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Abstract 

Recent papers in asset pricing have added a market-wide liquidity factor to traditional 

portfolio-based or factor models. None of these papers has reported any evidence on 

how aggregate liquidity behaves together with consumption growth risk as measured by 

ultimate consumption risk. This paper covers this gap by providing a comprehensive 

explanation of the cross-sectional variation of average returns under market-wide 

illiquidity shocks. It derives closed-form expressions for consumption-based stochastic 

discount factors adjusted by aggregate liquidity shocks and tests alternative models 

specifications.  
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1. Introduction 

Not surprisingly, asset pricing literature has been debating between reduced-form 

portfolio-based models or factor models, where marginal utility of consumption is 

directly measured by the returns on a few number of large portfolios, and 

macroeconomic models, where the focus is on understanding the marginal utility that 

drives asset prices. In other words, factor models take as given the risk premium 

associated with a set of large portfolios, and simply investigate whether expected 

returns can be explained in terms of a few sources of common movements captured by 

that (exogenous) set of large portfolios. On the other hand, macroeconomic-based asset 

pricing models are concerned about why those common factors represented by large 

portfolios are priced in financial markets. Hence, these models investigate whether the 

chosen stochastic discount factor –the chosen proxy for the marginal rate of 

intertemporal substitution of consumption- reflects macroeconomic conditions 

properly.1  

 

The economic understanding of the behavior of stock markets must be based on the fact 

that investors fear stocks because they tend to do badly –ultimately reducing 

consumption- in economic downturns and especially on recessions. The systematic 

rejection of the basic consumption-based model has led to new models in which utility 

depends not only on consumption but also on other arguments which enter in the utility 

function in a non-separate fashion. This is the key success of models with non-

separability over time and across states of nature. Well known models with habit 

persistence or recursive utility functions are good examples. Given non-separability, 

covariances of returns with state variables are priced because the derivatives of marginal 

utility of consumption with respect to the corresponding state variables are different 

from zero. The point is that these models retain aggregate consumption as the key 

source of macroeconomic risk but add non-separable arguments in the utility functions 

to increase the volatility of the stochastic discount factor (SDF). 

 

Interestingly, non-separability of the marginal utility of consumption from state 

variables such as labor income growth, habits, housing collateral, the share of housing 

consumption in total consumption, and others are constrained to adjust slowly. This 

                                                 
1 See Cochrane (2008) for a detailed and provocative discussion on these fundamental issues. 
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insight, together with the cost of adjusting consumption itself, suggests that even the 

basic consumption-based model may hold at long-horizons. Indeed, a recent line of 

research focuses on the treatment of consumption data. Even though, we should be 

aware of the measurement difficulties involved,2 several authors attempt to find the 

most appropriate way to compute both the consumption variable and the consumption 

growth rate such that the investment timing decision of the representative agent is 

consistently matched with his desired pattern of consumption.  

 

Jagannatan and Wang (2007) study the most appropriate sample frequency and the most 

appropriate moment of the year for measuring consumption growth rates. They argue 

that the consumption growth data which best reflects changes in agents decisions refer 

to the fourth quarter of each year. In fact, they show that the basic consumption-based 

model can account for the Fama-French 25 size and book-to-market portfolios.  

 

Parker and Julliard (2005) discuss the optimal time interval when calculating 

consumption growth rates and consumption risk. They argue that changes in wealth 

have a delayed effect on consumption patterns. Hence, the covariance between portfolio 

returns and consumption growth over the quarter of the return and many following 

quarters (ultimate consumption) is needed for conciliating expected returns and 

consumption risk. They have some success in explaining the pricing of size and book-

to-market portfolios by their exposure to ultimate consumption risk. In particular, they 

analyze whether multiple-time period returns obtained by buying stocks for one period 

and then bonds for S periods is priced by S+1 period consumption growth.  

 

The authors argue that the slight forecasting ability of returns at time t of subsequent 

consumption growth accounts for the improved results relative to the traditional 

contemporaneous consumption-based specification.3 The dynamics of consumption 

                                                 
2 For example, institutionally provided data refer to insufficiently representative consumption baskets, 
aggregation between all the individuals in the economy could compensate for individual consumption 
risk, the available data are updated with some delay, and so on. 
3 Hansen, Heaton and Li (2008), under the recursive preference framework of Epstein and Zin (1991) 
utility function with an intertemporal elasticity of substitution of one, show that revisions of expectations 
of the stochastic discount factor depends on the innovations to current consumption as well as on news 
about future consumption. They argue that this latter revision of expectations about future consumption 
growth explains the relative success of ultimate consumptions risk of Parker and Julliard (2005). See 
Bansal and Yaron (2004) and Bansal, Dittmar and Lundblad (2005) for additional evidence on the long-
run covariances of cash flows with consumption. 
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growth provides the ultimate consumption risk SDF with a very strong business cycle 

pattern. Consumption falls through recessions, so that the ultimate risk SDF is highest 

right before recessions and lowest right before expansions. This strong counter-cyclical 

behavior is much more pronounced than the observed for contemporaneous 

consumption growth model. This is precisely what helps the model to present a modest 

success in explaining the value premium. Importantly, however, ultimate consumption 

risk does not seem to be able to price properly extreme size and book-to-market 

portfolios. All alternative specifications of the ultimate consumption risk model are in 

fact rejected by Parker and Julliard (2005). 

 

Given this discussion, our conjecture is that the fundamental beauty of ultimate 

consumption risk may need to be accompanied by the recognition that small and value 

stocks may decline even further when the market as a whole becomes more illiquid. If 

this were indeed the case, these stocks should be compensated with extra returns which 

cannot be completely accounted for by the covariance between their returns and 

ultimate consumption growth risk. Therefore, our hypothesis is that two factors drive 

asset returns; ultimate consumption risk and aggregate liquidity risk. 

 

It is also important to note that an increasing number of papers study whether liquidity 

risk as a market-wide factor is priced in stock markets.  Among others, Chordia, Roll 

and Subrahmanyam (2000), and Hasbrouck and Seppi (2001), show that liquidity has a 

common systematic factor. More recently, Kamara, Lou and Sadka (2008) has shown 

that the cross-sectional variation of liquidity commonality has increased over the past 

three decades. This important result has the unfortunate implication that the ability to 

diversify systematic aggregate liquidity shocks has declined. These papers suggest the 

possibility that market-wide liquidity may be a priced aggregate factor. Pastor and 

Stambaugh (2003), Acharya and Pedersen (2005), Martínez, Nieto, Rubio and Tapia 

(2005), Sadka (2006), and Korajczk and Sadka (2008) find that the covariance between 

returns and some measure of aggregate liquidity shocks is significantly priced in the 

market. 

 

Rather surprisingly, however, all previous papers include an additional market-wide 

liquidity factor to traditional portfolio-based asset pricing models. None of these papers 

has reported any evidence on how aggregate liquidity behaves together with 
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consumption growth risk as measured by ultimate consumption risk. This paper fills this 

gap in literature by providing a comprehensive explanation of the cross-sectional 

variation of average returns using both ultimate consumption risk and market-wide 

liquidity risk. Moreover, the second contribution of the paper is to develop closed-form 

expressions for consumption-based SDFs adjusted by aggregate liquidity shocks. Our 

evidence suggests that aggregate liquidity is indeed important in pricing risky stocks in 

models with ultimate consumption risk.  

 

2. The Consumption-based Liquidity-adjusted Stochastic Discount Factor  

The empirical papers analyzing whether there is a liquidity market-wide factor are all 

based on the implicit assumption that there exists a SDF that depends on some measure 

of aggregate liquidity. To be explicit about a SDF with systematic liquidity is not an 

easy task. He and Modest (1995) argue that a combination of short-selling, borrowing 

and solvency constraints together with trading costs frictions can generate a large 

enough wedge between SDFs and asset prices so that well known puzzles may not be 

inconsistent with equilibrium in financial markets. More recently, Garleanu, Pedersen 

and Poteshman (2008) show explicitly how the SDF depends on demand pressure in a 

model with multiple assets. Finally, Lustig and Van Niewerburgh (2005) explore a 

model in which shocks in the housing market affecting housing collateral determine the 

size of the wedge between prices and the marginal rate of intertemporal substitution of 

consumption.4  

 

Rather than imposing non-separability in the arguments of the utility function, we 

assume that shocks to aggregate liquidity directly affect the intertemporal budget 

constraint in our framework. In that way, future liquidity conditions will affect future 

payoffs of investments of the representative agent and, therefore, its future 

consumption. More specifically, under our optimization problem specification, the same 

asset future payoff will have a higher value in terms of future consumption in moments 

in which the liquidity in the market is low. The result is a higher SDF in recessions, 

when the market is more illiquid, than the one generated by the standard problem. This 

mechanism intensifies the desirable countercyclical time series property of this variable.      

 

                                                 
4 Others papers dealing with similar issues are those of Piazzesi, Schneider, and Tuzel (2007), and Duarte 
and Vergara-Alert (2008). 
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We assume two preferences specifications. First, we employ the commonly used power 

utility function under which the SDF is given by 

 

                                                  t 1
P ,t 1

t
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C

γ
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+
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⎛ ⎞
= ⎜ ⎟
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,                                                  (1) 

 

where β  is the subjective discount factor, γ  is the coefficient of relative risk aversion, 

and tC  is aggregate nondurable consumption at period t. 

 

As usual, if future consumption is lower than current consumption, the investor has 

incentives to avoid consumption today and invest in financial assets, so that P,t 1M +  is 

high to give a larger weight to future payoffs. On the other hand, if future consumption 

is higher than current consumption, the investor will not have incentives to avoid 

consumption today for investing in financial assets. Hence, the investor penalizes future 

payoff, so that the SDF is low, and higher returns will be required to invest in financial 

asset. This implies that P,t 1M +  is high (low) at the very beginning of recessions 

(expansions).   

 

Secondly, we consider recursive preferences, as in Epstein and Zin (1991). Under this 

specification, investors utility depend on time and also on states of nature resulting in 

the following SDF: 
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where 1WtR +  is the gross rate of return on the market portfolio or aggregate wealth, ρ  is 

the inverse of the elasticity of intertemporal substitution, and 1
1

γκ
ρ

−
≡

−
. 

 

Under systematic or market-wide liquidity risk, adverse liquidity shocks take place 

during recessions. Then we would expect that a liquidity-adjusted SDF should be even 

higher (lower) relative to the standard consumption-based SDF just before recessions 
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(expansions). Incorporating illiquidity shocks to the budget constraint in the household 

problem, it is possible to obtain this effect. As shown in Appendix A1, the liquidity-

adjusted SDFs under separable power utility ( LAP,t 1M + ) and recursive preferences 

( LAR,t 1M + ), are as follow, 
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( )1tL +φ  is a function that represent negative shocks on aggregate liquidity. It will be 

higher than one if the economy experiences an adverse aggregate liquidity shock, and 

lower than one if the economy experiences a positive aggregate liquidity shock. Hence, 

LA,t 1M +  will be higher than the correspondent non liquidity-adjusted SDF precisely in 

those time periods in which recessions are shortly expected. In other words, we obtain a 

SDF with the same counter-cyclical behavior but with a more accentuated increasing 

(and decreasing) cycle pattern.  

 

Finally, we also consider the specification under ultimate consumption risk as in Parker 

and Julliard (2005). They propose to construct a SDF that relates marginal utility in 

period t with marginal utility in period t+S+1. In that way, investors use the expectation 

about far away future consumption when taking investment decisions today. Applying 

the same idea, we derive the liquidity-adjusted SDFs for both power and recursive 

preferences. The details are contained in Appendix A2, and the resulting SDFs are given 

by the following expressions, 
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where 1, 1Wt t SR + + +  and 1, 1ft t SR + + + denote the cumulative gross return on wealth and on the 

risk free asset, respectively, from period t+1 to period t+1+S.  
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It must be noted that equations (5) and (6) nest the correspondent standard (non 

liquidity-adjusted) SDFs under ultimate risk for power and recursive preferences, 

respectively, when ( )1, 1 1t t SLφ + + + = .   

 

These are the key consumption-based liquidity-adjusted models that we want to test in 

this paper. Once again, our conjecture is that this type of specifications should be able to 

price the extreme highly illiquid portfolios. Ultimately, the issue is to test whether 

expressions (5) and (6) mirror macroeconomic conditions correctly. 

 

3. Data 

For the period 1963:I to 2006:IV, we collect quarterly seasonally adjusted aggregate 

real per capita consumption expenditure of nondurables and services and total 

consumption from National Income and Product Accounts (NIPA) given in Table 7.1. 

Monthly value-weighted stock market return and risk-free rate are taken from Kenneth 

French´s web page, from which we compute quarterly returns. The price deflator from 

NIPA Table 2.8.4 is used to calculate real rates of returns. We also compute quarterly 

returns of 25 size/book-to-market value-weighted portfolio and 17 industry portfolio 

returns from the monthly figures available at Kenneth French´s web page.  

 

Our liquidity measure is based on Amihud (2002) measure of individual stocks 

illiquidity, which is calculated as the ratio of the absolute value of daily return over the 

dollar volume, a measure that is closely related to the notion of price impact. Among 

others, this ratio has been used by Amihud (2002), Acharya and Pedersen (2005), 

Korajczyk and Sadka (2008), and Kamara, Lou and Sadka (2008). The main advantage 

of Amihud´s illiquidity ratio is that can be computed using daily data and, consequently, 

allows us to study a long time period which is clearly relevant for testing asset pricing 

models. This illiquidity measure is estimated daily at the individual level as, 

                                                  
d,j

d,j
d,j DVol

R
Illiq =                                                       (7) 

where d,jR  is the absolute return of asset j on day d, and d,jDVol  is the dollar 

volume of asset j during day d. 
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This measure is aggregated over all days for each month in the sample period to obtain 

an individual illiquidity measure for each stock at month t, 

   

                                          
1

1 j ,tD
j ,d

j ,t
dj ,t j ,d

R
Illiq

D DVol=

= ∑                                             (8) 

 

where t,jD  is the number of days for which data are available for stock j in month t.5 

 

Finally, using all N available stocks, we obtain the market-wide illiquidity measure as 

the cross-sectional average of expression (8) for each month in the sample period as, 

 

                                               
1

1 N

m,t j ,t
j

ILLIQ Illiq
N =

= ∑                                               (9) 

 

Figure 1 plots the time series of t,mILLIQ . It clearly shows a strong counter-cyclical 

behavior of market-wide illiquidity. In particular, this measure tends to be high during 

recessions as shown by the shaded regions of Figure 1, which are U.S. macroeconomic 

recessions from peak to trough as defined by the National Bureau of Economic 

Research (NBER). It should be noted that a large number of empirical macroeconomic 

papers provide evidence of a striking decline in the volatility of U.S. macroeconomic 

time series since the end of the eighties. It is known as the “Great Moderation”. It is 

interesting to observe how the market-wide illiquidity ratio becomes lower and stable 

since 1993. It also reflects the well known period of high liquidity, both at the micro 

and macro levels that economies have experienced during the last years of our sample 

period. 

 

Using the value of the aggregate illiquidity ratio given by equation (8) for the last month 

in each quarter, we compute our function representing market illiquidity shocks as the 

residual from an AR(1) process. Finally, ( )tLφ  is the gross standardized residual from 

                                                 
5 We thank Yakov Amihud for kindly provided his data until December 1996. We update his measure 
from January 1997 to December 2005 using daily data from CSRP on all individual stocks with enough 
data within a given month. At least 15 observations of the ratio within the considered month are required 
for asset j to be included in the sample. An exception has been made for September 2001 requiring at 
least 12 observations in this case. 
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the autoregressive regression.6 Figure 2 shows how our illiquidity function moves 

inversely to GDP growth, indicating its counter-cyclical time series behavior.       

 

4. Estimation and Tests 

We estimate and compare the asset pricing models nested under the SDF specification 

given by equation (6): 

 

( )1 11
1 1 1 1 1 1 1

S S t S
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They are the following: the standard CCAPM, when S=0, γ ρ=  and ( ) 1Lφ = ; the 

ultimate consumption risk version of the standard CCAPM, when S>0, γ ρ=  and 

( ) 1Lφ = ; the liquidity-adjusted CCAPM, when S=0 and γ ρ= ; the ultimate 

consumption risk version of the liquidity-adjusted CCAPM, when S>0 and γ ρ= ; the 

Epstein-Zin model (recursive), when S=0 and ( ) 1Lφ = ; the ultimate consumption risk 

specification of the Epstein-Zin model, when S>0 and ( ) 1Lφ = ; the liquidity-adjusted 

Epstein-Zin model, when S=0; and the ultimate consumption risk version of the 

liquidity-adjusted Epstein-Zin model, in which the SDF is given by equation (6) without 

restrictions.7   

 

We employ two methodologies. The non-linear versions of the models are estimated by 

GMM, while the Fama-MacBeth (1973) procedure is used to estimate the corresponding 

beta specifications. 

  

 For the GMM estimation, we follow Parker and Julliard (2005) and Yogo (2006). The 

following vector defines the moment restrictions: 

 

                                                 
6 In order to have values of our illiquidity measure closely resembling units of rates of returns, the 
residuals have been standardized dividing by ten times its sample standard deviation. Then, we add up 
one in order to have the gross standardized residual. 
7 It should be noted that the general specification given by equation (6) also nests the four corresponding 
versions of the CAPM when the relative risk aversion equals one.  
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where eR  is the N x 1 vector of the excess return of the N assets, N1  denotes the N x 1 

vector of ones, ( )M θ  is one out of the eight specifications nested in equation (6), and 

θ  is the vector of the preference parameters for each particular specification.  

 

The inclusion of the parameter α  enables to evaluate separately the ability of the model 

to explain the equity premium and the cross section of expected returns. So, if α  is 

zero, we can conclude that the model does not present an equity premium puzzle. 

Moreover, the last condition forces the SDF to move back to its mean value (μ ).        

  

For the GMM estimation we employ a pre-specified weighting matrix that contains the 

matrix proposed by Hansen and Jagannathan (1997). As usual, it weights the moment 

conditions for the N testing assets using the (inverse) variance-covariance matrix of 

excess returns. Moreover, as in Parker and Julliard (2005), the weight of the last 

moment condition is chosen large enough to make sure that significant changes in that 

weight have no effects on the parameter estimates.8 Given that this weighting matrix is 

not the optimal one, the quadratic form allowing us to test the performance of the model 

has an unknown distribution. We follow Hansen and Jaggannathan (1997) and Parker 

and Julliard (2005) to infer the p-value of the test. All details about the estimation and 

testing methodology are provided in Appendix B. 

          

The second estimation procedure is based on the linear specification of the model. In 

Appendix C we derive the beta version of the model implied by the SDF given by 

equation (6). In this case, we estimate the following OLS cross-sectional regression at 

each moment of time: 

 jt ft 0 1 jc ,t 2 j ,t 3 jW ,t jt 1R R eφγ γ β γ β γ β +− = + + + +                       (11) 

  

                                                 
8 In particular, we choose a weight of 1000 for the restriction on the mean of the SDF. 
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where the explanatory variables are the sensitivities of the asset returns to changes in 

non-durable consumption growth, market illiquidity shocks and the return on aggregate 

wealth. These betas are estimated with a time-series regression using a moving-data set 

prior to each cross-sectional regression. The three factors are expressed in logarithms. 

 

5. Empirical Results 

For both estimation methodologies described in Section 4, we employ two sets of test 

assets: the 25 size/book-to-market Fama-French portfolios and a set of 42 portfolios 

containing de 25 Fama-French portfolios and 17 industry portfolios. This second set of 

portfolios is used in order to mitigate the important concern raised by Lewellen, Nagel 

and Shanken (2008).  

 

Moreover, the models have been estimated for different horizons (S=0, 3, 7, 11 and 15 

quarters ahead). Consistently with Parker and Julliard (2005), the larger explanatory 

power for both methodologies is obtained for S=11. To save space, we just report the 

results based on S=11.9 In order to have an homogeneous sample period when 

estimating all models to make the results comparable among them, and given that the 

long run specifications need growth rates of the risk factors from now to 3 years ahead, 

the sample period for the estimation ends at the first quarter of 2003.    

 

5.1. Portfolio Descriptive Statistics  

Panel A of Table 1a contains the sample means and standard deviations of excess 

returns of the 25 Fama-French portfolios showing the well-known facts about these 

portfolios. Between 1963:II and 2003:I, both small and high book-to-market firms have 

larger average returns than other portfolios within the same category. The highest 

average return is obtained for portfolio 15 where we have simultaneously the smallest 

firms and the highest book-to-market stocks. However, the highest risk is found in the 

small but low book-to-market portfolio.   

 

Panel B reports the return-based illiquidity betas of the 25 Fama-French portfolios. We 

run time series regressions of the return of each portfolio on our market-wide illiquidity 

factor. In particular, the regression is,                         

                                                 
9 All results are available from authors upon request. 
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                                                  ( )jt j j t jtR L uα β φ= + +                                                (12) 

 

As expected, given the economic implications of the market-wide illiquidity factor, we 

obtain negative and significant coefficients for all portfolios. All stock returns are 

negatively affected by adverse illiquidity shocks. By controlling for book-to-market, we 

report monotonically increasing (in absolute value) return-based illiquidity betas from 

big to small firms. On the contrary, when we control for size, we do not observe a 

monotonic pattern when moving from low to high-to-market firms. Interestingly, the 

illiquidity betas of the low book-to-market portfolios tend to be higher than those for 

high-book-to-market ones. The pattern closely follows the standard deviation of 

portfolios sorted by book-to-market contained in Panel A. Indeed the highest illiquidity 

beta is found for portfolio 11 which includes small but low book-to-market firms. 

 

Although these previous results are interesting by themselves, it is clear that we should 

control for both the market portfolio return and non-durable consumption growth. 

Hence, in Panel C we report the results from the following time-series regressions, 
 

                              ( )jt j jL t jW Wt jc t jtR L R C uα β φ β β= + + + Δ +                             (13) 

 

We can now easily identify those portfolios more sensitive to illiquidity shocks over and 

above changes in market returns and consumption growth. Once again, controlling for 

book-to-market, we find a monotonically increasing (in absolute value) return-based 

illiquidity betas from big to small firms. In particular, small firms are negatively and 

significantly affected by illiquidity shocks. Similarly, and contrary to the results of 

Panel B, once we control for size, we report and increasing (in absolute value) pattern of 

illiquidity betas from low to high book-to-market. This suggests that firms which are 

simultaneously small and have high book-to-market ratios are those highly affected by 

illiquidity shocks. Indeed the highest (in absolute value) and significant illiquidity beta 

is obtained for portfolio 15 which comprises small and high book-to-market stocks. We 

conclude that small and value stocks are therefore negatively affected by market-wide 

illiquidity shocks. As we know from previous literature, this is one of the portfolios 

which are systematically hard to price using the three Fama-French factors or other well 
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known asset pricing models. On the other hand, big firms with low book-to-market are 

not influenced by aggregate illiquidity shocks.10 

 

Finally, Table 1b contains the same results for industry portfolios. As before, all 

industries are negatively affected by aggregate illiquidity shocks. However, once we 

control for the market portfolio return and consumption growth, we find that industries 

directly affected by market-wide illiquidity shocks are Durable Goods, Construction, 

Clothes, Retail Goods and Food. 

 

5.2. GMM Estimation 

Next we test the non-linear specification of consumption-based asset pricing models 

with and without illiquidity shocks. We therefore test equations (1) to (6) using both 

contemporaneous and ultimate consumption risk. We employ expression (10) with 

either 26 or 43 moment conditions depending upon we use the 25 Fama-French 

portfolios or the expanding set with additional 17 industry portfolios.  

 

Table 2a contains the results for the power utility function. First, as in Parker and 

Julliard (2005), the risk aversion coefficient is always estimated with large standard 

errors due to the flatness of the GMM objective function with respect to γ . As 

expected, the estimation of risk aversion tends to be smaller for S=11 than for S=0. For 

ultimate consumption risk and the expanding set of test assets, γ̂  is either 2.76 or 2.48 

depending upon we estimate the model with or without illiquidity shocks. Interestingly, 

even when we use contemporaneous consumption risk, the estimate of the risk aversion 

coefficient decreases from 13.93 to 8.76 by recognizing illiquidity shocks.  

 

Second, given the estimated levels of either contemporaneous or ultimate consumption 

risk, the average excess returns of test assets is too large. In all cases, the estimated 

intercept is statistically significant, and implies that the average excess returns on a test 

asset from the expanding set exceeds that implied by consumption risk by 4.6 to 5.2 

                                                 
10 According to the results reported by Kamara, Lou and Sadka (2008), our overall evidence might have 
changed in the last years of our sample period. In any case, it should be noted that they report illiquidity 
betas (from a regression of individual illiquidity changes on market-wide illiquidity changes) and not 
return-based market-wide illiquidity betas. 
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percent per year.11 The lowest pricing error is obtained for contemporaneous 

consumption risk with illiquidity shocks in Panel B. This specification also presents the 

lowest H-J distance and a risk aversion of 8.76.12 

 

Third, the model is always rejected by the data. The H-J distance is in all cases too 

large, so that the power utility function specification is rejected no matter the time 

horizon employed to calculate consumption growth or if illiquidity shocks are or not 

included. In any case, it is also true that within each panel, the distance is always 

reduced when illiquidity shocks are included in the asset pricing model specification. 

 

Table 2b reports similar results for the recursive utility function. Overall, they tend to be 

slightly more encouraging than those for the power utility case. As before, Panel A uses 

only the 25 Fama-French portfolios, while Panel B employs the expanding set with 

industry portfolios. Once again, the estimates of risk aversion and the elasticity of 

intertemporal substitution contain large standard errors. They also become more 

reasonable when we use S=11 rather than S=0. The estimates of risk aversion and 

elasticity of intertemporal substitution are 2.57 and 0.40 respectively for ultimate 

consumption risk with illiquidity shocks. In Panel B, the pricing errors, which are 

systematically lower than in Panel A, are statistically different form zero suggesting 

large average returns for the implied consumption and illiquidity risk of the alternative 

specifications. The pricing errors for the expanding set of testing assets are 

approximately 5.2 percent per year for all pricing models. However, it must be pointed 

out the systematic reduction of the H-J distance when illiquidity shocks are included 

independently on considering S=0 or S=11. In particular, the contemporaneous 

consumption risk under recursive preferences with illiquidity shocks cannot be rejected 

by the over-identification test at the 5 percent significance level. We may conclude that, 

generally speaking, the recursive specification does present slightly better pricing 

results than the power case. 

 

 

                                                 
11 It should be noted that the pricing error for contemporaneous consumption risk without illiquidity 
shocks and for the 25 Fama-French portfolios is 8.6 percent per year. 
12 Since we include a moment for the mean of the SDFs, the statistic is not just the squared root of the 
variance-covariance matrix of excess returns and, therefore, it is not strictly speaking the H-J distance. 
Appendix B obtains the correct p-value based on this adjusted distance. 
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5.3. Fama-MacBeth Estimation 

The non-linear pricing models tested above are linearized in Appendix C to obtain the 

general linear three-factor model given by equation (11), 

 

jt ft 0 1 jc ,t 2 j ,t 3 jW ,t jt 1R R eφγ γ β γ β γ β +− = + + + +  

 

where betas are the sensitivities to consumption growth, illiquidity shocks and the 

market portfolio returns respectively, and the gammas are the risk premia associated to 

these aggregate risk factors. 

 

The empirical results are reported in Tables 3a, 3b and 3c in which we respectively 

analyze the Consumption CAPM under power utility, the traditional (Wealth) CAPM 

under logarithmic utility, and the Consumption CAPM under recursive preferences. In 

all cases, we compare the results using either ultimate or contemporaneous consumption 

risk specifications, with or without illiquidity shocks. The most general linear three-

factor model of equation (11) is a model under recursive preferences with illiquidity 

shocks. All other specifications are just special cases of expression (11). In Panel A of 

the three above mentioned tables we use the 25 Fama-French portfolios, while in Panel 

B we report the results employing the expanding set of 42 testing assets including the 17 

industry portfolios. 

 

Table 3a shows that the results for S=0 are very poor no matter if illiquidity shocks are 

or not included. As expected, the mean-squared errors diminish when we move from 

S=0 to S=11. As usual, ultimate consumption risk tends to improve the pricing fit of the 

traditional consumption pricing model. The inclusion of illiquidity shocks also improves 

the performance relative to the specification without market-wide illiquidity. However, 

once we include illiquidity, ultimate consumption risk does not improve the overall fit 

of the model. Both adjusted R-square and mean-squared errors tend to be very similar, 

although it must be pointed out that the risk premium of market-wide illiquidity is 

negative and significantly different from zero when the model is estimated under 

ultimate consumption risk. It is not the case when S=0. This suggests that both 

illiquidity shocks and ultimate consumption risk are important in pricing risky stocks, 

although it should be clear that the intercept of the second-pass cross sectional 
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regressions are always statistically different from zero indicating the overall rejection of 

the model. The slight improvement in pricing assets can also be observed in Figure 3. It 

is clear that a better fit is obtained when we use S=11 and aggregate illiquidity shocks. 

As usual, portfolios 15 and, especially, 11 remain very problematic. It should be noted 

that portfolio 15 has a large and negative return-based illiquidity beta as shown in Table 

1a, while portfolio 11 has an illiquidity beta much lower and even non-significant at the 

5% level. In other words, it seems that the inclusion of a market-wide illiquidity factor 

alleviates the pricing model of portfolio 15, but portfolio 11 is not sensitive enough to 

illiquidity shocks to be correctly priced by the model. 

 

Table 3b contains even worse results. Indeed, the simultaneous use of market returns 

and illiquidity shocks does not help pricing data. None of the risk premia are 

significantly different from zero independently of using S=0 or S=11. As before, the 

intercept is always positive and statistically different from zero.  

 

The two previous tables show that the average returns of alternative combinations of 

portfolios are too far to be explained by either ultimate consumption risk and illiquidity 

shocks or by market returns and market-wide illiquidity innovations. Table 3c contains 

further and more complete results. It reports the results from the model under recursive 

preferences with illiquidity shocks. It is our three-factor linear model in which we 

simultaneously take into account ultimate consumption risk, market risk and market-

wide illiquidity risk. The results of Panel B with S=11 are the most promising results of 

the paper. They are also consistent with the results of Table 2b. As in Table 3a, the risk 

premium for ultimate consumption growth becomes positive relative to 

contemporaneous consumption. Moreover, the risk premium of aggregate illiquidity 

shocks is negative and significant, and the market risk premium has the expected sign. 

The mean-squared errors are also lower relative to Table 3a. In any case, the intercept 

remains positive and highly significant pointing out the overall misspecification of the 

model. As before, the improvement in the results can also be noted in Figure 4. 

Although, under recursive preferences, portfolio 11 remains far from the 45 degrees 

line, the inclusion of illiquidity and ultimate consumption risks improve the adjustment 

of the portfolio 15.  
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6. Conclusions 

Given the pricing difficulties that previous research has found when explaining the 

behavior of small-low-book-to-market and small-high-book-to market portfolios, this 

paper proposes a model integrating ultimate consumption risk under recursive 

preferences with market-wide illiquidity shocks. Our research seems promising since 

we find negative and significant return-based illiquidity betas precisely for these 

extreme portfolios even controlling for consumption growth and the market portfolio 

return. However, using both the general non-linear specification of the model, and the 

linear three-factor cross-sectional version, we clearly tend to reject the expanding 

illiquidity asset pricing model. It is true that market-wide illiquidity is significantly 

priced in a model which integrates the illiquidity risk factor into the SDF, but the 

average excess returns of our testing assets remain too far of the estimated returns for 

the considered risk sources (ultimate consumption risk, market risk and aggregate 

illiquidity risk).  
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Appendix A: Derivation of the Model  

 

1. Recursive Utility with Aggregate Liquidity Constraints 

 

Assuming recursive preferences as in Epstein and Zin (1991), and considering that the 

aggregate illiquidity shocks affect future consumption throughout the budget constrain, 

the representative agent would solve the following problem, 

                                

{ }
( ) ( )

( )

j

1
1 1

1 1 1
t 1

z

1 1 1 1

max  U 1

. .

t t t

t t j jt

t t j jt t

C E U
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C e z p

C e z X L

ρ ρ
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φ

− −
− − −

+

+ + + +

⎡ ⎤
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⎣ ⎦

= −

= +

                      (A1) 

where tC  is the aggregate consumption at time t,β  is the subjective discount factor, γ  

represents the coefficient of relative risk aversion, and ρ  is the inverse of the elasticity 

of intertemporal substitution. Note that the expected utility adds over states which 

means that the recursive utility specification allows for non-separability across states of 

nature. The model, of course, disentangles risk aversion from the elasticity of 

intertemporal substitution. On the other hand, te  is the consumption endowment, jz  is 

the amount invested today in asset j, jtp  is the price today of asset j, and 1jtX +  is the 

payoff of the asset at t+1. Finally, ( )1tL +φ  is the aggregate illiquidity constraint shock 

affecting future consumption. 

 

Introducing the budget restrictions on the objective function and taking the derivative 

with respect to the amount invested in asset j, jz , we get the first order condition: 
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Solving for the price today, we obtain, 
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              (A2) 

which can be written in a more compact way as, 

                       ( )jt t R ,t 1 t 1 jt 1 t LAR,t 1 jt 1p E M L X E M Xφ+ + + + +⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦                         (A3) 

where, 
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                             (A4) 

 

Therefore, the liquidity adjusted SDF ( LARM ) is the standard SDF scaled by the function 

that picks up aggregate illiquidity shocks. 

 

Now, we need to obtain an expression for R,t 1M +  as a function of the return on 

aggregate wealth. We divide the derivation in three parts. 

 

a) By using the definition of recursive utility, we are able to solve first for 

( )[ ] γγ −−
+

1
1

1
1tt UE . In particular, note that 
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which can be written as, 
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                 (A5) 

 

b) On the other hand, given that tU  depends on tC  and other future consumptions, we 

can write, 

R ,t j

t t jt t
t t t j t t j t

j 0 j 0t j t t t t

M

U CU UU E C E C W
C U C U C

+

∞ ∞
+

+ +
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∂ ∂∂
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∂ ∂ ∂ ∂ ∂∑ ∑              (A6) 

where tW  is aggregate wealth, and the last equality must hold by definition.13 

 

c) We now derive tU  with respect to consumption, 

( )( ) ( ) ρρρρ βρβ
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                   (A7) 

 

Combining (A6) and (A7), 

( ) ( )
1

1t t 1
t t t t t t

t t t t

U U 1W U C U 1 W C
U C U 1 C 1

ρ ρ ρ ρ
ρ ρ β

β β
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   (A8) 

 

Finally, we plug (A5) and (A8) into R,t 1M +  and we operate to obtain, 

                                                 
13 See Cochrane (2008). 
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The intertemporal budget constraint for the representative agent is now given by,14 

                                        ( ) ( )1t1Wttt1t LRCWW +++ −= φ                                       (A10) 

 

Therefore, equation (A9) is 
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where we denote 1
1

γκ
ρ

−
=

−
. 

 

The corresponding liquidity-adjusted SDF is as follow: 
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Note that when the relative risk aversion coeffcient equals the inverse of the elasticity of 

intertemporal substitution (γ ρ= ), the optimization problem (A1) is based on the power 

utility. In that case, the liquidity-adjusted SDF with power utility function is given by: 
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14 This is of course equivalent to the budget constraint in (A.6). 
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2. Recursive Utility with Aggregate Liquidity Constraints under Ultimate 

Consumption  Risk 

The first order condition in equation (A2) can be written in terms of the gross return on 

asset j as follows. 

( )
( )1

t 1 1 11
1 1

1

E t
t t t jt

t t

UC C L R
E U

ρ γ

ρ ρ

γ γ

β φ

−

− −+
+ + +

− −
+

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥= ⎜ ⎟
⎢ ⎥⎜ ⎟⎡ ⎤⎢ ⎥⎣ ⎦⎝ ⎠⎣ ⎦

                   (A14) 

 

Applying to the risk free rate between t and t+1, 
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and expanding forward such that the marginal utility in period t+S is linked to the 

marginal utility in period t,  
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where ( ) ( )1,
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S
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=∏  are the cumulative shocks in liquidity between periods 

t+1 and t+S . 

 

Introducing (A16) into (A14), 
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As before, we incorporate equations (A5) and (A8) to equation (A17) to get  
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Finally, introducing the intertemporal budget constraint for aggregate wealth (A10), 

operating and denoting 1
1

γκ
ρ

−
=

−
, equation (A18) becomes, 
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where 1, 1Wt t SR + + +  denotes the cumulative gross return on wealth from period t+1 to 

period t+1+S.  

 

Therefore, the liquidity-adjusted SDF with recursive preferences under ultimate 

consumption risk is 

( )1 11
1 1 1 1 1 1 1

S S t S
LAR,t t ,t S Wt ,t S ft ,t S

t

CM L R R
C

κρ
κβ φ

−

+ −+ +
+ + + + + + + + + +

⎡ ⎤⎛ ⎞
⎢ ⎥= ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

                  (A20) 

 

As expected, equation (A20) nests equation (A12) when S=0. 

 

As before, when γ ρ= , we obtain the liquidity-adjusted SDF with power utility 

function under ultimate consumption risk which is given by:    

( )1 1
1 1 1 1 1

S S t S
LAP,t t ,t S ft ,t S

t

CM L R
C

γ

β φ
−

+ + +
+ + + + + + +

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
                          (A21) 
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Appendix B: GMM Estimation and Tests 

Let e
tR  be the N x 1 vector of the excess return of the N assets at time t and ( )tM θ is 

one out of the eight specifications of the SDFs described in Section 2, where θ  is the 

vector of the preference parameters for each particular specification. 

 

Following Parker and Julliard (2005), we define an (N+1) x 1 vector containing the 

pricing errors generated by the model at time t. The first N conditions are the pricing 

errors of the model when explaining the N asset returns. The last condition forces the 

SDF to go to its mean value (μ ).        

( )
( )

1
e

t te
t N

t

t

M R
Rf , ,

M

μ
αθ α μ μ

μ

⎡ ⎤−
⎢ ⎥− += ⎢ ⎥
⎢ ⎥−⎣ ⎦

                                   (B1) 

where 1N  denotes an N x 1 vector of ones. The inclusion of the parameter α  enables to 

evaluate separately the ability of the model to explain the equity premium and the cross 

section of expected returns. That is, if α  is zero we can conclude that the model has not 

an equity premium puzzle.     

 

We also define a vector containing the sample averages corresponding to the elements 

of f.  

( )
( )

1
, ,

, ,

T

t
t

T

f
g

T

θ α μ
θ α μ ==

∑
                                          (B2) 

 

Then, GMM minimizes the following quadratic form 

( ) ( ), , ' , ,T T Tg W gθ α μ θ α μ                                             (B3) 

where TW  is a weighting (N+1) x (N+1) matrix. 

 

For the estimation, we could have used the optimal weighting matrix in the sense of 

Hansen (1982), 1
TS − , where 

( ) ( )
1

, , , , '
T

t t
t

T

f f
S

T

θ α μ θ α μ
==
∑

.                                           (B4) 
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Instead of that, we employ a pre-specified weighting matrix: 

0
0 ' 1000

N
T

N

HJ
W

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

,                                                  (B5) 

where HJ is the matrix proposed by Hansen and Jagannathan (1997) containing the 

inverse of the variance-covariances matrix of the N asset excess returns 
1

1

'
T

e e
t t

t

R R
HJ

T

−

=

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
 ,                                                (B6) 

and N0  is a N-dimensional vector of zeros.15 A weight of 1000 for the last moment 

condition ensures the stability of the estimator for the mean of the SDF with respect to 

different initial conditions. 

        

In general, the asymptotic variance-covariance matrix of the GMM estimates is given 

by 

( ) ( )1 11 ' ' 'T T T T T T T T T T TV D W D D W S W D D W D
T

− −
= ,                       (B7) 

where TD  is a matrix of partial derivatives defined by 

( ) ( )
1

, , , ,
T

t
t

T

f
D

T

θ α μ θ α μ
=

∂ ∂
=
∑

                                     (B8) 

 

Then, the standard errors of the estimated coefficients ( )ˆ ˆ ˆ, ,θ α μ  are computed from the 

estimated variance:  

( ) ( )1 11 ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ' ' 'T T T T T T T T T T TV D W D D W S W D D W D
T

− −
= ,                       (B9) 

where ˆ
TD  and ˆ

TS  are obtained replacing ( ), ,θ α μ  by ( )ˆ ˆ ˆ, ,θ α μ  in TD  and TS , 

respectively. 

 

The evaluation of the model performance is carried out by testing the following null 

hypothesis: 

                                                 
15 A detailed description of the advantages of a pre-specified weighting matrix over the efficient GMM 
can be found in Cochrane (2005). 
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( ) 2
0 : , , 0H T Dist θ α μ =⎡ ⎤⎣ ⎦ ,                                          (B10) 

with ( ) ( ), , ' , ,T T TDist g W gθ α μ θ α μ= .  

 

If the weighting matrix is optimal, ( ) 2ˆ ˆ ˆ, ,T Dist θ α μ⎡ ⎤
⎣ ⎦  is asymptotically distributed as a 

Chi-square with N+1-P degrees of freedom, where P is the number of parameters. 

However, for any other weighting matrix, the distribution of the test statistic is 

unknown. Hansen and Jagannathan (1997) and Parker and Julliard (2005) show that, in 

this case, ( ) 2ˆ ˆ ˆ, ,T Dist θ α μ⎡ ⎤
⎣ ⎦  is asymptotically distributed as a weighted sum of N+1-P 

independent Chi-squares random variables with one degree of freedom. That is 

( )
12

2

1

ˆ ˆ ˆ, , (1)
N Pd

i i
i

T Dist θ α μ λ χ
+ −

=

⎡ ⎤ →⎣ ⎦ ∑ ,                                       (B11) 

where iλ , for 1,2,..., N+1-Pi = , are the positive eigenvalues of the following matrix:  

( ) ( ) ( ) ( )1 11 2 1 2 1 2 1 2 1 2 1 2
1 ' ' ' 'T T N T T T T T T T T TA S W I W D D W D D W W S

− −
+

⎡ ⎤= −⎢ ⎥⎣ ⎦
           (B12) 

in which 1 2X  means the upper-triangular matrix from the Choleski decomposition of 

X , and 1NI +  is a (N+1)-dimensional identity matrix.  

 

Therefore, in order to test the different models we estimate, we proceed in the following 

way. First, we estimate the matrix A  by 

( ) ( ) ( ) ( )111 2 1 2 1 2 1 2 1 2 1 2
1

ˆ ˆ ˆˆ ˆ ˆ ˆ' ' ' 'T T N T T T T T T T T TA S W I W D D W D D W W S
−−

+
⎡ ⎤= −⎢ ⎥⎣ ⎦

          (B13) 

and compute its nonzero N+1-P eigenvalues. Second, we generate { }hiv , h=1,2,…,100, 

i=1,2,…,N+1-P, independent random draws from a 2 (1)χ  distribution. For each h, 

1

1

N P

h i hi
i

u vλ
+ −

=

= ∑  is computed. Then we compute the number of cases for which 

( ) 2ˆ ˆ ˆ, ,hu T Dist θ α μ⎡ ⎤> ⎣ ⎦ . Let p denote the percentage of this number. 

 

We repeat this procedure 1000 times. Finally, the p-value for the specification test of the 

model is the average of the p values for the 1000 replications.          
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APPENDIX C: The linear factor model approximation 

Now we obtain the beta (linear) version of the models analyzed in the paper. We do it 

for the most general case; this is, the recursive preferences with illiquidity shocks and 

ultimate consumption risk. The rest of the models are just special cases of our general 

specification.  

 

The non-linear asset pricing model is given by 
S

t LAR,t 1 jt 1E M R 1+ +⎡ ⎤ =⎣ ⎦                                                 (C1) 

 

Using the definition of the covariance, equation (C1) can be written as   

( ) ( )
( )

S
t LAR,t 1 jt 1

t jt 1 ft 1 S
t LAR,t 1

Cov M ,R
E R R

E M
+ +

+ +
+

− = −                                  (C2) 

 

In Appendix A, the SDF based on recursive preferences with illiquidity shocks in the 

intertemporal budget constrain and ultimate risk is given by:  

( )S S 1 1t 1 S
LAR,t 1 t 1 S Wt 1,t 1 S ft 1,t 1 S

t

CM L R R
C

κρ

κβ φ
−

+ −+ +
+ + + + + + + + +

⎡ ⎤⎛ ⎞
⎢ ⎥= ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

                     (C3) 

 

Taking logs in the SDF, we get 

( ) ( )( )S
LAR,t 1 t ,t 1 S t 1 S Wt 1,t 1 S ft 1,t 1 Sm ( S 1)log c log L ( 1)r rκ β κρΔ κ φ κ+ + + + + + + + + + += + − + + − +  

(C4) 

where lowercase letters denote the logs of uppercase letters. 

 

Assuming that the risk free rate is approximately constant over time, the covariance 

between the linear SDF in (C4) and the return on asset j is given by 

( )
( ) ( )( )( ) ( )

S
t LAR,t 1 jt 1

t t ,t 1 S jt 1 t t 1 S jt 1 t Wt 1,t 1 S jt 1

Cov m ,R

Cov c ,R Cov log L ,R ( 1)Cov r ,Rκρ Δ κ φ κ

+ +

+ + + + + + + + + +

=

− + + −
 (C5) 

 

Introducing (C5) in (C3) and operating, the beta version of the model is  

 ( )t jt 1 ft 1 1 ct 2 t 3 WtE R R φγ β γ β γ β+ +− + + ,                               (C6) 

where the risk premium associated to each beta is given by the following expressions 
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( )
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And the risk factors are determined as follow: 
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( )

t t ,t 1 S jt 1
ct

t t ,t 1 S

Cov c ,R
Var c

Δ
β

Δ
+ + +

+ +

=  

( )( )( )
( )( )( )

t t 1 S jt 1
t

t t 1 S

Cov log L ,R

Var log Lφ

φ
β

φ
+ + +

+ +

=  

( )
( )

t Wt 1,t 1 S jt 1
Wt

t Wt 1,t 1 S

Cov r ,R

Var r
β + + + +

+ + +

= . 
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Table 1a 
 Descriptive Statistics 

25 Fama and French Portfolios  
PANEL A: Mean return and Standard deviation 

 Low 2 3 4 High Mean 
Small 2.114 3.831 4.042 4.768 4.845 4.013 

 (17.30) (14.62) (12.98) (12.29) (13.27) (13.40) 
2 2.605 3.455 4.105 4.297 4.368 3.861 
 (15.45) (12.88) (11.38) (11.05) (11.84) (11.75) 

3 2.685 3.539 3.462 3.914 4.390 3.712 
 (14.01) (11.35) (10.08) (9.94) (11.04) (10.44) 

4 3.013 2.836 3.489 3.758 3.847 3.518 
 (12.64) (10.50) (9.51) (9.39) (10.53) (9.68) 

Big 2.643 2.826 2.710 3.057 2.985 2.915 
 (9.73) (8.71) (7.65) (7.85) (8.82) (7.62) 

Mean 2.699 3.353 3.650 4.062 4.256  
 (12.90) (10.77) (9.52) (9.41) (10.28)  

PANEL B: Return-based illiquidity betas from the time series regression: 
( )jt j j t jtR L uα β φ= + +  

 Low 2 3 4 High Mean 
Small -0.762 -0.678 -0.627 -0.633 -0.660 -0.672 

 (-6.38) (-6.77) (-7.20) (-7.82) (-7.41) (-7.28) 
2 -0.678 -0.598 -0.538 -0.517 -0.544 -0.575 
 (-6.35) (-6.83) (-6.98) (-6.88) (-6.69) (-7.05) 

3 -0.619 -0.533 -0.447 -0.447 -0.469 -0.503 
 (-6.43) (-6.92) (-6.40) (-6.51) (-6.05) (-6.91) 

4 -0.533 -0.476 -0.398 -0.378 -0.443 -0.445 
 (-6.08) (-6.64) (-5.97) (-5.64) (-5.91) (-6.52) 

Big -0.399 -0.323 -0.245 -0.293 -0.309 -0.314 
 (-5.87) (-5.22) (-4.37) (-5.23) (-4.82) (-5.68) 

Mean -0.598 -0.522 -0.451 -0.454 -0.485  
 (-6.58) (-6.95) (-6.75) (-6.92) (-6.73)  

PANEL C: Return-based illiquidity betas from the time series regression: 
( )jt j jL t jW Wt jc t jtR L R C uα β φ β β= + + + Δ +  

 Low 2 3 4 High Mean 
Small -0.153 -0.166 -0.204 -0.250 -0.259 -0.206 

 (-1.84) (-2.36) (-3.17) (-4.03) (-3.57) (-3.16) 
2 -0.099 -0.140 -0.129 -0.143 -0.153 -0.133 
 (-1.61) (-2.56) (-2.68) (-2.71) (-2.47) (-2.78) 

3 -0.087 -0.104 -0.075 -0.102 -0.107 -0.095 
 (-1.74) (-2.58) (-1.74) (-2.16) (-1.77) (-2.52) 

4 -0.034 -0.077 -0.038 -0.020 -0.072 -0.048 
 (-0.83) (-2.05) (-1.00) (-0.48) (-1.32) (-1.62) 

Big 0.001 0.028 0.067 -0.006 0.001 0.018 
 (0.02) (1.03) (2.08) (-0.16) (0.03) (0.95) 

Mean -0.075 -0.092 -0.076 -0.104 -0.118  
 (-1.76) (-2.57) (-2.14) (-2.60) (-2.35)  

The sample period covers from 1963:II to 2003:I. Mean returns and standard deviations (in parenthesis) 
in Panel A are in percentages. In Panels B and C, numbers in parenthesis are t-statistics. In the three 
panels, last column refers to an average portfolio between the five groups of book-to-market for each 
size portfolio and the last row refers to an average portfolio between the five groups of size for each 
book-to-market portfolio. jtR  denotes the gross return on portfolio j at time t, ( )tLφ  is the illiquidity 
function that depends on the Amihud ratio, WtR  is the gross return on aggregate wealth, and tCΔ  is the 
non durable consumption growth rate. 
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Table 1b 
 Descriptive Statistics  
17 Industry Portfolios 

 Mean 
Return 

Standard 
Deviation 

Illiquidity beta 
Simple regression 

Illiquidity beta 
Multiple regression 

Steel 1.933 11.43 -0.341 (-3.93) 0.075 (1.12) 
Utilities 2.362 7.59 -0.182 (-3.10) 0.037 (0.70) 
Durables 2.597 10.52 -0.508 (-6.93) -0.148 (-2.93) 
Chemicals 2.608 9.36 -0.343 (-4.95) 0.007 (0.14) 
Other 2.688 9.62 -0.400 (-5.76) 0.014 (0.54) 
Cars 2.767 11.56 -0.373 (-4.28) 0.038 (0.55) 
Fab. Products 2.821 9.91 -0.404 (-5.61) -0.050 (-0.98) 
Mines 2.941 11.77 -0.292 (-3.22) 0.049 (0.57) 
Transport 3.032 11.05 -0.465 (-5.82) -0.053 (-0.97) 
Machinery 3.038 12.25 -0.475 (-5.28) 0.028 (0.53) 
Construction 3.105 11.82 -0.535 (-6.38) -0.081 (-1.73) 
Oil 3.117 8.60 -0.173 (-2.58) 0.103 (1.71) 
Cloths 3.271 12.98 -0.631 (-6.99) -0.215 (-3.08) 
Finance 3.342 10.23 -0.441 (-6.00) -0.054 (-1.28) 
Retail 3.377 11.50 -0.517 (-6.33) -0.099 (-1.85) 
Food 3.506 9.04 -0.389 (-6.00) -0.108 (-2.14) 
Drugs 3.573 9.21 -0.342 (-5.03) -0.060 (-1.07) 
The sample period covers from 1963:II to 2003:I. Mean returns and standard deviations are in 
percentages. Numbers in parenthesis are t-statistics . Simple regression refers to equation in the 
top of Panel B of Table 1, and multiple regressions refer to equation in the top of Panel C of 
Table 1.  
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Table 2a 
 GMM Estimation 

Power Utility 
PANEL A: 25 Fama and French Portfolios 

 S=0 S=11 
 γ  α  ( )2T Dist  γ  α  ( )2T Dist  

PM  -21.21 
(40.73) 

0.0214 
(0.0049) 

50.922 
(0.0701) 

4.35 
(8.03) 

0.0205 
(0.0050) 

51.192 
(0.2070) 

LAPM  -33.82 
(40.96) 

0.0206 
(0.0050) 

49.030 
(0.0733) 

9.68 
(8.73) 

0.0208 
(0.0047) 

50.219 
(0.1796) 

PANEL B: 25 Fama and French Portfolios and 17 Industry Portfolios 
 S=0 S=11 

 γ  α  ( )2T Dist  γ  α  ( )2T Dist  

PM  13.93 
(34.31) 

0.0123 
(0.0041) 

86.898 
(0.2229) 

2.48 
(6.26) 

0.0129 
(0.0039) 

87.185 
(0.2637) 

LAPM  8.76 
(35.07) 

0.0116 
(0.0042) 

85.672 
(0.2277) 

2.76 
(6.30) 

0.0130 
(0.0040) 

86.391 
(0.3131) 

The sample period covers from 1963:II to 2003:I. PM  is the SDF based on power utility function and 

LAPM  is the SDF based on power utility function and illiquidity shocks affecting the intertemporal 
budget constrain. S=0 means that the marginal rate of substitution relates periods t+1 and t. S=11 means 
that the marginal rate of substitution relates periods t+12 and t. γ  is the relative risk aversion 
coefficient, α  is the mean error of the model in explaining the returns on the set of considered 
portfolios, and ( )2T Dist  is the measure to test the over-identifying restrictions (see Appendix B for 
details).   
 



 36

Table 2b 
GMM Estimation 
Recursive Utility 

PANEL A: 25 Fama and French Portfolios 
 S=0 S=11 
 γ  ρ  α  ( )2T Dist  γ  ρ  α  ( )2T Dist  

RM  -11.53 
(41.50) 

-5.36 
(22.54) 

0.0245 
(0.0066) 

50.415 
(0.0052) 

12.42 
(9.07) 

9.05 
(7.68) 

0.0229 
(0.0050) 

50.211 
(0.1084) 

LARM  -37.25 
(42.34) 

-11.08 
(14.37) 

0.0254 
(0.0062) 

45.722 
(0.0316) 

10.81 
(9.21) 

6.89 
(6.47) 

0.0230 
(0.0052) 

49.259 
(0.0642) 

PANEL B: 25 Fama and French Portfolios and 17 Industry Portfolios 
 S=0 S=11 
 γ  ρ  α  ( )2T Dist  γ  ρ  α  ( )2T Dist  

RM  15.70 
(34.84) 

13.10 
(28.69) 

0.0128 
(0.0048) 

86.859 
(0.0935) 

2.57 
(6.26) 

2.53 
(6.20) 

0.013 
(0.0041) 

87.182 
(0.2602) 

LARM  13.13 
(35.29) 

6.99 
(17.48) 

0.0131 
(0.0047) 

84.778 
(0.0460) 

2.57 
(5.97) 

2.48 
(5.73) 

0.0131 
(0.0040) 

86.388 
(0.0674) 

The sample period covers from 1963:II to 2003:I. RM  is the SDF based on recursive preferences and LARM  
is the SDF based on recursive preferences and illiquidity shocks affecting the intertemporal budget constrain. 
S=0 means that the marginal rate of substitution relates periods t+1 and t. S=11 means that the marginal rate 
of substitution relates periods t+12 and t. γ  is the relative risk aversion coefficient, ρ  is the inverse of the 
elasticity of substitution, α  is the mean error of the model in explaining the returns on the set of considered 
portfolios, and ( )2T Dist  is the measure to test the over-identifying restrictions (see Appendix B for details).  
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Table 3a 
Fama-MacBeth Estimation 

CCAPM and Illiquidity Shocks 
PANEL A: 25 Fama and French Portfolios 

S=0 S=11 

0γ  1γ  2γ  2
adjR  1 2MSE  0γ  1γ  2γ  2

adjR  1 2MSE  
0.0378 -0.0011  32.99 0.605 0.0301 0.0043  31.11 0.473 
(5.12) (-1.01)    (3.50) (0.69)    
0.0299 -0.0033 -0.0011 57.13 0.459 0.0296 0.0061 -0.0493 52.42 0.458 
(4.19) (-2.97) (-0.07)   (3.81) (0.93) (-2.05)   

PANEL B: 25 Fama and French Portfolios and 17 Industry Portfolios 
S=0 S=11 

0γ  1γ  2γ  2
adjR  1 2MSE  0γ  1γ  2γ  2

adjR  1 2MSE  
0.0354 -0.0015  22.06 0.696 0.0311 0.0003  22.68 0.610 
(5.21) (-1.65)    (4.06) (0.07)    
0.0247 -0.0021 -0.0070 39.43 0.614 0.0310 0.0033 -0.0455 36.79 0.615 
(4.01) (-2.65) (-0.49)   (4.41) (0.67) (-2.68)   

Tables 3a, 3b and 3c provide estimators of the risk premia from different versions of the cross-sectional 
regression jt ft 0 1 jc ,t 2 j ,t 3 jW ,t jt 1R R eφγ γ β γ β γ β +− = + + + + , for the period between 1971:I and 
2003:I. 
Results shown in Table 3a correspond to the power utility function estimation (in this case, 3γ  is zero as 
shown in Appendixes A and C). Table 3b presents the results from CAPM (in this case, 1γ  is zero as 
shown in Appendixes A and C). Finally, Table 3c shows results from the full regression.  

jcβ , jφβ  and jWβ  are the sensitivities of the return on asset j to changes into the three risk factors: non-
durable consumption growth rate, unexpected aggregate illiquidity and the return on the aggregate 
wealth, respectively. They are estimated with a rolling window of data previous to each cross-sectional 
regression. 
S=0 means that the risk factors are computed relating periods t and t+1. S=11 means that the risk factors 
are computed relating periods t and t+12. 

2
adjR  is the adjusted determination coefficient, computed using the sum of the total sums and the sum of 

the residual sums from each cross-sectional regression and 1 2MSE  is square root of the mean square 
errors for the portfolios. Both are reported as percentages. t-statistics are in parenthesis. 
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Table 3b 
Fama-MacBeth Estimation 

CAPM and Illiquidity Shocks 
PANEL A: 25 Fama and French Portfolios 

S=0 S=11 

0γ  2γ  3γ  2
adjR  1 2MSE  0γ  2γ  3γ  2

adjR  1 2MSE  
0.0391  -0.0064 49.20 0.634 0.0334  -0.0652 33.86 0.799 
(4.02)  (-0.54)   (4.01)  (-0.95)   
0.0451 -0.0356 -0.0172 61.95 0.377 0.0384 -0.0139 -0.0690 50.87 0.578 
(4.37) (-1.79) (-1.36)   (4.67) (-0.55) (-0.95)   

PANEL B: 25 Fama and French Portfolios and 17 Industry Portfolios 
S=0 S=11 

0γ  2γ  3γ  2
adjR  1 2MSE  0γ  2γ  3γ  2

adjR  1 2MSE  
0.0283  0.0008 32.73 0.629 0.0211  0.0052 23.32 0.790 
(3.80)  (0.08)   (3.01)  (0.10)   
0.0313 -0.0179 -0.0045 42.11 0.518 0.0261 -0.0280 0.0165 35.71 0.656 
(3.92) (-0.97) (-0.41)   (3.71) (-1.57) (0.33)   

See notes in Table 3a. 
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Table 3c 
Fama-MacBeth Estimation 

Recursive Preference and Illiquidity Shocks 
PANEL A: 25 Fama and French Portfolios 

S=0 S=11 

0γ  1γ  2γ  3γ  2
adjR  1 2MSE  0γ  1γ  2γ  3γ  2

adjR  1 2MSE  
0.0421 -0.0026  -0.0149 57.38 0.562 0.0251 0.0036  0.0812 51.03 0.453 
(4.42) (-2.64)  (-1.29)   (3.30) (0.64)  (1.32)   
0.0437 -0.0021 -0.0190 -0.0184 69.73 0.385 0.0314 0.0066 -0.0450 0.0441 65.82 0.423 
(4.58) (-2.16) (-1.05) (-1.57)   (4.40) (1.20) (-2.01) (0.85)   

PANEL B: 25 Fama and French Portfolios and 17 Industry Portfolios 
S=0 S=11 

0γ  1γ  2γ  3γ  2
adjR  1 2MSE  0γ  1γ  2γ  3γ  2

adjR  1 2MSE  
0.0305 -0.0018  -0.0042 40.11 0.644 0.0241 -0.002  0.0773 38.01 0.573 
(4.31) (-2.46)  (-0.41)   (3.54) (-0.34)  (1.61)   
0.0323 -0.0014 -0.0082 -0.0070 50.47 0.560 0.0302 0.0031 -0.0409 0.0595 48.46 0.559 
(4.45) (-2.03) (-0.48) (-0.69)   (4.32) (0.65) (-2.47) (1.35)   

See notes in Table 3a. 
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Figure 1 
Aggregate Illiquidity and Recessions          
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Figure 2 
 Market Illiquidity and Gross Domestic Product  
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Figure 3 
Mean Adjusted Returns versus Mean Observed Returns 

Power Utility 
Results from Fama-MacBeth Estimation with 25 Fama and French Portfolios 
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Figure 4 
Mean Adjusted Returns versus Mean Observed Returns 

Recursive Preferences 
Results from Fama-MacBeth Estimation with 25 Fama and French Portfolios 
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