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Abstract

This study examines the optimal portfolio choice of a long-term bond in-

vestor, who faces a set of macroeconomic risk factors, both observable (in�ation

and output gap) and latent ones (real interest rate, in�ation central tendency

and real interest rate central tendency). It makes use of the essentially a¢ ne

macro-�nance term structure model of Dewachter, Lyrio and Maes (2006) that

allows for time-varying risk premia, capturing the failure of the expectations

hypothesis. Employing this setup, the investment as well as the hedging oppor-

tunities provided by consistently priced zero-coupon bonds for a power utility

agent are examined. Moreover, real bonds are introduced and their role for

investment and hedging purposes is considered. This study also serves as an

evaluation of the employed macro-�nance term structure model from an as-

set allocation perspective, revealing that more attention should be paid to the

covariance structure of the bonds�returns.
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1 Introduction

Recent studies on asset allocation, starting from Kim and Omberg (1996), Brennan,

Schwartz and Lagnado (1997) and Campbell and Viceira (1999), have examined the

impact of horizon e¤ects on risky assets�demands. Since the work of Merton (1971,

1973), it has been well understood that a multi-period investor forms a rather di¤erent

portfolio as compared to the static investor examined by Markowitz (1952). The

di¤erence arises due to hedging demands employed to o¤set undesirable shocks in

the underlying opportunity set. Following this strand of the literature, the present

study examines the optimal portfolio choice of a long-term bond investor, who faces

a set of macroeconomic risk factors, both observable (in�ation and output gap) and

latent ones (real interest rate, in�ation central tendency and real interest rate central

tendency). It makes use of the essentially a¢ ne macro-�nance term structure model

of Dewachter, Lyrio and Maes (2006) that allows for time-varying risk premia and

consistently estimates the central tendencies simultaneously with the term structure.

Employing this setup, the investment as well as the hedging opportunities provided

by consistently priced zero-coupon bonds for a power utility agent are examined.

There are a series of ways in which this study contributes to the literature. Firstly,

it incorporates macroeconomic information in an asset allocation context and shows

how this can be of signi�cant use for both a myopic and a long-term investor. Despite

the conclusion of Cochrane (2007, p. 242) that �nance has a lot to say about macroe-

conomics, macroeconomic information has been relatively neglected in the dynamic

asset allocation literature. The stochastic factors a¤ecting the investment opportun-

ity set are commonly assumed to be �nancial variables, such as the dividend yield

(Barberis, 2000) and the Sharpe ratio (Wachter, 2002) that exhibit only a modest

degree of predictive ability. On the other hand, macroeconomic variables have been

shown to be signi�cant predictors of future bond returns (Ang and Piazzesi, 2003).

Secondly, it focuses on bond portfolio choice that is relatively unexplored in the

literature, since the majority of the studies on dynamic asset allocation examine

stock-only portfolios. The notable exceptions are the studies of Campbell and Viceira

(2001), Brennan and Xia (2002) and Sangvinatsos and Wachter (2005). The degree

of the bond yields�predictability as well as the bonds�no-arbitrage pricing, based

on the underlying stochastic factors, imply that a bond portfolio setting provides an

even more robust framework to examine, in contrast to most of the literature that
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uses ad hoc assumptions for the asset returns�dynamics (see Brennan et al., 1997 for

an early example). Furthermore, bonds-only portfolios are extremely important for

the fund management industry and for central banks.

The related work on dynamic bond portfolio choice includes the studies of Brennan

and Xia (2000) and Sorensen (1999), who assume that interest rates are as in Vasicek

(1977). A similar framework has been employed in Xia (2002), who examines the

impact of limited access to nominal bonds on an investor�s welfare. Munk, Sorensen

and Vinther (2004) examine the stock-bond mix of a long-term power utility investor

in the presence of mean-reverting returns, stochastic interest rates à la Vasicek and

in�ation uncertainty. This framework has been further exploited for the derivation

of the optimal portfolio-consumption policy of a long-term investor by Munk and

Sorensen (2004). In the latter study, apart from a Vasicek interest rate model, a three-

factor, non-Markovian, Heath-Jarrow-Morton term structure model is also employed.

The main conclusion is that hedging demands are very sensitive to the choice of

the term structure model. Theoretical approaches to bond-only portfolio selection

problems have been considered by Schroder and Skiadas (1999), Tehranchi and Ringer

(2004) as well as Liu (2007).

Our study allows for time-varying bond premia, in contrast to Campbell and

Viceira (2001) and Brennan and Xia (2002) who assume them to be constant. There-

fore, we can capture the failure of the expectations hypothesis. Most importantly, we

use a macro-�nance term structure model rather than the purely latent factor term

structure model that has been commonly used in the �nance literature (see Du¤ee,

2002 for an excellent review of the literature) and has been employed by Sangvinat-

sos and Wachter (2005) for dynamic bond portfolio choice. Unlike the latent factor

framework that lacks a clear economic interpretation, the macro-�nance model of

Dewachter et al. (2006) allows us to reach more robust conclusions for bond portfolio

choice. It additionally allows the central tendencies of in�ation and the real interest

rate to a¤ect bond premia and hence the optimal portfolio choice; this issue has not

been considered before in the literature to the best of our knowledge. Furthermore,

the existence of �ve underlying risk factors enables us to examine the implications of

portfolio selection among multiple bonds.

In addition to the previous issues, this study also serves as an evaluation of the

employed term structure model from an asset allocation perspective. The term struc-

ture literature has mainly focused on �tting past and predicting future yields, while
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the asset allocation perspective allows us to examine a series of more general issues.

In particular, the covariance and correlation structure of the bonds�returns is ex-

tremely important for the formation of optimal portfolios. Equally important are the

implied market prices of risk that a¤ect the sensitivities of an investor�s wealth to

the underlying macroeconomic factors. In other words, the implied risk premia con-

tain signi�cant information for the degree of risk aversion and the horizon of market

participants.

Finally, we can derive conclusions with respect to what a long-term investor re-

gards as a riskless asset. This very important issue has been repeatedly examined in

the literature (see Modigliani and Sutch, 1965, Stiglitz, 1970 and Fischer, 1975, for

early discussions), but it was only recently that Wachter (2003) provided a formal

theoretical treatment. In particular, we are able to introduce real bonds in the asset

menu of the investor that helps us investigate how the de�nition of the riskless asset is

modi�ed when the investor�s horizon changes. The introduction of real bonds allows

us also to examine their role for investment and hedging purposes.

The rest of this study is organized as follows. Section 2 outlines the employed

term structure model, while Section 3 discusses the data issues and the implications of

the estimated model. Section 4 derives the optimal portfolio choice for the long-term

investor in complete markets and Section 5 derives the corresponding portfolio choice

in an incomplete market setting. Section 6 discusses the results for the portfolio

choice in both complete and incomplete bond markets, while Section 7 concludes.

2 The term structure model

2.1 Risk factors

We employ the setup of Dewachter et al. (2006). There are �ve stochastically time-

varying risk factors: the output gap y, the in�ation rate �, the real interest rate �,

the in�ation central tendency �� and the central tendency of the real interest rate

��.1

The dynamics of the risk factors, (y; �; �; ��; ��), are characterized by the following

1For precision, the real instantaneously risk-free rate prevailing in an economy with stochastic

price level, as derived in Section 4.2, is slightly di¤erent from the de�nition of Dewachter et al.

(2006), but we keep the same notation for ease of reference.
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Stochastic Di¤erential Equations (SDEs):

dy = [�yyy + �y�(� � ��) + �y�(�� ��)]dt+ �ydwy (1)

d� = [��yy + ���(� � ��) + ���(�� ��)]dt+ ��dw� (2)

d� = [��yy + ���(� � ��) + ���(�� ��)]dt+ ��dw� (3)

d�� = �����(�
� � ���)dt+ ���dw�� (4)

d�� = �����(�
� � ���)dt+ ���dw�� (5)

where wj(t), j = fy; �; �; ��; ��g denote independent standard Brownian motions
de�ned on the probability space (
;F ; P ) with �ltration F and time set [0; T ], 0 �
T <1.
The assumed dynamics of the output gap (y), in�ation (�) and the real interest

rate (�) imply that these are a¤ected by the short-run deviations from their central

tendencies (the central tendency of the output gap is zero). Moreover, this structure

implies that the central bank follows a feedback rule for the real interest rate. The

central tendencies of the in�ation (��) and the real interest rate (��) are allowed to

be mean-reverting processes, capturing possible inertia in the adjustment process.

Vector X contains these risk factors:

X = (y; �; �; ��; ��)T (6)

Re-writing the dynamics of the risk factors in a vector form, we have:

dX = [� +KX]dt+ Sdw (7)

where � = (0; 0; 0; ��������� ; ���������)T is a 5x1 vector, dw is a 5x1 vector:

dw = (dwy; dw�; dw�; dw�� ; dw��)
T (8)

K is a 5x5 matrix with elements
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K =

26666664
�yy �y� �y� ��y� ��y�
��y ��� ��� ���� ����
��y ��� ��� ���� ����
0 0 0 ����� 0

0 0 0 0 �����

37777775 (9)

and S = diag(�y; ��; ��; ��� ; ���) is a diagonal 5x5 matrix.

The last assumption essentially implies that there is no interrelationship in the

volatility structure of the macro factors. Following Du¤ee (2002), the market price

of risk is assumed to be time-varying and a¢ ne in the risk factors, given by � =

S� + S�1�X, where � is a 5x1 vector and � is a 5x5 matrix, the elements of which

are estimated from the joint model. The matrix � contains the sensitivities of the

prices of risk to the macroeconomic factors. In particular, to avoid identi�cation

problems, only a restricted set of the market prices of risk is estimated (see Dai and

Singleton, 2000 for a discussion). This term structure model can be classi�ed as A0(5)

within the family of the essentially a¢ ne models.

2.2 Bond returns

The price of a zero-coupon default-free nominal bond at time t maturing at time

t+ � � T is assumed to be given by P (X; t) = exp(�a(�)� b(�)TX), where a(�) is a
scalar and b(�) is a 5x1 vector, with initial conditions a(0) = 0 and b(0) = 05x1. The

no-arbitrage condition under the risk neutral measure Q requires that the expected

excess returns of this bond are zero, since the market price of risk is zero under Q.

Given the market price of risk �, it holds that:

d ~w = dw + �dt (10)

where ~w(t) = ( ~wy; ~w�; ~w�; ~w�� ; ~w��)T is a vector of independent standard Brownian

motions under the risk neutral measure.

The dynamics of X under Q are given by:

dX = [� � S2� + (K � �)X]dt+ Sd ~w (11)

Therefore, the no-arbitrage condition for the bond price under Q implies that the

following Partial Di¤erential Equation (PDE) should hold:
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(� � S2� + (K � �)X)T @P
@X

+
1

2

@2P

@X@XT
S2 +

@P

@t
= rP (12)

where r is the instantaneously nominal risk-free rate, given by r � � + � = �T1X,

where �1 = (0 1 1 0 0)T .

Substituting the partial derivatives of P into the PDE and using the method of

undetermined coe¢ cients, we end up with a system of Ordinary Di¤erential Equations

(ODEs) in a(�) and b(�):

@a

@�
= � 

T
b� 1

2
Tr(bTS2b)� �TS2b (13)

and

@b

@�
= �1 + (K � �)T b (14)

along with the corresponding initial conditions. These ODEs are solved numeric-

ally using a Runge-Kutta scheme.2

Under the risk-neutral measure Q, the absence of arbitrage opportunities dictates

that the returns�dynamics of the zero-coupon nominal bond i in this setup are given

by:

dPi
Pi

= rdt� b(�)TSd ~w (15)

Switching from the risk-neutral measure Q to the physical measure P , the bond

returns�dynamics under the physical measure are given by the SDE:

dPi
Pi

= (r � b(�)TS�)dt� b(�)TSdw

= (r � b(�)TS2�� b(�)T�X)dt� b(�)TSdw (16)

2The ODEs in this study have been numerically solved in Mathematica 6 using the function

ndsolve.
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3 Data, estimation and implications

3.1 Data

In order to estimate the term structure model, Dewachter et al. (2006) make use

of data for the yields on zero-coupon US Treasury bonds with maturities of 3 and 6

months and 1, 2, 5 and 10 years.3 A quarterly frequency is adopted for the period

1964:Q1 to 1998:Q4. In�ation was constructed by taking the annual percentage

change in the CPI index provided by the IMF and the output gap series were con-

structed based on data provided by the Congressional Budget O¢ ce. The �ltered

time series for the �ve factors are depicted in Figure 1 and Figure 2.4 It is important

to observe that there is variation in the underlying macroeconomic variables, so we

expect that the investment opportunity set considerably varies through time.

-Figures 1 and 2 about here-

3.2 Estimation

In order to estimate both the dynamics of the underlying risk factors and the prices

of risk in an e¢ cient way, Dewachter et al. (2006) employ a Kalman �lter algorithm.5

We refer to Section 3 of their study for the proper de�nition of the measurement and

the transition equation of the model as well as for its implications for the macroe-

conomic dynamics. The estimates of the parameters and their standard errors are

given in Table 1. The results show that the market prices of risk are time-varying

indeed.6 Moreover, the volatilities of the risk factors are estimated to be relatively

low, an important observation for the rest of the analysis.

-Table 1 about here-
3The data are available on Gregory Du¤ee�s website.
4We would like to thank Marco Lyrio for the provision of the data.
5The presence of unobservable factors dictates the use of a �ltering procedure. Du¤ee and

Stanton (2008) argue that for Gaussian models the Kalman �lter yields more e¢ cient estimates in

comparison to the E¢ cient Method of Moments when the time series are highly persistent.
6It is important to note that, following the dynamic asset allocation literature, we use the point

estimates of the coe¢ cients. Even though the unrestricted coe¢ cients of the matrix � are signi�c-

antly di¤erent from zero, this is not true for the constant component of the in�ation and the output

gap risk premia, i.e. �y and ��. Setting either parameter to zero could a¤ect the analysis.
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3.3 Implications for the bonds�returns

3.3.1 Nominal bonds�sensitivities to the risk factors

Given the estimates of the term structure model and the market prices of risk, we

�rstly examine the sensitivities of the bond returns to the underlying risk factors.

This will help us understand how the expected returns and the volatilities of the

bonds for various maturities are formed. In particular, we solve the ODEs in b(�)

given by equation (14) in order to derive the factor loadings. Figure 3 presents these

loadings adjusted for the corresponding bond maturity, (b(�)=�).

-Figure 3 about here-

The in�ation and the real rate a¤ect only the very short maturities. Practically,

their impact on the nominal bonds with maturity beyond one year is negligible.

Negligible is also the impact of the output gap, regardless of the bonds�maturity. On

the other hand, the central tendency of in�ation has a dominant impact on the prices

of bonds with maturities longer than one year. The impact of the real rate central

tendency is also signi�cant for similar maturities.

It should be noted that Figure 3 presents the factor loadings adjusted for the

corresponding maturity (b(�)=�), while for the bond returns and their volatilities, it

is the plain values of b(�) that matter. As a result, it is mainly the in�ation central

tendency �� that a¤ects the nominal bond returns and volatilities for maturities

longer than one year.

3.3.2 Expected excess bond returns

An extremely important input for any portfolio choice problem is the expected excess

returns o¤ered by the available assets, so it is interesting to examine the implications

of this model for the expected excess returns of the nominal bonds for various matur-

ities. In particular, given (16), these are given by �b(�)TS2� � b(�)T�X. Figure 4

plots the expected excess returns of the nominal zero-coupon bonds with maturities

1, 3, 5, 7 and 10 years for the whole sample period.

-Figure 4 about here-

There are a series of observations to make: Firstly, there is considerable time-

variation in the expected excess returns. This �nding underlines the importance of the

9



returns�predictability through a set of underlying risk factors that induces hedging

demands in an investor�s optimal portfolio choice. The expectations hypothesis that

assumes constant term premia and has been used by Campbell and Viceira (2001)

and Brennan and Xia (2002) for dynamic bond portfolio choice is clearly rejected,

given the statistical signi�cance of the time-varying risk coe¢ cients in �.

Secondly, this term structure model implies much more "reasonable" risk premia

in comparison to a series of previously used models.7 Thirdly, another attractive

feature of this essentially a¢ ne term structure model is that the variation in the

expected excess returns is signi�cantly higher than their average level. As Du¤ee

(2002) notes, this is a necessary quali�cation for a model to be consistent with the

variety of yield curve shapes observed in the data. The commonly used completely

a¢ ne models fail to meet this requirement and, as a result, they are less �t for the

selection of optimal portfolios.

Furthermore, it should be noted that the excess returns tend to strongly co-move

through time, despite the quite diverse economic conditions encountered in the sample

period. We conjecture that this is true because the expected excess returns are mainly

driven by the in�ation central tendency.8 For example, variations in the output gap

have almost no e¤ect on the bonds�returns. As a �nal comment it should be stressed

that for the largest part of the sample period the 1-year zero-coupon bond has a

relatively high expected excess return (higher than 0.5%). This fact crucially a¤ects

the formation of optimal portfolios.

3.3.3 The Covariance and Correlation structure of bonds�returns

The term structure literature usually neglects the models�implications for the covari-

ance and correlation structure of the bonds�returns. However, this is an extremely

important input for portfolio selection that is traditionally examined within a mean-

variance framework. Given the coe¢ cient estimates and the factor loadings b(�), we

report in Table 2 the covariances and correlations for the 1, 2, 3, 5, 7 and 10-year

7We refer to the extreme premia reported in Sangvinatsos and Wachter (2005) as well as the ones

implied by the model of Dewachter and Lyrio (2006).
8This observation is analogous to the result of Cochrane and Piazzesi (2005) that a single factor

can explain much of the time variation in expected excess bond returns. It is also related to the

known result of Litterman and Scheinkmann (1991) that the parallel shifts of the yield curve can

be captured by a single factor.
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nominal zero-coupon bonds�returns.

-Table 2 about here-

The volatilities of the returns are extremely low, especially for short maturities.

An explanation for this result is that the factor that has a dominant role for bond

pricing, the in�ation central tendency, is estimated to have an extremely low volatility

(see Table 1). Furthermore, this A0(5) term structure model does not allow for time-

varying bond returns� volatilities and it ignores possible covariances between the

various risk factors. According to Du¤ee (2002), the limited ability of the essentially

a¢ ne models to capture the time variation in conditional variances is the price to pay

for their superior forecasting power. This trade o¤ is critically taken into account

when we report our results.

With respect to the correlations of the returns, these are found to be extremely

high. In particular, for bonds with similar maturities the correlation is higher than

0.95. Again, this characteristic signi�cantly a¤ects the formation of optimal portfo-

lios, since including bonds of similar maturities in the asset menu will lead to a nearly

singular covariance matrix, leading to extreme results.

3.3.4 The maximal Sharpe ratio

Given the market price of risk � = S� + S�1�X, an interesting way to examine

the implications of the present term structure model for an investor is to derive the

Maximal Sharpe Ratio (MSR), given by the norm of �, i.e. MSR =
p
�T �. Figure

5 depicts the MSR for the sample period. The MSR is always positive, because it

is assumed that the investor can take both long and short positions in any asset.

There are two very important observations to make: Firstly, there are a series of

periods where the (perceived) MSR is extremely high. As we discussed in the previous

subsections, this �nding is due to the combination of the relatively high expected

excess returns and the very low volatilities implied by the estimated term structure

model. This �nding is essentially equivalent to a "bond premium puzzle", drawing

the analogy to the equity premium puzzle of Mehra and Prescott (1985), since a high

reward for bearing risk in the bond market implies highly volatile marginal utilities

for the investors. Secondly, there is considerable time-variation in the investment

opportunities. This fact underlines the importance of horizon e¤ects and market

timing in portfolio selection.
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-Figure 5 about here-

4 Portfolio choice in complete markets

4.1 Real wealth and access to nominal bonds

This section examines the optimal portfolio choice in a complete nominal bond mar-

ket for a long-term investor, who takes into account the stochastic evolution of the

underlying risk factors. Formally, the investor has to allocate his wealth W at time

t among 5 zero-coupon default-free bonds with di¤erent maturities (T1, T2,..., T5),

the returns of which are given in equation (16), and cash yielding the nominal in-

stantaneously risk-free rate, dP0
P0
= rdt. The portions of wealth allocated to each of

the zero-coupon bonds are collected in the 5x1 vector � = (�1; �2; :::; �5)
T , while the

portion of the wealth invested in the instantaneously riskless asset is �0 = 1 � iT�,

where i is a vector of ones.

We examine here the case where the investor�s utility is de�ned over terminal real

wealth. Given the bond returns�dynamics, the wealth dynamics of the investor are

given by the following SDE:

dW = W (�T
dP

P
+ (1� iT�)

dP0
P0
) =

= W (�T [�B(�)TS2��B(�)T�X)] + r)dt�W�TB(�)TSdw (17)

where now dP
P
is the vector of the 5 zero-coupon bond returns. Hence, B(�) is

now a matrix 5x5, since this stacks the column vectors b(�) for each of the 5 bonds

in a matrix form. In other words, B(�) = (b(� 1); b(� 2); ::; b(� 5)), where (� 1; � 2; :::;

� 5) are the durations of the 5 zero-coupon bonds.

Since the vector of the shocks a¤ecting the returns of the risky assets dw is the

same as the vector of shocks a¤ecting the underlying risk factor dynamics, we can

use the Martingale approach of Cox and Huang (1989) and Karatzas, Lehoczky and

Shreve (1987) to solve the optimal portfolio choice problem. The main observation

is that there exists a unique pricing kernel m. This pricing kernel is a Stochastic

Discount Factor (SDF) that converts the risky asset dynamics into a martingale

process and it can be interpreted as a system of Arrow-Debreu prices. Given that
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� is the market price of risk in the complete nominal market, the dynamics of the

nominal SDF are given by:

dm

m
= �rdt� �Tdw (18)

with initial valuemt0 = 1. The crucial observation for the martingale methodology

is that the process mtWt is a martingale too. As a result, Et0 [mTWT ] =Wt0.

The long-term investor seeks to maximize

maxEt0

(
(WT

�T
)1�


1� 


)
(19)

subject to the constraint

Et0 [mTWT ] =Wt0 (20)

In order to examine this problem, we need to specify the dynamics of the price

level �t. Following Brennan and Xia (2002), the price level dynamics are given by

the SDE:

d�

�
= �dt+ �T�dw (21)

where �� is a 5x1 vector. In general, the shocks a¤ecting the stochastic price level

need not be perfectly correlated with the shocks to the underlying risk factors in X.9

In our setup, however, we get this perfect correlation since one of the underlying

risk factors is the in�ation rate �. In other words, we can specify the vector �� as

�� = (0 �� 0 0 0)
T , where �� is the di¤usion coe¢ cient of the in�ation rate process

speci�ed in Section 2.1. As a result, we are in the "complete markets case" as termed

by Brennan and Xia (2002), in the sense that the shocks to the bonds�returns are

perfectly correlated with the shocks a¤ecting the underlying risk factors including the

price level.10 Therefore, we can use the martingale methodology for this case too.

9This case, which is equivalent to an incomplete market case, is examined by Sangvinatsos and

Wachter (2005), where the underlying risk factors are latent factors with no clear macroeconomic

interpretation and hence their shocks cannot be perfectly correlated with the shocks to the price

level dynamics.
10As Brennan and Xia (2002, p. 1206) note, this is the case when "the expected rate of in�ation

� is not observable but must be inferred from the observation of the price level itself". This is

exactly true in the Dewachter et al. (2006) term structure model that we are using, since the rate
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Consequently, the dynamic portfolio choice problem becomes a static one. Form-

ing the Lagrangian function:

L(WT ; l) = Et0

(
(WT

�T
)1�


1� 


)
� l[Et0 [mTWT ]�Wt0 ] (22)

and taking the First Order Condition (FOC) with respect to the terminal wealth

we have:

@(:)

@WT

= 0) WT = (�
1�

T lmT )

� 1

 ) WT

�T
= (lmT�T )

� 1

 (23)

where l is the Lagrange multiplier. De�ning the variable Zt � (lmt�t)
�1, real

wealth at time t can be written as:

Wt

�t
= (lmt�t)

� 1

 = ZtEt[(ZT )

1


�1] (24)

As a result, wealth W is a function of Z, �, X and t. Consequently, we can write

it as G(Z;�; X; t) � F (X; t)�Z
1

 = W (t).

Applying Ito�s lemma, the dynamics of the variable Z are given by:

dZ

Z
= (r � � + �T��� + �T � � �T��)dt+ (� � ��)

Tdw (25)

while under the risk neutral measure Q they are given by:

dZ

Z
= (r � � + �T���)dt+ (� � ��)

Td ~w (26)

It should be also noted that the price level dynamics under the risk neutral meas-

ure Q are given by:

d�

�
= (� � �T��)dt+ �T�d ~w (27)

and the dynamics of X under Q are given by (11).

As Wachter (2002) argues, we can interpret wealth as a zero-coupon bond that

pays a �nal amountWT at time T . The no-arbitrage condition for a zero-coupon bond

G(Z;�; X; t) implies that under the physical measure P , its instantaneous expected

excess returns should be equal to the market price of risk multiplied by the di¤usion

of the wealth process G. It actually proves easier to work under the risk-neutral

of in�ation is calculated as the annual percentage change in the CPI.
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measure Q. In this case, the instantaneous expected excess returns should be equal

to zero, since the market price of risk is zero under Q.

This argument implies that the following PDE should hold:

@G

@Z
Z(r � � + �T���) + [

� � S2� + (K � �)X]T @G
@X

+
@G

@�
�(� � �T��)+

+
@G

@t
+
1

2
Tr(SST

@2G

@X@XT
) +

1

2

@2G

@Z2
Z2(� � ��)

T (� � ��) +
1

2

@2G

@�2
�2�T���+

+(S��)
T�

@2G

@�@X
+

@2G

@Z@�
�Z(� � ��)

T�� + Z(� � ��)
TS

@2G

@Z@X
= rG (28)

along with the terminal condition G(ZT ; XT ;�T ; T ) = �TZ
1



T .

It is also crucial to note that the optimally invested wealth should have a di¤usion

term identical to the di¤usion term of the wealth processG. Therefore, for the optimal

portfolio choice �, it should hold that:

G(�T (�BTS) =
@G

@Z
Z(� � ��)

T +
@G

@�
��T� + (S

@G

@X
)T (29)

Proposition 3.1
Let us conjecture the following form for the function G(Z;X; �; t):

G(Z;X;�; t) = �tZ
1



t F (X; t) = �tZ
1



t exp[
1



(
1

2
XTQ(t)X + d(t)TX + c(t))] (30)

where Q(t), d(t), c(t) are 5x5 matrix, 5x1 vector and scalar functions of time

correspondingly with terminal conditions Q(T ) = 05x5, d(T ) = 05x1 and c(T ) = 0.

For an investor who has a power utility over real terminal wealth with coe¢ cient

of relative risk aversion 
 6= 1 and has access to nominal bonds, his optimal portfolio
choice is given by:

�t =
1



(BTS2B)�1(�BTS2��BT�Xt) + (1�

1



)(BTS2B)�1(�BTS)��

+
1



(BTS2B)�1(�BTS)S[d(t) +

1

2
(Q(t) +Q(t)T )Xt] (31)

with the functions d(t) and Q(t) satisfying the system of ODEs (80) - (81) given in

the Appendix. The remainder �0 = 1�iT� is invested in the nominal instantaneously
riskless asset (see Appendix for the proof).
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The �rst two terms of the optimal portfolio choice expression (31) compose the

myopic term à la Markowitz (1952). In particular, the second term arises because

the investor seeks to maximize his utility over real wealth having access to nominal

bonds that are priced under the nominal SDF. The third term provides the hedging

demand component à la Merton (1973). There are two interesting observations to

make:

i) The long-term power utility investor has a hedging demand apart from the

standard mean-variance myopic one. This depends on the di¤usion coe¢ cients of the

bond returns�dynamics as well as on the sensitivity of the investor�s wealth to the

risk factors, represented here by the functions d(t) and Q(t). It is straightforward

to observe that, if the investor is not sensitive to any shifts in the risk factors, then

there is no intertemporal hedging demand component, since @G
@X
= 0.

ii) Both the myopic and the hedging bond demand components are characterized

by market timing, i.e. the optimal portfolio choice depends on the current level of

the risk factors. The reason for this behaviour is that bond returns are predictable

through the risk factors in X; as a result, the investor needs to take this information

into account for investment as well as for hedging purposes.

4.2 Introducing real bonds

If the investor is interested in maximizing the expected utility of his real wealth, then

there is the scope of adding real bonds in the asset space. The term structure model

we have employed allows us to introduce and price real bonds in a convenient way.

In this subsection we price real zero-coupon bonds using the real SDF. Starting from

the dynamics of the nominal SDF m:

dm

m
= �rdt� �Tdw (32)

and applying Ito�s lemma to the function M = m�, we can �nd the dynamics of

the real SDF M . In particular, these are given by the SDE:

dM

M
=
d(m�)

m�
= �(r � � + �T��)dt� (� � ��)

Tdw (33)

There are two observations to make, given the dynamics of the real SDF. Firstly,

the real instantaneously risk free rate is given by r � � + �T��. This is distinct from

the conventionally characterized as real rate � = r � �. The di¤erence is the extra
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term, �T��, that arises due to the stochastic evolution of the price level. Secondly, the

market price of risk under the real SDF is also modi�ed and it is given by � � ��.

It is assumed that the price of a real zero-coupon bond, PR, is an a¢ ne function

of the underlying risk factors in X and time t. In particular, the price of the real

bond is given by:

PR(t;X) = exp(�aR(�)� bR(�)TX) (34)

where aR(�) is a scalar and bR(�) is a 5x1 vector, with initial conditions aR(0) = 0

and bR(0) = 05x1.

Under the risk neutral measure Q, the no-arbitrage condition for a real zero-

coupon bond states that its expected excess returns over the real instantaneously

risk free rate, r � � + �T��, should be equal to zero. It should be noted that under

the real SDF, switching from the risk-neutral measure Q to the physical measure P ,

it holds that d ~w = dw + (� � ��)dt. Therefore, the dynamics of X under Q are now

given by:

dX = [� � S2� + S�� + (K � �)X]dt+ Sd ~w (35)

Therefore, the no-arbitrage condition for the real bond prices under Q leads to

the following equation:

(� �S2�+S��+(K ��)X)T
@PR

@X
+
1

2

@2PR

@X@XT
S2+

@PR

@t
= (r��+�T��)PR (36)

Substituting the partial derivatives of PR in the PDE and using the method of

undetermined coe¢ cients, we get a system of ODEs in aR(�) and bR(�):

@aR

@�
= � 

T
bR � 1

2
Tr(bRTS2bR)� �TS2bR + �T�S� + �

T
�S

T bR (37)

and

@bR

@�
= (�1 � �2) + (K � �)T bR + �TS�1�� (38)

where �2 = (0 1 0 0 0)T , along with the corresponding initial conditions.

Under the risk-neutral measure Q, the absence of arbitrage opportunities dictates

that the returns�dynamics of the real zero-coupon bond i in this setup are given by:
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dPRi
PRi

= (r � � + �T��)dt� bR(�)TSd ~w (39)

Consequently, under the physical measure P , the bond returns dynamics are given

by:

dPRi
PRi

= (r � � + �T�� � bR(�)TS� + bR(�)TS��)dt� bR(�)TSdw (40)

Figure 6 shows the factor loadings bR(�), adjusted for the corresponding maturity

� , i.e. bR(�)=� . In comparison to the corresponding factor loadings of the nominal

bonds, the main di¤erence is that both the in�ation and the output gap have an

important e¤ect on the real bond prices and returns for short maturities. The real rate

� a¤ects only the very short maturities. As in the case of nominal bonds, the in�ation

central tendency is the dominant factor for the real bond prices. Nevertheless, its

impact is now less pronounced for longer maturities that are also slightly more a¤ected

by the real rate central tendency.

-Figure 6 about here-

Figure 7 shows the expected excess returns of the real bonds over the real risk

free rate, given by �bR(�)TS2��bR(�)T�X+bR(�)TS��. It is interesting to observe
that the real bonds with long maturities exhibit negative expected excess returns for

a portion of the examined period. In general, for a large portion of the examined

period, the 1-year and the 3-year real zero-coupon bonds are characterized by higher

expected excess returns in comparison to the 7-year and the 10-year bonds. Table

3 presents the covariance and the correlation structure of the real bonds� returns.

The results document the very low volatilities and the very high correlations of the

returns.

-Table 3 and Figure 7 about here-

Some of the cases that we examine in the subsequent empirical results include both

nominal and real bonds in the asset menu of the long-term investor. For consistency,

both types of bonds should be expressed under the same SDF (either nominal or real).

When we deal with this case, we choose to express the real bonds�returns dynamics

under the nominal SDF. To this end, we need to apply Ito�s lemma to the function
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(PR�). It should be reminded that the real bonds�returns dynamics under the real

SDF are given by equation (40). Applying Ito�s lemma to the function (PR�), we

�nd the dynamics of the real bonds�returns under the nominal SDF. In particular,

these are given by:

d(PRi �)

(PRi �)
= (r + �T�� � bR(�)TS�)dt� (bR(�)TS � �T�)dw (41)

Consequently, when we examine the optimal portfolio choice of the long-term

investor in the presence of both real and nominal zero-coupon bonds, the previous

expression for the real bond returns�dynamics under the nominal SDF is used. For

example, the di¤usion term of a real bond�s returns under the nominal SDF, given by

�(bR(�)TS � �T�), is employed in the expression of the optimal portfolio choice given
in equation (31) instead of the corresponding di¤usion term of the nominal bond�s

returns dynamics, given by �b(�)TS.

4.3 Real wealth and access to real bonds

In this subsection, we examine the case of an investor who maximizes utility over

terminal real wealth, when he has access to a complete real bond market. The real

wealth dynamics of this investor are given by:

d(
W

�
) =

W

�
(�RT [�BR(�)TS(����)]+r��+�T��)dt+

W

�
�RT (�BR(�)TS)dw (42)

where �R is the vector of the portions of his real wealth W
�
allocated to each of

the 5 available real zero-coupon bonds and BR(�) = (bR(� 1); b
R(� 2); ::; b

R(� 5)).

The crucial observation is that using the real pricing kernel M , the process Mt
Wt

�t

is a martingale too. As a result, we get the static budget constraint Et0 [MT
WT

�T
] =

Wt0

�t0
. The investor seeks to maximize (19) subject to this constraint. Forming the

corresponding Lagrangian function and taking the FOC with respect to the terminal

real wealth we have:

@(:)

@(WT=�T )
= 0) WT

�T
= (lMT )

� 1

 (43)

where l is the corresponding Lagrange multiplier.

We de�ne the variable ZRt � (lMt)
�1, hence real wealth at time t can be written

as:
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Wt

�t
= (lMt)

� 1

 = ZRt Et[(Z

R
T )

1


�1] (44)

Given the de�nition of the real SDF, M = m�, one may note that ZRt = Zt.

Therefore, the dynamics of ZRt are given by (25) under the physical measure P .

However, since the market price of risk under the real SDF is (�� ��), the dynamics
of ZRt under the risk neutral measure Q are now given by:

dZR

ZR
= (r � � + �T��)dt+ (� � ��)

Td ~w (45)

and the dynamics of X under Q are given by (35).

Real wealth W
�
is a function of ZR, X and t. Consequently, we can de�ne

GR(ZR; X; t) � FR(X; t)(ZR)
1

 = Wt

�t
, with the terminal condition GR(ZRT ; XT ; T ) =

(ZRT )
1

 . Consequently, real wealth in this case can be interpreted as a real zero-coupon

bond paying a �nal amount at time T . This means that under the risk neutral meas-

ure, its expected excess returns (over the real risk free rate) should be equal to zero.

In other words, GR should satisfy under Q:

@GR

@ZR
ZR(r � � + �T��) + [

� � S2� + S�� + (K � �)X]T @G
R

@X
+

+
@GR

@t
+
1

2
Tr(SST

@2GR

@X@XT
) +

1

2

@2GR

(@ZR)2
(ZR)2(� � ��)

T (� � ��)+

+ZR(� � ��)
TS

@2GR

@ZR@X
= (r � � + �T��)G

R (46)

Moreover, the optimally invested real wealth should have a di¤usion term identical

to the di¤usion term of the real wealth process GR. Therefore, the optimal portfolio

choice �R should satisfy:

GR�RT (�BRTS) =
@GR

@ZR
ZR(� � ��)

T + (S
@GR

@X
)T (47)

Proposition 3.2
Let us conjecture the following form for the function GR(ZR; X; t):

GR(ZR; X; t) = (ZRt )
1

FR(X; t) = (ZRt )

1

 exp[

1



(
1

2
XTQR(t)X + dR(t)TX + cR(t))]

(48)
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where QR(t), dR(t), cR(t) are 5x5 matrix, 5x1 vector and scalar functions of time

correspondingly with terminal conditionsQR(T ) = 05x5, dR(T ) = 05x1 and cR(T ) = 0.

For an investor who has a power utility over real terminal wealth with coe¢ cient

of relative risk aversion 
 6= 1 and has access to real bonds, his optimal portfolio

choice is given by:

�Rt =
1



(BRTS2BR)�1(�BRTS2��BRT�Xt +BRTS��)

+
1



(BRTS2BR)�1(�BRTS)S[dR(t) +

1

2
(QR(t) +QR(t)T )Xt] (49)

with the functions dR(t) and QR(t) satisfying the system of ODEs (80) - (81).

The remainder �R0 = 1 � iT�R is invested in the instantaneously real riskless asset

(see Appendix for the proof).

5 Portfolio choice in incomplete markets

In this section, we examine the optimal portfolio choice of the long-term investor

with a power utility function over terminal wealth in an incomplete bond market.

The market incompleteness arises in our study only when the investor has access to

fewer bonds in comparison to the number of the underlying risk factors. Therefore,

in an incomplete nominal bond market, B(�) is a 5xn matrix with n < 5 and in an

incomplete real bond market, BR(�) is a 5xn matrix with n < 5.

5.1 Access to nominal bonds

In an incomplete nominal bond market, any price of risk �� can be written as:

�� = (�BTS)T (BTS2B)�1(�BTS)�� + (�� � (�BTS)T (BTS2B)�1(�BTS)��) (50)

The �rst term of this expression, (�BTS)T (BTS2B)�1(�BTS)�� = � is the unique

price of risk that both prices and it is spanned by the available assets, i.e. it is the price

of risk in the complete market case that we examined in the previous section. The

second term �� � (�BTS)T (BTS2B)�1(�BTS)�� � v is the residual of the projection
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of �� onto the available assets and lies in the null space of (�BTS), i.e. it holds that

(�BTS)v = 0. Note that in a complete market v = 0.

Consequently, in the incomplete market case, the nominal SDF mv is associated

with the price of risk �� = � + v. The dynamics of mv are given by:

dmv

mv
= �rdt� (� + v)Tdw (51)

In general, the budget constraint Et0 [m
v
TWT ] = Wt0 should be satis�ed by any

pricing kernelmv. However, we cannot optimize with respect to this budget constraint

because it is not possible to replicate the resulting process for wealth by trading in

the underlying assets, since we are in an incomplete market. He and Pearson (1991)

argue that it is su¢ cient to verify this budget constraint for a single pricing kernel

mv�. This is termed as the minimax pricing kernel because it is the kernel that

minimizes the agent�s maximized utility. In other words, we can solve the portfolio

choice problem in the incomplete market case as in the complete market case by

"adding" the assets that are necessary to complete the market and at the same time

modifying their returns�process in a way that their optimal portfolio weights are

zero. This is accomplished by the speci�c minimax kernel mv�, because it guarantees

that the "added" assets have such properties that the investor does not want to trade

them.

Hence, the pricing kernel we use follows the SDE:

dmv�

mv�
= �rdt� (� + v�)Tdw (52)

The solution of the optimal portfolio choice problem follows the same steps as in

the previous section. The agent seeks to maximize:

maxEt0

(
(WT

�T
)1�


1� 


)
(53)

subject to the constraint

Et0 [m
v�

T WT ] =Wt0 (54)

The nominal wealth dynamics are the same as in (17). The FOC of the problem

is:
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@(:)

@WT

= 0) WT = (�
1�

T lmv�

T )
� 1

 ) WT

�T
= (lmv�

T �T )
� 1

 (55)

where l is the corresponding Lagrange multiplier.

De�ning the variable Zv
�
t � (lmv�

t �t)
�1, real wealth at time t can be written as:

Wt

�t
= (lmv�

t �t)
� 1

 = Zv

�

t Et[(Z
v�

T )
1


�1] (56)

As a result, wealth Wt is a function of Zv
�
t , �, X and t. Consequently, we can

de�ne the function GI(Zv
�
;�; X; t) � F I(X; t)�(Zv

�
)
1

 = W (t).

Applying Ito�s lemma, the dynamics of the variable Zv
�
are given by:

dZv
�

Zv�
= (r� � + �T��� + (� + v�)T (� + v�)� �T�(� + v�))dt+ (� + v� � ��)Tdw (57)

while, under the risk neutral measure Q, they are given by:

dZv
�

Zv�
= (r � � + �T���)dt+ (� + v� � ��)

Td ~w (58)

It should be also noted that the price level dynamics under the risk neutral meas-

ure Q are given by:

d�

�
= (� � �T�(� + v�))dt+ �T�d ~w (59)

while the corresponding dynamics of X are given by:

dX = [� +KX � S(� + v�)]dt+ Sd ~w (60)

We can interpret again nominal wealth as a zero-coupon bond that pays a �-

nal amount WT at time T . The no-arbitrage condition for a zero-coupon bond

GI(Zv
�
; X;�; t) under the risk-neutral measure implies that its instantaneous ex-

pected excess returns should be equal to zero. Following this observation, we get the
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PDE:

@GI

@Zv�
Zv

�
(r � � + �T���) + [

� +KX � S(� + v�)]T
@GI

@X

+
@GI

@�
�(� � �T�(� + v�)) +

@GI

@t
+
1

2
Tr(SST

@2GI

@X@XT
) +

1

2

@2GI

@�2
�2�T���

+
1

2

@2GI

(@Zv�)2
(Zv

�
)2(� + v� � ��)

T (� + v� � ��) + (S��)
T�

@2GI

@�@X

+
@2GI

@Zv�@�
�Zv

�
(� + v� � ��)

T�� + Zv
�
(� + v� � ��)

TS
@2GI

@Zv�@X
= rGI (61)

with the terminal condition GI(Zv
�
T ; XT ;�T ; T ) = �T (Z

v�
T )

1

 .

Moreover, the optimally invested wealth should have a di¤usion term equal to the

di¤usion term of the wealth process GI . Therefore, the optimal portfolio choice �I

should satisfy:

GI(�I)T (�BTS) =
@GI

@Zv�
Zv

�
(� + v� � ��)

T +
@GI

@�
��T� + (S

@GI

@X
)T (62)

Proposition 3.3
Let us conjecture the following form for the function GI(Zv

�
; X; �; t):

GI(Zv
�
; X; �; t) = �t(Z

v�

t )
1

F I(X; t) = �t(Z

v�

t )
1

 exp[

1



(
1

2
XTQI(t)X+dI(t)TX+cI(t))]

(63)

where QI(t), dI(t), cI(t) are 5x5 matrix, 5x1 vector and scalar functions of time

correspondingly, with terminal conditions QI(T ) = 05x5, dI(T ) = 05x1 and cI(T ) = 0.

For an investor who has a power utility over real terminal wealth with coe¢ cient

of relative risk aversion 
 6= 1 and has access to an incomplete nominal bond market,
the minimax pricing kernel is given by:

v� = (1� 
)[(�T�)
?]T � (S?)T [dI + 1

2
(QI + (QI)T )X] (64)

where (�T�)
? is the residual of the projection of �T� onto the traded assets, (�

T
�)
? =

�T� � �T�(�BTS)T (BTS2B)�1(�BTS) and (S?) is the residual of the projection of S

onto the traded assets, S? = S � S(�BTS)T (BTS2B)�1(�BTS).

Moreover, his optimal portfolio choice is given by:
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�It =
1



(BTS2B)�1(�BTS2��BT�Xt) + (1�

1



)(BTS2B)�1(�BTS)��

+
1



(BTS2B)�1(�BTS)S[dI(t) +

1

2
(QI(t) +QI(t)T )Xt] (65)

with the functions dI(t) and QI(t) satisfying the system of ODEs in (88)-(89)

given in the Appendix. The remainder �I0 = 1 � iT�I is invested in the nominal

instantaneously riskless asset (see Appendix for the proof).

5.2 Access to real bonds

The derivation of the optimal asset allocation for a long-term investor with power

utility over terminal wealth in an incomplete real bond market follows the same steps.

Any price of risk � � �� can be written as:

� � �� = (�BRTS)T (BRTS2BR)�1(�BRTS)(� � ��)+

+((� � ��)� (�BRTS)T (BRTS2BR)�1(�BRTS)(� � ��)) (66)

The �rst term of this expression:

(�BRTS)T (BRTS2BR)�1(�BRTS)(� � ��) = � � ��

is the unique price of risk that both prices and it is spanned by the available real

assets, i.e. it is the price of risk in the complete real market case that we examined

in the previous section. The second term:

(� � ��)� (�BRTS)T (BRTS2BR)�1(�BRTS)(� � ��) � V

is the residual of the projection of the price of risk onto the available real bonds

and lies in the null space of (�BRTS), i.e. it holds that (�BRTS)V = 0.

Consequently, in the incomplete market case, the real SDF, MV , is associated

with the price of risk (� � ��) = ����+V . Following the same argument of He and
Pearson (1991), we seek to �nd the minimax pricing kernel MV �, which guarantees

that the real bonds "added" to complete the market have such properties that the

investor does not want to trade them.
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The pricing kernel we use follows the SDE:

dMV �

MV �
= �(r � � + �T�(� + V �))dt� (� + V � � ��)

Tdw (67)

The agent seeks to maximize:

maxEt0

(
(WT

�T
)1�


1� 


)
(68)

subject to the constraint Et0 [M
V �
T

WT

�T
] =

Wt0

�t0
. Forming the corresponding Lag-

rangian function and taking the FOC with respect to terminal real wealth, we have:

@(:)

@(WT=�T )
= 0) WT

�T
= (lMV �

T )�
1

 (69)

where l is the corresponding Lagrange multiplier. We de�ne the variable ZV
�

t �
(lMV �

t )�1, hence real wealth at time t can be written as:

Wt

�t
= (lMV �

t )�
1

 = ZV

�

t Et[(Z
V �

T )
1


�1] (70)

The dynamics of ZV
�

t are given by (57) under the physical measure P . However,

since the market price of risk under the real SDF is (� + V � � ��), the dynamics of

ZV
�

t under the risk neutral measure Q are now given by:

dZV
�

t

ZV
�

t

= (r � � + �T�(� + V �))dt+ (� + V � � ��)
Td ~w (71)

and the dynamics of X under Q are given by:

dX = [� +KX � S(� + V � � ��)]dt+ Sd ~w (72)

Real wealth W
�
is a function of ZV

�
t , X and t. Consequently, we can de�ne

GIR(ZV
�
; X; t) � F IR(X; t)(ZV

�
)
1

 = Wt

�t
,

with the terminal condition GIR(ZV
�

T ; XT ; T ) = (ZV
�

T )
1

 . Consequently, real

wealth in this case can be interpreted as a real zero-coupon bond paying a �nal

amount at time T . This interpretation implies that under the risk neutral measure,

its expected excess returns (over the real risk free rate) should be equal to zero. In

other words, GIR should satisfy under Q:
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Moreover, the optimally invested wealth should have a di¤usion term equal to the

di¤usion term of the real wealth process GIR. Therefore, the optimal portfolio choice

�IR should satisfy:

GIR(�IR)T (�BRTS) =
@GIR

@ZV �
ZV

�
(� + V � � ��)

T + (S
@GIR

@X
)T (74)

Proposition 3.4
Let us conjecture the following form for the function GIR(ZV

�
; X; t):

GIR(ZV
�
; X; t) = (ZV

�
)
1

F IR(X; t) = (ZV

�
)
1

 exp[

1



(
1

2
XTQIR(t)X+dIR(t)TX+cIR(t))]

(75)

where QIR(t), dIR(t), cIR(t) are 5x5 matrix, 5x1 vector and scalar functions of

time correspondingly, with terminal conditions QIR(T ) = 05x5, dIR(T ) = 05x1 and

cIR(T ) = 0.

For an investor who has a power utility over real terminal wealth with coe¢ cient

of relative risk aversion 
 6= 1 and has access to an incomplete real bond market, the
minimax pricing kernel is given by:

V � = �(S?)T [dIR + 1
2
(QIR + (QIR)T )X] (76)

where (S?) is the residual of the projection of S onto the traded real bonds,

S? = S � S(�BRTS)T (BRTS2BR)�1(�BRTS).

Moreover, his optimal portfolio choice is given by:

�IRt =
1



(BRTS2BR)�1(�BRTS2��BRT�Xt +BRTS��)

+
1



(BRTS2BR)�1(�BRTS)S[dIR(t) +

1

2
(QIR(t) +QIR(t)T )Xt] (77)
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with the functions dIR(t) and QIR(t) satisfying the system of ODEs (94)-(95).

The remainder, �IR0 = 1� iT�IR, is invested in the instantaneously real riskless asset
(see Appendix for the proof).

6 Results

This section reports the optimal portfolio choices of an investor who maximizes his

utility over real terminal wealth for various degrees of relative risk aversion and

investment horizons. The �rst subsection refers to the case of a complete bond market

while the second subsection refers to the case of an incomplete bond market, where

the incompleteness arises because the available bonds are fewer than the number of

the underlying risk factors.

Following Sangvinatsos and Wachter (2005), the results that we report refer to a

speci�c combination of the underlying risk factors. Nevertheless, instead of setting

ad hoc values for the risk factors, we employ the values of the macroeconomic vari-

ables that were actually experienced in 1975:Q1.11 This helps us derive an economic

interpretation for our results. This speci�c choice is made by taking into account the

implications of the term structure model for the bonds�expected excess returns and

their covariances, as discussed in Section 3.3. In particular, we have chosen this date

because it yields reasonable expected excess returns for the bonds relative to their

volatilities. Given the bond premium puzzle implication of this model, other periods

of our sample would yield extreme results, obscuring the analysis. We discuss further

this issue in Section 6.3.

6.1 Portfolio choice in complete markets

In a complete market, an investor may form a portfolio with multiple bonds. In

particular, the existence of �ve risk factors in the term structure model of Dewachter

et al. (2006) allows us to examine the investor�s bond portfolio choice among �ve

nominal bonds. Panel A of Table 5 presents these choices for 
 = 4 and 
 = 10,

as well as when the investment horizon increases up to T = 10 years. The results

show that, in case �ve bonds are available, the investor should take extreme long and

11These refer to an output gap of y = �5:89%, in�ation � = 10:43%, real interest rate � = �5:21%,
in�ation central tendency �� = 4:55% and real rate central tendency �� = 0:67%.
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short positions. The reason for this behaviour is the extremely high correlation of

the bonds�returns, mentioned in Section 3.3. Even very small di¤erences in the risk-

return trade o¤ of the various bonds motivate the investor to hold highly leveraged

positions.

- Tables 4 and 5 about here-

This may be a quite puzzling observation, but it is a direct consequence of the

estimated term structure model. There are various ways that these extreme positions

could be much smoother in reality. Firstly, some types of institutional investors, such

as pension and bond funds, are not allowed to take short positions. Such a constraint

would lead to zero positions in the bonds that theoretically appear to be sold short.

Secondly, transactions costs could actually make the perceived di¤erences in the risk-

return trade o¤ disappear, neutralizing the incentive of holding so extreme positions.

Furthermore, one should be very cautious when interpreting these results, because

they refer to ex post estimates of the risk factors�and bond returns�volatilities. In

particular, the volatility of the in�ation central tendency that mainly a¤ects bond

returns was estimated to be extremely low over the sample period. However, the

perceived volatility in the long-run in�ation expectations may be much higher ex

ante, so an investor may regard the bond returns� volatilities to be much higher

than what this model implies. Consequently, if the level of risk is increased, the ex

ante maximal Sharpe ratio would be much lower and the small di¤erences in the

bonds�premia would not lead to major demand shifts. In other words, if parameter

uncertainty is taken into account as in Barberis (2000), Xia (2001) and Garlappi et

al. (2007), bond demands may not be as extreme as the results in Table 5 suggest.

The next issue to examine is how real bonds can be mixed with nominal bonds

in a portfolio. This exercise is motivated by the signi�cantly lower correlations of

the returns of these two di¤erent types of bonds, as Table 4 shows.12 In particular,

Panel B of Table 5 reports the results of bond portfolio selection among �ve bonds,

i.e. nominal 1, 5 and 10-year bonds and real 3 and 7-year bonds, when the investor

12It should be noted that in this case the expected excess returns as well as the volatilities and

correlations of the real bonds are derived using their dynamics under the nominal SDF. We have

shown how to derive the real bonds�returns dynamics in (41). Therefore, when we derive the optimal

portfolio choice of the long-term investor from equation (31) in the presence of both real and nominal

bonds, the dynamics of the real bonds�returns given by the SDE in (41) are appropriately used.
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derives utility from his terminal wealth. The long and short positions are relatively

large for low degrees of risk aversion in the myopic case (T = 0), but they are not

as extreme as in the case where only nominal or only real bonds are available. Small

di¤erences in the risk-return trade o¤s are not extremely magni�ed in this case,

because each bond also plays a signi�cant diversi�cation role in the formation of the

optimal portfolios, since the correlations of the bonds�returns are now considerably

less than perfect.

With respect to the hedging demands, their magnitude depends on the investor�s

horizon as well as on his degree of relative risk aversion. In particular, hedging

demands tend to increase in absolute value as the horizon increases and tend to

decrease as the degree of risk aversion increases. It is interesting to observe that the

investor tries to match the duration of the bonds with his horizon. In other words,

he tries to optimally combine the bonds so as to create a synthetic bond portfolio

that has a maturity corresponding to his horizon. These results verify the argument

of Brennan and Xia (2002).

An interesting issue to examine is how the de�nition of the riskless asset is mod-

i�ed, as the horizon of the investor increases. It is well known that an in�nitely

risk-averse myopic investor (
 ! 1, T = 0) with utility over nominal wealth would
assign a zero portfolio weight to the available risky bonds, investing his wealth only

in the instantaneously nominal riskless asset that yields the nominal risk-free rate r.

On the other hand, for the myopic investor with utility over real terminal wealth, the

portion of wealth invested in the instantaneously nominal riskless asset is not exactly

equal to one. This can be seen by setting 
 !1 and T = 0 in (31). This substitu-

tion yields �0 = 1� iT (BTS2B)�1(�BTS)��, which is equal to 1:05 in the particular

case we examine, as reported in Panel A of Table 6. The explanation for this result

is that the available assets are nominal, while the myopic investor we examine seeks

to form a mean-variance e¢ cient portfolio in real terms. Therefore, he should take

into account the in�ation risk loadings of the various bonds. In particular, while the

total demand for the nominal bonds is iT� = �0:05, the internal allocation exhibits
signi�cant long and short positions, exploiting the di¤erences in the in�ation risk

loadings.

-Table 6 about here-
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Examining the optimal portfolio choice of a long-term investor (T > 0), we set


 = 100; 000 to approximate in�nite relative risk aversion. Panel A of Table 6 reports

the portfolio choices among �ve nominal bonds as the investor�s horizon increases up

to T = 10 years. These results show that the instantaneously nominal riskless asset is

not risk-free for a long-term investor, due to the reinvestment risk that it generates,

as explained in Stiglitz (1970). Moreover, the results show that none of the nominal

zero-coupon bonds can play the role of the riskless asset, even when the maturity of

the bond is identical to the horizon of the investor. This �nding can be explained

by the fact that the investor cares about his real terminal wealth but has access

only to nominal bonds and it re�ects the argument that a nominal bond cannot be

a perfect hedging instrument for shocks in the real wealth process. This is true even

when the in�ation risk is relatively low, because the in�nitely risk averse long-term

investor would not like to be exposed to any unhedgeable shock a¤ecting his real

wealth. Consequently, the investor attempts to proxy the non-existing riskless asset

by taking positions in the available nominal bonds and the optimal mix depends on

his horizon as well as on the available bond maturities.

The introduction of a real bond market allows us to examine how this in�nitely

risk-averse investor would behave, if he could allocate his wealth among real zero-

coupon bonds, priced under the real SDF. For the myopic case (T = 0), the risk-free

asset is the instantaneously real riskless asset that yields r��+�T��. Setting 
 !1
and T = 0 in (49), we get �R = 0 and �R0 = 1. Panel B of Table 6 reports this case as

well as the optimal bond portfolio choice for non-myopic investment horizons. The

striking result is that the in�nitely risk averse long-term investor, who cares about

his real wealth at a terminal date, should allocate his wealth to a single zero-coupon

bond that has a duration equal to his horizon.

The previous result has been proved theoretically by Wachter (2003) and it is also

stated in Liu (2007), but it has not been shown empirically in the literature, to the

best of our knowledge.13 Moreover, this �nding underlines the importance of intro-

ducing real bonds in an economy (see Viard, 1993 inter alia for a discussion). This

result o¤ers an explanation for the existence of assets with negative expected excess

returns, as the real bonds exhibited in a large portion of the examined period (see

13This is because Campbell and Viceira (2001) consider utility over consumption and access to

zero-coupon bonds, while Sangvinatsos and Wachter (2005) consider utility over real terminal wealth

but access only to nominal zero-coupon bonds.
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Figure 7). In particular, these bonds are held by long-term investors who are attrac-

ted by the signi�cant hedging value that these assets incorporate. The traditional

myopic framework could not have justi�ed their existence.

The framework we have been using allows us also to examine the sensitivities of

the investor�s wealth with respect to shifts in the underlying macroeconomic factors.

In particular, these sensitivities are a¤ected by the agent�s degree of risk aversion as

well as his investment horizon. In the case of an investor who derives utility from his

real terminal wealth and faces a complete nominal bond market, his wealth elasticities

are given by @G
@X

1
G
, where G is de�ned in (30). For the current analysis, it proves more

informative to report the norm of these elasticities, given by
q
( @G
@X

1
G
)T ( @G

@X
1
G
).

Figure 8 reports this norm as the horizon increases for various levels of relative risk

aversion. The results show that, for low levels of relative risk aversion (
 < 10) and

long investment horizons, these elasticities are extremely high. Only a combination

of short horizons and very high levels of risk aversion would yield a low norm of

elasticities. This e¤ect explains the large shifts in the hedging demands that we

report in our portfolio choice results when the investment horizon or the degree of

relative risk aversion is modi�ed. Unreported results show that the wealth elasticity

with respect to the in�ation central tendency is the dominant one.14

-Figure 8 about here-

6.2 Portfolio choice in incomplete markets

The multi-factor term structure model of Dewachter et al. (2006) allowed us to exam-

ine the formation of portfolios with �ve zero-coupon bonds, within a complete market

setting. Nevertheless, there are a series of reasons why an investor may actually al-

locate his wealth to a restricted set of bonds. In particular, this section examines

the portfolio choice among two or three zero-coupon bonds and the corresponding

14We have also examined the case of interim consumption under complete markets. The results,

available upon request, show that the introduction of interim consumption essentially reduces the

e¤ective investment horizon relative to the terminal wealth case, con�rming the argument of Wachter

(2002). Moreover, no zero-coupon bond is regarded as a risk-free asset. In the presence of interim

consumption, an in�nitely risk-averse investor would seek to hold a coupon bond that matches his

consumption stream. It should be noted that, as mentioned by Sangvinatsos and Wachter (2005),

the analogy between the case of utility over terminal wealth and the case of utility over interim

consumption does not carry through in the incomplete market case.
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riskless asset. Within our setup, this leads to an incomplete market setting, analyzed

in Section 5.

More speci�cally, it is common for institutional investors to face short selling

constraints, disabling them to fully exploit the di¤erences in the bonds�risk-return

pro�les by holding leveraged positions. Most importantly, transaction costs may

actually make these risk-returns di¤erences disappear for bonds of similar maturities.

As Figure 4 and Figure 7 show, the expected excess returns are very similar for bonds

with close maturities and they tend to strongly co-move through time. For example,

the expected excess return of the 5-year nominal zero-coupon bond was, on average,

only 0:34% higher than the expected excess return o¤ered by the 3-year nominal

zero-coupon bond for our sample period. Hence, transaction costs of the order of

0:2% could make bonds of very close maturities practically redundant.

Liquidity considerations would o¤er an additional reason why an investor may

be willing to hold positions in a restricted set of bonds. While our portfolio choice

exercise implicitly assumes that the zero-coupon bonds with prespec�ed maturities

are always available, this may not be true in practice. In particular, bonds of speci�c

maturities may not be liquid enough, so an investor may not be able to fully capture

the corresponding perceived expected returns that are implied by the estimated term

structure model.15 Consequently, this investor may prefer to hold a restricted set

of highly liquid bonds and avoid loading illiquidity risk to his portfolio. Finally, it

should be reminded that most of the dynamic bond portfolio studies make use of two

or three risk factors to price bonds (see Campbell and Viceira, 2001 and Sangvinatsos

and Wachter, 2005 correspondingly). The low dimension of these models simpli�es

the asset allocation problem, indicating that investors should form portfolios that are

composed of only two or three bonds.

We �rstly examine the portfolio choice among a 3-year and a 10-year nominal

zero-coupon bond and the nominal instantaneously riskless asset. Panel A of Table

7 presents the optimal allocations for 
 = 4 and 
 = 10, as the horizon increases

from T = 0 to T = 10 years. For the speci�c macroeconomic conditions that we

have selected, the corresponding excess returns and their covariances imply that the

myopic demand for the 10-year bond is much higher than the demand for the 3-year

bond. Furthermore, the demand for the nominal instantaneously riskless asset is

15See Amihud and Mendelson (1991) for the impact of transaction costs and liquidity on bond

yields.
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quite high. Nevertheless, long-term investors have signi�cant hedging bond demands

that dominate the corresponding total demands as the horizon increases. Moreover,

the magnitude of the hedging demand is greater for low levels of relative risk aversion

and the investor should actually borrow at the instantaneously riskless rate.

-Table 7 about here-

The next issue to examine in this subsection is the impact of macroeconomic shifts

on optimal portfolio choice. This is an attractive feature of our study with respect to

the rest of the literature, since we employ an essentially a¢ ne term structure model

with a clear macroeconomic interpretation. Unlike Campbell and Viceira (2001) and

Brennan and Xia (2002), who assume constant term premia, both myopic and hedging

demands in our model are a¤ected by the level of the underlying risk factors. In other

words, the long-term investor is involved in market timing both in his myopic and

his hedging demand, as it is evident from (31). Moreover, the modi�cations of the

underlying risk factors are due to speci�c macroeconomic e¤ects, in contrast to the

latent factor model used by Sangvinatsos and Wachter (2005).

As it was mentioned in Section 3.3, the central tendency of in�ation, ��, has a

dominant e¤ect on bond returns. Consequently, we examine the impact on portfolio

choice when this tendency increases or decreases by one standard deviation, keeping

the rest of the factors constant. The portfolio choices reported in Panel B of Table

7 show that the increase in this central tendency implies a signi�cant increase in the

excess returns of the 3-year and the 10-year bond. As a result, the risk-return trade

o¤ of these bonds is modi�ed, making the 3-year bond much more attractive now

in comparison to the benchmark case. Not only the myopic demand for this bond

is higher, but this is also true for the corresponding hedging demands. The total

demand for the 10-year bond is lower for short horizons and it signi�cantly increases

only when the investor�s horizon approaches the ten years. The total hedging demand

still decreases as the degree of relative risk aversion increases, but its magnitude is

now larger in comparison to the benchmark case.

On the other hand, a decrease in the central tendency of in�ation has the opposite

e¤ect, as the results in panel C of Table 7 show. The reduction in the bonds�premia

modi�es their risk-return trade o¤ in such a way that the myopic investor sells short

the 3-year bond. There is some hedging role for this bond, but this has become

very limited and only for investment horizons close to the bond�s maturity. For long
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horizons, the investor has a signi�cantly negative hedging demand for this bond, since

he mainly makes use of the 10-year bond as a hedging instrument. The magnitude

of the total bond demand is now quite a lot smaller in comparison to the benchmark

macroeconomic conditions, prevailing in 1975:Q1.

Pricing real bonds within our setup, we concluded that they exhibit a di¤erent

behaviour in comparison to nominal bonds. This observation motivates us to examine

also the optimal allocation of real wealth when a 3-year and a 10-year real bond are

available, apart from the instantaneously real risk free rate. Panel A of Table 8 shows

the myopic as well as the total bond demands, as the investor�s horizon increases for

the macroeconomic conditions prevailing in 1975:Q1. Even though both bonds have

negative expected excess returns, the risk-return trade o¤ that they exhibit motivates

the myopic investor to hold a signi�cant long position in the 3-year bond by selling

short the 10-year real bond. As the horizon increases, the hedging demand for the

10-year bond becomes increasingly positive. In general, the investor attempts to

combine the bonds�maturities so as to match his horizon.

-Table 8 about here-

Since the factor loadings of the macroeconomic risks are modi�ed in the case of

real bonds, it is interesting to examine the impact of macroeconomic change in this

case too. Panel B of Table 8 shows the optimal portfolio choice when the in�ation

central tendency is increased by one standard deviation, while Panel C of Table 8

presents the case of the corresponding reduction in the in�ation central tendency.

In the �rst case, the increase in the premium of the 3-year real bond signi�cantly

increases both the myopic and the hedging demand for this bond for short horizons.

On the other hand, the reduction in the central tendency of in�ation reduces the

reward for holding both the 3-year and the 10-year real bond. Consequently, the

magnitude of both the myopic and the hedging bond demands becomes lower in

comparison to the benchmark case.

Expanding the asset space to include a third nominal bond leads to larger long

and short positions. Panel A of Table 9 shows the allocation of wealth to the nominal

zero-coupon bonds with 1, 5 and 10-year maturities for various investment horizons

when the investor maximizes utility over real terminal wealth. The magnitude of the

hedging demands crucially depends on the horizon and it tends to decrease as the

investor becomes more risk averse. The inclusion of another bond gives the investor

35



more �exibility in his attempt to create a hedging bond portfolio with duration that

matches his horizon. The 10-year nominal bond plays a signi�cant hedging role

mainly for investors with long horizons.

-Table 9 about here-

Panel B of Table 9 reports the corresponding optimal portfolio choices when an

investor can allocate his wealth among real zero-coupon bonds with 1, 5 and 10-year

maturities. The 1-year bond o¤ers a signi�cantly higher premium in comparison

to the negative premia o¤ered by the 5-year and 10-year bonds. Consequently, the

myopic investor should take a signi�cant long position in the 1-year bond, selling

short the 5-year bond. On the other hand, the 10-year bond incorporates signi�cant

hedging value for a long-term investor, especially when his horizon is longer than

5 years. These results also show that access to multiple real bonds may o¤er the

required �exibility to long-term investors who seek to hedge away shocks to their real

wealth process in an optimal way.

Subsequently, we examine the optimal asset allocation to one real and two nom-

inal bonds. This is an interesting combination to examine because the investor can

actually improve the diversi�cation of his portfolio, extract the premia from nom-

inal bonds and make use of the real bond�s hedging value. It should be reminded

that when deriving the optimal portfolio choice for this case, the real bond�s SDE

under the nominal SDF, given by (41), is appropriately used in equation (65). Panel

C of Table 9 shows the portfolio choice results. Bond demands are much lower in

magnitude and less sensitive to shifts in the investment horizon and the degree of

relative risk aversion. This is due to the much lower correlation in the returns of the

available bonds. The 5-year real bond plays a hedging role, especially for an investor

with a horizon close to �ve years. The 1-year bond is used mainly for its attractive

risk-return pro�le, while the 10-year nominal bond plays a very signi�cant hedging

role for horizons longer than �ve years.

6.3 Sensitivity analysis

The last issue to examine is how sensitive are the portfolio choices that we previously

presented to the choice of the benchmark date 1975:Q1. The extreme swings in the

maximal Sharpe ratio, illustrated in Figure 5, indicate that both the myopic and the
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hedging demands will be subject to extreme swings too. This is due to the fact that

under time-varying risk premia, the investor should be involved in market timing for

investment as well as for hedging purposes. The large shifts in the macroeconomic

factors as well as the very high wealth elasticities of the power utility investor with

respect to these factors explain these extreme swings in portfolio choices.

We plot in Figure 9 the total myopic bond demand for a power utility investor

with 
 = 10, who has access to a 3-year and a 10-year nominal zero-coupon bond for

the period 1964:Q1 to 1998:Q4 (solid line). The vector of the myopic bond demands

is given by the �rst two terms in equation (65). The total myopic bond demand

exhibits large shifts through time, verifying the argument that the time-variation in

the bond premia is a very important issue that even a myopic investor should take

into account. The evolution of the total myopic demand resembles the evolution of

the maximal Sharpe ratio that is illustrated in Figure 5.

- Figure 9 about here-

More impressive are the extreme shifts in the total hedging bond demand. Figure

9 illustrates the evolution of the sum of the hedging demands for these two nominal

bonds. The vector of the hedging demands is given by the third term in equation (65)

for a power utility investor with 
 = 10, who has a horizon of T = 3 and T = 10 years

correspondingly. For both cases, the shifts are extreme for even small changes in the

macroeconomic factors. Furthermore, the magnitude of the total hedging demand is

very high and overwhelmingly dominates the corresponding total myopic bond de-

mand for every single period. It is also very interesting to observe that the total

hedging bond demand is almost the same for both investment horizons, to the extent

that the two lines are indistinguishable. As we have previously analyzed, the invest-

ment horizon plays a crucial role for the internal composition of the hedging bond

portfolio, not for its total magnitude. The magnitude as well as the extreme shifts in

the total hedging bond demand are consequences of the huge wealth elasticities of the

long-term power utility investor, illustrated in Figure 8, as well as the considerable

variation in the investment opportunity set. Therefore, these results underline our

previous conclusions, showing that the time-variation in bond premia is an extremely

important issue that a long-term investor should not neglect in his attempt to hedge

away undesirable shocks.
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We repeat the previous sensitivity analysis for the case of a power utility investor

with 
 = 10, who has access to a 3-year and a 10-year real zero-coupon bond for

the period 1964:Q1 to 1998:Q4. Figure 10 illustrates the total myopic bond demand

(solid line), the total hedging bond demand for an investor with a horizon of T = 3

years (triangle-marked line) as well as the corresponding total hedging bond demand

when the investment horizon is T = 10 years (dashed line). The vector of the myopic

bond demands is given by the �rst term in equation (77), while the vector of the

hedging bond demands is given by the second term in (77).

-Figure 10 about here-

The results show that the shifts in the total myopic bond demand as well as in the

total hedging bond demand are of great magnitude for the case of real bonds too. A

visual inspection of Figure 10 shows that the evolution of the total myopic and total

hedging bond demands follow closely the evolution of the maximal Sharpe ratio. This

�nding con�rms the argument that the power utility investor should rebalance his

bond portfolio according to the shifts in the macroeconomy. Moreover, the magnitude

of the total hedging bond demand of the power utility investor with 
 = 10 is greater

than the corresponding total myopic bond demand for every period in our sample.

Nevertheless, the di¤erence in their magnitudes is less pronounced as compared to

the case of nominal zero-coupon bonds. Given this evidence, it should be noted that

the period we employed as our benchmark in this study, i.e. 1975:Q1, was selected on

the basis that it yielded a low magnitude of myopic and hedging demands, facilitating

our analysis.

7 Conclusion

This study examined the dynamic bond portfolio choice of a long-term, power utility

investor. Using the macro-�nance term structure model of Dewachter et al. (2006),

we were able to provide a clear macroeconomic interpretation for the formation of

bond premia and to examine how shifts in the macroeconomy a¤ect the formation of

optimal portfolios. We have also documented how the concept of the riskless asset

is de�ned in the case of utility over terminal real wealth, when the investor has

access either to nominal or real bonds. Until now, this issue has been explored in the

literature only separately for each case.
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Our results are of signi�cant importance for institutional investors, such as pension

funds. Matching the duration of a nominal bond with the investment horizon is a

legitimate practice for in�nitely risk averse agents who have utility over nominal

wealth at a terminal date. However, if the investors are interested in real wealth, this

practice does not provide a safe strategy, because the nominal bond is risky in real

terms. In this case, a real bond with the appropriate duration becomes the riskless

asset. This framework has also allowed us to provide reconciliation for the existence of

assets with low or even negative expected excess returns, such as long-term real bonds.

Standard mean-variance theory cannot provide an explanation why an investor should

hold these bonds. Our results provide support for the popular perception that these

bonds are mainly held for hedging purposes, especially when investors care for real

wealth and consumption. Moreover, the real bonds could be included in a broader

portfolio because their returns exhibit relatively low correlation with the returns of

nominal bonds, so they may be useful instruments for diversi�cation.

With respect to the term structure literature, we provide an evaluation of the

essentially a¢ ne models from an asset allocation perspective. While the focus of the

literature is on �tting past and predicting future yields, the covariance and correlation

structure that estimated models imply for the bond returns is relatively neglected.

It is shown that this is a major concern if one wishes to implement these models for

portfolio choice, because the estimated volatilities are extremely low and the correla-

tions of the returns are extremely high. A potential solution is to use a term structure

model that allows for time-varying conditional volatilities, as in Spencer (2008), or to

adopt a Bayesian approach for portfolio choice, as in Garlappi et al. (2007), assuming

parameter uncertainty that e¤ectively increases the returns�volatilities.

Finally, the high market prices of risk yield extreme wealth sensitivities to move-

ments in the underlying risk factors, generating hedging demands of large magnitude.

This e¤ect becomes moderate only if we assume very short horizons and very high

degrees of relative risk aversion. It is hard to reconcile these large sensitivities within

the commonly used power utility framework in the presence of horizon e¤ects. Con-

sequently, we document a premium puzzle in the bond market. Future research could

examine whether the loss aversion framework of Benartzi and Thaler (1995), as re-

cently examined by Berkelaar, Kouwenberg and Post (2006), may yield more realistic

conclusions.
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Appendix
Proof of Proposition 3.1
Employing the conjectured functional form for G given in (30), we can substitute

the corresponding terms into the PDE (28) and recalling the de�nition of the price

of risk � as well as the fact that the nominal risk-free rate is given by r = �T1X and

r � � = (�1 � �2)
TX, where �1 = (0 1 1 0 0)T and �2 = (0 1 0 0 0)T , this PDE can

be written as:
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where _c, _d, _Q stand for the derivatives of c, d and Q with respect to time t.

From the previous expression, gathering terms in XT [:]X, X and the scalar term,

we get the following system of ODEs:
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(81)

along with the corresponding terminal conditions. This is a system of 31 ODEs.

Furthermore, substituting the functional form of G into (29), we get the optimal

portfolio choice in (31).

Proof of Proposition 3.2
Substituting the conjectured functional form for GR into the PDE (46), we end

up with exactly the same equation as in (78) with respect to QR(t), dR(t) and cR(t).

As a result, the ODEs that QR(t), dR(t) and cR(t) should satisfy are of the same form

as in (79) - (81).

Substituting the conjectured form of the function GR(ZR; X; t) into (47), we get

the optimal portfolio choice in (49).

Proof of Proposition 3.3
Substituting the conjectured form for GI into (62), the optimal portfolio choice

should satisfy:

(�I)T (�BTS) =
1



�T +

1



(v�)T + (1� 1



)�T� +

1



(
1

2
XT (QI +QIT ) + dIT )S (82)

According to the argument of He and Pearson (1991), v� should guarantee that

the unhedgeable parts of �T� and S should drop out. Note that �
T
� can be written as:

�T� = �T�(�BTS)T (BTS2B)�1(�BTS)+[�T���T�(�BTS)T (BTS2B)�1(�BTS)] (83)

where the �rst component is the projection of �T� onto the available assets and

the second component is the residual of the projection, (�T�)
?. Similarly, S can be

written as:

S = S(�BTS)T (BTS2B)�1(�BTS) + [S � S(�BTS)T (BTS2B)�1(�BTS)] (84)

where S? = S � S(�BTS)T (BTS2B)�1(�BTS) is the residual of the projection

of S onto the available assets. It should be noted that under complete markets,

(�T�)
? = 0 and S? = 0.
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So, v� should satisfy the following condition:

v� = (1� 
)[(�T�)
?]T � (S?)T [(1

2
(QI +QIT )X + dI)] (85)

Substituting this expression into the optimal portfolio choice (82), we get:
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Multiplying this expression by (�BTS)T (BTS2B)�1 and taking the transpose, we

derive the optimal portfolio choice expression in (65).

Moreover, substituting the conjectured form for GI and the previously derived

equation for v� into the PDE (61), we can derive an equation from which, if we

collect the terms in XT [:]X, X and the scalar correspondingly, we get the following

system of ODEs:
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along with the corresponding terminal conditions.

Proof of Proposition 3.4
Substituting the conjectured form for GIR into (74), the optimal portfolio choice

satis�es:
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Again, V � should guarantee that the unhedgeable part of S should drop out.

Hence, V � should satisfy the following condition:

V � = �(S?)T [(1
2
(QIR +QIRT )X + dIR)] (91)

where S? = S � S(�BRTS)T (BRTS2BR)�1(�BRTS) is the residual of the pro-

jection of S on the available real bonds.

Substituting the expression for V � into (90), we get:
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Multiplying this expression by (�BRTS)T (BRTS2BR)�1 and taking the transpose,

we derive the optimal portfolio choice expression in (77).

Substituting the conjectured form for GIR and the previously derived expression

for V � into the PDE (73), we can derive an expression from which, if we gather the

terms in XT [:]X, X and the scalar, we get the following system of ODEs:
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along with the corresponding terminal conditions.

48



Table 1: Estimated coe¢ cients

y � � �� ��

�y;: �0:3146
(0:0638)��

�1:0748
(0:1765)��

�0:4555
(0:1711)��

��;: 0:3854
(0:064)��

�0:2452
(0:0446)��

�0:1319
(0:0249)��

��;: �0:0685
(0:0197)��

�5:1575
(0:4009)��

�5:3035
(0:3718)��

���;: �0:0036
(0:0012)��

���;: �0:4849
(0:0347)��

�: 0:0224
(0:0367)

0:0137
(0:0057)��

�: �63:9951
(65:1136)

34:8309
(63:3615)

32:5392
(14:2244)��

�21:9563
(11:0275)��

��;: 0:0082
(0:003)��

�0:3672
(0:1068)��

�0:9849
(0:2204)��

�1:1884
(0:3716)��

�1:5318
(0:4773)��

�2: 0:000279
(0:000043)��

0:000146
(0:000019)��

0:001545
(0:000042)��

0:000067
(0:000010)��

0:000253
(0:000043)��

Notes: This table shows the estimated parameters for the dynamics inX and the market

price of risk � as reported in Table II of Dewachter et al. (2006). Robust standard errors

are given in the parentheses. �� and � indicate statistical signi�cance at the 5% and the

10% level correspondingly.
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Table 2: Covariances and Correlations of Nominal bonds

Panel A: Covariance Matrix

1-yr 2-yr 3-yr 5-yr 7-yr 10-yr

1-yr 0.0004

2-yr 0.0007 0.0014

3-yr 0.0009 0.0019 0.0026

5-yr 0.0013 0.0026 0.0037 0.0054

7-yr 0.0016 0.0032 0.0046 0.0069 0.0088

10-yr 0.0019 0.0041 0.0058 0.0088 0.0115 0.0153

Panel B: Correlation Matrix

1-yr 2-yr 3-yr 5-yr 7-yr 10-yr

1-yr 1

2-yr 0.974 1

3-yr 0.947 0.994 1

5-yr 0.897 0.964 0.987 1

7-yr 0.848 0.927 0.961 0.993 1

10-yr 0.782 0.871 0.916 0.968 0.991 1

Notes: Panel A shows the covariance matrix of the nominal zero-coupon bond returns

for various maturities. Panel B shows the corresponding correlation matrix.

50



Table 3: Covariances and Correlations of Real bonds (real SDF)

Panel A: Covariance Matrix

1-yr 2-yr 3-yr 5-yr 7-yr 10-yr

1-yr 0.0005

2-yr 0.0009 0.0018

3-yr 0.0013 0.0025 0.0035

5-yr 0.0017 0.0034 0.0048 0.0066

7-yr 0.0019 0.0038 0.0066 0.0075 0.0087

10-yr 0.0021 0.0041 0.0075 0.0081 0.0094 0.0104

Panel B: Correlation Matrix

1-yr 2-yr 3-yr 5-yr 7-yr 10-yr

1-yr 1

2-yr 0.982 1

3-yr 0.964 0.995 1

5-yr 0.933 0.976 0.991 1

7-yr 0.91 0.956 0.975 0.995 1

10-yr 0.885 0.932 0.951 0.975 0.99 1

Notes: Panel A shows the covariance matrix of the real zero-coupon bond returns for

various maturities. Panel B shows the corresponding correlation matrix.
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Table 4: Mixture of nominal and real bonds (nominal SDF)

Panel A: Covariance Matrix

1-yr (N) 3-yr (R) 5-yr (N) 7-yr (R) 10-yr (N)

1-yr (N) 0.0004

3-yr (R) 0.0009 0.0042

5-yr (N) 0.0013 0.0037 0.0054

7-yr (R) 0.0016 0.0061 0.0061 0.0093

10-yr (N) 0.0019 0.0054 0.0088 0.0091 0.0153

Panel B: Correlation Matrix

1-yr (N) 3-yr (R) 5-yr (N) 7-yr (R) 10-yr (N)

1-yr (N) 1

3-yr (R) 0.741 1

5-yr (N) 0.897 0.773 1

7-yr (R) 0.819 0.965 0.859 1

10-yr (N) 0.782 0.673 0.968 0.766 1

Notes: Panel A shows the covariance matrix of a mixture of nominal and real zero-

coupon bond returns for various maturities. For consistency, we have used the dynamics

of the real bonds�returns under the nominal SDF, as they are given by the SDE (41). (N)

indicates a nominal bond while (R) indicates a real bond. Panel B shows the corresponding

correlation matrix.
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Table 5: Portfolio choice among �ve bonds

Panel A: 5 Nominal bonds

L = 4 L = 10

Premia T=0 T=1 T=5 T=10 T=0 T=1 T=5 T=10

1­yr (N) 0.20% 20.88 24.76 30.34 21.93 10.57 15.10 21.21 13.09

3­yr (N) 0.65% ­218.49 ­243.74 ­281.20 ­231.35 ­102.24 ­127.45 ­166.48 ­118.55

5­yr (N) 0.91% 757.66 810.83 820.84 729.94 334.49 385.80 410.69 317.84

7­yr (N) 1.17% ­788.08 ­825.91 ­779.61 ­723.58 ­339.46 ­376.39 ­350.25 ­287.31

10­yr (N) 1.71% 236.62 243.95 219.23 212.55 100.15 107.57 89.40 79.37

Panel B: 5 Nominal and real bonds under the nominal SDF

L = 4 L = 10

Premia T=0 T=1 T=5 T=10 T=0 T=1 T=5 T=10

1­yr (N) 0.20% ­1.47 ­1.85 ­5.81 ­5.22 ­0.81 ­0.56 ­3.69 ­3.44

3­yr (R) 0.28% 17.32 17.81 15.63 15.19 7.27 7.74 6.09 5.42

5­yr (N) 0.91% 11.59 13.72 15.65 13.21 4.64 5.64 7.52 5.72

7­yr (R) ­1.39% ­16.57 ­16.75 ­13.67 ­13.93 ­6.79 ­6.95 ­4.46 ­4.41

10­yr (N) 1.71% ­2.45 ­3.23 ­2.42 0.06 ­0.97 ­1.34 ­1.01 1.09

Notes: This Table shows the optimal portfolio choice of an investor who has utility over

real terminal wealth and access to �ve bonds. Panel A shows the portfolio choice among �ve

nominal bonds as derived in (31) for the macroeconomic conditions prevailing in 1975:Q1

(y = �5:89%, � = 10:43%, � = �5:21%, �� = 4:55% and �� = 0:67%). Panel B shows

the corresponding portfolio choice among 3 nominal and 2 real bonds. The dynamics for

the returns of these 2 real bonds that have been employed in Panel B are given by the SDE

in (41) and they are stated under the nominal SDF. The hedging demand for horizon T is

given by the di¤erence between the total demand for horizon T and the demand for T = 0

(myopic demand). The allocation to the nominal instantaneously riskless asset is equal to

one minus the sum of the total bond demands in each case.
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Table 6: Bond portfolio choice for an in�nitely risk-averse investor

Panel A: 5 Nominal bonds

T=0 T=1 T=3 T=5 T=7 T=10

1-yr (N) 3.69 4.90 9.44 10.41 8.69 6.09

3-yr (N) -24.74 -23.43 -50.18 -52.05 -40.38 -26.79

5-yr (N) 52.21 45.98 88.61 78.96 49.93 25.56

7-yr (N) -40.38 -33.41 -55.75 -38.44 -12.52 3.57

10-yr (N) 9.17 6.99 8.97 2.23 -4.64 -7.38

Instantaneously

risk-free asset
1.05 -0.03 -0.09 -0.10 -0.08 -0.05

Panel B: 5 Real bonds

T=0 T=1 T=3 T=5 T=7 T=10

1-yr (R) 0.00 1.00 0.00 0.00 0.00 0.00

3-yr (R) 0.00 0.00 1.00 0.00 0.00 0.00

5-yr (R) 0.00 0.00 0.00 1.00 0.00 0.00

7-yr (R) 0.00 0.00 0.00 0.00 1.00 0.00

10-yr (R) 0.00 0.00 0.00 0.00 0.00 1.00

Instantaneously

risk-free asset
1.00 0.00 0.00 0.00 0.00 0.00

Notes: This Table shows the optimal portfolio choice of an in�nitely risk averse investor

(
 = 100; 000), who has utility over real terminal wealth and access to �ve bonds. Panel

A shows the portfolio choice among �ve nominal bonds for the macroeconomic conditions

prevailing in 1975:Q1. Panel B shows the corresponding portfolio choice when the investor

has access to �ve real bonds. The hedging demand for horizon T is given by the di¤erence

between the total demand for horizon T and the demand when T = 0 (myopic demand).

The allocation to the corresponding instantaneously riskless asset is equal to one minus the

sum of the total bond demands in each case, provided in the last line of each panel.
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Table 7: Portfolio choice among two nominal bonds

Panel A: Benchmark case 1975:Q1


 = 4 
 = 10

Premia T=0 T=3 T=5 T=10 T=0 T=3 T=5 T=10

3-yr 0.65% 0.05 5.17 4.66 1.94 0.03 3.79 3.88 2.01

10-yr 1.71% 0.26 0.29 1.28 3.12 0.10 0.02 0.63 2.12

Panel B: Increase in the in�ation central tendency


 = 4 
 = 10

Premia T=0 T=3 T=5 T=10 T=0 T=3 T=5 T=10

3-yr 0.88% 0.84 9.39 8.77 5.47 0.35 6.07 6.13 3.82

10-yr 1.96% 0.002 -0.24 0.94 3.15 -0.004 -0.23 0.52 2.32

Panel C: Decrease in the in�ation central tendency


 = 4 
 = 10

Premia T=0 T=3 T=5 T=10 T=0 T=3 T=5 T=10

3-yr 0.42% -0.74 0.94 0.56 -1.59 -0.28 1.52 1.64 0.19

10-yr 1.46% 0.52 0.82 1.62 3.09 0.20 0.26 0.74 1.91

Notes: This Table shows the optimal portfolio choice of an investor who has utility

over real terminal wealth and access to two nominal bonds, given by (65). Panel A shows

the portfolio choice for the macroeconomic conditions prevailing in 1975:Q1 (y = �5:89%,
� = 10:43%, � = �5:21%, �� = 4:55% and �� = 0:67%). Panel B shows the correspond-

ing portfolio choice when the in�ation central tendency �� is increased by one standard

deviation (��� = 0:81%), while Panel C shows the corresponding choice when the in�ation

central tendency �� is decreased by one standard deviation. The hedging demand for hori-

zon T is given by the di¤erence between the total demand for horizon T and the demand

when T = 0 (myopic demand). The allocation to the nominal instantaneously riskless asset

is equal to one minus the sum of the total bond demands in each case.
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Table 8: Portfolio choice among two real bonds

Panel A: Benchmark case 1975:Q1


 = 4 
 = 10

Premia T=0 T=3 T=5 T=10 T=0 T=3 T=5 T=10

3-yr -0.25% 4.76 5.17 3.13 0.03 1.90 2.63 1.38 -0.82

10-yr -1.59% -3.01 -0.85 1.16 3.33 -1.20 -0.02 1.41 3.04

Panel B: Increase in the in�ation central tendency


 = 4 
 = 10

Premia T=0 T=3 T=5 T=10 T=0 T=3 T=5 T=10

3-yr 0.12% 5.65 6.32 3.89 0.19 2.26 3.12 1.59 -1.05

10-yr -1.14% -3.39 -0.02 2.37 4.96 -1.36 0.52 2.24 4.21

Panel C: Decrease in the in�ation central tendency


 = 4 
 = 10

Premia T=0 T=3 T=5 T=10 T=0 T=3 T=5 T=10

3-yr -0.62% 3.87 4.01 2.37 -0.14 1.55 2.14 1.16 -0.59

10-yr -2.06% -2.63 -1.68 -0.05 1.69 -1.05 -0.56 0.58 1.87

Notes: This Table shows the optimal portfolio choice of an investor who has utility over

real terminal wealth and access to real bonds, given by (77). Panel A shows the portfolio

choice for the macroeconomic conditions prevailing in 1975:Q1 (y = �5:89%, � = 10:43%,
� = �5:21%, �� = 4:55% and �� = 0:67%). Panel B shows the corresponding portfolio

choice when the in�ation central tendency �� is increased by one standard deviation (��� =

0:81%), while Panel C shows the corresponding choice when the in�ation central tendency

�� is decreased by one standard deviation. The hedging demand for horizon T is given

by the di¤erence between the total demand for horizon T and the demand when T = 0

(myopic demand). The allocation to the real instantaneously riskless asset is equal to one

minus the sum of the total bond demands in each case.
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Table 9: Portfolio choice among three bonds

Panel A: 3 Nominal bonds (nominal SDF)

L = 4 L = 10

Premia T=0 T=1 T=5 T=10 T=0 T=1 T=5 T=10

1­yr (N) 0.20% 1.74 0.73 ­5.96 ­3.89 0.14 ­0.25 ­5.77 ­4.31

5­yr (N) 0.91% ­1.61 1.27 8.66 4.09 ­0.27 1.53 8.08 4.74

10­yr (N) 1.71% 0.99 ­0.07 ­1.07 2.13 0.25 ­0.42 ­1.66 0.91

Panel B: 3 Real bonds (real SDF)

L = 4 L = 10

Premia T=0 T=1 T=5 T=10 T=0 T=1 T=5 T=10

1­yr (R) 0.34% 29.69 31.68 30.51 31.71 11.87 13.42 12.52 13.40

5­yr (R) ­1.37% ­12.96 ­13.45 ­15.90 ­20.92 ­5.18 ­5.44 ­6.64 ­10.67

10­yr (R) ­1.59% 3.83 4.47 9.46 13.76 1.53 1.87 5.13 8.78

Panel C: 3 Nominal and real bonds under the nominal SDF

L = 4 L = 10

Premia T=0 T=1 T=5 T=10 T=0 T=1 T=5 T=10

1­yr (N) 0.20% 2.98 4.71 4.81 2.28 0.87 2.00 1.99 1.17

5­yr (R) ­0.84% ­1.42 ­0.99 0.83 ­0.37 ­0.46 ­0.14 1.08 0.63

10­yr (N) 1.71% 0.60 0.63 3.15 3.74 0.23 0.23 1.30 2.43

Notes: This Table shows the optimal portfolio choice of an investor who has utility over

real terminal wealth and access to three bonds for the macroeconomic conditions prevailing

in 1975:Q1. Panel A shows the allocation among three nominal bonds, given by (65),

while Panel B shows the allocation among three real bonds, given by (77). Panel C shows

the corresponding allocation among two nominal and one real bond. The dynamics for

the returns of the real bond are given by the SDE in (41) and they are stated under the

nominal SDF. The hedging demand for horizon T is given by the di¤erence between the

total demand for horizon T and the demand when T = 0 (myopic demand). The allocation

to the instantaneously riskless asset is equal to one minus the sum of the total bond demands

in each case.
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Figure 1: Output gap, in�ation and in�ation central tendency
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Notes: This �gure plots the output gap y (dotted line) and the in�ation series � (solid

line), along with the �ltered series for the central tendency of in�ation �� (dashed line)

during the sample period 1964:Q1 to 1998:Q4.
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Figure 2: Real interest rate and real interest rate central tendency
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Notes: This �gure plots the �ltered series of the real interest rate � (solid line) and

the central tendency of the real interest rate �� (dashed line), during the sample period

1964:Q1 to 1998:Q4.
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Figure 3: Factor Loadings of nominal zero-coupon bonds

NOMINAL BOND FACTOR LOADINGS
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Notes: This �gure plots the loadings of the output gap y (dotted line), in�ation � (solid

line), real rate � (double dot-dashed line), in�ation central tendency �� (dashed line) and

real rate central tendency �� (dot-dashed line) on the nominal zero-coupon bonds, adjusted

for the corresponding maturities, i.e. b(�)=� .
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Figure 4: Expected excess returns of nominal zero-coupon bonds
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Notes: This �gure shows the expected excess returns of the nominal zero-coupon bonds

with maturities of 1, 3, 5, 7 and 10 years over the sample period 1964:Q1 to 1998:Q4.
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Figure 5: Maximal Sharpe Ratio
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Notes: This �gure plots the Maximal Sharpe ratio, given by the norm
p
�T �, over the

sample period 1964:Q1 to 1998:Q4.
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Figure 6: Factor Loadings of real zero-coupon bonds
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Notes: This �gure plots the loadings of the output gap y (dashed line), in�ation �

(dotted line), real rate � (dot-dashed line), in�ation central tendency �� (double dot-dashed

line) and real rate central tendency �� (solid line) on the real zero-coupon bonds, adjusted

for the corresponding maturities, i.e. bR(�)=� .
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Figure 7: Expected excess returns of real zero-coupon bonds
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Notes: This �gure shows the expected excess returns of the real zero-coupon bonds

under the real SDF with maturities of 1, 3, 5, 7 and 10 years, over the sample period

1964:Q1 to 1998:Q4.
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Figure 8: Wealth sensitivities with respect to the risk factors

Notes: This �gure shows the norm of the wealth sensitivities with respect to the un-

derlying macroeconomic risk factors for various degrees of Relative Risk Aversion (RRA)

as the investment horizon increases. The choice for the macroeconomic risk factors are

those prevailing in 1975:Q1 (y = �5:89%, � = 10:43%, � = �5:21%, �� = 4:55% and

�� = 0:67%). These norms correspond to the case of an investor with utility over real

terminal wealth and they are given by
q
( @G
@X

1
G
)T ( @G

@X
1
G
), where G is de�ned in (30).
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Figure 9: Total myopic and hedging portfolio choices for 2 nominal bonds
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Notes: This �gure shows the total myopic bond portfolio choice (solid line) of a power

utility investor with coe¢ cient of relative risk aversion 
 = 10, who has access to a 3-year

and a 10-year nominal zero-coupon bonds for the period 1964:Q1 to 1998:Q4. This sum

is given by iT�myopic where �myopic consists of the �rst two terms in equation (65). The

triangle-marked line shows the total hedging bond demand for the power utility investor

with 
 = 10, who has a horizon of T = 3 years and access to the same nominal bonds.

The dashed line shows the corresponding total hedging bond demand for the investor with

a horizon of T = 10 years. For each case, this sum is given by iT�hedging, where �hedging

is given by the third term in equation (65).
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Figure 10: Total myopic and hedging portfolio choices for 2 real bonds
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Notes: This �gure shows the total myopic bond portfolio choice (solid line) of a power

utility investor with coe¢ cient of relative risk aversion 
 = 10, who has access to a 3-year

and a 10-year real zero-coupon bonds for the period 1964:Q1 to 1998:Q4. This sum is given

by iT�myopic where �myopic consists of the �rst term in equation (77). The triangle-marked

line shows the total hedging bond demand for the power utility investor with 
 = 10, who

has a horizon of T = 3 years and access to the same real zero-coupon bonds. The dashed

line shows the corresponding total hedging bond demand for the investor with a horizon of

T = 10 years. For each case, this sum is given by iT�hedging, where �hedging is given by

the second term in equation (77).
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