investors trade more than this amount.
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Figure 3: Search premium in yields for retail and institutional investors. This graph
shows the search premium in yields for retail and institutional investors. The two
figures are identical except that the x-axis in the top figure is in logs while it is not in
the bottom figure. The search premium for an investor for a given maturity is defined
as the average yield of a buy and sell transaction for this investor minus the average
yield of a buy and sell transaction for an investor that can instantly find a trading
partner. In the latter case, the buy and sell yields are identical. The transacted bond
is assumed to have default intensity λD = 0.089, a retail investor is assumed to have a
search intensity ρ = 64.5, and an institutional investor a search intensity of ρ = 127.3.
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Figure 4: Fraction of bond owners experiencing a negative shock in their funding

liquidity. The number of investors with high liquidity in steady state are shocked, bid
and ask yields immediately after the shock are derived, and the most likely shock is
found as explained in the text. This is done for each month in the sample. Retail
investors are assumed to trade par amounts of $50, 000 or less while institutional
investors trade more than this amount.
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Trade size 5K 10K 20K 50K 100K 200K 500K
Edwards, Harris, and Piwowar (2007) 1.50 1.42 1.24 0.92 0.68 0.48 0.28

Unique Roundtrip Trades (15mins) 0.91 0.82 0.78 0.61 0.56 0.44 0.25
Unique Roundtrip Trades (15mins), observations 8,385 14,819 9,943 10,114 6,566 2,189 2,907

Unique Roundtrip Trades (all day) 1.14 1.10 1.04 0.79 0.68 0.53 0.31
Unique Roundtrip Trades (all day), observations 19,017 32,298 20,470 23,454 15,678 4,829 7,147

Table 1: Roundtrip costs. This table compares roundtrip costs using this paper’s unique roundtrip trade measure with those in Edwards,
Harris, and Piwowar (2007)’s Table IV. A trade is defined as a unique roundtrip if for a given bond on a given date 2 or 3 trades with a
given trade size occurs. The roundtrip cost is the largest minus the smallest trade price. The table shows the roundtrip costs for both
unique roundtrips that occur during a trading day and those that occur within 15 minutes. The URT roundtrip estimates in this table
is based on the sample period January 2003-January 2005 which matches that in Edwards, Harris, and Piwowar (2007).
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q̃ ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 λ1 λ2 λ3

1.000
(0.006)

47
(0.2)

67
(0.2)

80
(0.2)

110
(0.7)

131
(2.7)

141
(1.6)

0.046
(0.001)

0.076
(0.001)

0.145
(0.001)

Table 2: Parameter estimates for a search model for the corporate bond market. This
table shows the estimated parameters of the search model presented in Section 2.
The model parameters are estimated by maximum likelihood and standard errors are
calculated using the outer product of gradients estimator. Corporate bond data used
in estimation are actual transactions from TRACE for the period October 1, 2004 to
September 30, 2008.
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Panel A: Trade size
0-5K 6-10K 11-20K 21-50K 51-100K 101-200K 201-500K 501-1000K >1000K

fitted (in bps) 38.4
(0.1)

27.2
(0.1)

26.7
(0.1)

22.6
(0.1)

22.8
(0.1)

16.7
(0.1)

16.8
(0.1)

13.0
(0.1)

11.2
(0.1)

actual (in bps) 39.4
(0.5)

29.1
(0.3)

27.4
(0.3)

24.1
(0.2)

20.5
(0.2)

16.2
(0.2)

11.6
(0.2)

7.6
(0.2)

4.4
(0.1)

Panel B: Maturity
0-3m 3-6m 6m-1y 1-3y 3-5y 5-10y 10-20y >20y

fitted (in bps) 211.0
(1.1)

91.2
(0.2)

51.4
(0.1)

26.1
(0.0)

15.4
(0.0)

11.6
(0.0)

13.1
(0.0)

13.5
(0.0)

actual (in bps) 225.4
(7.1)

77.0
(0.8)

46.7
(0.3)

27.6
(0.1)

16.6
(0.0)

12.0
(0.0)

12.3
(0.1)

10.5
(0.1)

Panel C: Rating
AAA AA A BBB BB B CCC

fitted (in bps) 15.6
(0.1)

21.3
(0.1)

22.3
(0.1)

24.2
(0.1)

52.1
(0.2)

28.8
(0.1)

22.8
(0.1)

actual (in bps) 14.6
(0.1)

19.4
(0.2)

21.5
(0.1)

24.4
(0.3)

60.9
(1.1)

31.2
(0.1)

20.2
(0.2)

Panel D: Midyield for large trades minus midyield for small trades across maturity
0-3m 3m-6m 6m-9m 9m-1y 1y-2y >2y

fitted (in bps) −28.1
(0.9)

−13.4
(0.3)

−9.0
(0.1)

−7.2
(0.2)

−5.4
(0.2)

−2.6
(0.0)

actual (in bps) −94.4
(21.5)

−22.7
(6.1)

−12.0
(4.4)

−5.8
(1.9)

−1.2
(1.1)

0.2
(0.2)

Table 3: Estimated round-trip costs measured in yield spreads. This table reports the fitted roundtrip costs in yields for the search
model presented in Section 2. Parameters in the model are those in Table 2. Below the fitted roundtrip costs are actual roundtrip costs.
In panel D the differences in midyield are calculated for all roundtrip pairs on a given day for a given bond for which a roundtrip occurred
with volume both smaller and larger than $50, 000. If more than one roundtrip occurred. Corporate bond data used in estimation as
well as in calculation of actual roundtrip costs are transactions from TRACE for the period October 1, 2004 to September 30, 2008.
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subprime crisis
(large crisis)

GM/Ford downgrade
(moderate crisis)

no crisis

All ratings −0.10∗∗∗
(0.01)

−0.03∗
(0.01)

0.07∗∗∗
(0.01)

AAA −0.09∗∗∗
(0.02)

−0.01
(0.06)

−0.01
(0.01)

AA −0.06∗∗∗
(0.01)

−0.02
(0.02)

0.02∗∗∗
(0.01)

A −0.18∗∗∗
(0.02)

0.03
(0.02)

0.02∗
(0.01)

BBB −0.29∗∗∗
(0.04)

0.17∗∗
(0.05)

0.00
(0.02)

BB −0.26∗∗
(0.08)

−0.10∗∗
(0.03)

0.06∗∗
(0.02)

B 0.10∗∗∗
(0.03)

−0.22∗∗∗
(0.04)

0.24∗∗∗
(0.02)

C 0.39∗∗∗
(0.08)

0.25∗
(0.12)

0.30∗∗∗
(0.03)

Table 4: Difference in mid-prices between large and small trades. The search model
identifies two periods with an excess number of sellers relative to buyers, namely the
period leading up to the downgrade of GM and Ford to junk status (March-May 2005)
and after the onset of the subprime crisis (beginning in August 2007). This table
splits the data sample up in these two periods (on a monthly basis) and a third period
which are the residual months Oct 2004-Feb 2005 and June 2005-July 2007. In each
period all incidences where a bond on a given day has a roundtrip trade below and
above par value USD50,000 are recorded and the differences in mid-yields between
large roundtrip trades and small roundtrip trades are shown in the table. Note that
the rating of a bond is recorded at the end of the data sample and most GM and Ford
bonds had a B rating at that time. Standard errors are in parenthesis and ’*’ denotes
significance at 5% level, ’**’ at 1% level, and ’***’ at 0.1% level.
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A Equilibrium Allocations

The rate of change of mass of owners is

·
µlo(t) = −ρµm(t) −(λT + λD)µlo(t) − λuµlo(t) + λdµho(t) (18)

·
µho(t) = ρµhn(t) −(λT + λD)µho(t) + λuµlo(t) − λdµho(t) (19)

·
µhn(t) = −ρµhn(t) +(λT + λD)µho(t) + λuµln(t) − λdµhn(t) (20)

·
µln(t) = ρµm(t) +(λT + λD)µlo(t) − λuµln(t) + λdµhn(t) (21)

where µm(t) = min{µhn(t), µlo(t)}.
If µm = µhn in steady state then the sum of (18) and (19) yields (λT+λD)(µlo+µho) =

0 which cannot be the case, so µm = µlo in steady state. Inserting µhn = 1 − (µho +

µln + µlo) into (21) and letting
·
µln(t) = 0 yields

−λd = (ρ+ λT + λD − λd)µlo − (λu + λd)µln − λdµho

so in steady state we have
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−(ρ+ λT + λD + λu) λd 0 0

λu −(λT + λD + λd) ρ 0

0 λT + λD −(λd + ρ) λu

ρ+ λT + λD − λd −λd 0 −(λu + λd)

















.

B Equilibrium prices

This Appendix derives the value functions stated in the text and the prices stated in

Theorem 2.1.

From (5) and (6) we have that lifetime utility is W (t) + Vσ(t) where

Vσ(t)(t) = sup
θ

Et[

∫ ∞

t

e−r(t−s)θs(1 − δ1{σθ(s)=lo})ds− e−r(s−t)P̂sdθs].
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In order to calculate Vσ and the bid/ask prices, we consider a particular agent and a

particular time t. Let τl be the next stopping time at which the agent’s type changes, τm

the next time a market maker is met, (in case of an owner) τT the time at which the bond

matures and τD the time at which the bond defaults. Furthermore, let τ = min{τl, τm},
τ̃ = min{τl, τT , τD}, and τ = min{τl, τm, τT , τD}. Then

Vln(t) = Et[e
−r(τl−t)Vhn(τl)]

Vhn(t) = Et[e
−r(τl−t)Vln(τl)1{τl=τ} + e−r(τm−τ)(Vho(τm) − Aτm)1{τm=τ}]

Vlo(t) = Et[

∫ τ

t

e−r(u−t)(1 − δ)du+ e−r(τl−t)Vho(τl)1{τl=τ}

+e−r(τm−t)(Vln(τm) +Bτm)1{τm=τ}

+e−r(τT−t)(Vln(τT ) + F )1{τT =τ}]

+e−r(τD−t)(Vln(τD) + (1 − f)F )1{τD=τ}]

Vho(t) = Et[

∫ τ̃

t

e−r(u−t)du+ e−r(τl−t)Vlo(τl)1{τl=τ̃}

+e−r(τT−t)(Vhn(τT ) + F )1{τT =τ̃}]

+e−r(τD−t)(Vhn(τD) + (1 − f)F )1{τD=τ̃}]

Suppressing the dependence on time, the value functions satisfy the (HJB) equations

�

Vln = rVln − λu(Vhn − Vln) (22)
�

Vhn = rVhn − λd(Vln − Vhn) − ρ(Vho − Vhn − A) (23)
�

Vlo = rVlo − λu(Vho − Vlo) − ρ(B + Vln − Vlo) − λT (F + Vln − Vlo)

−λD((1 − f)F + Vln − Vlo) − (1 − δ) (24)
�

Vho = rVho − λd(Vlo − Vho) − λT (F + Vhn − Vho)

−λD((1 − f)F + Vhn − Vho) − 1 (25)

To see this, we explicitly derive equation (25) and note that the derivation of (22)-(24)
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is very similar. We have that

Et[

∫ τ̃

t

e−r(u−t)du] =

∫ ∞

t

∫ τ̃−t

0

e−rududτ̃

=

∫ ∞

t

1

r
(1 − e−r(τ̃−t))dτ̃

=

∫ ∞

0

1

r
(1 − e−rτ̃ )dτ̃

=

∫ ∞

0

1

r
(1 − e−rx)(λd + λT + λD)e−x(λd+λT +λD)dx

=
λd + λT + λD

r

[ −1

λd + λT + λD
e−x(λd+λT +λD)

+
1

r + λd + λT + λD
e−x(r+λd+λT +λD)

]∞

0

=
λd + λT + λD

r
(

1

λd + λT + λD
− 1

r + λd + λT + λD
)

=
1

r + λd + λT + λD

and for τ = min{τ1, τ2} that

Et[e
−r(τ1−t)1{τ1=τ}V (τ1)] =

∫ ∞

t

∫ ∞

t

e−r(x−t)V (x)λ1e
−λ1(x−t)λ2e

−λ2(y−t)1{x<y}dxdy

=

∫ ∞

t

∫ ∞

x

e−r(x−t)V (x)λ1e
−λ1(x−t)λ2e

−λ2(y−t)dydx

=

∫ ∞

t

e−r(x−t)V (x)λ1e
−λ1(x−t)[−e−λ2(y−t)]∞x dx

=

∫ ∞

t

e−r(x−t)V (x)λ1e
−λ1(x−t)e−λ2(x−t)dx

=

∫ ∞

t

λ1e
−(r+λ1+λ2)(x−t)V (x)dx
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Such that13

�

Vho =
∂

∂t
Et[

∫ τ̃

t

e−r(u−t)du + e−r(τl−t)Vlo1{τl=τ}

+e−r(τT−t)(Vhn + F )1{τT =τ} + e−r(τD−t)(Vhn + (1 − f)F )1{τD=τ}]

=
∂

∂t
Et[e

−r(τl−t)Vlo1{τl=τ} + e−r(τT−t)(Vhn + F )1{τT =τ}

+e−r(τD−t)(Vhn + (1 − f)F )1{τD=τ}]

=

∫ ∞

t

λd(r + λd + λT + λD)e−(r+λd+λT +λD)(x−t)Vlodx − λdVlo

+

∫ ∞

t

λT (r + λd + λT + λD)e−(r+λd+λT +λD)(x−t)(Vhn + F )dx − λT (Vhn + F )

+

∫ ∞

t

λD(r + λd + λT + λD)e−(r+λd+λT +λD)(x−t)(Vhn + (1 − f)F )dx

−λD(Vhn + (1 − f)F )

= (r + λd + λT + λD)Et[e
−r(τl−t)Vlo1{τl=τ̃}] − λdVlo

+(r + λd + λT + λD)Et[e
−r(τT−t)(Vhn + F )1{τT =τ̃}] − λT (Vhn + F )

+(r + λd + λT + λD)Et[e
−r(τD−t)(Vhn + (1 − f)F )1{τD=τ̃}]

−λD(Vhn + (1 − f)F )

= (r + λd + λT + λD)[Vho −
1

r + λd + λT + λD
] − λdVlo − λT (Vhn + F )

+λD(Vhn + (1 − f)F )

= (r + λd + λT + λD)Vho − λdVlo − λT (Vhn + F ) − λD(Vhn + (1 − f)F ) − 1.

In steady state
�

V σ = 0 and hence the HJB equations imply the following equations
for the value functions and prices:

Vln =
λuVhn
r + λu

(26)

Vhn =
λdVln + ρVho − ρA

r + λd + ρ
(27)

Vlo =
λuVho + ρB + λTF + λD(1 − f)F + (ρ+ λT + λD)Vln + 1 − δ

r + λu + ρ+ λT + λD
(28)

Vho =
λdVlo + (λT + λD)Vhn + λTF + λD(1 − f)F + 1

r + λd + λT + λD
(29)

Bilateral bargaining between investors and market makers determines bid and ask prices.
A low-type owner demands at least ∆Vl = Vlo − Vln for the bond while a high-type
nonowner will not pay more than ∆Vh = Vho − Vhn. Nash bargaining between investors
and market makers in which the outside option of the market maker is to trade in the
inter-dealer market results in the bid and ask prices

A = ∆Vhz +M(1 − z)

B = ∆Vlz +M(1 − z)

13According to Leibnitz’s rule ∂
∂α

∫∞

α
F (x, α)dx =

∫∞

α
∂F
∂α

dx − F (α, α).
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where z is the bargaining power of the market maker. Thus,

(r + λu)Vln = λuVhn

(r + λd)Vhn = λdVln + ρ∆Vh − ρ[∆Vhz +M(1 − z)]

(r + λu)Vlo = λuVho + ρ[∆Vlz +M(1 − z)] + λTF + λD(1 − f)F

−(ρ+ λT + λD)∆Vl + 1 − δ

(r + λd)Vho = λdVlo − (λT + λD)∆Vh + λTF + λD(1 − f)F + 1.

These equations reduce to

(r + λu + (1 − z)ρ+ λT + λD)∆Vl = λu∆Vh + ρ(1 − z)M + ψc − δ

(r + λd + (1 − z)ρ+ λT + λD)∆Vh = λd∆Vl + ρ(1 − z)M + ψc

where ψc = λTF + λD(1 − f)F + 1. This implies that

( ∆Vl
∆Vh

)

=
ρ(1 − z)M + ψc

C

( 1
1

)

− δ

C(C + λd + λu)

( C + λd
λd

)

(30)

where C = r + (1 − z)ρ+ λT + λD. The agent faces a bid-ask spread of

z(∆Vh − ∆Vl) =
zδ

r + (1 − z)ρ+ λd + λu + λT + λD

For agents with different search intensities the same arguments can applied. Next, we
now find the range of inter-dealer prices for which all investors trade. Define ρ0 =
min
i=1,...,I

ρi. For all ρ ≥ ρ0 the inter-dealer price has to satisfy

M ≤ ∆Vh =
ρ(1 − z)M + ψC

C
− δλd
C(C + λd + λu)

according to (30) and rearranging this inequality yields

M ≤ ψc
r + λT + λD

− δλd
(r + λT + λD)(r + (1 − z)ρ+ λd + λu + λT + λD)

.

If this holds for all ρ ≥ ρ0 then

M ≤ ψc
r + λT + λD

− δλd
(r + λT + λD)(r + (1 − z)ρ0 + λd + λu + λT + λD)

.

Likewise we find that

M ≥ ψc
r + λT + λD

− δ(C + λd)

(r + λT + λD)(C + λd + λu)

which holds for all ρ if

M ≥ ψc
r + λT + λD

− δ(r + (1 − z)ρ0 + λd + λT + λD)

(r + λT + λD)(r + (1 − z)ρ0 + λd + λu + λT + λD)
.
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C Proof of Theorem 2.2

In this section I provide a proof of Theorem 2.2. I first find the length of time with more
sellers than buyers following a liquidity shock. I then find bid and ask prices prevailing
immediately after a liquidity shock.

If we define µl = µlo+µln and µh = µho+µhn we have according to equations (1)-(4)
that

( ·
µl
·
µh

)

=

[

−λu λd
λu −λd

](

µl
µh

)

.

The solution to these ODEs is

(

µl(t)
µh(t)

)

= (1 − e−t(λu+λd))

(

λd

λd+λu
λu

λd+λu

)

+ e−t(λu+λd)

(

µl(0)
µh(0)

)

(31)

This result will be useful in a short moment. We now look at µhn − µlo since sellers are
constrained if this difference is negative. We have that

·
µhn −

·
µlo = ρ(µm − µhn) + (λT + λD)(µho + µlo) + λu(µln + µlo) − λd(µhn + µho)

= ρ(µm − µhn) − (λT + λD)(µhn − µlo) + (λT + λD − λd − λu)µh + λu

If sellers are constrained we have µm = µhn and

·
µhn −

·
µlo = −(λT + λD)(µhn − µlo) + (λT + λD − λd − λu)µh + λu.

Assume that µhn(0) − µlo(0) < 0. Using the result in equation (31), the solution for
µhn(t) − µlo(t) for any t where µhn − µlo has not yet been positive is

µhn(t) − µlo(t) =
λu

λd + λu
+ e−(λu+λd)t(µh(0) − λu

λd + λu
)

−(µho(0) + µlo(0))e−(λT +λD)t. (32)

This equation has a unique ts where µhn(ts) − µlo(ts) = 0. This implies that if sellers
are constrained at time 0 they become unconstrained at time ts. What remains to show
is that they stay unconstrained after time ts. If sellers are not constrained we have
µm = µlo and

·
µhn −

·
µlo = −(ρ+ λT + λD)(µhn − µlo) + (λT + λD − λd − λu)µh + λu

The solution is (assuming that µhn(0) − µlo(0) = 0)

µhn(t) − µlo(t) =
λu

λd + λu

λT + λD

ρ + λT + λD

+
λT + λD − λd − λu

ρ + λT + λD − λd − λu

(µh(0) − λu

λd + λu

)e−(λu+λd)t

−
[

(µh(0) − λu

λu + λd

)
λT + λD − λd − λu

ρ + λT + λD − λd − λu

+
λu

λd + λu

λT + λD

ρ + λT + λD

]

e−(ρ+λT +λD)t.
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Assume that µh(0) = (1 − s) λu

λu+λd
. Then we have

µhn(t) − µlo(t) =
λu

λd + λu

[

λT + λD

ρ + λT + λD

−s
λT + λD − λd − λu

ρ + λT + λD − λd − λu

e−(λu+λd)t

−
[ (1 − s)(λT + λD)(ρ + λT + λD − λu − λd) + sρ(λT + λD)

(ρ + λT + λD)(ρ + λT + λD − λu − λd)

]

e−(ρ+λT +λD)t

]

.

If ρ + λT + λD > λd + λu we have that µhn(t) − µlo(t) ≥ 0 for all t . What I have
now shown is that if the fractions of investors are such that sellers are constrained, the
sellers are constrained a period of time ts and unconstrained thereafter. Next, I find ts.
The steady state value of µhn−µlo is λu

λd+λu

λT +λD

ρ+λT +λD
. This, along with equations (1) and

(2) yielding

·
µlo +

·
µho = ρ(µhn − µlo) − (λT + λD)(µho + µlo)

gives the steady state value of µlo + µho as λu

λd+λu

ρ

ρ+λT +λD
. Since the steady state value

of µh is λu

λd+λu
we have according to (32) that the time, t, an investor is constrained after

a shock of s solves

0 = 1 − se−(λu+λd)t − ρ

ρ+ λT + λD
e−(λT +λD)t. (33)

If s ≤ λT +λD

ρ+λT +λD
the investor is not constrained at any time after the shock and prices do

not change.
Next, I find bid and ask prices immediately after the liquidity shock. Rewriting

equations (22)-(25) we have that

·
∆Vh = (C1 + λd + ρ)∆Vh − λd∆Vl − ψC − ρA

·
∆Vl = (C1 + λu + ρ)∆Vl − λu∆Vh − (ψC − δ) − ρB

C1 = r + λD + λT

ψC = λTF + λD(1 − f)F + 1.

If sellers are constrained we have that the interdealer price is M = ∆Vl, so A = ∆Vhz+
∆Vl(1 − z) and B = ∆Vl. Thus,

·
∆Vh = (C1 + λd + (1 − z)ρ)∆Vh + (−λd − (1 − z)ρ)∆Vl − ψC

·
∆Vl = (C1 + λu)∆Vl − λu∆Vh − (ψC − δ)

which can be rewritten as

( ·
∆Vh

·
∆Vl

)

=

[

C1 + λd + (1 − z)ρ −λd − (1 − z)ρ
−λu C1 + λu

](

∆Vh
∆Vl

)

−
(

ψC
ψC − δ

)

.(34)

The reservation values immediately after the shock is found be solving these ODEs
backwards from the steady state reservation values for the period of time sellers are
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constrained. That is, the reservation values after the shock is the time ts solution to

( ·
∆Vh

·
∆Vl

)

= −
[

C1 + λd + (1 − z)ρ −λd − (1 − z)ρ
−λu C1 + λu

](

∆Vh
∆Vl

)

+

(

ψC
ψC − δ

)

(

∆Vh(0)
∆Vl(0)

)

=

(

∆V ss
h

∆V ss
l

)

.

The steady state solution of this system is

(

∆V imb
h

∆V imb
l

)

= −
[

−(C1 + λd + (1 − z)ρ) λd + (1 − z)ρ
λu −(C1 + λu)

]−1(
ψC

ψC − δ

)

=





ψC

C1
− δ
( √

γ−λu

C1(
√
γ+C1)

)

ψC

C1
− δ
( √

γ−λu

C1(
√
γ+C1)

)

− δ√
γ+C1





where
√
γ = λd+λu+(1− z)ρ. If sellers were always constrained, the reservation values

of investors would be

(

∆V imb
h

∆V imb
l

)

. Tedious calculations and the use of Corollary 11.3.3

in Bernstein (2005) show that

(

∆Vh(t)
∆Vl(t)

)

= e−tC1

(

∆V ss
h

∆V ss
l

)

+ (1 − e−tC1)

(

∆V imb
h

∆V imb
l

)
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D Proof of Theorem 2.3

This section provides a proof of Theorem 2.3. Part 1 of the theorem - that bid-ask
spreads are unaffected by a liquidity shock - follows immediately from Theorem 2.1 and
2.2. Consequently, any relation between midprices of investors with different levels of
sophistication can be shown by showing the relation for bid prices.

I first assume that λT +λD

min{ρi,ρj}+λT +λD
< s ≤ 1 and prove the second half of part 2 in

the theorem by showing that the bid price of an unsophisticated investor minus that of
a sophisticated investor, Bi(s) − Bj(s), is increasing in s. I show this by proving that
∂B(s)
∂ρ∂s

< 0. Implicit differentiation in equation (33) yields

∂t

∂s
=

1

s(λu + λd) + ρ(λT +λD)
ρ+λT +λD

e(λu+λd−λT−λD)t

so we have

∂B(s)

∂s
= (r + λD + λT )

∂t

∂s
e−t(r+λD+λT )(∆V ss

l − ∆V imb
l ).

Since

∆V imb
l − ∆V ss

l =
ρ(1 − z)

C(r + λT + λD)

[(1 − q̃)C0 + λd
C0 + λu + λd

− C + λd
C + λu + λd

]

C0 = r + (1 − z)ρ0 + λT + λD

C = r + (1 − z)ρ+ λT + λD

we have that

∂B(s)

∂s
=

ρ(1−z)
C

[

(1−q̃)C0+λd

C0+λu+λd
− C+λd

C+λu+λd

]

e−rt

s(λu + λd)e(λT +λD)t + ρ(λT +λD)
ρ+λT +λD

e(λu+λd)t
.

Now

∂t

∂ρ
=

λT +λD

(ρ+λT +λD)2
e−(λT +λD)t

(λu + λd)se−(λu+λd)t + ρ(λT +λD)
ρ+λT +λD

e−(λT +λD)t

∂( ρ(C+λd)
C(C+λu+λd)

)

∂ρ
=

ρ(1 − z)Cλu + (r + λT + λD)(C + λd)(C + λd + λu)

C2(C + λu + λd)2

∂(ρ(1−z)
C

)

∂ρ
=

(1 − z)(r + λT + λD)

C2
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so the numerator in ∂B(s)
∂ρ∂s

is

[

(1−z)(r+λT +λD)
C2

(1−q̃)C0+λd

C0+λu+λd
− (1 − z)ρ(1−z)Cλu+(r+λT +λD)(C+λd)(C+λd+λu)

C2(C+λu+λd)2

]

×
[

s(λu + λd)e
(λT +λD)t + ρ(λT +λD)

ρ+λT +λD
e(λu+λd)t

]

− ρ(1−z)
C

[

(1−q̃)C0+λd

C0+λu+λd
− C+λd

C+λu+λd

]

×
[

(se(λT +λD)t + ρ
ρ+λT +λD

e(λd+λu)t)
(λu+λd)

(λT +λD)2

(ρ+λT +λD)2
e−(λD+λT )t

(λu+λd)se−(λu+λd)t+
ρ(λT +λD)

ρ+λT +λD
e−(λT +λD)t

+ (λT +λD)2

(ρ+λT +λD)2 e(λu+λd)t
]

=

[

(1−q̃)C0+λd

C0+λu+λd
− C+λd

C+λu+λd

]

1−z
C

[

r+λT +λD

C

[

s(λu + λd)e
(λT +λD)t + ρ(λT +λD)

ρ+λT +λD
e(λu+λd)t

]

−

ρ
[

(se(λT +λD)t + ρ
ρ+λT +λD

e(λd+λu)t)
(λu+λd)

(λT +λD)2

(ρ+λT +λD)2
e−(λD+λT )t

(λu+λd)se−(λu+λd)t+
ρ(λT +λD)

ρ+λT +λD
e−(λT +λD)t

+ (λT +λD)2

(ρ+λT +λD)2 e(λu+λd)t
]

]

− (1−z)2ρλu

C(C+λu+λd)2

[

s(λu + λd)e
(λT +λD)t + ρ(λT +λD)

ρ+λT +λD
e(λu+λd)t

]

=
[

(1−q̃)C0+λd

C0+λu+λd
− C+λd

C+λu+λd

]

1−z
C

×
[

(

r+λT +λD

C
+ (1−z)ρλu

(C+λu+λd)2

(

C+λd

C+λu+λd
− (1−q̃)C0+λd

C0+λu+λd

)−1
)[

s(λu + λd)e
(λT +λD)t + ρ(λT +λD)

ρ+λT +λD
e(λu+λd)t

]

−

ρ
[

(se(λT +λD)t + ρ
ρ+λT +λD

e(λd+λu)t)
(λu+λd)

(λT +λD)2

(ρ+λT +λD)2
e−(λD+λT )t

(λu+λd)se−(λu+λd)t+
ρ(λT +λD)

ρ+λT +λD
e−(λT +λD)t

+ (λT +λD)2

(ρ+λT +λD)2 e(λu+λd)t
]

]

≤
[

(1−q̃)C0+λd

C0+λu+λd
− C+λd

C+λu+λd

]

1−z
C

×
[

s(λu + λd)e
(λT +λD)t

(

r+λT +λD

C
+ (1−z)ρλu

(C+λu+λd)2 − λT +λD

ρ+λT +λD

)

+

ρ(λT +λD)
ρ+λT +λD

e(λu+λd)t
(

r+λT +λD

C
+ (1−z)ρλu

(C+λu+λd)2 − λT +λD

ρ+λT +λD
− ρ

ρ+λT +λD

(λu+λd)
λT +λD

ρ+λT +λD
e−(λD+λT )t

(λu+λd)se−(λu+λd)t+
ρ(λT +λD)

ρ+λT +λD
e−(λT +λD)t

)

]

.

We have that (1−q̃)C0+λd

C0+λu+λd
− C+λd

C+λu+λd
< 0 and r+λT +λD

C
> λT +λD

ρ+λT +λD
. Also

(1 − z)ρλu
(C + λu + λd)2

− ρ

ρ+ λT + λD

(λu + λd)
λT +λD

ρ+λT +λD
e−(λD+λT )t

(λu + λd)se−(λu+λd)t + ρ(λT +λD)
ρ+λT +λD

e−(λT +λD)t

=
(1 − z)ρλu

(C + λu + λd)2
− 1

(ρ+λT +λD)2

(λT +λD)ρ
se(λT +λD−λu−λd)t + ρ+λT +λD

λu+λd

.

A sufficient condition for ∂B
∂ρ∂s

< 0 is that (1−z)ρλu

(C+λu+λd)2
> 1

(ρ+λT +λD)2

(λT +λD)ρ
se(λT +λD−λu−λd)t+

ρ+λT +λD
λu+λd

.

This is the case if f(s) > 0 for every 0 ≤ s ≤ 1 where f is defined as

f(s) =
(1 − z)ρλu

(C + λu + λd)2

[(ρ+ λT + λD)2

(λT + λD)ρ
se(λT +λD−λu−λd)t +

ρ+ λT + λD
λu + λd

]

− 1.

Since f(s) > f(0) for s > 0 we need to show that f(0) > 0. We have that

(1 − z)ρλu(ρ+ λT + λD) − (C + λu + λd)
2(λu + λd) =

[

(1 − z)(zλu − λd(1 − z))
]

ρ2 −
(1 − z)

[

(2λd + λu)(λT + λD) + 2(λu + λd)
2
]

ρ−
(λu + λd)(λT + λD + λu + λd)

2.
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The last expression is a second-order polynomium in ρ and if this polynomium is larger
than 0, then so is f(0). If (1 − z)(zλu − λd(1 − z)) > 0 then the polynomium is positive
for ρ sufficiently large. If λu >

1−z
z
λd then (1 − z)(zλu − λd(1 − z)) > 0. Thus, if ρ is

sufficiently large and λu >
1−z
z
λd then ∂B(s)

∂ρ∂s
< 0 as needed to be proven.

With the second half of part 2 proven, the first half follows easily. If s ≤ λT +λD

ρj+λT +λD

prices are not affected by the liquidity shock, so in this range of s we haveMi(s)−Mj(s) =
Mi(0)−Mj(0). If λT +λD

ρj+λT +λD
< s ≤ λT +λD

ρi+λT +λD
prices of investor i is affected but not prices

of investor j. Since the potential effect of a liquidity shock is a price decrease, we have
in this range of s that Mi(s) −Mj(s) > Mi(0) −Mj(0)

E Additional details on estimation methodology

E.1 Squared errors in likelihood estimation

In the text Atbi is defined as the i’th ask yield on bond b and day t and Btbi as the corre-
sponding bid yield. Fitted yields follow the same notation with an addition superscript
M . The sum of squared errors in the likelihood in equation (14) equal

T
∑

t=1

Nb
∑

b=1

wtb

Ntb
∑

i=1

[

[(Atbi − ABtb) − (AMtbi − AB
M

tb )]2 + [(Btbi − ABtb) − (BM
tbi − AB

M

tb )]2
]

where I use the notation

Atb =
1

Ntb

Ntb
∑

m=1

Atbm

Btb =
1

Ntb

Ntb
∑

m=1

Btbm

ABtb =
1

2
(Atb +Btb).

We have that

Ntb
∑

i=1

[(Atbi − ABtb) − (AMtbi − AB
M

tb )]2

=

Ntb
∑

i=1

[(Atbi − AMtbi) − (Atb − A
M

tb )]2 +Ntb

[

(Atb − A
M

tb ) − (ABtb − AB
M

tb )]
]2

and

Ntb
∑

i=1

[(Btbi − ABtb) − (BM
tbi − AB

M

tb )]2

=

Ntb
∑

i=1

[(Btbi −BM
tbi) − (Btb −B

M

tb )]2 +Ntb

[

(Btb −B
M

tb ) − (ABtb − AB
M

tb )]
]2

.
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Since

Ntb

[

(Atb − A
M

tb ) − (ABtb − AB
M

tb )]
]2

+Ntb

[

(Btb −B
M

tb ) − (ABtb − AB
M

tb )]
]2

=
Ntb

2

[

(Atb −Btb) − (A
M

tb −B
M

tb )
]2

the squared errors equal

T
∑

t=1

Nb
∑

b=1

wtb

[

Ntb
∑

i=1

[(Atbi − Atb) − (AMtbi − A
M

tb )]2 +

Ntb
∑

i=1

[(Btbi −Btb) − (BM
tbi −B

M

tb )]2

+
Ntb

2
[(Atb −Btb) − (A

M

tb −B
M

tb )]2
]

.
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