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Abstract

We model the effect of the standard high-water-mark provision of
hedge funds when the supply of capital is competitive and managerial abil-
ity is uncertain.. We find that confidence in a manager’s ability is crucial
to the provision’s effect, and this effect is to boost the initial fund size, and
to depress initial expected returns while increasing subsequent expected
returns. We also find that expected returns can be non-monotonic in past
returns, higher for somewhat poor returns than above or below, that flows
can be unresponsive to performance, and that fund size decreases with the
manager’s effort cost.

1 Introduction

Much of the world’s investment in securities passes through hedge funds. What
distinguishes these funds is not the securities they trade, or how they trade them,
but how their managers are paid; typically, they get a base fee and an incentive
fee with a high-water-mark (HWM). The incentive fee gives managers a frac-
tion of profits, while the HWM limits this fee to profits above an investment’s

∗Christoffersen: 1001 Sherbrooke St. West, Montreal, PQ, Canada H3A 1G5, (514) 398-
4012, susan.christoffersen@mcgill.ca. Musto: 3620 Locust Walk, Philadelphia, PA, USA
19104, (215) 898-4239, musto@wharton.upenn.edu. We are grateful for comments from Rick
Green, David Hirschleifer, Sugata Ray, Fabrice Rouah, Luke Taylor and seminar participants
at Copenhagen Business School, Boston University, UC Irvine, the Wharton School, the Uni-
versity of Wisconsin at Madison, Carnegie Mellon, Cornell, Vanderbilt and the Stockholm
School of Economics.

1



Electronic copy available at: http://ssrn.com/abstract=1314893Electronic copy available at: http://ssrn.com/abstract=1314893

historical maximum. Intuitively, this provision benefits investors by focusing
the fee on net value creation. However, as Berk and Green (2004) observe,
competitive investors compete their benefits away. This does not mean that
the effect of the HWM is competed away, but rather that its implications are
something other than making investors wealthier. The goal of this paper is
to identify these implications by introducing a HWM into a model of money
management in competitive capital markets.
The analysis of Berk and Green (2004) develops two main premises about

the value added by fund management - that it is uncertain, and that it exhibits
decreasing returns to scale. In competitive capital markets, they show, the
result is that the response of flow to performance equalizes mutual funds’ ex-
pected returns. Since hedge fund managers are also likely to combine uncertain
value-added with decreasing returns to scale, and hedge-fund investors are also
competitive and have opportunities to rebalance, we situate our analysis in the
same enivironment.
The potential for a different result for hedge funds, compared to mutual

funds, lies in the HWM’s asymmetric effect on new and old investment. In
the mutual-fund context, new investment enters on the same terms as old in-
vestment, so when the expected return on new investment is competed down
to a reservation level, so is the expected return on old investment. But with a
HWM, old investment invests on better terms after a loss, because it does not
pay the incentive until the loss is made up, whereas new investment has no loss
to make up, and therefore pays higher expected fees. So if expected profits after
a loss are zero for new investment they must be positive for old investment.
Besides the HWM, another distinctive feature of hedge funds, especially

recently, is their propensity to fold. Because this tends to follow poor per-
formance, and because poor performance is when the HWM can boost the old
investors’ expected returns by reducing what they pay the manager, the risk of
folding is likely to be important to the HWM’s effect.
We analyze the effect of the HWM with a two-period model that embeds

learning, decreasing returns to scale and competitive capital in the context of
hedge funds. There is a simple and an expanded version of this model, where the
simple version has binary returns and costless effort and is solved analytically,
and the expanded version has continuous returns and costly effort, and is solved
numerically. So the simple version gives many of the key results in closed
form, while the expanded version gives the shape of the relations between past
performance on the one hand, and flows or future performance on the other,
and it also captures the manager’s participation constraint.
Our main finding is that the HWM alters both the cross section and time se-

ries of expected returns, and this alteration depends most of all on how well the
public knows the manager’s ability. If two managers have the same expected
ability but different precisions regarding ability, then the higher-precision man-
ager has lower expected returns initially, and higher expected returns later on.
And when funds reopen for new investment, expected returns are zero for those
that did well, but positive for those in a range of poor performance. The HWM
also makes fund flows unresponsive to past performance for a range of outcomes
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that predict positive returns, and increases the initial fund size. These effects
decrease as the manager’s effort cost grows.
The paper is in four sections. Section 2 provides some background and covers

the relevant literature, Section 3 presents the model, and Section 4 summarizes
and concludes.

2 Background and Literature
A foundational paper is Goetzmann, Ingersoll and Ross (2003), which is con-
cerned with valuing hedge-fund compensation contracts, and posits a continuous-
time model where the adaptive response of investment to performance is reduced-
form. A number of papers, such as Hodder and Jackwerth (2005) and Basak,
Pavlova and Shapiro (2004), are concerned with managers’ risk choices as a
response to their convex incentive pay, and show an economically significant
encouragement to alter risk. The HWM is incorporated into this risk choice
by Panageas and Westerfield (2008), which shows that the combination of the
HWM and a long-horizon for the manager can undo this encouragement. In
Aragon and Qian (2007), the HWM is found to add value when investors are
uncertain about managerial quality, and withdrawing is costly. In Rouah (2005)
the probability that the fund folds is found empirically to be higher for funds
below the HWM, and the implications of the distance from the HWM for both
investor and managerial walkaway, as well as the manager’s risk choice, are ad-
dressed theoretically and empirically in Ray and Chakraborty (2007). The Berk
and Green (2004) hypothesis that the response of flow to performance equal-
izes future returns was recently tested on hedge funds by Naik, Ramadorai and
Stromqvist (2007) and Fung, Hsieh, Naik and Ramadorai (2008), who conclude
that the effect is strong in recent years, and weaker in earlier years.
This paper focuses on the implications of optimal investor flows given the

prevailing contract design, rather than optimal contract design or risk choice.
The key to the contribution of this paper is the conditional nature of the HWM.
If all investors in a hedge fund have the same HWM, regardless of their invest-
ment date, then there is a well-known free-rider problem: investors can avoid
paying incentive fees by entering after losses borne by others (see, e.g., Anson,
2001, and Lee, Lwi and Phoon, 2004). The usual remedy for this problem1 is
"share equalization," which amounts to creating a separate share class for each
investment date, and then charging incentive fees on each share depending on
its own HWM (see Lee, Lwi and Phoon, 2004, Aragon and Qian, 2007, Huetl,
Loistl and Zellner, 2008). Our modeling of the HWM takes this approach.

3 Model
1Though not the only remedy; see Das, Kish, Muething and Taylor (2002) and Technical

Committee of ther International Organization of Securities Commissions (2004).
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3.1 Overview

The two versions of the model are the same to a point. Both have two periods
and a manager who can manage money in both, and arbitrarily many investors
with arbitrarily much money to invest. Everybody is risk-neutral, discounts at
zero and has reservation utility of zero. In both versions we capture decreasing
returns to scale by assuming that the manager adds a fixed amount of expected
value, so that extra investment spreads this expectation across more dollars,
and we capture learning about the manager by assuming that this fixed amount
is imperfectly known, so that investors update their priors on the manager
using the first-period return. The incentive contract is the standard base fee
/ incentive fee with HWM hedge fund contract, and for simplicity we assume a
zero hurdle rate (i.e. the incentive fee applies to any net profits on an investment,
not the net profits in excess of a hurdle rate such as LIBOR). Also for simplicity
we abstract from limited liability of the investors, so they experience all net
profits or losses of the fund, and we assume that the manager does not invest
in the fund.
The differences between the two versions are that 1) the first models the

manager’s value-added with a binary distribution, whereas the second models
it with a normal distribution, and 2) the first implicitly assumes no effort cost,
whereas the second assumes a positive effort cost and endogenizes the choice to
make a second-period effort. We refer to the former as the binary version, and
the latter as the continuous version. To make the results of the versions more
comparable, the second largely reuses the notation and terminology of the first.

3.2 Binary Version

3.2.1 Model Setup

There are three dates, 0, 1 and 2, with the first period running from 0 to 1 and
the second from 1 to 2. A money manager can manage in both periods, and in
each period his dollar return is either σ or −σ, which we refer to as a high or
low return, respectively. Everybody, including the manager, agrees at date 0
that the manager’s probability of achieving a high return is π0. Everybody also
agrees that if the manager achieves a high first-perod return then his probability
of a high second-period return is πH , and if his first-period return is low then his
probability of a high second-period return is πL, where 1

2 < πL < π0 < πH < 1,
and to be consistent, π0πH + (1 − π0)πL = π0.2 Everybody is risk-neutral,
discounts at 0 and has reservation utility of 0.
The manager has no money, and there are arbitrarily many competitive

investors who have money they can invest with the manager at both dates 0

2This would result from, for example, the skilled managers having a higher probability of
high returns, and investors updating the probability that the manager is skilled (as in Gervais,
Lynch and Musto, 2005)
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and 1. We denote the amount invested with the manager at date 0 as I0. The
money management contract is exogenously specified as a base fee of x > 0 paid
at the beginning of a period and an incentive fee y > 0 of net profits paid at
the end of the period, where the incentive fee has a HWM provision. Thus
at date 0 the manager gets a base fee of xI0, and at date 1 the manager gets
y(σ − xI0) if the first-period return was high, and nothing if the first-period
return was low. For the second period, the HWM provision dictates that any
first-period losses suffered by an account must be made up in the second before
the incentive fee can be charged to that account. This does not apply to any
new date 1 investment in the fund, which will have a new HWM struck at
the money. If investment is added to the fund at date 1, the new investment
and old investment share in the fund’s pre-incentive-fee return in proportion
to their invested amounts, and then pay incentive fees out of their take. If
investors remove a fraction of their investment before rolling over, the HWM on
the remaining investment goes down by the same fraction. All second-period
investment pays the base fee x at date 1.

3.2.2 Model Solution

There are two decisions in this version: the amount I0 that is invested at date
0, and the adjustment, either adding or subtracting investment, at date 1. In
equilibrium, the I0 chosen at date 0 is the one at which investors’ expected
profits are zero, where this expectation is over both first-period profits and any
second-period expected profits that depend on I0. At date 1, if the expected
return on new investment is positive, investors will add until the expected return
on new investment is zero, and if investors face a negative expected return on
reinvestment they will subtract until the expected return on reinvestment is
zero.
For the solution below it is handy to have notation for break-even investment

levels. The investors’ expected first-period return, given their choice of I0, is
−xI0+π0(σ−y(σ−xI0))+(1−π0)(−σ). Thus, the I0 which sets the first-period
expected return to zero, which we denote IB/E0 , is

I
B/E
0 =

σ[π0(2− y)− 1]
x(1− π0y)

.

Similarly, we take IB/E1 to be the investment in the fund at date 1 after a low
first-period return that would set the second-period expected return to zero if
the HWM for all second-period investment were at the money (that is, the
HWM applied to new investment):

I
B/E
1 =

σ[πL(2− y)− 1]
x(1− πLy)

.

To ensure that investment occurs even after a low return, we impose a parameter
restriction that ensures this break-even quantity is positive:

πL >
1

2− y
.
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The solution is greatly simplified by several observations, which we state as
lemmas:

Lemma 1 The first-period expected return is not positive, so the initial invest-
ment is at least IB/E0 , and the second-period expected return is not negative.

Proof. If the first-period expected return were positive, investors would have
a profitable strategy of adding investment to the fund at date 0 and removing
it at date 1. The arbitrarily large number of investors ensures that this entry
would not be deterred by the effect of additional investment on the profitability
of existing investment. The base fee grows proportionately with investment but
the value added by the manager does not change, so this entry would wipe out
the expected return. By construction of IB/E0 this means the initial investment
is at least IB/E0 . The second-period expected return cannot be negative because
investors would make expected profits by removing their money from the fund
with no future consequences because the second period is the last.

Lemma 2 The second-period expected return is always 0 after a high first-period
return.

Proof. The first-period profit means that any rolled-over investment is at its
HWM, which means it has the same HWM as any added investment. Therefore,
if it is profitable to add investment, it will be added until its expected return
is zero, which means the expected return of rolled-over investment is also zero.
If it is not profitable to add investment then rolled-over investment is also not
profitable, and investors will remove money from the fund until the expected
return is zero.

Lemma 3 If investors roll over all their investment after a low first-period
return, they pay no incentive fee on this rolled-over amount at date 2, but they
would pay an incentive fee on any added investment.

Proof. A low return means the initial investment lost xI0 + σ. The best the
fund can do in the second period is make σ, so the first-period loss cannot be
made up entirely, so there can be no incentive fee on the rolled-over investment.
On the other hand, any new investment has no losses to make up, so it would
pay an incentive fee after a high return.

Lemma 4 If the expected second-period return from rolling over all first-period
investment is positive, then either 1) additional investment is profitable, in which
case additional investment enters until its expected return is zero, reducing the
expected return on rolled-over investment, but not to zero, or 2) additional in-
vestment is not profitable, in which case no money is added or removed. If
the expected second-period return from rolling over all first-period investment is
negative, then investors will remove investment until the expected return is zero.
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Proof. If additional investment is profitable, then competition will force its
expected return to zero. This will not force the expected return on rolled-over
investment to zero, since its HWM is strictly higher, making its expected return
strictly higher. If rolled-over investment is profitable but additional investment
is not, then investors make losses either adding or removing investment but profit
from staying put, so they stay put. If rolled-over investment is not profitable
then investors profit from removing investment until its expected return reaches
zero.
These lemmas imply that, in equilibrium, investors either have zero expected

returns in both periods, or they have negative expected returns in the first period
and positive after a low first-period return. The former we refer to as the
Reduce case, because investors reduce their investment after a low first-period
return. The latter admits two possible cases: the Add case where investors add
investment after a low return, and the Hold case where no money goes in or
out.
One more piece of notation makes the proofs go smoothly. We take IHOLD

0

to be the initial investment such that the investors’ overall expected return is
zero, assuming they roll over all investment at date 1 after a low return, without
adding or removing, and without constraining the sign of either expected return.
This is the solution to the equation

−xIHOLD
0 + π0(σ − y(σ − xIHOLD

0 )) + (1− π0)(−σ)
+(1− π0)[−x(IHOLD

0 (1− x)− σ) + πL(σ) + (1− πL)(−σ)] = 0

which works out to

IHOLD
0 =

σ[π0(2− y) + (1− π0)(2πL + x− 1)− 1]
x[(1− π0y) + (1− π0)(1− x)]

We can now start identifying the equilibrium value of I0, which we call I∗0 .

Proposition 1 We are in the Reduce case, where expected returns are 0 in both
periods and I∗0 = I

B/E
0 , if and only if IHOLD

0 ≤ I
B/E
0 .

Proof. From above we know that I∗0 ≥ I
B/E
0 , so if IHOLD

0 ≤ I
B/E
0 then we

must have I∗0 ≥ IHOLD
0 . Since IHOLD

0 ≤ I
B/E
0 implies nonnegative expected

first-period returns, it also implies nonpositive expected second-period returns.
If expected second-period returns are nonpositive for I∗0 = IHOLD

0 , they must be
nonpositive for I∗0 ≥ IHOLD

0 , so the expected first-period return must be zero, so
we must have I∗0 = I

B/E
0 . Conversely, if we are in the Reduce case we know that

expected second-period returns are zero, so the expected first-period returns are
zero, so we must have I∗0 = I

B/E
0 . This is incompatible with IHOLD

0 > I
B/E
0 ,

because that would imply positive expected second-period returns from rolling
over investment with I∗0 = IHOLD

0 , and therefore with any lower I∗0 .

Proposition 2 We are in the Hold case, and I∗0 = IHOLD
0 if and only if

IHOLD
0 > max{IB/E0 ,

I
B/E
1 +σ
1−x }.
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Proof. The Hold case requires positive expected second-period expected returns
from rolling over, which is true if and only if IHOLD

0 > I
B/E
0 . It also requires

negative expected second-period returns on additional investment. This is true
if and only if IHOLD

0 (1− x) − σ > I
B/E
1 , because it states that the rolled-over

amount, IHOLD
0 (1− x) − σ, is greater than the break-even investment level at

the HWM of new investment.

Corollary 1 In the Hold case, the expected first-period return is −(1−π0)RHOLD

and the expected second-period return after a low return is RHOLD, where

RHOLD =
2σ[πL(1− π0y)− π0(1− y)(1− x)]

(1− π0y) + (1− π0)(1− x)

Proof. To calculate the expected second-period return after a low return, plug
IHOLD
0 into the expected second-period return, i.e. −x[(1 − x)IHOLD

0 − σ] +
(2πL − 1)σ, which gives RHOLD. For the overall expected return to be zero,
the expected first-period return must be −(1− π0) times this number.

Proposition 3 We are in the Add case if and only if IB/E0 < IHOLD
0 <

I
B/E
1 +σ
1−x , and in that case,I∗0 = IADD

0 where

IADD
0 =

σ[(π0(2− y)− 1)(πL(2− y)− 1)− x(1− π0)2πLy(1− πL)]

x[(1− π0y)(πL(2− y)− 1)− (1− x)(1− π0)2πLy(1− πL)]

Proof. If I∗0 = IHOLD
0 > I

B/E
0 then second-period expected returns are positive,

and if IHOLD
0 <

I
B/E
1 +σ
1−x then additional investment will occur, bringing down

the profitiability of rolled-over investment, thereby pushing the overall expected
return as of date 0 below zero. To bring the expected return back to zero,
investors must invest less, but investment will not fall all the way to I

B/E
0 ,

because in that case they would be breaking even in the first period and making
expected profits in the second. So there is an IADD

0 between IHOLD
0 and I

B/E
0

at which they break even overall. To identify IADD
0 , we use the fact that

rolled-over investment will share the fund’s pre-incentive-fee return with new
investment in proportion to their invested amounts, and we use our result that
the total of rolled-over and additional investment is IB/E1 . Thus, IADD

0 solves

−xIADD
0 +π0(σ−y(σ−xIADD

0 ))+(1−π0)(−σ)+(1−π0)[−x(IADD
0 (1−x)−σ)

+
IADD
0 (1− x)− σ

I
B/E
1

(πL(σ) + (1− πL)(−σ))] = 0

The solution is the quantity in the proposition.

Corollary 2 In the Add case, the expected first-period return is −(1−π0)RADD

and the expected second-period return after a low return is RADD, where

RADD =
2σπLy(1− πL)(π0[2(1 + xy − x)− y]− 1)

(1− π0y)(πL(2− y)− 1)− (1− x)(1− π0)2πLy(1− πL)

8



Proof. To calculate the expected second-period return after a low return, plug
IADD
0 into the expected second-period return, i.e. −x[(1−x)IADD

0 −σ]+(2πL−
1)σ, which gives RADD. For the overall expected return to be zero, the expected
first-period return must be −(1− π0) times this number.

3.2.3 Comparative Statics

To help interpret the solution, it is useful to formalize a concept that proves
crucial: the precision of investors’ date 0 beliefs regarding the manager’s value-
added. Since higher date 0 precision means less weight on first-period returns
in date 1 beliefs, i.e. πL and πH closer to π0, we say that

Definition 1 In the binary version, Investors have higher precision if πL
π0
is

higher.

This is not the only way to define precision, but it is intuitive and it is the
form in which the concept arises in the solution.
Looking at the boundary between the Reduce case and the Add and Hold

cases, we see that precision determines whether expected returns are zero:

Proposition 4 If precision is sufficiently high then expected profits are negative
in the first period and positive after a low return. Otherwise, expected profits
are always zero.

Proof. Investors make negative expected first-period returns and positive ex-
pected returns after low first-period returns if and only if we are in either the
Hold or the Add case, which is true if and only if IHOLD

0 > I
B/E
0 , which is true

if and only if
πL
π0

>
(1− y)(1− x)

1− π0y
.

Since y, x and π0 are all between 0 and 1, the expression on the RHS is too, so
if πL is sufficiently close to π0 then we are in either the Hold or the Add case.

It follows immediately that non-zero expected returns arise with lower pre-
cision if fees are higher:

Corollary 3 The level of precision at which expected first-period returns be-
come negative and expected returns after low returns become positive decreases
as either the base fee or the incentive fee goes up.

Proof. The derivative of the RHS with respect to both x and y is negative, so
given π0, the threshold value of πL for the Hold and Add cases goes down as x
or y goes up.
A higher base fee means rolled-over investment is smaller relative to the ini-

tial investment, so it pays that much less fee going forward. A higher incentive
fee means rolled-over investment has a greater advantage after a low return,
since it does not pay an incentive fee going forward.
Precision is also key to the boundary between the Hold and Add cases:
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Proposition 5 There is no Add case if precision is too low or the base fee is
too high. If precision is sufficiently high and the base fee is sufficiently low,
then we are in the Add case if the incentive fee is sufficiently low.

Proof. We have from above that we are in the Hold or Add case if precision is

sufficiently high. And the condition IHOLD
0 <

I
B/E
1 +σ
1−x simplifies to

y[π0πLx+
1

1− y
(1− πL)(1− π0)(1− x)] < πL − (1− x)π0.

Since the LHS of this expression is always positive for positive y and goes to
zero as y → 0, it is satisfied by some y > 0 if and only if the RHS is positive,
which is true if and only if πL

π0
> 1− x. Thus, there exists a sufficiently low y

to put us in the Add case if x is sufficiently low and πL
π0
is sufficiently high.

Corollary 4 The initial size of a fund is invariant with respect to precision
about the manager’s ability in the Reduce case, increases with precision in the
Hold case, and decreases with precision in the Add case.

Proof. In the Reduce case, I∗0 = I
B/E
0 , which does not depend on πL. In the

Hold case, I∗0 = IHOLD
0 which is always increasing in πL. In the Add case,

I∗0 = IADD
0 , and to see that this decreases in πL, note that the derivative of

RADD (a long expression, available on request) is decreasing in πL if and only
if π0[2(1 + xy − x) − y] > 1, which is true if and only if RADD>0, which has
to be true in the Add case. And if the expected-return after a low return is
decreasing, the first-period expected return must be increasing, which can only
happen if the initial investment is decreasing.

Corollary 5 The expected first-period return decreases with precision in the
Hold case, and increases with precision in the Add case. The opposite is true
for the expected return after a low first-period return.

Proof. When initial fund size increases with precision in the Hold region, this
directly decreases the first-period expected return, and when it decreases in the
Add case, this increases the first-period expected return. The second-period
expected return must move in the opposite direction to keep the sum at zero.

Since the source of expected returns after a loss is the wedge between rolled-
over and new investment driven by the incentive fee, intuition suggests that the
expected return increases with the incentive fee. We can see that, as long as
the base fee is not too high, this intuition holds:

Proposition 6 In the Hold case the initial size of the fund and the initial ex-
pected return go down, and the expected return after a loss goes up as the incen-
tive fee goes up.
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Proof. The derivative of RHOLD w/r/t y is

2σπ0(1− π0)(1− x)(2− x− πL)

[(1− π0y) + (1− π0)(1− x)]2

which is always positive and the derivative of IHOLD
0 w/r/t y is

−2σπ0(1− π0)(2− x− πL)

x[(1− π0y) + (1− π0)(1− x)]2

which is always negative. Since the expected return after a loss isRHOLD/(I
HOLD
0 (1−

x) − σ), it follows that the expected return goes up as y goes up. And since
the expected return after a loss goes up and the probability of a loss stays the
same, the initial expected return must go down.
The simplicity of the two-return space delivers analytical results but in-

hibits the analysis of the cross section of returns. For this purpose, we enrich
the model with a continuous distribution, and also with a more realistic partic-
ipation constraint for the manager represented by an effort cost.

3.3 Continuous Version

3.3.1 Model Setup

There are again three dates, 0, 1 and 2, defining a first and second period
which we will index with t, and there are again arbitrarily many investors with
money and one manager with no money, and everybody is risk-neutral with
0 reservation utility and discounts at 0. The money-management contract is
again a base fee of x and an incentive fee of y, both exogenously specified, with
a HWM provision. The differences are that the manager must make an effort to
add value, and his returns are normally distributed. Specifically, if the manager
makes an effort that costs him c > 0, then the value his management adds in
the first period is V1 = A+ ε1, and if he does not make the effort then V1 = ε1.
The first summand A is constant over time, but known imprecisely: at date 0,
everybody, including the manager agrees that A ∼ N(μA, σ

2
A), where μA > 0.

The second summand is period-specific noise, i.i.d. across time, and everyone
agrees that εt ∼ N(0, σ2ε) for t = 1, 2. At date 1 the manager can again make
an effort costing c, and if he does then V2 = A + ε2 and if he does not then
V2 = ε2. The effort is observable but not contractible, and investors make their
investment decision after observing whether the effort was made.
The order of events is as follows. At date 0, the manager decides whether to

make an effort, and then investors choose the amount I0 to invest. The manager
removes his base fee of xI0, and then adds V1, so that the investors’ net profit
before the incentive fee is V1 − xI0, and the incentive fee is ymax{0, V1 − xI0}.
Thus, if we let R1(I0, V1) be the first-period return (we denote the realized
ith-period return Ri and the expected return Ri), we have

R1(I0, V1) = V1 − xI0 − ymax{0, V1 − xI0}
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and the value of the date 0 investment after the first period, which we denote
I10 (V1, I0), is I0 + R1(I0, V1). Note that if V1 ≥ xI0 then the HWM on this
existing investment is the same as new investment for the second period, whereas
if V1 < xI0 then rolled-over investment pays no incentive fee on the first xI0−V1
of second-period net profit. If only a fraction of investment is rolled over, then
it pays no incentive fee on this fraction of xI0 − V1. At date 1 the manager
decides whether to make an effort, then investors choose their investment for
the second period, then the manager removes his base fee, V2 is realized, and
incentive fees, if any, are removed.

3.3.2 Model Solution

In contrast to the binary version, where we solve analytically for the date 0
investment I∗0 , here we solve for it numerically. We do this by positing a value
for I0 and then calculating analytically the expected profit it implies for the
investors in the first period, and the expected profit in the second period, con-
ditional on the first-period outcome and imputing the investors’ optimal date
1 action. We then integrate numerically over the distribution of first-period
outcomes to calculate the overall expected profit implied by I0. We then nu-
merically identify I∗0 as the I0 such that this overall expectation is zero.
We start by simplifying the strategy space with a parameter restriction.

There are four choices in this version - the manager’s two effort choices, and the
investors’ two investment choices. We narrow this down to the three choices we
want to focus on with a restriction that guarantees a date 0 effort. To motivate
this restriction, note that, with investors breaking even overall, the manager
receives all surplus expected as of date 0. Also, note that if the manager makes
a date 0 effort then this expectation is the first-period expected surplus μA − c
plus any second-period expected surplus, whereas if he makes only a date 1
effort then his expected surplus is just μA − c, and if he makes no effort then it
is 0. Thus, we can guarantee a date 0 effort with this parameter restriction:

μA > c.

Note that this is sufficient but not necessary.
Before commencing the solution, some preliminary observations and some

new notation are useful. From our Normal distribution assumption we get the
familiar result that the posterior distribution of A, given the observation of A
plus Normal noise, is linear in the observation, and also Normal:

A | V1 ∼ N(μ1(V1), (
σ2ε

σ2A + σ2ε
)σ2A),

where

μ1(V1) = μA + (
σ2A

σ2A + σ2ε
)(V1 − μA)

so that V2 = A+ε2 is distributed N(μ1(V1), (
σ2ε

σ2A+σ
2
ε
)σ2A+σ

2
ε). Because it comes
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up repeatedly, we use the shorthand

σ21 = (
σ2ε

σ2A + σ2ε
)σ2A + σ2ε.

It is also convenient to have a shorthand representation of the portion of the
expectation of a Normal that is above a constant, as this comes up in the
calculation of expected incentive fees. So, letting f be the pdf of the Normal
distribution with mean μ and variance σ2, we have

T (μ, σ2, k) =

Z ∞
k

xf(x)dx = σφ(
μ− k

σ
) + μΦ(

μ− k

σ
)

where φ and Φ are the pdf and cdf, respectively, of the Standard Normal. Using
this notation we can identify IB/E1 (V1), which, analogously to the binary version,
is the break-even level of investment at date 1 following a return of V1, assuming
all investment has the HWM of new investment. It is the solution to

μ(V1) = xI
B/E
1 (V1) + yT (μ1(V1), σ

2
1, xI

B/E
1 (V1)).

This equation states that the expected value added by management equals the
expected fees paid by investors, assuming that investors pay an incentive fee for
all profits in excess of their base fee.
We start by identifying the cases that can arise at date 1, and the expected

returns and date 1 investment levels they imply. These cases are conceptually
different from the cases in the binary version in that they refer to the date 1
outcome conditional on a given choice of I0 and outcome V1, as opposed to the
date 1 outcome conditional on the equilibrium choice I∗0 and a loss. In the
binary version there are three cases - the Hold, Add and Reduce cases - that
can arise after losses, plus another case that arises after profits, which we can
call the Profit case. These are also possible date 1 outcomes in the continuous
version, as is a fifth case where the manager makes no effort, which we call the
Fold case. As before, the investor makes second-period expected profits in the
Hold and Add cases and otherwise breaks even, but now there is the additional
question whether the manager’s expected fee income is sufficient to warrant
making an effort, i.e. whether it exceeds c. We run through the cases, and in
each we calculate the investors’ expected second-period net return R2(V1, I0)
and total date 1 investment I1(V1, I0). First, a simple result:

Lemma 5 If the manager does not make an effort at date 1, then investment
in the fund goes to zero.

Proof. If the manager does not make an effort, then V2 = ε2, which has mean
zero. Since the fund charges fees, it is immediate that investors make negative
profits at any positive investment level. So there is no investment.
Then the five cases:
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Lemma 6 We are in the Profit case if and only if

V1 ≥ xI0,

I
B/E
1 (V1) > 0

and
μ1(V1) ≥ c.

In this case, R2(V1, I0) = 0 and I1(V1, I0) = I
B/E
1 (V1).

Proof. The first inequality establishes that the fund made first-period profits.
The second inequality establishes that investors break even at some positive
investment level. Since there is an incentive fee even at zero investment, this is
not automatically true. The third inequality establishes that expected surplus
is not negative. If these conditions all hold it is immediate that investors will
invest I1(V1, I0) = I

B/E
1 (V1) and R2(V1, I0) = 0. If the first condition does

not hold then by definition this is not the Profit case, if the first holds but the
second does not then investors will not invest and the fund will fold, and if the
first holds but the third does not then the manager will not make an effort and
the fund will fold.

Lemma 7 We are in the Hold case if and only if

V1 < xI0

I
B/E
1 (V1) ≤ I10 (V1, I0)

and

μ1(V1) ≥ xI10 + yT (μ1(V1), σ
2
1, xI

1
0 (V1, I0) + xI0 − V1) ≥ c.

In this case, R2(V1, I0) = μ1(V1)− (xI10 +yT (μ1(V1), σ
2
1, xI

1
0 (V1, I0)+xI0−V1))

and I1(V1, I0) = I10 (V1, I0).
Proof. The first condition establishes that R1(V1, I0) < 0, so that the HWM
of rolled-over investment is higher than that of new investment. The sec-
ond condition establishes that if all investment is rolled over, new investment
is unprofitable. The third condition establishes that the manager’s expected
value-added exceeds the expected fees on rolled-over investment, and these ex-
pected fees exceed the manager’s effort cost. So, the manager will choose to
make an effort, because if he does, then investors will find it profitable to roll
over all their investment, and will pay fees in excess of c. Investors will not find
it profitable to add investment, and no investor will benefit from removing in-
vestment. The expected return is simply the difference between the manager’s
expected value-added and the investors’ expected fees.

Lemma 8 We are in the Add case if and only if

V1 < xI0

I
B/E
1 (V1) > I10 (V1, I0)
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and

μ1(V1)−R2(V1, I0) ≥ c.

where

R2(V1, I0) = (
I10 (V1, I0)

I
B/E
1 (V1)

)y(T (μ1(V1), σ
2
1, xI

B/E
1 (V1))

−T (μ1(V1), σ21, xI
B/E
1 (V1) + [

I
B/E
1 (V1)

I10 (V1, I0)
](xI0 − V1)))

and I1(V1, I0) = I
B/E
1 (V1).

Proof. The first condition establishes that R1(V1, I0) < 0, and the second
establishes that investors will increase investment from the rolled-over amount
up to IB/E1 (V1), provided an effort is made. The third condition establishes that
the manager will make an effort if the investors’ expected return is R2(V1, I0),
since it ensures that the manager’s value added minus the investors’ expected
return exceeds the manager’s effort cost. To see that the fourth equation gives
the investors’ expected return, note that the expected return is entirely due to
the the HWM on I10 (V1, I0) of the I

B/E
1 (V1) invested dollars being higher by

xI0 − V1. Since these I10 (V1, I0) dollars get
I10 (V1,I0)

I
B/E
1 (V1)

of the fund’s return, this

return must be I
B/E
1 (V1)

I10 (V1,I0)
(xI0 − V1) higher to reach the point where rolled-over

investment starts paying incentive fees.

Lemma 9 We are in the Reduce case if and only if

V1 < xI0

c ≤ μ1(V1) < xI10 + yT (μ1(V1), σ
2
1, xI

1
0 (V1, I0) + xI0 − V1)

and there exists an I > 0 such that

xI + yT (μ1(V1), σ
2
1, xI + [

I

I10 (V1, I0)
](xI0 − V1) = μ1(V1)

in which case R2(V1, I0) = 0 and I1(V1, I0) = I.

Proof. The first condition establishes that R1(V1, I0) < 0, and the second
that the manager recovers his effort cost if the investors break even, but if the
investors roll over all their investment, they do not break even. The third con-
dition establishes that there is a reduced investment level at which investors do
break even. So if the manager makes an effort, investors reduce their invest-
ment to this break-even level at which the manager gets at least his effort cost,
so the manager makes an effort and this is what happens.

Lemma 10 If none of the other four cases apply, we are in the Fold region
where the manager makes no effort, I1(V1, I0) = 0 and R2(V1, I0) = 0.
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Proof. The other four cases exactly characterize where the investors either
stay put or adjust their investment to a different positive amount. The only
alternative is for investors to remove all investment, in which case the manager
will not make an effort.
Now that we have calculated R1(V1, I0) and R2(V1, I0), and we know that

the distribution of V1 is N(μA, σ
2
A+ σ2ε), we can identify the equilibrium choice

I∗0 :

Proposition 7 At date 0, investors choose the I∗0 that solvesZ ∞
−∞
(R1(V1, I

∗
0 ) +R2(V1, I

∗
0 ))f(V1)dV1 = 0

where f is the pdf of the Normal distribution with mean μA and variance σ
2
A+σ

2
ε.

Proof. This is by construction the break-even investment level, so it is the
equilibrium result of competition between arbitrarily many investors.
Before we solve this numerically, we can make a few observations. As with

the binary version, expected returns are non-positive in the first period and
non-negative in the second. Also, it is immediate from the functional form of
R1 that R1 decreases in I0. The effect of I0 on R2 is less clear, because there
are effects in both directions. On the one hand, higher I0 means a higher value
of rolled-over investment I10 , which increases the fee investors pay when they
roll over in the Hold and Add regions, and thereby decreases R2. On the other
hand, because higher I0 reduces R1, it increases R2 by decreasing fees because
it increases the loss that must be made up before the incentive fee is charged.
In other words, it widens the gap between the fees paid by rolled-over vs. new
investment.

3.3.3 Comparative Statics: Precision

In the binary version, more precision regarding the manager is captured by less
updating after a bad return. In this version there is a continuum of bad returns,
so the analog is the slope of the posterior μ1(V1) on the return V1:

Definition 2 In the continuous version, Investors have higher precision if
σ2A

σ2A+σ
2
ε
is lower.

We can illustrate the equilibrium choice graphically by choosing a vector
of parameters and then plotting the expected second-period return and the
negative of the expected first period return as a function of I0, so that the
equilibrium I∗0 and expected returns are identified by their intersection. To do
this, and also to simultaneously illustrate the effect of date 0 precision about
the manager’s ability, we choose two vectors, the difference being the variance
σ2A of the prior distribution on A. So we choose 2% and 20% for x and y, 100
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for σ2ε, 5 for c, 10 for μA and then alternately 1 and 5 for σ
2
A. The result is in

Figure 1.
Figure 1 shows the first-period expected return decreasing as I0 increases

(note that the two lines for R1(V1, I0) are almost the same, so we do not label
them separately), and it shows the equilibria as the intersections with the the
lines representing the second period. The effect of precision is analogous to
the finding with the binary version:as it increases, initial investment goes up,
first-period expected returns grow more negative, and second-period expected
returns grow more positive. The intuition is the same, too: more precision
means less learning, and therefore better prospects after losses, when rolled-
over investment has an advantage over new investment. It also means worse
prospects after gains, but that is irrelevant since there is no advantage after
gains.
To illustrate the equilibrium relation between first-period returns and second-

period regions, we run the following exercise. First, we plot the expected
second-period return from rolling over first-period investment as a function of
the first-period gross return V1, which we call the Rollover line. Then on the
same graph we plot the same line except that we assume that the HWM in the
second period is the HWM for new investment, and we call this the Add line.
With this setup, the Profit region is to the right of V1 = xI0, and we can identify
the other regions, except the Fold region, in the loss region on the left: when
the Rollover line is above zero and the Add line is below, then rolling over is
profitable but adding is not, so this is the Hold region; when both are above zero
then both are profitable so we are in the Add region; and when both are below
zero then investors need to withdraw to break even, so we are in the Reduce
region. We generate this plot for the two parameter vectors from Figure 1; the
results are in Figures 2 (low precision) and 3 (high precision).3

In Figure 2, both lines are generally below zero in the loss region, but there is
a range where the rollover line is above zero. Thus, with these parameter values
expected second-period returns are generally zero, and money generally flows
out after losses, but there is a range of moderate first-period losses that predicts
second-period profits and zero flows. To understand the shapes of these lines,
note first that when precision is low, investors learn more about the manager
from his realized returns, so the positive effect of past performance on updating
is relatively stronger compared to its negative effect through the decreasing
returns to scale. Thus, the lines slope upward more. But as we move right to
left into the loss region, the HWM effect kicks in for the Rollover line. This
effect is strong at first because the return required for a second-period incentive
fee is increasing through the thick part of the second-period return distribution,
but the increase asymptotes to zero as we move to the tail of this distribution.
Thus, as the first-period loss grows we get the observed shape of the Rollover
line, reaching upward and then bending back to its downward trend.

3The plots do not identify the Fold regions because they do not indicate when expected
fees will fall short of c. This constraint is never binding in the ranges plotted in Figures 2
and 3, so there is no Fold region.
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In Figure 3, the higher precision implies less learning from realized returns,
so the decreasing returns to scale overwhelm the updating, sloping the lines
down rather than up. Thus, as first-period losses grow, the Add line eventually
crosses zero and adding becomes optimal (though at almost −10 standard de-
viations of V1). So with these parameter values, there are inflows and positive
expected returns after extreme losses, no flows and positive expected returns
after moderate losses, and outflows and zero expected returns after gains.
To represent the effect of precision on expected returns on a larger scale we

plot the regions in (σ2A, V1) space. That is, we start with the same parameter
vector as before, and then for each of a range of values of σ2A we calculate the
ranges of V1 that produce the different second-period regions, and then plot the
result with the regions shaded different colors. This graph is Figure 4, and it
shows tthat the Hold and Add regions predominate when precision is high, and
then the Add region drops away and the Hold region shrinks, with the Reduce
region on either side. For high enough σ2A there is no Hold region, so expected
returns are always 0. So, as we found in the binary version, the effect of HWMs
on expected returns requires sufficiently high precision.

3.3.4 Comparative Statics: Effort Cost

For the manager to participate in the second period, his expected value-added
minus the investors’ expected profits must exceed his effort cost. So as his
effort cost rises, the investors’ latitude to make expected profits after losses,
which lower the expected profits, is likely to narrow. And if second-period
expected profits decrease, then so must the investors initial investment, to bring
the overall expected profit back to zero by increasing the first-period expected
profit. To explore this dynamic we plot the equilibrium initial fund size against
the effort cost for the two parameter vectors from the figures above, letting c
range from the minimum 0 to the maximum μA = 10, and present the result as
Figure 5. We see that as effort cost rises from zero it initially has no perceptible
effect, reflecting the extreme unlikelihood that the posterior on A falls that
far, but investment levels eventually start dropping and converging, reflecting
the shrinking significance of second-period expected profits. Thus, fund size
shrinks as the manager’s costs rise, but this is not because the fund becomes
more expensive but rather that its participation constraint is more likely to bind
in future scenarios where investors would otherwise have benefitted.

3.3.5 Comparative Statics: Incentive Fee

The incentive fee has opposing implications for the first and second periods. For
the first period, a higher incentive fee is purely a drag on the investors’ profits,
and therefore reduces the initial investment required for a given expected return.
For the second period, the incentive fee is the source of expected profits, because
it is the wedge between rolled-over and new investment. To gauge the net effect,
we repeat the exercise from Figure 1, except now we leave σ2A at 1 and instead
vary the incentive fee from y = 20 to y = 15. The result, in Figure 6, shows
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the incentive-fee decrease moving the equilibrium to a higher initial fund size,
and lower expected first-period losses and second-period profits. Or to put it
another way, by raising his incentive fee, the manager shrinks his fund and he
also moves some expected compensation from the future to the present.

3.4 Discussion

Embedding the HWM in its context of learning, decreasing returns to scale and
competitive cash flows leads to predictions for fund size and the time series and
cross section of expected returns:

• In the cross section of managers, controlling for expected value-added,
those with longer track records (e.g. more management experience at
other hedge funds or mutual funds) are likely to be the ones about whom
the market has more certainty as to the value they add. So the prediction is
that the HWM has a greater effect in their case, depressing initial returns,
increasing later returns and boosting initial fund size. We should see new
investment after bad returns only if precision is high and the incentive fee
is low.

• In the cross section of management styles, those with higher costs (e.g.
investing in overseas markets, obscure or otherwise research-intensive asset
classes) should exhibit lower initial fund size and higher initial expected
returns.

• In the cross section of incentive fees, initial expected returns and fund size
should go down, and expected returns after losses should increase as the
incentive fee goes up.

• In the cross section of returns, if precision is high then expected returns
should be higher after intermediate-size losses than after large or small
losses. Net flows should be less responsive to returns in this region of
intermediate losses. As precision goes to zero, these effects should go
away.

Our analysis is not an attempt to explain the existence of HWMs, but from
the predictions we get at least one rationale. Since a HWM pushes the investor
to a negative expected initial net return, it follows that the manager’s expected
initial fee revenue is higher than it would be without the HWM. If the manager
needs more expected revenue to get started, or alternatively if the manager has
a higher intertemporal discount rate than his investors do, then this effect of
the HWM may be the desired effect. However, this works only to the extent
that the HWM is valuable, so it works better for better-known managers than
for rookies, and more for management styles with lower effort costs.
The analysis of Aragon and Qian (2007) is an attempt to explain the exis-

tence of HWMs, and the finding is that the HWM reduces the deadweight cost
of liquidating after bad performance, by encouraging investors to stay. What

19



our analysis can add to this finding is that the encouragement is stronger when
ex ante uncertainty about the manager is less, and when the manager’s effort
cost is less.
Along those same lines, the HWM is worth more when investors have some

assurance that the fund will not try to renegotiate the contract when its perfor-
mance lands it in a region where their expected profits were going to be positive.
We do not model this explicitly, but our results suggest that factors that in-
crease the probability of such renegotiation will tend to undo the HWM effects
we derive. Since it is presumably at least somewhat embarrassing to do this
to investors, proxies for the manager’s reputation capital should predict greater
HWM effects. The damaging renegotiation does not have to be with respect to
the fees for reinvestment; it could be the fees for new investment instead. Since
the expected profits on reinvestment arise from its better terms relative to that
of new investment, a renegotiation that leads to new investment breaking even
at a lower base or incentive fee would reduce the profits on reinvestment, unless
reinvestment wasn’t going to be profitable anyhow.

4 Conclusion
High-water marks are fundamental to money-management, and have therefore
attracted considerable analysis. However, this analysis has abstracted from the
endogeneity, as theorized by Berk and Green (2004) and documented by Fung
et al. (2008), of investment and expected returns to past returns. We show
that this endogenity is key to the testable implications of high-water marks for
the cross section of managers, management styles, returns and fee levels. The
analysis also suggests a rationale for the usage of high-water marks.
Another perspective on these results is that the high-water mark forges an

unusual connection between returns and the investment opportunity set. The
asset-pricing literature notes the importance to investors of the link between
their performance and their future investment opportunity set (e.g., Brennan,
1998, Xia, 2001). What the high-water mark delivers in equilibrium is a rela-
tion opposite to the intuition — the investment opportunity set presented to an
incumbent investor is better after a bad return than after a good one because
the high-water mark defends his expected return from competition. But as the
manager’s track record shrinks, his expected return heads to zero, at which
point this defense is no longer helpful.
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Figure 1: Expected second-period return and negative of expected first-period
return with x=2%, y=20%, c=5, μA=10, σ
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ε=100 and σ2A=1 and 5.
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Figure 4: The various regions as functions of the prior precision about the
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