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I. Introduction

It is well known that the volatility of macroeconomic quantities, such as consumption and

output, vary over time.1 While many papers test the consumption CAPM based on realized

consumption growth, e.g., Lettau and Ludvigson (2001b), Parker and Julliard (2005) and

Yogo (2006), little is known about how the time-variation of consumption growth volatility

affects both the cross-section and time-series of stock returns. The goal of this paper is to fill

this void from a theoretical as well as empirical perspective. Specifically, we are interested

in whether innovations to the conditional volatility of consumption growth are a priced risk

factor.2

This research question poses several challenges: First, a natural candidate to model con-

sumption volatility is the ARCH model proposed by Engle (1982) and its various generaliza-

tions. Asset pricing theory, however, states that only innovations are priced and in a GARCH

model the volatility process has no separate innovations relative to the main process. In par-

ticular, Restoy and Weil (2004) show that a GARCH consumption model does not give rise to

a volatility risk factor in an equilibrium model with Epstein and Zin (1989) utility. Second,

while consumption growth rates are observable, the conditional volatility is latent and has to

be estimated from the data. Lastly, aggregate consumption is measured with error thereby

making statistical inference more difficult (Breeden, Gibbons, and Litzenberger (1989) and

Wilcox (1992)).

In our model, which builds on Bansal and Yaron (2004), Lettau, Ludvigson, and Wachter

(2008) and Kandel and Stambaugh (1991), the representative agent has recursive Epstein

and Zin (1989) preferences and the conditional first and second moments of consumption

growth follow independent two-state Markov chains. Recursive preferences imply that the

agent cares not only about shocks to current consumption growth but also about changes to

the distribution of future consumption growth, which in the model is driven by a persistent

conditional mean and volatility. Since the state of the economy is unobservable, the agent

uses Bayesian updating to form beliefs about the state, similar to David (1997) and Veronesi
1For instance, refer to Cecchetti and Mark (1990), Kandel and Stambaugh (1990), Bonomo and Garcia

(1994), Kim and Nelson (1999), or Whitelaw (2000).
2Other recent contributions testing the consumption CAPM include Campbell (1996), Aı̈t-Sahalia, Parker,

and Yogo (2004), Campbell and Vuolteenaho (2004), Bansal, Dittmar, and Lundblad (2005), Lustig and
Nieuwerburgh (2005), and Jagannathan and Wang (2007).
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(1999). Consequently, the agent’s perception about the conditional first and second moment

of consumption growth are priced. Given that both risk aversion and the elasticity of in-

tertemporal substitution (EIS) are greater than one, changes about the perceived conditional

mean carry a positive price of risk and changes of the perceived conditional consumption

volatility a negative one.

The economic mechanism underlying our model is the following. When risk aversion and

EIS are greater than unity, the intertemporal substitution effect dominates the wealth effect.

As a result, the demand for the risky asset and thus the wealth-consumption ratio increases

with expected consumption growth and decreases with consumption growth volatility. This

effect also implies a positive price of risk for the first moment and negative one for the

second moment of consumption growth. Intuitively, consider an asset that comoves negatively

with future consumption growth. Its payoff is high (low) when investors learn that future

consumption growth is low (high). Investors will demand a low return from this asset as it

is a welcome insurance against future bad times. Similarly, consider an asset that comoves

highly with future consumption volatility. This asset has high (low) payoffs when investors

learn that future consumption is very (little) volatile. This asset serves as insurance against

uncertain times and thus has a lower required return.

To empirically test this intuition, we follow Hamilton (1989) and estimate a Markov chain

process for first and second moments of consumptions growth. Bayesian updating provides

beliefs about the states for mean and volatility. To obtain time-varying risk loadings with

respect to innovations in the perceived conditional first and second moment of consumption

growth, we run rolling quarterly time-series regressions of individual stock returns on con-

sumption growth as well as innovations in beliefs for mean and volatility. In cross-sectional

Fama and MacBeth (1973) regressions, we find that loadings on innovations in the perceived

mean consumption growth do not help to explain future returns. Loadings on consump-

tion growth volatility, however, significantly negatively forecast cross-sectional differences in

returns.

Potentially, inference based on Fama-MacBeth regressions is misleading since it is not

feasible to keep track of standard errors across estimation stages. Yet we obtain similar evi-

dence in a more conservative approach by sorting stocks into portfolios based on consumption

volatility loadings. We observe that stocks which covary more with consumption volatility
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have lower future returns. A volatility risk (VR) factor, which is the return of holding a long

position in the value-weighted quintile of stocks with high volatility risk and a short posi-

tion in low volatility risk, has an average return of −5% per year. Importantly, consumption

volatility risk quintiles do not display variation in the average book-to-market characteristic.

Nevertheless, the loadings of the 25 size and value portfolios of Fama and French (1992) on

the VR factor monotonically decrease in the book-to-market ratio.

The main implication of the model is that consumption volatility is a priced risk factor.

In order to test this hypothesis, we perform two stage regressions of excess returns on log

consumption growth, changes in the perceived mean and volatility of consumption and the

VR factor. Crucially, the coefficient on the innovation in the perceived consumption volatility

and VR are negative implying that the representative agent has EIS greater than one. This

finding contributes to a long standing debate in the literature on the magnitude of the EIS.

Early evidence suggests that the EIS is smaller than one, e.g., Hall (1988) and Campbell and

Mankiw (1989). More recently, Attanasio and Weber (1993), Vissing-Jorgensen (2002) and

Vissing-Jorgensen and Attanasio (2003) find the opposite.

We also augment the CAPM and Fama-French 3-factor model with the VR factor. In

particular, the VR factor shows up strongly and significant in addition to the market and the

three Fama and French (1993) factors. Adding the VR factor to specifications that already

contain HML, the overall fit of the regression as measured by the R2 statistic improves only

marginally. At the same time, replacing HML by VR has little effect on the goodness of

the model. We thus conclude that HML and VR are substitutes in the cross-sectional pricing

relation. But in contrast to HML, the volatility risk factor has a clear economic interpretation.

Another implication of our model is the predictability of the equity premium in the time-

series. In states with low conditional mean or high conditional volatility of consumption

growth, the model predicts a high equity premium when the representative agent has risk

aversion and EIS greater than unity. We show in a predictive regression that innovations

to consumption volatility are a significant and robust predictor of one-quarter ahead equity

returns. The R2 of this univariate predictive regression is almost 5% and a one standard

deviation increase of the perceived consumption volatility results in a 1.8% rise of the quarterly

equity premium. Both values are very close to the predictive power of the consumption-wealth

ratio cay of Lettau and Ludvigson (2001a), the best known macroeconomic predictor of the
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short horizon equity premium. In our model, changes in consumption volatility enter the

pricing kernel only because they affect the consumption-wealth ratio. Thus, one might expect

that measures of the consumption-wealth ratio such as cay already contain information about

the volatility state. Empirically, this is not the case. Both variables are virtually uncorrelated

and both remain strong and robust predictors in multivariate settings. The in-sample R2 of

regressions containing both changes in volatility and cay exceed 10%.

In the literature, it is common to measure consumption risk by using non-durable plus

service consumption. This assumption is usually justified with a felicity function which is

separable across goods. With Epstein-Zin utility, however, felicity can be separable across

goods, but due to the time-nonseparability of the time-aggregator, other goods still matter

for asset pricing because they enter the pricing kernel via the wealth-consumption ratio. The

wealth-consumption ratio can be a function, for instance, of human capital (e.g. Jagannathan

and Wang (1996), Lettau and Ludvigson (2001b), and Santos and Veronesi (2006)), durable

goods (e.g. Yogo (2006)) or housing consumption (e.g. Piazzesi, Schneider, and Tuzel (2007)).

If the wealth-consumption were observable, it would subsume all these variables. But the

wealth-consumption ratio is unobservable.3 The contribution of this paper is to show that

the conditional volatility of consumption growth is a significant determinant of the wealth-

consumption ratio by documenting that it is priced in the cross-section and time-series after

controlling for other factors.

Related Literature

Pindyck (1984) and Poterba and Summers (1986) are among the first to show that a decrease

in prices is generally associated with an increase in future volatility, the so-called leverage

or volatility feedback effect. Similarly, Campbell and Hentschel (1992) and Glosten, Jagan-

nathan, and Runkle (1993) look at the relation between market returns and market volatility

in the time-series. More recently, Ang, Hodrick, Xing, and Zhang (2006) use a nonparametric

measure of market volatility, namely, the option implied volatility index (VIX), to show that

innovations in aggregate market volatility carry a negative price of risk in the cross-section.

Adrian and Rosenberg (2008) use a GARCH inspired model to decompose market volatility

into short and long run components and show how each of the two components affects the
3One of the first papers which tries to estimate the wealth-consumption ratio is Lettau and Ludvigson

(2001a). A more recent contribution is Lustig, Van Nieuwerburgh, and Verdelhan (2008).
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cross-section of asset prices.

All of the papers mentioned above use some measure of stock market volatility, and can

therefore be interpreted as extensions of a market based CAPM. We differ from the existing

research in two important dimensions. First, we extract aggregate volatility from consumption

data and not from financial data. While the quality of consumption data is considerably worse

than the quality of financial data, we are able to robustly show that consumption volatility

risk is priced. Second, we explicitly model the fact that conditional moments of consumption

growth are unobservable and investors learn about them.

Considerable less research has been done on the pricing implications of volatility in a

consumption-based model. Notable exceptions are Jacobs and Wang (2004) and Balduzzi

and Yao (2007), who use survey data to estimate the variability of idiosyncratic consumption

across households. They find that exposure to idiosyncratic consumption risk bears a negative

risk premium for the 25 Fama-French portfolios. Parker and Julliard (2005) empirically

measure a version of long-run risk as the covariance between one-period asset returns and long-

horizon movements in the pricing kernel. Their ultimate consumption risk measure performs

favorably in explaining the return differences of the 25 Fama-French portfolios. Similarly,

Tedongap (2007) estimates conditional consumption volatility as a GARCH process and finds

that value stocks covary more negatively with changes in consumption volatility over long

horizons, thus requiring high average returns. In contrast to Tedongap (2007), we extract

innovations to beliefs about consumption volatility, whereas a GARCH model does not allow

that. Tedongap (2007) obtains significant results only at long horizons since GARCH models

account for innovations to volatility only through realized data.

Motivated by the long-run risk model of Bansal and Yaron (2004), there exist important

papers which study the relation between aggregate volatility and prices. Notably, Bansal,

Khatchatrian, and Yaron (2005) find that the conditional consumption volatility predicts

valuation ratios. Drechsler and Yaron (2008) extend the long-run risk model for jumps in

consumption volatility. Their model generates a variance premium and return predictability

which is consistent with the data. Bansal and Shaliastovich (2008) find evidence that measures

of investors uncertainty about their estimate of future growth contain information about

large moves in returns at frequencies of about 18 months. They explain this regularity with

a recursive-utility based model in which investors learn about latent expected consumption
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growth from signals with time-varying precision. Bollerslev, Tauchen, and Zhou (2008) study

the asset pricing implication when the variance of stochastic volatility is stochastic.4

More closely related are Calvet and Fisher (2007) and Lettau, Ludvigson, and Wachter

(2008). Calvet and Fisher (2007) study the asset pricing implications of multi-fractal Markov

switching in a recursive preference model at the aggregate level. Similarly, Lettau, Ludvig-

son, and Wachter (2008) estimate a Markov model with learning to show that the decline

in consumption volatility–also referred to as the “Great Moderation”–can explain the high

observed stock market returns in the 1990s and the following decline in equity risk premium.

We extend their work by studying the cross-section and time-series of returns.

The remainder of the paper is organized as follows: In Section 2, we derive the asset

pricing implication of a recursive preference model where the agent does not observe the state

of the economy. This section motivates our empirical analysis of Sections 3–5. In Section

3, we test whether consumption growth and its conditional moments forecast returns in the

cross-section. We run Fama-MacBeth regressions and form portfolios based on consumption

volatility loadings. In Section 4, we test whether consumption growth and its conditional

moments as well as the VR factor are priced risk factors. Section 5 contains time-series

predictability tests and Section 6 concludes.

II. Model

In this section, we derive the asset pricing implications of a model where the representative

agent has recursive preferences and the state of the economy is unobservable. A crucial

implication of recursive preferences is that the agent cares not only about shocks to current

consumption growth but also about news regarding the distribution of future consumption

growth. In our model, future consumption growth is influenced by time-variation of the

conditional mean and volatility of consumption growth which is unobservable to the agent.

This latent nature implies the agent forms beliefs about the conditional first and second

moments of consumption growth and, most importantly, changes in the perceived first and

second moments of consumption growth are priced.
4Other papers building on the long-run risk framework of Bansal and Yaron (2004) include Bhamra, Kuehn,

and Strebulaev (2007), Hansen, Heaton, and Li (2008) and Bansal, Dittmar, and Kiku (2009)
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A. Consumption

We assume that the conditional first and second moments of consumption growth follow

a Markov chain. Specifically, let ∆ct+1 denote log consumption growth, µt its conditional

expectation and σt its conditional volatility, then log consumption growth follows

∆ct+1 = µt + σtεt+1 εt ∼ N (0, 1) (1)

with iid innovations εt. For tractability in the empirical estimation, we assume two states for

the mean and two for the volatility which are denoted by µt ∈ {µl, µh} and σt ∈ {σl, σh}.

The conditional first and second moments of consumption growth follow Markov chains with

transition matrix Pµ and P σ, respectively, given by

Pµ =

 pµll 1− pµll
1− pµhh pµhh

 P σ =

 pσll 1− pσll
1− pσhh pσhh

 (2)

To keep the number of parameters to be estimated manageable, we impose that mean and

volatility states switch independently. Thus, the joint transition matrix is the product

of the marginal probabilities for mean and volatility and the 16-element matrix can be

fully characterized by 4 parameters. Importantly, the assumption of independent switch-

ing probabilities does not imply that mean and volatility or the beliefs thereof are indepen-

dent. Since we assume two drift and two volatility states, there are four states in total,

{(µl, σl), (µl, σh), (µh, σl), (µh, σh)}, denoted by st = 1, ..., 4. Our specification follows Kandel

and Stambaugh (1990), Kim and Nelson (1999), and Lettau, Ludvigson, and Wachter (2008).

In contrast to Bansal and Yaron (2004) and Kandel and Stambaugh (1991), we assume that

the representative agent does not observe the state of the economy. Instead, she must infer it

from observable consumption data. This assumption ensures that the empirical exercise is in

line with the model. The inferences at date t about the underlying state is captured by the

posterior probability of being in each state based on the available data Yt. Let ξt+1|t denote

the posterior belief vector of size 4× 1:

ξt+1|t = P ′
P ′ξt|t−1 � ηt

1′(P ′ξt|t−1 � ηt)
(3)
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where

ηt =


f(∆ct|µt−1 = µl, σt−1 = σl, Yt−1)

f(∆ct|µt−1 = µl, σt−1 = σh, Yt−1)

f(∆ct|µt−1 = µh, σt−1 = σl, Yt−1)

f(∆ct|µt−1 = µh, σt−1 = σh, Yt−1)


is a vector of Gaussian likelihood functions and P = Pµ ⊗ P σ is the transition matrix.

B. Recursive Utility

The representative household maximizes recursive utility over consumption following Kreps

and Porteus (1978), Epstein and Zin (1989), and Weil (1989):

Ut =
{

(1− β)Cρt + β
(
Et[U1−γ

t+1 ]
)ρ/(1−γ)}1/ρ

(4)

where Ct denotes consumption, β ∈ (0, 1) the rate of time preference, ρ = 1 − 1/ψ and ψ

the elasticity of intertemporal substitution (EIS), and γ relative risk aversion. Implicit in the

utility function (4) is a constant elasticity of substitution (CES) time aggregator and CES

power utility certainty equivalent.

Epstein-Zin preferences provide a separation of the elasticity of intertemporal substitution

and relative risk aversion. These two concepts are inversely related when the agent has power

utility. Intuitively, the EIS measures the agents willingness to postpone consumption over

time, a notion well-defined even under certainty. Relative risk aversion measures the agents

aversion to atemporal risk across states.5

We know from Epstein and Zin (1989) that the Euler equation for any return Ri,t+1 can

be stated as

Et

[
βθ
(
PCt+1 + 1

PCt

)−(1−θ)(Ct+1

Ct

)−γ
Ri,t+1

]
= 1 (5)

where θ = 1−γ
1−1/ψ and PCt = Pt/Ct denotes the wealth-consumption ratio. For the empirical

exercise, it is useful to study the log-linearized pricing kernel. A log-linear approximation of

the pricing kernel implicit in (5) is

mt+1 ≈ (θ lnβ − (1− θ)k0)− γ∆ct+1 − (1− θ)(pct+1 − k1pct) (6)
5Recursive preferences also imply preference for early or late resolution of uncertainty. This feature, however,

is not important for this paper since the agent cannot choose between consumption lotteries which differ in
the timing of the resolution of uncertainty.
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where pct = ln(Pt/Ct) denotes the log wealth-consumption ratio and k0, k1 are constants. The

value of k1 is given by k1 = PC/(PC−1) > 1 and PC is the mean wealth-consumption ratio.

The Epstein-Zin pricing kernel is thus a function of consumption growth and the level of the

log wealth-consumption ratio. Alternatively, the pricing kernel can approximately be stated in

terms of changes of the log wealth-consumption ratio if k1 is close to one. Lustig, Van Nieuwer-

burgh, and Verdelhan (2008) estimate the unconditional quarterly wealth-consumption ratio

to be almost 351 implying that k1 = 1.003. Consequently, the log pricing kernel can be closely

approximated by:

mt+1 ≈ (θ lnβ − (1− θ)k0)− γ∆ct+1 − (1− θ)∆pct+1 (7)

The log pricing kernel (7) implies that excess returns are determined as covariance between

returns and log consumption growth as well as the covariance between returns and changes

of the log wealth-consumption ratio:

Et[Rei,t+1] ≈ −Covt(Ri,t+1,mt+1) = γCovt(Ri,t+1,∆ct+1) + (1− θ)Covt(Ri,t+1,∆pct+1) (8)

In an endowment model which is solely driven by iid shocks, the wealth-consumption

ratio is constant. In our model, however, the first and second moments of consumption

growth follow a Markov chain. The unobservability of the state implies that the agent’s

beliefs characterize the state of the economy. Consequently, the wealth-consumption ratio is

a function of the agent’s beliefs about the state of the economy, i.e., PCt = PC(ξt+1|t).

For the pricing of the return on the consumption claim, Euler equation (5) simplifies to

PCθt = Et

[
βθ(PCt+1 + 1)θ

(
Ct+1

Ct

)1−γ
]

(9)

Based on the law of iterated expectations, equation (9) implies that

PCθt =
4∑
i=1

ξt+1|t(i)PC
θ
t,i (10)

where ξt+1|t(i) is i-the element of ξt+1|t and

PCθt,i = E

[
βθ(PCt+1 + 1)θ

(
Ct+1

Ct

)1−γ
∣∣∣∣∣ st+1 = i, ξt+1|t

]
(11)

Equation (10) says that the agent forms a belief-weighted average of the state- and belief-

conditioned wealth-consumption ratios (11).
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In order to study how the wealth-consumption ratio changes with beliefs about the state,

we further define the posterior belief that the mean state is high tomorrow by

bµ,t+1|t = P (µt+1 = µh|Yt) = ξt+1|t(3) + ξt+1|t(4) (12)

and the posterior belief that the volatility state is high tomorrow by

bσ,t+1|t = P (σt+1 = σh|Yt) = ξt+1|t(2) + ξt+1|t(4) (13)

The univariate effects of changing beliefs about the volatility (mean) while holding the the

mean (volatility) constant can locally be approximated. Given the volatility, changes of the

log wealth-consumption ratio are

∆pct+1 ≈
(
bµ,t+2|t+1 − bµ,t+1|t

) 1
θ

PCθµ=µh,σ − PC
θ
µ=µl,σ

bµ,t+1|tPCθµ=µh,σ +
(
1− bµ,t+1|t

)
PCθµ=µl,σ

(14)

where PCµ=µh,σ denotes the wealth-consumption ratio when expected consumption growth

is high and the consumption volatility is constant, a similar definition applies for the other

wealth-consumption ratios. Analogous, given the mean, changes of the log wealth-consumption

ratio are

∆pct+1 ≈
(
bσ,t+2|t+1 − bσ,t+1|t

) 1
θ

PCθµ,σ=σh
− PCθµ,σ=σl

bσ,t+1|tPCθµ,σ=σh
+
(
1− bσ,t+1|t

)
PCθµ,σ=σl

(15)

Changes in the log wealth-consumption ratio are thus locally proportional to changes in beliefs.

From an empirical asset pricing perspective, this finding implies that changes in beliefs are

priced in the time-series and cross-section since they affect the wealth-consumption ratio,

according to Equation (8).

This implication does not necessarily follow from an equilibrium model where the condi-

tional consumption volatility follows a GARCH process. In a GARCH model, the conditional

volatility is a function of lagged volatility and lagged squared residuals of the consumption

process. Thus, a GARCH process is not driven by separate innovations relative to the con-

sumption process. Consequently, Restoy (1991) and Restoy and Weil (2004) have shown that

a GARCH consumption model does not give rise to a priced risk factor in a log-linearized ap-

proximation to an equilibrium model.6 Specifically, Equation (4.5) in Restoy and Weil (2004)

states that the covariance of any stock with the wealth-consumption ratio is proportional
6In empirical tests of equilibrium models, GARCH-inspired processes have been used by Adrian and Rosen-

berg (2008) and Tedongap (2007) to motivate additional factors in the cross section.

10



to its covariance with consumption growth. Volatility, which affects the wealth-consumption

ratio, therefore can have pricing implications as it determines the loading on the consumption

growth factor, but it does not give rise to a second priced risk factor. Restoy and Weil con-

tinue to say: ”This result embodies the fundamental insight that, for a GARCH(1,1) process,

returns are only able to predict future conditional means of consumption growth but carry

no information about the future conditional variances”.

C. Estimation

To estimate the model, we obtain data on quarterly per capita consumption from the NIPA

tables as the sum of nondurables and services. In accordance with the observation that the

consumption behavior in the United States in the years following World War II is systemati-

cally different from later years, we restrict our time-series from the first quarter of 1955 until

the fourth quarter of 2007. The choice of 1955 allows sufficient consumption observations to

ensure that the impact of prior beliefs on posteriors has vanished by the time we start the

portfolio analysis in 1964.

The resulting parameter estimates of the Markov chain are reported in Table I, Panels

A and B. Expected consumption growth is always positive and about twice as high in the

high state relative to the low state (µl = 0.375%, µh = 0.748% quarterly). State-conditioned

consumption volatilities are σl = 0.211% and σh = 0.463%. The probability of remaining in a

given regime for the mean is 0.935 in the low state and 0.912 in the high state. The volatility

regimes are somewhat more persistent, with probabilities of 0.977 and 0.978, respectively.

Our estimates differ from the ones presented by Lettau, Ludvigson, and Wachter (2008), who

estimate volatility in both states to be more persistent (0.991 and 0.994). In addition to small

differences in the time-series, their consumption measure is total consumption, while we use

the common definition of consumption as nondurables plus services.

We assume independent switching in mean and volatility states. This assumption greatly

reduces the number of parameters to be estimated and thus improves estimation precision.

Yet this assumption does not appear to be a significant restriction of consumption data. If

the true (unobservable) correlation between regime switches were very different from zero,

we would expect to see a large correlation in our estimated posterior beliefs. Panel C of

Table I shows that this correlation is less than 15% which is small enough to suggest that the
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assumption of independence is not a contradiction of the data.

Figure 1 shows the filtered beliefs for the regimes. Panel A depicts the belief dynamics

for mean consumption growth bµ,t+1|t and Panel B for the standard deviation bσ,t+1|t. These

graphs visually confirm that the mean regimes are less persistent than the standard deviation

states. In particular, the parameter estimates for the Markov chain imply that mean states

last for 3.4 years whereas volatility states last for 11.2 years on average. Further, a decline

in consumption volatility from the 1990s onwards, as pointed out by Kim and Nelson (1999),

is easily observable. Importantly, there is significant variation in beliefs about the volatility

state in addition to decline in the early 1990s.

D. Implications

Based on the parameters estimated from consumption data, we solve the model numerically

to study its properties. In the following, we are interested in how the perception about the

first and second moments of consumption growth affect the wealth-consumption ratio. To

this end, we define expected consumption growth and expected consumption volatility as a

belief weighted average:

µ̂t+1|t = bµ,t+1|tµh + (1− bµ,t+1|t)µl σ̂t+1|t = bσ,t+1|tσh + (1− bσ,t+1|t)σl (16)

In Figures 2 and 3, we plot the wealth-consumption ratio as a function of the perceived

conditional first µ̂t+1|t (left graph) and second σ̂t+1|t (right graph) moments of consumption

growth for the benchmark calibration of Table I when the agent has a high EIS of 1.5 (Figure

2) and low EIS of 0.5 (Figure 3). We further calibrate the model to a quarterly rate of time

preference of β = 0.995 and risk aversion of γ = 30. Risk aversion of 30 seems unrealistically

high. This section, however, is meant to yield qualitative guidance and not quantitative

results.

To gain a better understanding of the economics, it is convenient to recall the Gordon

growth model. Under the assumption that discount and growth rates are constant, the Gordon

growth model states that the wealth-consumption ratio is negatively related to the risk-free

rate rf and risk premium rE and positively to the growth rate g, i.e., PC = 1/(rf + rE − g).

In Figure 2, the wealth-consumption ratio is increasing in the perceived mean and de-

creasing in the perceived volatility of consumption growth when the EIS equals 1.5. In Figure

3, the opposite is true when the EIS equals 0.5. Interestingly, both, Figures 2 and 3 suggest
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that the log wealth-consumption ratio is approximately affine in the perceived first and second

moment of consumption growth for our parameterization, confirming the validity of Equations

(14) and (15).

The sign change in the slope of the wealth-consumption ratio with respect to expected

consumption growth is driven by two opposing effects. On the one hand, a higher perception

about the growth rate increases the wealth-consumption ratio as in the Gordon growth model.

On the other hand, in equilibrium, an increase in expected consumption growth also raises

the risk-free rate since the riskless asset becomes less attractive relative to the risky asset.

This second effect lowers the wealth-consumption ratio. When the EIS is greater than unity,

the first effect (intertemporal substitution effect) dominates the second effect (wealth effect).

As a result, the demand for the risky asset and thus the wealth-consumption ratio rises with

the perceived expected growth rate of consumption.

Similarly, the sign change in the slope of the wealth-consumption ratio with respect to

expected consumption growth volatility (Figure 2 versus 3) is also driven by two opposing

effects. On the one hand, a higher perceived conditional consumption volatility increases the

risk premium which lowers the wealth-consumption ratio as in the Gordon growth model. On

the other hand, in equilibrium, an increase in expected consumption growth volatility also

reduces the risk-free rate since the riskless asset becomes more attractive relative to the risky

asset. This effect increases the wealth-consumption ratio. If γ > 1, the first effect dominates

the second when the EIS is greater than one.

In order to test this intuition in the cross-section of returns, it is convenient to restate the

fundamental asset pricing equation (8) in terms of betas:7

Et[Rei,t+1] ≈ βic,tλc,t + βipc,tλpc,t ≈ βic,tλc,t + βiµ,tλµ,t + βiσ,tλσ,t (17)

where βic,t, β
i
pc,t, β

i
µ,t, β

i
σ,t denote risk loadings of asset i at date t with respect to consumption

growth, the wealth-consumption ratio and the conditional first and second moment of con-

sumption growth and λc,t, λpc,t, λµ,t, λσ,t are the respective market prices of risk. The main

cross-sectional implications of the model are the following. Assuming that both risk aver-

sion and EIS are greater than one, the agent requires lower expected excess returns for stock
7Equation (10) states that variations in the wealth-consumption ratio depend on the beliefs about four states,

three of which are linearly independent. In an exact implementation of the model, the wealth-consumption
ratio is thus a nonlinear function of three variables. We reduce it to two in order to achieve a more meaningful
economic interpretation for mean and volatility states. Note, however, that the empirical results are not
affected by this assumption.
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which load less (low betas) on expected consumption growth and more (high betas) on future

consumption growth volatility.

The economic intuition is straightforward. Equations (8) and (17) imply that the market

prices of the conditional first and second moments of consumption growth are their respective

conditional variances, each multiplied by a constant.8 The sign of both constants depends on

(1 − θ), coming from Equation (8), and on the slope of the wealth-consumption ratio with

respect to the conditional mean and volatility of consumption growth. Assuming both risk

aversion and EIS greater than one, (1 − θ) is positive and the wealth-consumption ratio is

upward-sloping in the conditional mean and downward-sloping in the conditional volatility

of consumption growth (Figure 2). Consequently, the market price of expected consumption

growth is positive, i.e. λµ,t > 0, and the market price of conditional consumption volatility is

negative, i.e. λσ,t < 0.

Moreover, the positive sign of λµ,t and negative one of λσ,t also implies that investors

require higher compensation for holding stocks which load strongly (high beta) on expected

consumption growth and less compensation for stocks which load strongly (high beta) on

consumption growth volatility. Intuitively, assets, which comove negatively with future con-

sumption growth, have high payoffs when investors learn that future consumption growth is

low. These assets thus provide insurance against future bad times. Similarly, assets, which

comove highly with future consumption volatility, have high payoffs when investors learn that

future consumption is very volatile. These assets serve as insurance against uncertain times

and thus have lower required returns.

III. Cross-Sectional Return Predictability

The goal of this section is to demonstrate that loadings on the perceived (filtered) conditional

consumption volatility forecast returns. To this end, we first run quarterly time-series regres-

sions to obtain loadings on risk factors. Next, we test using both Fama-MacBeth regressions

and portfolio sorts whether these risk loadings forecast returns. Our main finding is that

innovations in consumption volatility risk is a strong and robust predictor of future returns,
8Intuitively, the log wealth-consumption is approximately affine in the perceived first and second mo-

ments of consumption growth which expressed in changes can be stated as ∆pct ≈ A∆µt + B∆σt. Sub-
stituting this expression into (8), one obtains (17) and λµ,t = A(1 − θ)Vart(∆µt)/Et[Mt+1] and λσ,t =
B(1− θ)Vart(∆σt)/Et[Mt+1].
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while exposure to consumption growth and changes in expected consumption growth risk do

not help to explain the cross-section of asset prices.

A. Data

Our sample consists of all common stocks (shrcd = 10 or 11) on CRSP that are traded on the

NYSE or AMEX (exchcd = 1 or 2). While the results are generally robust to the inclusion of

NASDAQ stocks, this restriction mitigates concerns that only a small fraction of total market

capitalization has a large impact on the portfolio analysis. To obtain valid risk measurements

for a given quarter, the asset is required to have at least 60 months of prior data and at

least 16 out of 20 valid quarterly returns. Since we use size and book-to-market ratio as

characteristics, we require market capitalization to be available in December that occurs 7

to 18 months prior to the test month as well as book value of equity from COMPUSTAT in

the corresponding year. The choice of the long delay is motivated by the portfolio formation

strategies in Fama and French (1992), who want to ensure that the variables are publicly

available when they are used in the study. Due to limited availability of book values in earlier

years, we begin the empirical exercise in January 1964. The first time-series regression to

estimate risk loadings thus covers the time span from 1959 to 1963. We end our analysis in

December 2007.

B. Consumption Volatility Risk and Stock Returns

Our first set of empirical results is based on time-series regressions of individual securities

onto log consumption growth, the perceived conditional mean and volatility of consumption

growth as well as the excess return on the market. This specification is a generalization of

the pricing restriction (8), where changes in the wealth-consumption ratio can be linearly

approximated as shown in Equations (14) and (15). To be conservative, we also include the

market return in the regression to control for time effects so that consumption-based betas

purely load on cross-sectional differences in returns.

In particular, for each security, we estimate factor loadings in each quarter t∗ using the

previous 20 quarterly observations from

Rit −R
f
t = αit∗ + βiM,t∗

(
RM,t −Rft

)
+ βic,t∗∆ct + βiµ,t∗∆µt + βiσ,t∗∆σt + εit (18)

where Rft denotes the risk-free rate and RM,t the market return for t ∈ {t∗− 19, t∗}. Further,
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∆µt and ∆σt are innovations in the perceived conditional moments of consumption growth.

These are defined as the differences in believed moments before and after consumption is

realized:

∆µt = µ̂t+1|t − µ̂t|t−1 ∆σt = σ̂t+1|t − σ̂t|t−1, (19)

where µ̂t and σ̂t are the perceived conditional first and second moments of consumption

growth, respectively, defined in Equation (16).

The estimated parameters from Equation (18) allow us to evaluate the cross-sectional

predictive power of these loadings in two different ways. First, we use cross-sectional regres-

sions as in Fama and MacBeth (1973) to investigate if the factor loadings help to predict

cross-sectional variation in returns. Second, we form portfolios based on the estimated risk

exposures and analyze their properties in the time-series.

C. Fama-MacBeth Regressions

We now investigate the predictive power of the estimated loadings from model (18) by cross-

sectionally regressing the returns in month s + 1 of each asset onto its latest available risk

loadings as well as size and value characteristics:

Ris+1 = γ0,s+1 + γ1,s+1β̂
i
M,t∗ + γ2,s+1β̂

i
c,t∗ + γ3,s+1β̂

i
µ,t∗ + γ4,s+1β̂

i
σ,t∗ (20)

+γ5,s+1MEit∗ + γ6,s+1BM
i
t∗ + ηis+1

The explanatory variables are normalized each quarter so they are centered around zero with

unit variance. Equation (20) states that each set of three monthly regressions in one quarter

will share the same predictor variables. For example, the returns in each of the months

April, May, and June are regressed onto the risk loadings estimated from the window ending

in the first quarter of the same year. We are interested whether the factor loadings have

any predictive power for the cross-sectional variation of returns or, equivalently, whether

γk,s, k = 1, ..., 4 are on average different from zero.

The results of the Fama-MacBeth regressions are presented in Table II. Model specifi-

cations I-IV present univariate effects of each risk loading. Consistent with prior research

(Mankiw and Shapiro (1986), Lettau and Ludvigson (2001b)), an asset’s contemporaneous

short horizon loadings on the market and consumption growth do not help to predict cross-

sectional differences in returns. The average coefficient γ̄1 and γ̄2 are small and insignificant.
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The same holds for innovations in the belief about the expected growth rate, γ̄3. Exposure

to consumption volatility risk, however, as measured by γ̄4, shows up strongly negative and

significant. Stocks that comove highly with changes in consumption volatility underperform

their peers in the future. Specification V is the full model. Now, both the loading on con-

sumption growth and consumption volatility risk are significant. In regression VI, we add two

characteristics known to predict stock returns, namely, the market capitalization (γ5) and the

ratio of book value of equity to market value (γ6), to confirm that the predictive power of

consumption volatility is not already captured by these predictors. The absolute value of the

point estimate γ̄4 is slightly reduced by the addition of the two characteristics, but it remains

significant.

What do these findings mean? The novel implications of our model are that beliefs about

mean and volatility states of consumption growth are priced sources of risk. As a result,

exposure to these sources should be associated with a spread in future returns. The sign of

the risk premium associated with each of these two factors depends on preference parameters.

In the case where both risk aversion and EIS are greater than unity, the model predicts that

returns are positively related to βµ,t and negatively to βσ,t. An EIS lower than one yields

the opposite predictions. We do not find convincing evidence that exposure to fluctuations in

expected consumption growth predicts returns. Yet the coefficient on consumption volatility

is strongly negative. This finding is consistent with the model only if risk aversion and EIS

of the representative agent is greater than one.

There are two potential problems in our analysis. First, when comparing the influence of

the predictor variables, it is important to note the possibility of an error-in-variable problem.

The first four variables are estimates from first stage regressions and are thus noisy. More-

over, while researchers often treat ∆ct as observable, the consumption time-series actually

is measured with significant noise (Breeden, Gibbons, and Litzenberger (1989) and Wilcox

(1992)). Both ∆µt and ∆σt are estimates and themselves depend on the imposed model for

consumption growth dynamics. The t-statistics reported are obtained from standard OLS

theory and are likely based on standard errors that are too small. However, the necessary

adjustment would require to keep track of standard errors across all stages of estimation and

is thus not feasible in this case. In the next section, we use a different methodology to confirm

that our results are robust and not due to misrepresented standard errors.
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Second, imposing a Markov model on consumption growth leads to a collinearity problem

in the first stage regression (18). Rational Bayesian updating leads investors to lower their

belief about the expected consumption growth rate whenever the realized growth rate is lower

than their prior belief. Since the distance between the two mean states is small relative to the

total variation of consumption growth, this leads to a high correlation between ∆ct and ∆µt.

We estimate it to be 0.60 over the entire sample, and it ranges between 0.39 and 0.93 in 5-year

subperiods. To avoid this collinearity, we omit either variable in the first stage regression (18).

In untabulated results we confirm that the cross-sectional impact of volatility beliefs remains

robust.

To reduce noise in measured consumption, we also estimate a very basic consumption

tracking portfolio similar to Vassalou (2003) which also attenuates collinearity. To this end,

we regress consumption growth on the market return, HML and SMB. The fitted values

estimated from this regression can be interpreted as returns on a financial portfolio. This

additional step does not only reduce the collinearity identified above, but also mitigates the

concerns about measurement error in consumption data. A projection of consumption growth

onto the space of financial payoffs eliminates possible noise in consumption data which is

orthogonal to financial markets. At the same time, valuable information that is contained

in the consumption series but not in financial data might be lost. In unreported results, we

confirm previous findings.

D. Portfolio Sorts

An alternative approach to utilize the estimated risk loadings from regression (18) is to group

the estimates cross-sectionally and form portfolios. This approach has several important

advantages relative to Fama-McBeth regressions. First, the error-in-variable problem that led

to underestimated standard errors in the regression approach now leads to conservatism in

the statistical inferences. When variables are measured with noise, the portfolio sorts will be

less accurate as some stocks will be assigned to the wrong portfolio. Under the assumption

of cross-sectional predictive power, this leads to smaller return differences across portfolios.

Since the statistical inference is based solely on portfolio returns, the measurement error

ultimately leads to a decrease in statistical significance.

Second, forming portfolios allows to identify a non-linear relation between risk and ex-
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pected excess returns. While the pricing kernel in equation (7) indicates that expected excess

returns are approximately log-linear in the wealth-consumption ratio, the wealth-consumption

ratio itself is not linear in beliefs about the mean or volatility states. Lastly, the portfolio

approach results in a time-series of returns, which allows a further analysis of the relation

between this strategy and other known risk factors.

At the end of each quarter, we sort all stocks in our sample into portfolios based on their

estimated risk loadings from the time-series regression (18). Table III reports the average

returns of equally-weighted (EW) and value-weighted (VW) quintiles as well as a long-short

strategy that each months invests $1 into quintile 5 (high risk) and sells $1 of quintile 1 (low

risk).

In Panel A, portfolios are formed based on loadings with respect to the market. Neither

weighting scheme results in a measurable return dispersion across portfolios. A similar result

obtains by forming portfolio based on exposure to consumptions growth β̂ic,t (Panel B) and

changes in beliefs about expected consumption growth β̂iµ,t (Panel C). In contrast, consump-

tion volatility risk β̂iσ,t shows up strongly negatively (Panel D). An equally-weighted strategy

results in a return of the long-short portfolio of −0.32% monthly. The value weighted return

is even larger (in absolute value) with −0.43% per month or in excess of −5% annually. In

both cases, average returns across quintiles are monotonically decreasing. The large difference

in returns is thus not driven by extreme observations in quintiles 1 and 5. Overall, the results

in this table confirm the findings from the cross-sectional regressions in Table II.

Cross-sectional differences in returns might not be surprising if consumption volatility

betas covary with other variables known to predict returns. Crucially, Table IV shows that

this is not the case for the firm characteristics size and book-to-market. In Panel A, we again

report average returns for each consumption volatility exposure quintile and its average beta.

Panel B reports firm characteristics for each portfolio. Since market capitalization is non-

stationary, and the value characteristic varies dramatically over time, we compute size- and

value deciles for each stock at each month and take the average over these deciles within each

portfolio. The table reports time-series means of portfolio characteristics. For market equity,

we observe that the two extreme quintiles are composed of somewhat smaller than average

stocks. This effect often shows up when ranking stocks by a covariance measure. Returns of

small stocks are on average more volatile and risk estimates are therefore more likely to be
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very large or very small. However, there is no difference in size rank between quintile 1 and 5.

Most importantly, there is no variation in the book-to-market ratio across portfolios. Thus,

consumption risk portfolios do not load on firm characteristics which are known to predict

future returns.

A number of so-called anomalies are confined to a small subsets of stocks, often just

to small companies or illiquid stocks (e.g. Fama and French (2008), Avramov, Chordia,

Jostova, and Philipov (2007)). In Tables V and VI, stocks are independently sorted into three

portfolios based on β̂iσ,t, and into two portfolios based on market capitalization (Table V) or

book-to-market ratio (Table VI). The number of portfolios for each variable follows Fama and

French (1993) and trades off the desire to obtain sufficient dispersion along each dimension

while keeping the number of stocks in each portfolio large enough to minimize idiosyncratic

risk. The bivariate sort in Table V shows that consumption volatility risk is consistently

present and strong for both equal and value-weighted strategies with return differences ranging

from −0.20% to −0.35% monthly. Interestingly, the effect is stronger for big than for small

companies since returns of smaller stocks have a larger idiosyncratic component, and thus the

risk estimates from the first stage regression are less precise. With these findings, there is no

reason to believe that the predictive power of consumption volatility risk is associated with

possible mispricing or slow information diffusion in small stocks. Similarly, Table VI confirms

that consumption volatility risk is also present within book-to-market groups.

IV. Consumption Volatility Risk Pricing

Building on the findings of the previous section, we now investigate the pricing implications

of beliefs about consumption moments cross-sectionally using the 25 Fama and French (1992)

portfolios. These portfolios have been shown to challenge the single factor CAPM. Fama

and French (1993) propose two additional factors that help to explain the return differences:

size (SMB) and value (HML). While a convincing, unified economic interpretation for these

factors is still outstanding, from an econometric view, the three factor model has been proven

very successful.

We show that changes in beliefs about consumption volatility carry a negative price of risk,

while changes in beliefs about the mean state do not contribute to explaining the cross-section

of returns. To circumvent possible econometric problems related to multicollinearity in the
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independent variables, we also form a long-short portfolio based on consumption volatility risk

(VR) and demonstrate that it shows up strongly and significantly as a priced factor in cross-

sectional regressions. While the VR portfolio only modestly correlates with HML, both factors

are substitutes in the pricing relation. This evidence provides an economic interpretation for

the risk associated with the HML factor.

A. Factor Pricing with Consumption Data

Equation (17) states that, in a log-linear approximation, expected excess returns depend on

consumption growth and the perceived first and second moments of consumption growth. We

evaluate the performance of our model in two stages. First, for each 25 Fama-French portfolio,

we obtain risk loadings from the time-series regression

Rit −R
f
t = αi + βic∆ct + βiµ∆µt + βiσ∆σt + εit i = 1, ..., 25 (21)

In the second stage, we estimate the prices of risk by a cross-sectional regression of returns

onto the loadings from the first stage.

Results from the second stage regression are summarized in Table VII. For each factor,

the table reports point estimates for the prices of risk and associated t-statistics, which are

adjusted for estimation error in the first stage as proposed by Shanken (1992) and are robust

to heteroscedasticity and autocorrelation as in Newey and West (1987) with 4 quarterly lags.

In addition, the following regression statistics are shown: The second stage R2 and adjusted

R2 as well as the model J-test (χ2 statistic) with its associated p-value (in percent). Return

observations are at a quarterly frequency and the factors used are log consumption growth

(∆ct), changes in beliefs about the conditional mean of consumption growth (∆µt), as well

as changes in beliefs about consumption growth volatility (∆σt). A fourth factor, which is

the return of a long-short portfolio that buys assets with high consumption volatility risk and

sells assets with low consumption volatility risk, is also considered and denoted by VR.

Regression I shows results for the standard consumption CAPM. Confirming prior re-

search, the market price of consumption risk is insignificant and an R2 of about 8% indicates

that the C-CAPM performs very poorly in pricing the chosen set of test assets. Regressions II

- IV show the incremental effects of adding beliefs about conditional moments of consumption

growth. Even though results in the previous section have shown that exposure to ∆µt does

not provide any return predictability, it is possible that ∆µt carries a contemporaneous risk
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premium. This is ruled out by regression II. The estimate for the price of risk on ∆µt is

zero. In contrast, regression III shows that consumption volatility is a significant factor in

the cross-section and, as the previous section suggests, the estimate for the price of volatility

risk is negative.

Regression IV reports the full three factor model (21). Similar to the previous findings,

both ∆ct and ∆µt are insignificant. The price of volatility risk, ∆σt, is negative, but lacks

convincing statistical significance. This specification, however, suffers from a multicollinearity

problem. While all explanatory variables are statistically insignificant, the model cannot be

rejected, and the associated p-value of 96 percent is overwhelmingly large. An F -test of the

joint significance confirms this intuition. The hypothesis that first stage risk loadings for ∆ct,

∆µt, and ∆σt are jointly equal to zero in the second stage is rejected at any significance level.9

While this evidence presents strong indication of multicollinearity, econometric theory is

mostly silent about how to deal with it. We mitigate this concern by forming a consumption

volatility risk (VR) portfolio as a proxy for ∆σt. The VR factor is a zero investment strat-

egy that is long in the value-weighted quintile with the highest exposure and short in the

value-weighted quintile with the lowest exposure to innovations in beliefs about consumption

volatility as measured by β̂iσ,t in Table III, Panel D. The estimated risk loadings are obtained

from 20-quarter rolling regressions that end before the portfolio formation and are thus, con-

ditional on consumption dynamics, publicly available information. We choose the univariate

β̂iσ,t dispersion as basis for the factor since the consumption volatility exposure is unrelated

to size and value characteristics, as documented in Table IV.10

Regressions V and VI show a significantly negative price of risk for the VR factor, while

beliefs about the mean consumption growth continue to be insignificant. The price for a unit

of VR risk is estimated to be about 6% per quarter, or 25% annually. The specifications

with VR perform well. The consumption CAPM augmented with the VR factor (Model VI)

achieves second stage R2 in excess of 70 percent, compared to 8 percent for the consumption
9Other indicators of multicollinearity are the Variance Inflation Factor (VIF) or the condition number of

the matrix to be inverted (X ′X). As a rule of thumb, multicollinearity is often considered problematic if the
VIF is greater than 5 or if the condition number is greater than 20. In the given problem, both number are
close to the corresponding values. The VIF is 4.25 and the condition number of the matrix (X ′X) in the
second stage is 16.

10We do not form a factor based on loadings on expected consumption growth (∆µt) since the spread between
the high and low quintile is on average close to zero. Consequently, theory predicts that its market price of
risk should be zero too.
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CAPM.

The predictions of our theory in Section II depend on the preference parameters of the

representative agent. Under the common assumption of risk aversion greater than unity, an

EIS greater than one yields a negative price of risk for consumption volatility. While prior

research often finds a negative price of risk for market volatility (Ang, Hodrick, Xing, and

Zhang (2006), Adrian and Rosenberg (2008)), only a general equilibrium consumption-based

model allows us to draw conclusions about preference parameters. The estimated prices of

risk for both ∆σt and its mimicking VR portfolio are significantly negative, thus, suggesting

an EIS greater than unity for the representative agent.

The second stage pricing errors are depicted in Figure 4. Each panel plots average quar-

terly excess returns against the model predicted excess returns for a given set of explanatory

variables. If the model correctly prices assets and there are no errors induced from estimation

or small sample size, all asset returns should line up exactly on the diagonal line. The top

left graph depicts the consumption CAPM (regression I in Table VII). Visually, this graph

confirms that the consumption CAPM does not work well in pricing the 25 Fama-French

portfolios. While the portfolios vary drastically in their average returns, the model predicted

returns are all very close together, resulting in a narrow cloud. In the top right graph, we aug-

ment the consumption CAPM with ∆σt (regression III in Table VII). Adding ∆σt as pricing

factor helps to achieve more variation in predicted returns, but the pricing errors remain fairly

large. In the two bottom graphs, we depict the full model with ∆σt (bottom left, regression

IV), and the VR factor (bottom right, regression V). Both graphs confirm that in the full

model, either with ∆σt or its mimicking portfolio, pricing errors are small and loadings on

risk factors successfully explain average excess returns.

B. Factor Pricing with Portfolio Returns

To relate the pricing implications of consumption volatility risk to the existing literature,

we now study market based rather than consumption based models. In particular, we are

interested whether our VR factor is a substitute for Fama-French’s HML factor, thereby

providing a macroeconomic interpretation for HML. Even though VR is independent of book-

to-market characteristics and comoves only modestly with HML, we find that substituting

HML by VR in the Fama-French three factor model results in similar pricing and leaves
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pricing errors unaffected.

Summary statistics for the VR portfolio are given in Table VIII. The VR portfolio has a

mean return of −0.43% and a standard deviation of 3.25% per month. Its standard deviation

is lower than the market volatility, but comparable to the ones of the Fama-French factors.

The monthly Sharpe ratio (in absolute value) of 0.13 is larger in magnitude than the Sharpe

ratio of SMB (0.08) and close to the Sharpe ratio of HML (0.15). The correlation matrix of

the pricing factors (Panel B) shows that the VR portfolio returns are uncorrelated with the

market and SMB. Importantly, the correlation with the HML factor is moderate at −0.23

even though the VR portfolio is neutral with respect to the book-to-market characteristic

(see Panel B of Table IV). Overall, the correlations of VR with all other factors are smaller

than the pairwise correlations between the Fama French factors. Parameter estimates from

a time-series regression of the VR factor onto the other factors are reported in Panel C. The

CAPM (regression II) does not explain the returns of the VR portfolio. In regression III, the

Fama French factors attenuate the estimated intercept α̂ slightly towards zero, but it remains

large and significant. This attenuation is solely driven by HML and both the market and

SMB have insignificant coefficients.

Using the same econometric methods as in the previous section, we now obtain risk load-

ings for each of the 25 Fama-French portfolios from time-series regressions. In the second

stage, we estimate the prices of risk by a cross-sectional regression of returns onto the load-

ings from the first stage. Table IX reports factor loadings from first stage regressions of excess

returns on the market excess return (REM,t) and the VR factor

Rit −R
f
t = αi + βiMR

E
M,t + βiV RV Rt + εit i = 1, ..., 25 (22)

The risk estimates for both factors vary considerably across portfolios. Panel A confirms

previous findings about market factor loadings. Along the size dimension, market betas

decrease in size. While this is generally consistent with a risk based explanation of the size

effect, the dispersion in betas is not sufficient to explain the large dispersion in returns. Along

the value sorted portfolios, risk estimates actually decrease in the book-to-market ratio, while

returns increase. This well known finding challenges a risk based explanation and contradicts

the CAPM.

Risk exposures to the volatility risk factor are shown in Panel B. There is little variation

in risk loadings βiV R across size portfolios. Small stocks have an average loading of −0.02,
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and the loading monotonically decreases to −0.09 for large stocks. The dispersion in the risk

loadings along the value dimension is much larger and decreases monotonically from 0.08 for

growth stocks to −0.14 for value stocks. A low risk exposure is consistent with high expected

returns for value stocks since the price of VR risk is negative. Loading on the VR factor

therefore suggest a risk based explanation of the value anomaly.

Results from second stage regressions are reported in Table X. For each factor, the table

presents point estimates for prices of risk. The associated t-statistics are based on standard

errors that are Shanken (1992) and Newey and West (1987) adjusted. In addition, the fol-

lowing regression statistics are shown: The second stage R2 and adjusted R2 as well as the

model J-test (χ2 statistic) with its associated p-value (in percent). Regressions I and IV show

the results for the benchmark models, the market CAPM (I) and the Fama-French model

(IV). The CAPM does a very poor job in explaining the cross-section of returns. The point

estimate for the market risk premium is negative and the regression R2 is only 14%. The three

factor model reduces the pricing errors significantly and yields an R2 of 77%. The estimated

market risk premium remains negative and the model is still rejected as indicated by the high

χ2 statistic.

The remaining regressions show various combinations of the Fama-French factors with VR.

In all specifications, the estimates for the price of a unit VR risk are significant and negative,

ranging from −1.21% to −2.84% monthly. To gauge the economic impact of VR on the cross-

section of returns, we multiply average VR loadings of the value quintiles with the market

price of VR risk. Panel B of Table IX shows that the average risk loadings monotonically

decrease from 0.08 to −0.14 along the book-to-market characteristic, yielding a differential

of −0.22. Assuming a conservative price of VR risk (regression VI), this translates into an

annual expected return differences between value and growth stocks of 3.8%.

In regression III, the factors are the market portfolio and VR as in Equation (22). This

specification yields considerable improvements over the one factor market model and results

in a similar fit relative to a model that contains the market and HML (regression VII).

Interestingly, although VR is based on consumption data, a three factor model based on the

market, SMB and VR (regression V) produces an R2 of 80% which is slightly higher than

the R2 of the Fama-French model. Augmenting the Fama-French three-factor model with VR

as a fourth factor (regression VI) does not lead to an improvement in the model’s ability to
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price the cross-section. In summary, replacing HML by VR does not deteriorate the model’s

performance, while including both VR and HML as factors does not seem to improve the

model fit. Hence, HML and VR are substitutes in cross-sectional pricing for the 25 Fama

French portfolios. In contrast to HML, however, the consumption volatility risk portfolio has

a clear economic interpretation.

Adrian and Rosenberg (2008) perform a similar analysis. They decompose stock market

volatility into two components, which differ in persistence, and estimate them with a GARCH

inspired model. In contrast, our VR portfolio is based on a Markov model for low-frequency

consumption data. Interestingly, their short-run volatility component has similar pricing im-

plications as VR, whereas their long-run component performs worse than VR. However, the

persistence of their short-run volatility component is 0.327 for daily data while our consump-

tion volatility regimes last on average for several years. The VR factor thus has a much

different and macroeconomically more meaningful interpretation.

Figure 5 replicates Figure 4 for market based pricing models. The top left graph depicts

the CAPM (regression I in Table X). The remaining graphs show the CAPM augmented with

the volatility risk factor (top right graph, regression III), the Fama-French three factor model

(bottom left graph, regression IV), and a three factor model that uses VR instead of HML

(bottom right graph, regression V). Visually, these graphs confirm that simply adding VR

to the market factor improves the model fit dramatically. Both the Fama-French model and

the three factor VR model, though statistically still rejected, seem to price the 25 portfolios

equally well.

V. Time Series Predictability

In the previous sections, we showed that loadings on consumption growth volatility predict

returns cross-sectional and consumption growth volatility is a priced risk factor. The model

also predicts that the first and second moments of consumption growth forecast aggregate

returns in the time-series. As explained in Section II, the model implies a negative relation

between expected excess returns and expected consumption growth and a positive relation

between expected excess returns and consumption growth volatility when both risk aversion

and EIS are greater than unity. Noting that the wealth-consumption ratio is inversely related

to expected excess returns, this effect can be seen in Figure 2. The opposite holds when risk
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aversion and EIS are smaller than unity (see Figure 3).

We find that changes in consumption growth volatility are a strong and robust predictor

of short horizon market returns whereas expected consumption growth is not a significant pre-

dictor variable. Specifically, higher consumption growth volatility is associated with higher

future excess returns. This positive relation is consistent with previous results where loadings

on consumption growth volatility are negatively related to returns. In a univariate regres-

sion of future returns on the consumption growth volatility, the regression R2 is of similar

magnitude as the one obtained in a univariate regression using the consumption-wealth ratio

variable cay of Lettau and Ludvigson (2001a).

Table XI reports time-series regressions of quarterly excess market returns onto lagged

predictor variables. Regressions I-III represent standard benchmark models. As predictor

variables, we use the Treasury bill rate relative to its recent average as proposed by Hodrick

(1992), the term spread, the default spread, and the dividend yield.11 All of those have been

shown to predict stock returns at various horizons.12 Lettau and Ludvigson (2001a) use the

household budget constraint to motivate the variable cay and show that it works exceptionally

well at short horizon forecasts.13

In regressions IV and V, we study the predictive power of our two consumption state vari-

ables. Similar to the cross-sectional results in the previous sections, we find that beliefs about

expected consumption growth do not predict stock returns, while changes in the volatility

beliefs show up economically and statistically significant and yield an regression R2 of al-

most 5% in a univariate regression. The R2 of cay in the univariate regression II is slightly

higher at about 6%. The economic impact of consumption volatility risk is large. A one stan-

dard deviation increase in ∆σt results in an increase in the expected risk premium of 1.8%

quarterly.14 Regressions VI to VIII demonstrate that the marginal impact of ∆σt remains

strong and significant even after controlling for all other predictors including cay. This is

surprising since in our model, changes in consumption volatility enter the pricing kernel only
11Data are from FRED. The relative Treasury bill rate is the yield on a 90 day T-bill less its past 12

months moving average. The term spread is the difference between yields of long (10 year) and short (1 year)
government bonds, and the default spread is the yield difference between Baa rated and Aaa rated corporate
bonds. The dividend yield is computed from CRSP as the ratio of gross cum-dividend index returns to gross
ex-dividend returns.

12See, for example Rozeff (1984), Campbell and Shiller (1988), Fama and Schwert (1977), Keim and Stam-
baugh (1986), Campbell (1987), and Campbell and Thompson (2008).

13The variable cay was downloaded from Martin Lettau’s homepage on Oct. 18, 2008.
14Note that ∆σt has a standard deviation of around 0.0003.
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because they affect the consumption-wealth ratio. Thus, one might expect that measures of

the consumption-wealth ratio such as cay already contain information about the volatility

state. In the data, however, this is not the case suggesting that cay is an imperfect measure

of the wealth-consumption ratio.

It is well known that parameter estimates and t-statistics are potentially biased in predic-

tive regressions. Persistence in stock returns, caused e.g. by using overlapping observations,

leads to biased standard errors, which is examined in Hodrick (1992). In our setup, we do not

use overlapping observations and the autocorrelation in market returns is very small. Another

bias arises when the predictor variable is persistent and its innovations are correlated with

future returns, as discussed in Stambaugh (1999), Lewellen (2004), Boudoukh, Richardson,

and Whitelaw (2006) and Ang and Bekaert (2007). Especially when price ratios are used as

predictors, this bias shows up strongly and conventional tests will reject the null hypothesis

too frequently. To gain a better understanding, consider the following setup

rt = α+ βxt−1 + εrt

xt = φ+ ρxt−1 + εxt

where rt denotes returns and xt a predictor variable. Lewellen (2004) shows that β estimates

are biased by γ(ρ̂ − ρ) where γ = Cov(εrt , ε
x
t )/Var(εxt ) when εrt is correlated with xt. When

the dividend yield is used as predictor, for instance, an increase in price leads to a positive

realized return as well as a decrease in the dividend yield. Consequently, εrt is correlated with

xt. Lewellen (2004) reports an auto-correlation of 0.997 and Corr(εrt , ε
x
t ) = −0.96 for the

dividend yield as predictor, invaliding standard estimates and tests. For the variable ∆σt,

this bias is less of a concern since it is not a price scaled variable. For our one period forecasts,

we estimate Corr(∆σt,∆σt−1) = 0.006 and Corr(∆σt, εt) = 0.032, which is too small to bias

statistical inference.

We acknowledge that the predictive results presented have limitations. First, they are in

sample results. We leave evaluating the out of sample power for future work. Second, there

is a look-ahead bias in ∆σt. In estimating the Markov chain for consumption growth, beliefs

are updated according to Bayes’ rule and therefore are not forward looking. The parameter

estimates, however, are obtained by maximum likelihood, employing the full sample. In

particular, investors in the early sample period know of the possibility that at one point in

the future consumption volatility might switch to a state much lower than what had been
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experienced in the past. This is similar to the critique by Brennan and Xia (2005), who point

out that estimating cay over the entire sample induces a look ahead bias and a simple linear

time trend would work as well as cay. Their criticism does not apply to our results since we

use changes in beliefs as predictor which do not have a trend. Third, aggregate consumption

data is not publicly available at the end of a quarter. Instead, initial estimates are published

within the following month and they are subject to revisions for up to three years. Hence, we

cannot conclude that it is possible to implement our predictability results in practice. Yet we

succeed in identifying a new source of aggregate risk.

VI. Conclusion

When consumption growth is not i.i.d. over time and the representative household has recur-

sive preferences, the wealth-consumption ratio is time-varying and enters the pricing kernel as

a second factor (Epstein and Zin (1989), Weil (1989)). We generalize Bansal and Yaron (2004)

to account for the latent nature of the conditional first and second moments of consumption

growth. In the model, we identify innovations in beliefs about the conditional mean and

volatility of consumption growth as two state variables that affect the wealth-consumption

ratio and thus asset prices.

To test these predictions, we estimate a Markov model with two states for the conditional

mean and two states for the conditional volatility of consumption growth, as in Kandel and

Stambaugh (1990) and Lettau, Ludvigson, and Wachter (2008). Using the estimated beliefs

from the Markov model, we empirically test the pricing implications for the cross-section

and time-series of stock returns. We find that an asset’s exposure to changes in beliefs about

consumption volatility significantly forecast returns, while exposure to changes in beliefs about

expected consumption growth do not.

In cross-sectional pricing tests using the 25 Fama-French size and value portfolios, both,

changes in volatility and a portfolio, which is long assets with high volatility exposure and

short assets with low volatility exposure, show up as priced factors. The effects are robust

to a variety of pricing models, including augmented versions of the consumptiom CAPM, the

market CAPM, and the Fama-French three factor model. The comparison of pricing errors

across different model specifications indicates that the volatility risk factor has similar pricing

implications to the value factor HML, even though, the volatility risk factor is neutral with
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respect to the value characteristic.

In time-series tests, we find that innovations to beliefs about the volatility state forecast

the equity premium. A one standard deviation increase in perceived volatility is followed

by an increase of the equity returns of 1.8% quarterly. In a univariate regression, changes

about perceived consumption volatility achieve an R2 of about 5% which is comparable to

predictive power of Lettau and Ludvigson (2001a) cay variable. The signs of the coefficients

on consumption volatility in time-series and cross-sectional regressions indicate that the rep-

resentative agent has risk aversion and elasticity of intertemporal substitution greater than

unity.
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Appendix

A. Numerical Solution

Since the price-consumption ratio is only a function of beliefs, i.e., PCt = PC(ξt+1|t), the

price-consumption ratio solves:

PC(ξt+1|t) =

(
Et

[
βθ(PC(ξt+2|t+1) + 1)θ

(
Ct+1

Ct

)1−γ
])1/θ

The right-hand side can be simplified to

PC(ξt+1|t) =

(
4∑
i=1

ξt+1|t(i)E
[
βθ(PC(ξt+2|t+1) + 1)θ

(
eµi+σiεt+1

)1−γ∣∣∣ st+1 = i
])1/θ

where ξt+1|t(i) is i-the element of ξt+1|t. We solve this equation as a fixed-point in the price-

consumption. The grid for the belief state-vector has increments of size 0.025 and the expec-

tation is approximated using Gaus-Hermite quadrature with 10 nodes. Linear interpolation

is used for off-grid beliefs.
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Figure 1. Bayesian Beliefs about the Mean and Volatility State
This figure displays the estimated Bayesian belief process for the state of the conditional mean
(top figure) and conditional volatility (bottom figure) of consumption growth. The estimation
procedure follows Hamilton (1994). We use quarterly per capita real non-durable plus service
consumption.

1950 1960 1970 1980 1990 2000 2010
0

0.2

0.4

0.6

0.8

1

1950 1960 1970 1980 1990 2000 2010
0

0.2

0.4

0.6

0.8

1

36



Figure 2. Wealth-Consumption Ratio for a high EIS Agent
This figure shows the wealth-consumption ratio as a function of the perceived conditional first
µ̂t (left graph) and second σ̂t (right graph) moment of consumption growth for the benchmark
calibration when the agent has a high EIS of 1.5. Further, relative risk aversion equals 30 and
the quarterly rate of time preference is 0.995.
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Figure 3. Wealth-Consumption Ratio for a low EIS Agent
This figure shows the wealth-consumption ratio as a function of the perceived conditional first
µ̂t (left graph) and second σ̂t (right graph) moment of consumption growth for the benchmark
calibration when the agent has a low EIS of 0.5. Further, relative risk aversion equals 30 and
the quarterly rate of time preference is 0.995.
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Figure 4. Pricing Errors of the Consumption-Based Model
This figure depicts average quarterly excess returns of the 25 Fama-French portfolios against
model predicted excess returns. In all graphs, consumption growth (∆ct) is included as
explanatory factor. In the top-right and bottom-left graph, we add changes in the perceived
second (∆σt) and first (∆µt) moments of consumption growth. In the bottom-right graph,
we replace beliefs about the volatility state with the VR factor in the full model.
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Figure 5. Pricing Errors of the Market-Based Model
This figure depicts average monthly excess returns of the 25 Fama-French portfolios against
model predicted excess returns. The top-left graph represents the standard CAPM and the
bottom-left graph the Fama-French three factor model. In the top-right graph, we add the
VR factor to the CAPM and, in the bottom-right graph, we replace the HML factor with VR
in the Fama-French model.
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Table I
Markov Model of Consumption Growth

This table reports parameter estimates of the Markov model for log consumption growth

∆ct+1 = µt + σtεt+1 εt ∼ N (0, 1)

where µt ∈ {µl, µh} and σt ∈ {σl, σh} follow independent Markov processes with transition
matrices Pµ and P σ respectively.

Pµ =
[

pµll 1− pµll
1− pµhh pµhh

]
P σ =

[
pσll 1− pσll

1− pσhh pσhh

]
Panel C shows the correlation between the filtered beliefs for each state.

Panel A: Parameter Estimates

µl µh σl σh
0.375 0.748 0.211 0.463

(0.034) (0.050) (0.023) (0.042)

Panel B: Marginal Transition Probabilities

pllµ phhµ pllσ phhσ
0.935 0.911 0.977 0.978

(0.037) (0.051) (0.028) (0.024)

Panel C: Correlation of Beliefs

bµ bσ
bµ 1
bσ 0.149 1
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Table II
Fama-MacBeth Regressions

This table reports cross-sectional regressions of monthly returns on estimated risk loadings
and characteristics. Time-varying risk loadings are obtained from 5-year rolling time-series
regressions of individual excess returns on the market excess return, log consumption growth,
and changes in the perceived conditional mean and volatility of consumption growth using
quarterly data. In the cross-section, we regress monthly future returns onto the loadings on
market excess return (β̂iM,t), log consumption growth (β̂ic,t), changes in the perceived condi-
tional mean (β̂iµ,t) and volatility (β̂iσ,t) of consumption growth as well as market capitalization
(MEit) and book-to-market ratio (BM i

t ). Both characteristics are measured in December
which is 7 to 18 months prior the test month. All explanatory variables are normalized so
they are centered around zero with unit variance. Reported are time-series averages of the
second stage coefficients with associated t-statistics. The sample period is from January 1964
to December 2007. t-statistics are in parenthesis.

Fama-MacBeth Regressions
MODEL β̂iM,t β̂ic,t β̂iµ,t β̂iσ,t MEit BM i

t

I 0.026
(0.33)

II 0.043
(0.85)

III 0.000
(0.00)

IV -0.134
(-3.23)

V 0.159 0.033 -0.151
(1.98) (0.57) (-2.45)

VI 0.178 0.044 -0.113 -0.057 0.490
(2.36) (0.82) (-2.10) (-1.74) (2.54)

VII 0.034 -0.067 -0.109
(0.40) (-1.32) (-2.50)

VIII 0.021 -0.068 -0.089 -0.067 0.543
(0.26) (-1.42) (-2.25) (-2.32) (2.81)

IX 0.042 0.142 0.018 -0.119
(0.49) (1.81) (0.30) (-2.17)

X 0.039 0.160 0.028 -0.086 -0.066 0.503
(0.46) (2.12) (0.48) (-1.73) (-2.34) (2.61)
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Table III
Portfolios formed on Risk Exposure

Each quarter stocks are assigned into quintiles based on loadings from time series regressions
(18) of individual excess returns on the market excess return (β̂iM,t), log consumption growth
(β̂ic,t), and changes in the perceived first (β̂iµ,t) and second moment (β̂iσ,t) of consumption
growth. This table reports average equally-weighted (EW) and value-weighted (VW) returns
of these portfolios and their associated t-statistics.

Panel A: Univariate sorts based on β̂iM,t

β̂iM,t low med high high - low

EW 1.20 1.26 1.31 1.33 1.28 0.09
(6.78) (6.50) (5.90) (5.09) (3.89) (0.40)

VW 0.98 0.94 0.90 0.90 0.91 -0.07
(6.15) (5.38) (4.67) (3.90) (3.14) (-0.33)

Panel B: Univariate sorts based on β̂ic,t
β̂ic,t low med high high - low

EW 1.21 1.23 1.25 1.31 1.37 0.16
(4.56) (5.78) (6.02) (5.88) (4.85) (1.28)

VW 0.97 0.97 0.90 0.92 1.05 0.08
(4.54) (5.40) (5.08) (4.77) (4.20) (0.46)

Panel C: Univariate sorts based on β̂iµ,t
β̂iµ,t low med high high - low

EW 1.34 1.23 1.26 1.22 1.31 -0.02
(5.02) (5.69) (6.17) (5.61) (4.73) (-0.21)

VW 1.04 0.95 0.96 0.87 1.04 0.00
(4.54) (5.04) (5.60) (4.73) (4.52) (-0.01)

Panel D: Univariate sorts based on β̂iσ,t
β̂iσ,t low med high high - low

EW 1.46 1.33 1.27 1.17 1.15 -0.32
(5.26) (6.04) (6.14) (5.48) (4.41) (-2.92)

VW 1.18 0.99 0.96 0.99 0.75 -0.43
(5.33) (5.36) (5.30) (5.18) (3.27) (-3.02)
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Table IV
Characteristics of Volatility Risk Exposure Portfolios

This table reports various characteristics and risk measures for the quintile portfolios based
on consumption volatility loadings (as in Table III, Panel D). Panel A shows average returns
and consumption volatility betas. Panel B reports the average value and mean decile rank
for size and book-to-market characteristics of each portfolio.

Panel A: Univariate sorts based on β̂iσ,t
low med high high - low

RET 1.18 0.99 0.96 0.99 0.75 -0.43
(5.33) (5.36) (5.30) (5.18) (3.27) (-3.02)

β̂σ/100 -3.70 -1.18 0.01 1.24 4.17 7.87

Panel B: Characteristics of sorts based on β̂iσ,t
low med high high - low

ME 1100.91 1789.75 1867.59 1470.50 794.74 -306.18
ME RANK 4.04 5.31 5.55 5.25 4.03 0.01

BM 1.00 0.94 0.94 0.94 0.97 -0.03
BM RANK 5.48 5.46 5.51 5.48 5.44 0.04
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Table V
Portfolios Formed on Consumption Volatility Risk and Market Capitalization

This table reports average returns of equally-weighted (Panel A) and value-weighted (Panel
B) portfolios formed independently on consumption volatility exposure (low 30%, medium
40%, and high 30%) and market capitalization (small 50% and big 50%).

Panel A: Equally-Weighted Returns
Low Med High H - L

Small 1.57 1.50 1.37 -0.20
(5.35) (6.05) (4.93) (-2.12)

Big 1.24 1.15 0.99 -0.24
(5.33) (5.79) (4.20) (-2.75)

S - B 0.33 0.35 0.37
(2.09) (2.78) (2.51)

Panel B: Value-Weighted Returns
Low Med High H - L

Small 1.47 1.43 1.27 -0.20
(5.45) (6.02) (4.74) (-1.85)

Big 1.21 1.08 0.96 -0.25
(5.57) (5.73) (4.24) (-2.73)

S - B 0.26 0.34 0.32
(1.95) (3.09) (2.35)
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Table VI
Portfolios Formed on Consumption Volatility Risk and Book-to-Market Ratio

This table reports average returns of equally-weighted (Panel A) and value-weighted (Panel
B) portfolios formed independently on consumption volatility exposure (low 30%, medium
40%, and high 30%) and the ratio of book equity to market equity (low 50% and high 50%).

Panel A: Equally-Weighted Returns
Low Med High H - L

Low BM 1.19 1.04 0.84 -0.35
(4.56) (4.76) (3.34) (-3.36)

High BM 1.52 1.35 1.31 -0.22
(6.13) (6.73) (5.47) (-2.55)

H - L 0.34 0.31 0.47
(3.63) (3.77) (4.58)

Panel B: Value-Weighted Returns
Low Med High H - L

Low BM 1.03 0.91 0.80 -0.24
(4.93) (4.80) (3.66) (-1.85)

High BM 1.29 1.06 0.99 -0.30
(6.29) (6.19) (4.65) (-2.15)

H - L 0.26 0.15 0.20
(2.17) (1.44) (1.46)
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Table VII
Volatility Risk Pricing

This table reports second stage regressions to estimate market prices to risk. ∆ct denotes log
consumption growth, ∆µt and ∆σt are changes in filtered beliefs about the first and second
moment of consumption growth. The VR factor is the return of holding a long position in the
value-weighted quintile of stocks with high volatility risk (β̂iσ,t) and a short position in low
volatility risk, as reported in Panel D of Table III. Test assets are the value weighted 25 Fama-
French portfolios constructed from independent quintile sorts based on market capitalization
and book-to-market ratio. The quarterly time-series starts in 1964 and ends 2007. The t-
statistics are corrected for estimation error in the first stage as proposed by Shanken (1992)
and are Newey and West (1987) adjusted to account for heteroskedasticity and autocorrelation.
For each regression, the last two columns report R2 (and adjusted R2) and the regression J-
statistic (χ2) with the associated p-value.

CONST. ∆ct ∆µt ∆σt VR R2 χ2

(t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (adj. R2) (p-val)

I 1.61 0.17 8.39 81.83
(2.38) (0.86) (4.41) (0.00)

II 2.05 0.46 -0.01 44.10 39.62
(2.01) (1.89) (-0.44) (39.02) (1.69)

III 2.12 -0.03 -0.04 17.61 28.98
(1.94) (-0.11) (-1.94) (10.12) (18.10)

IV 2.85 0.22 -0.05 -0.07 62.18 11.86
(1.48) (0.65) (-0.90) (-1.55) (56.78) (96.02)

V 1.10 0.31 0.02 -6.01 72.31 34.03
(1.02) (1.46) (0.69) (-2.46) (68.36) (4.88)

VI 1.21 0.34 -5.70 71.98 37.80
(1.31) (1.32) (-2.24) (69.44) (2.68)
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Table VIII
Volatility Risk Factor

This table provides descriptive statistics of the volatility risk (VR) portfolio. The VR portfolio
is the return of holding a long position in the value-weighted quintile of stocks with high
volatility risk (β̂iσ,t) and a short position in low volatility risk, as reported in Panel D of Table
III. The time-series for the VR portfolio covers January 1964 until December 2007. Panel A
shows the mean, standard deviation and the Sharpe Ratio of the VR portfolio as well as the
three Fama-French portfolios. Panel B presents the correlation matrix of the factor returns,
and Panel C reports parameter estimates from time-series regressions of the VR portfolio on
the market and the three Fama-French factors.

Panel A: Summary Statistics
VR MKTMRF SMB HML

N 528 528 528 528
MEAN -0.43 0.46 0.25 0.43
STD 3.25 4.37 3.22 2.91
SR -0.13 0.11 0.08 0.15

Panel B: Correlations
VR MKTMRF SMB HML

VR 1
MKTMRF 0.11 1

SMB 0.08 0.30 1
HML -0.23 -0.41 -0.27 1

Panel C: Time-Series Regressions
α̂ β̂MKTMRF β̂HML β̂SMB

I -0.43
(-3.02)

II -0.47 0.08
(-3.29) (2.56)

III -0.33 0.01 -0.25 0.02
(-2.32) (0.29) (-4.73) (0.41)
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Table IX
Factor Exposures of the 25 Fama-French Portfolios

This table reports factor loadings of the 25 Fama-French portfolios with the market return
and volatility risk (VR) portfolio. The VR portfolio is the return of holding a long position in
the value-weighted quintile of stocks with high volatility risk (β̂iσ,t) and a short position in low
volatility risk, as reported in Panel D of Table III. Test assets are the value-weighted 25 Fama-
French portfolios constructed from independent quintile sorts based on market capitalization
(S1: small, S5: big) and book-to-market ratio (BM1: low, BM5: high). The time series starts
in January 1964 and ends in December 2007.

Panel A: Loading on the Market Factor
BM1 BM2 BM3 BM4 BM5 Average

S1 1.45 1.24 1.09 1.01 1.04 1.17
(29.17) (28.57) (30.45) (29.51) (27.77)

S2 1.44 1.18 1.05 0.99 1.06 1.14
(38.58) (39.11) (37.90) (35.53) (32.25)

S3 1.36 1.12 0.99 0.92 1.01 1.08
(43.52) (48.90) (42.72) (37.74) (33.24)

S4 1.25 1.08 0.99 0.93 1.01 1.05
(53.66) (56.88) (46.68) (40.40) (34.84)

S5 1.00 0.96 0.86 0.79 0.83 0.89
(57.97) (57.31) (42.01) (33.95) (27.53)

Average 1.30 1.12 1.00 0.93 0.99

Panel B: Loading on the Volatility Risk Factor
BM1 BM2 BM3 BM4 BM5 Average

S1 0.14 0.04 -0.06 -0.10 -0.13 -0.02
(2.14) (0.74) (-1.18) (-2.24) (-2.50)

S2 0.11 -0.04 -0.11 -0.09 -0.09 -0.04
(2.17) (-0.91) (-2.97) (-2.43) (-2.11)

S3 0.08 -0.10 -0.14 -0.12 -0.14 -0.08
(1.84) (-3.13) (-4.47) (-3.62) (-3.48)

S4 0.09 -0.10 -0.12 -0.11 -0.20 -0.09
(2.83) (-3.87) (-4.31) (-3.57) (-5.16)

S5 0.00 -0.10 -0.05 -0.16 -0.15 -0.09
(0.00) (-4.40) (-1.86) (-4.98) (-3.59)

Average 0.08 -0.06 -0.10 -0.12 -0.14
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Table X
Volatility Risk Pricing Factor

This table reports statistics from two-pass regressions to document the pricing implications
of the volatility risk (VR) model. The VR factor is the return of holding a long position in
the value-weighted quintile of stocks with high volatility risk (β̂iσ,t) and a short position in low
volatility risk, as reported in Panel D of Table III. Test assets are the value weighted 25 Fama-
French portfolios constructed from independent quintile sorts based on market capitalization
and book-to-market ratio. The time-series covers January 1964 until December 2007. The
t-statistics are corrected for estimation error in the first stage as proposed by Shanken (1992)
and are Newey and West (1987) adjusted with 6 lags to account for heteroskedasticity and
autocorrelation. For each regression, the last two columns report R2 (and adjusted R2) and
the regression J-statistic (χ2) with the associated p-value (in %).

CONST REM SMB HML VR R2 χ2

(t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (adj. R2) (p-val)

I 1.25 -0.50 14.08 67.77
( 3.23) (-1.19) (10.35) ( 0.00)

II 0.83 -1.21 32.86 62.22
( 3.81) (-1.72) (29.94) ( 0.00)

III -0.30 0.77 -2.84 46.27 40.15
(-0.49) ( 1.18) (-2.76) (41.38) ( 1.48)

IV 1.22 -0.72 0.20 0.46 77.38 53.10
( 3.81) (-1.94) ( 1.34) ( 3.03) (74.15) ( 0.02)

V 1.11 -0.67 0.20 -1.80 79.92 41.43
( 3.27) (-1.73) ( 1.33) (-2.51) (77.05) ( 0.73)

VI 1.02 -0.57 0.20 0.44 -1.45 80.30 44.52
( 3.01) (-1.48) ( 1.37) ( 2.93) (-2.26) (76.36) ( 0.20)

VII -0.26 0.80 0.39 48.37 63.28
(-0.48) ( 1.36) ( 2.54) (43.67) ( 0.00)

VIII -0.46 0.95 0.37 -1.46 51.50 54.81
(-0.79) ( 1.51) ( 2.43) (-2.27) (44.57) ( 0.01)
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Table XI
Market Predictability in the Time-Series

This table reports time-series regressions of excess returns on lagged predictor variables. The
market return is the value-weighted CRSP index less the 90 day T-bill rate. Predictor variables
are the lagged market return (RM,t−1), the 90 day T-bill less its 12 months moving average
(RelTbill), the difference between yields of long and short government bonds (Term), the yield
difference between Baa rated and Aaa rated corporate bonds (Default), the dividend yield
(DY), the consumption-wealth ratio of Lettau and Ludvigson (2001a) (cay), and changes in
beliefs about the first (∆µt) and second moments (∆σt) of consumption growth. The sample
period includes the first quarter of 1957 until the fourth quarter of 2006.

RM,t−1 RelTbill Term Default DY cay ∆µt ∆σt R2 (%)

I -0.02 -0.01 0.01 0.00 0.93 4.58
(-0.28) (-1.57) (0.83) (-0.16) (1.39)

II 0.05 1.51 5.97
(0.66) (3.50)

III 0.01 -0.01 0.00 0.01 0.05 1.44 8.50
(0.18) (-1.64) (-0.43) (0.66) (0.07) (2.87)

IV 0.03 0.17 0.11
(0.44) (0.02)

V 0.04 59.94 4.71
(0.55) (3.09)

VI -0.01 -0.01 0.01 -0.01 1.03 60.02 9.13
(-0.20) (-1.44) (1.12) (-0.41) (1.57) (3.11)

VII 0.05 1.50 59.35 10.48
(0.76) (3.55) (3.14)

VIII 0.02 -0.01 0.00 0.01 0.20 1.36 56.91 12.57
(0.23) (-1.50) (-0.12) (0.39) (0.28) (2.75) (2.99)
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