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Abstract
We introduce the Homoscedastic Gamma [HG] model where the distribution of returns is
characterized by its mean, variance and an independent skewness parameter under both
measures. The model predicts that the spread between historical and risk-neutral volatilities
is a function of the risk premium and of skewness. In fact, the equity premium is twice the
ratio of the volatility spread to skewness. We measure skewness from option prices and test
these predictions. We find that conditioning on skewness increases the predictive power of
the volatility spread and that coefficient estimates accord with theory. In short, the data
do not reject the model’s implications for the equity premium. We also check the model’s
implications for option pricing and show that the information content of skewness leads to
improved in-sample and out-of-sample pricing performances as well as improved hedging
performances. Our results imply that expanding around the Gaussian density is restrictive
and does not offer sufficient flexibility to match the skewness and kurtosis implicit in option
data. Finally, we document the term structure of option-implied volatility, skewness and
kurtosis and find that time-dependence in returns has a greater impact on skewness.
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I Introduction

We propose the Homoscedastic Gamma model [HG] in which innovations of market returns
are parameterized by their mean, variance and skewness. The skewness parameter can be
chosen independently and we nest the Black-Scholes-Merton [BSM] case if skewness is zero.
We follow Christoffersen et al. (2009) and provide a Stochastic Discount Factor [SDF] under
which stock returns are HG under both the historical and risk-neutral probability measures.
This model delivers a sharp prediction about the relationship between the risk premium,
volatility and skewness : the equity premium is equal to twice the ratio of the volatility
spread to skewness.

The HG model preserves BSM’s parsimony and closed-form option prices. Thus, we mea-
sure the volatility and skewness implicit in option prices. We can then perform regressions
of SP500 excess returns on the ratio of the volatility spread to skewness. We find that coeffi-
cients have the correct sign and magnitude, and that conditioning on skewness improves the
predictive power of the volatility spread. In short, the data support the model’s restrictions
on the equity premium. Reversing the relationship, and interpreting the volatility spread as
the returns on a portfolio of options, we show that a version of the CAPM conditional on
skewness “explains” the returns on the the volatility spread portfolio. This offers an answer
to the question posed in Carr and Wu (2009) regarding which factor may explain the variance
premium.

An important implication of this new stylized fact is that an understanding of the volatil-
ity spread, and its relationship with the compensation for risk, demands an understanding of
risk-neutral skewness. Intuitively, both the price of risk and the volatility spread are related
to the risk-neutral skewness. The volatility spread has been linked to variance risk (Bakshi
and Kapadia (2003), Bollerslev et al. (2008), Carr and Wu (2009)) or to a left-skewed and
fat-tailed returns distribution (Bakshi and Madan (2006), Polimenis (2006)).1 While these
different channels explain the volatility spread, they do not have the same implications for
risk-neutral skewness. This should help discriminate across competing theories of the ob-
served volatility spread. Clearly, understanding the source of risk-neutral skewness is a key
research objective.

As a further check for the importance of risk-neutral skewness, we test its pricing im-
plications for option contracts written on the SP500 index. We consider the simple HG
model and variants analogous to the practitioner’s version of the BSM model [P-BSM and
P-HG]. We interpret these variants as expansions around the HG distributions but develop,

1Bakshi and Madan conclude that historical skewness do not play an important role in the determination
of the volatility spread but they do not consider risk-neutral skewness.
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and impose, restrictions ensuring the identification of the skewness parameter with the true
underlying risk-neutral skewness. Overall, HG-based models significantly improve in-sample
and out-of-sample performances relative to Gaussian-based models but with the same num-
ber parameters or less. They also increase hedging performances at horizons up to 4 weeks.

The results imply that expanding around the Gaussian density is restrictive and does
not offer sufficient flexibility to match the skewness implicit in the data. Another way to
view the evidence is to consider the results of Bates (2005) and Alexander and Nogueira
(2005). Essentially, for any contingent claim that is homogenous of degree one, option
partial derivatives with respect to the underlying can be computed, model-free, by taking
partial derivatives of option prices with respect to strike prices. In practice, however, a
parametric model is fitted to observed prices from which derivatives can be imputed. The
relative hedging performances of the P-BSM and of the P-HG models imply that accounting
for skewness explicitly offers a better fit of the option price curve across the strike continuum,
and a better fit of the true underlying option sensitivities. Still, the improvements come with
no increase in implementation costs.

Next, we introduce the implied volatility and skewness surface, an extension of the im-
plied volatility curve. Beyond its simplicity and ease of computation, the BSM’s implied
volatility [IV] curves deliver transparent comparisons of options through time and across
strike prices. Repeating the inversion of the IV curve across values of skewness delivers the
implied volatility and skewness surface. The surface provides a transparent understanding of
IV curve variations in term of skewness. We find that the volatility-skewness relationship is
smooth in practice: negative (positive) skewness increases (decreases) the implied volatility
of out-of-the-money [OTM] calls and decreases (increases) the implied volatility of in-the-
money [ITM] calls. We draw two important conclusions. First, the HG model can restore
the symmetry of the observed IV curve. Second, the level of the IV curve also depends on
skewness.

Finally, we study the term structure of implied volatility, skewness and excess kurtosis.
This is a first step to understand the impact of time dependence on risk-neutral moments.
The HG model delivers estimates of risk-neutral volatility and risk-neutral skewness at longer
horizons than a non-parametric approach. The evidence suggests that skewness decays at a
rate slower than what implied by the i.i.d. assumption. In other words, the time-dependence
structure of returns has a larger impact on the term structure of skewness skewness than on
volatility and kurtosis. To our knowledge, this differential impact of returns time-dependence
on higher moments has never been documented.
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Related Literature

The stylized observations that IV curves typically display a smile, a skewed smile or a
smirk have been interpreted as evidence of skewness and kurtosis in the underlying risk-
neutral distribution of stock price (e.g. Rubinstein and Jackwerth (1998) ). In practice, the
importance of skewness for pricing stock index options has been highlighted in the empirical
works of Bakshi et al. (1997), Bates (2000) and Christoffersen et al. (2006). However,
it is generally difficult to invert option prices and obtain estimates of implied volatility
or implied skewness. In most cases, volatility and skewness are not independent or, else,
option prices are not available in closed-form, rendering inversion computationally expensive.
Then, although the increased sophistication allows for a better fit of observed IV curves,
our understanding of skewness remains incomplete. In particular, the linkages between
skewness, implicit from option prices, the risk premium, measured from equity returns, and
the volatility spread remains elusive. The i.i.d. case leads to a stylized model but allows us
to maintain parsimony and analytical tractability.

Option pricing based on a Gram-Charlier expansion also offers direct parametrization
of skewness and kurtosis (Jarrow and Rudd (1982), Corrado and Su (1996), Potters et al.
(1998)). However, approximations of the underlying risk-neutral density often turn negative
implying that estimated values of cumulants do not belong to a true distribution. Jondeau
and Rockinger (2001) offer a natural remedy and impose a positivity constraint on the esti-
mated density. This is not innocuous. The range of admissible skewness values is restrictive
for option pricing applications.2 Finally, models based on Gram-Charlier do not provide a
change of measure linking the historical and risk-neutral measure.3

Bakshi and Madan (2000) provide a non-parametric measure of skewness (and other
higher-order moments) implicit from option prices. This was exploited by Bakshi et al.
(2003), who focus on measures of skewness in the cross-section and on the link with index
skewness. Dennis and Mayhew (2000) consider determinants of the cross-section of skewness
and Rompolis and Tzavalis (2008) attribute the bias in volatility regressions to the risk-
neutral skewness. Christoffersen et al. (2008) explores the information content of option
data for future stock betas. However, the pricing or hedging implications of skewness for
option prices cannot be handled within this model-free framework.4

2Jondeau and Rockinger (2001) establish that their restriction imply that skewness takes values within
(−1.0493, 1.0493). León et al. (2006) establishes the impact of this restriction for option pricing.

3Note also that closed-form option prices typically result from a first-order approximation. This may
not be relevant in practice for option pricing but the impact of this approximation on estimates of implied
skewness has not been discussed.

4Note, also, that this approach requires approximations of integrals over the moneyness domain. Although
Dennis and Mayhew (2000) consider theimpact of sampling error under the null of the BSM model, the
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The rest of the paper is organized as follow. Section II introduces the Homoscedastic
Gamma model [HG] as well as the SDF and contains the main asset pricing implications.
In particular, it contains the mapping between parameters under each measure and derives
the option pricing function. Section III presents the data. Section IV perform regression-
based tests of the model’s implications for the equity premium and the volatility spread,
and discusses the results in the context of equilibrium model. We introduce a practitioner’s
analog in Section VI and compare in-sample, out-of-sample and hedging performances of
HG and BSM-based models in Section VII. Section V explores the empirical properties of
the implied volatility and skewness surface while Section VIII provides estimates of the term
structure of volatility, skewness and kurtosis. Section IX concludes.

II The Homoscedastic Gamma Model

This section introduces the Homoscedastic Gamma model for stock returns. The model
possesses three crucial properties that makes it a natural choice to study the linkages between
the equity premium, the volatility spread and skewness. First, skewness is parameterized
directly and is independent of the mean and variance. Second, its density and characteristic
functions are known in closed-form. Third, the distribution of returns remains HG for
all investment horizons under both the historical and the risk-neutral probability measures
whenever the SDF is exponential in aggregate wealth. In particular, this delivers an explicit
mapping between moments under each measures. Finally, we obtain closed-form prices for
European options of any maturity as a function of volatility and skewness. We can then
efficiently invert option prices to obtain implied volatility and skewness surfaces. Indeed,
when setting skewness to zero our model simplifies to the BSM and we recover the usual
BSM implied volatility curve.

A Returns Under the Risk-Neutral Measure

We assume that stock prices, St, follow a discrete-time process whereas the logarithm of
gross returns, Rt, over an interval of time ∆, say, follows

Rt+∆ ≡ ln (St+∆/St) = µ∗ ∆ +
√

σ∗2∆ ε∗t+∆ (1)

ε∗t+∆ ∼ SG(α∗ (∆)),

under the risk-neutral measure where µ∗ and σ∗2 are the risk-neutral drift and variance,
respectively. Return innovations, ε∗t+∆, follow a Standardized Gamma [SG] distribution with

accuracy of skewness estimates areunknown in the presence of measurement errors or in a non-gaussian
setup.
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zero mean, unit variance and skewness α∗. The SG distribution is defined in terms of the
Gamma distribution, Γ(k, θ), as

X ∼ SG(α) ⇔ 2

α
(X +

2

α
) ∼ Γ

(
4

α2
, 1

)
, (2)

where the scale parameter is fixed to θ = 1. Given that the Gamma definition has mean
kθ, variance kθ2 and skewness 2/

√
k, it follows that one-period returns in the HG model

have mean µ∗∆, variance σ∗2∆ and skewness α∗(∆). We express skewness as function of
∆ to reflect the choice of the interval’s length. A key simplifying assumption is that the
conditional distribution of returns does not vary through time. Still, the model could be
thought as holding conditionally, with parameters µt, σt and αt indexed by time.

B Returns Under The Historical Measure

We provide a change of measure for which the historical distribution of stock returns also
belongs to the HG family. The result holds when the SDF is exponential-affine in aggregate
wealth returns, which is the case in economies with power utility. Under this assumption, we
obtain transparent interpretations of risk-neutral moments in terms of the historical moments
and of the compensation for risk. In the HG case, the risk-neutral volatility is greater than
the historical volatility when the equity premium is positive and skewness is negative. Also,
the volatility spread increases with the equity premium and with the negative asymmetry of
returns. When skewness is zero, and returns are Gaussian, only the mean is shifted and the
variance is the same under both measures.

First, assume that aggregate returns follow a HG distribution under the historical measure

Rt+∆ ≡ ln (St+∆/St) = µ ∆ +
√

σ2∆ εt+∆, (3)

where εt+∆ ∼ SDG(α(∆)). Next, define the SDF as

Mt = exp (−ν (∆) εt + Ψ (ν (∆))) , (4)

for some ν and where Ψ is the logarithm of the conditional moment generating function
of
√

σ2∆ εt+∆. Then, this SDF defines an Equivalent Martingale Measure (EMM), under
which the discounted stock price is a martingale, for a unique ν, as stated in the following
proposition.

Proposition 1. If stock returns follow Equation 3 and if the Stochastic Discount Factor
belongs to the class defined by Equation 4 for some ν, then, this SDF defines an Equivalent
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Martingale Measure for discounted stock prices if and only if

ν(∆) = − 2

α (∆)
√

σ2∆
+

g (∆)

g (∆)− 1
, (5)

where

g (∆) = exp

(
−(µ− r)∆

4
α (∆)2 +

α (∆)
√

σ2∆

2

)
, .

See the Appendix for all proofs. This is a direct application of results from Christoffersen
et al. (2009). Note that the price of risk, ν(∆), converges to the usual result, (µ − r)/σ2,
when skewness tends to zero. Also, this result does not imply that the EMM is itself unique
but that only one solution exists within the class defined by Equation 4.

The following Proposition establishes that stock returns are HG under both measures
and characterizes the link between parameters of returns dynamics under each measure.

Proposition 2. If stock returns under the risk-neutral measure follow Equation 3 and if the
Stochastic Discount Factor is as in Equation 4 for ν given in Proposition 1 then stock returns
are given by Equation 2 and 3 under the risk-neutral and the historical measure, respectively,
with ε∗t = εt − EQ

t−1[εt] and where parameters under both measures are linked as

σ∗(∆) =
g(β (∆))− 1

β(∆)g(β(∆))

µ∗(∆) = µ + 2
σ∗ − σ

α∗(∆)
√

∆

α∗(∆) = α(∆)

where we use β(∆) = α (∆)
√

∆
2

to simplify the notation. Note that we have σ∗ → σ and
µ∗ → µ + 1

2
σ2 when α− α∗ → 0.

Due to risk-aversion and non-normality in returns, the risk-neutral volatility differs from
its historical counterpart at any horizon. The volatility spread depends on the degree of
returns asymmetry, α(∆) and the degree of risk aversion through the risk-premium, (µ− r),
implicit in g(·). Whenever skewness is negative and the equity premium is positive, the
risk-neutral volatility is greater than the historical volatility (i.e. σ∗ > σ). These results
are consistent with Bakshi and Madan (2006) and Polimenis (2006). Finally, because of the
specific choice of SDF, the risk neutral skewness is the same as the historical skewness.5

5One can show that an SDF exists such that the returns distribution belongs to the HG family under
both measures with both the variance and the skewness parameter shifted. However, this SDF is not in
general within the exponential-affine class and the link between moments is not transparent.
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To see the relationship between ν and skewness, consider a first-order expansion of Equa-
tion 5 around α(∆) = 0. For small deviations around the symmetric case we have

ν (∆) ≈ µ− r

σ2
+

1

2
+

(µ− r)2 + σ4

12

σ3
β(∆), (6)

Note that ν (∆) tends toward the usual result, µ−r
σ2 , when skewness approaches zero. Then,

as expected, ν can be interpreted as the price of risk. Moreover, it is a function of the equity
risk premium, of the volatility and of skewness.

Another way to see the link between the equity premium and the volatility spread is to
note that

ln (St+∆/St) = µ∆ + 2
σ∗ − σ

α∗
√

∆
+
√

σ∗2∆ε∗t+∆,

where the middle term converges to zero as skewness approaches zero.6 Taking expectations
and re-arranging reveals the following important restriction between the equity premium,
the volatility spread and the risk-neutral skewness,

EP
t [ln (St+∆/St)]− EQ

t [ln (St+∆/St)] = −2
σ∗ − σ

α∗
√

∆
. (7)

In the HG model, the volatility spread is solely due to the presence of skewness and not to
volatility being priced. Indeed, the volatility spread and the equity premium increase when
skewness is more negative. In particular, regressions of excess returns on the ratio of the
volatility spread to skewness should be more informative than the spread itself. Moreover,
the constant is zero and the predicted value for the coefficients is -2. This provides a simple
test that we implement below.

C Option Prices

We are now ready to provide a closed-form price for European style contingent claims on
a stock. This simple homoscedastic model is stable under temporal aggregation. That is, if
returns over two successive intervals follow a SDG distribution then returns over the sum of
the intervals also follow a SDG distribution. This is a key property to obtain closed-form
option prices for all maturities. Consider (log) stock returns over an arbitrary investment
horizon H. Define M ≡ H

∆
as the number of time steps over this horizon. Then,

Rt,M ≡ ∑M
j=1 Rt+j∆ = ln(St+∆M/St)

= µ∗M ∆ + σ∗
√

∆M ε∗t,M ,

6In the limit, as skewness becomes zero, stock returns follow the usual square-root process.
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where the return innovation, ε∗t,M , is given by7

ε∗t,M ≡
M∑

j=1

ε∗t+j∆√
M

∼ SDG(α∗(∆)/
√

M).

A no-arbitrage price, Ct(K, H), of a European call option with strike price K and matu-
rity H can be obtained from the discounted risk-neutral expectation of the terminal payoff,

Ct(K, H) = EQ
t [exp(−rH) max (St+H −K, 0)] .

As usual, the solution is function of the other model parameters: the risk-free rate, r, the
risk-neutral volatility, σ∗(∆), and the scaled skewness β(∆). Moreover, the solution depends
on the direction of asymmetry. Specifically, the case with no skewness corresponds to the
BSM formula while we have the following proposition otherwise.

Proposition 3. If the logarithm of gross stock returns follows a Homoscedastic Gamma
process under the risk-neutral measure, as in Equation 2, then the price of a European call
option is

Ct(K, H) = StC1,t − e(−rH)KC2,t, (8)

where, if the skewness is negative (i.e. α(∆) < 0),

C1,t = P

(
H

β(∆)2
, d1(∆)

)
(9)

C2,t = P

(
H

β(∆)2
, d2(∆)

)
, (10)

and, if the skewness is positive, (i.e. α(∆) > 0),

C1,t = Q

(
H

β(∆)2
, d1(∆)

)
(11)

C2,t = Q

(
H

β(∆)2
, d2(∆)

)
, (12)

7This follows directly from the fact that the Gamma distribution is summable.
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The functions P (a, z) and Q(a, z) are the regularized gamma functions8 defined by

P (a, z) =
γ(a, z)

Γ(a)

Q(a, z) =
Γ(a, z)

Γ(a)
,

respectively, with γ(a, z) and Γ(a, z) the upper and the lower incomplete gamma functions9

and where d1 and d2 are defined as

d2(∆) =
ln(K/St)−

(
rf + ln(1−β(∆)σ∗(∆))

β(∆)2

)
H

β(∆)σ∗(∆)
,

d1(∆) = d2(∆)(1− β(∆)σ∗(∆)).

III Data

This section introduces the data and presents some summary statistics. We use prices of
call options on the S&P500 index observed on each Wednesday in the period from 1996 to
2004. Using Wednesday observations is common practice in the literature (e.g. Dumas et al.
(1998)) to limit the impact of holidays and day-of-the-week effects. Consequently, the return
horizon in Equation 2 is set to one week in the following. We exclude observations with less
than 2 weeks to maturity, no bid available or with zero transaction volume. We also filter
observations for violation of upper and lower pricing bounds on call prices.

Next, we introduce a second sample that group option prices at the monthly frequency.
This reduces the noise in the estimates of volatility and skewness used in excess returns
regressions. Another benefit of this approach is that it ensures enough observations to
estimate our model in each maturity group. This allows us to draw the implied volatility
and skewness surface in different maturity groups and, as a byproduct, to obtain a term
structure of skewness and volatility. To group observations, we use settlement dates rather
than calendar months. Since each contract settles on the third Friday of a month, we group all
observations intervening between two successive settlement dates.10 All weekly observations
occurring within such a sub-period can be unambiguously attributed to one maturity group.11

8We use the standard notation for the regularized gamma functions, P (a, z) and Q(a, z), possibly at the
cost of some confusion with the usual notations for the historical and risk-neutral probability measures P
and Q.

9Note that we have P (a, z) + Q(a, z) = 1, which is a convenient property when computing derivatives
(see below).

10These subperiods have varying length depending on the (calendar) months they cover.
11Take any contract, on any observation date. This contract is assigned to the 1-month maturity group
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Note that settlement dates follow a regular pattern though time: contracts are available for 3
successive months and then for the next 3 months in the March, June, September, December
cycle. This leads to maturity groups with 1, 2 or 3 months remaining to settlement and then
between 3 and 6, between 6 and 9, and between 9 and 12 months remaining to settlement.12

Table I displays the number of contracts, the average call price and the average im-
plied volatility across moneyness (Panel (a)), across maturity (Panel (b)), and a detailed
cross-tabulation across moneyness and maturity (Panel (c)). The Black-Scholes IV curve
is asymmetric in the overall sample, displaying a rising pattern with moneynesss, and sig-
naling a sharp left skew in the risk-neutral distribution of returns. Also, the IV curve is
flat, or slightly decreasing, with maturity. Disaggregation reveals variations in the shape
of the IV curve at different maturities. Starting from the shortest maturity, the IV curve
initially follows an asymmetric smile with higher volatility values for in-the-money options.
Hereafter, the asymmetry increases as we consider longer maturities and the (average) IV
curve eventually becomes monotone in moneyness for the longer maturities.

Note that the composition of the sample varies with maturities. Out-of-the-money con-
tracts dominate for long maturities while in-the-money contracts dominate for short ma-
turities. This is due to the issuance pattern of new option contracts. Newly issued, long-
maturity call options are typically deep-out-the-money, in anticipation of the index upward
drift through time. As we consider shorter maturities, the composition becomes more bal-
anced. At the shortest horizon, most call options are deep in-the-money, since the exchange
does not regularly issue short horizon out-of-the-money call options. This implies that the
average IV curve reflects, in part, a composition bias with most in-the-money options hav-
ing short maturities and most out-of-the-money options having long maturities. Because
short maturity options have higher implied volatility on average, this makes the average
IV curve more smirked.13 Finally, Panel (a) of Figure 1 presents the number of available
observations for each day, which averages around 40 and typically ranges between 20 and
50 contracts. Panel (b) decomposes this number and presents the proportion of contracts in
each moneyness category.

if its settlement date occurs on the following third-Friday, to the 2-month group if it occurs on the next to
following third-Friday, etc.

12Within a given month, and within a given maturity group, the same contract (i.e. same strike price)
is observed with successively shorter maturities. However it is priced consistently under the null of i.i.d.
returns innovations throughout the month.

13This highlights the importance of using a model that can handle maturity differences. In particular,
models based on density approximation are not robust to this composition effect.
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IV The Volatility Spread And The Equity Premium

A Model’s Implications

When the representative SDF can be approximated by the exponential-shift given in
Equation 4 we have a tight link between the price of risk, the volatility spread and skewness.
After some manipulation of Equation 7, we obtain

ln (St+i/St)− r(i) − ω
(i)
t = −2

σ∗(i) − σ(i)

α
(i)
t

+ σ∗(i)ε∗t+i,

for an investment horizon i and where r(i) is the risk-free rate for that horizon and ωt is the
Jensen adjustment term.14 In the following, we test this implication of the HG model and
its ability to capture the volatility spread and the equity premium. We perform regressions
of SP500 (log) excess returns on the ratio of the volatility spread to skewness. The key
predictions are that the constant should be zero and that the coefficient should be -2.

B Aggregating Data

We obtain estimates of risk-neutral volatility and skewness from option data. Estimates
of skewness for different maturities are noisy in weekly data. This is in part due to the number
of option prices available each week in each category. One simple solution is to group price
observations at the monthly level where we define a month as the period between successive
expiration dates which occur every third Friday (See Section III). Within each month, we
have repeated observations of the same contracts over a period of 4 (or 5) weeks.15 This
implicitly assumes i.i.d. return innovations throughout a month, which is consistent with the
model and reasonable over this short time span. It also implies that the maturity date of each
contract is constant throughout each month and, thus, that the skewness estimate pertains
to a set of contracts that mature at fixed maturities. Finally, we measure the historical
volatility using the observed realized volatility.

We estimate our preferred version of the model each month through minimization of
squared pricing errors.16 Figure 2 presents the time series of our volatility estimates (Panel (a))

14This term is a function of both skewness and volatility but the first term of its Taylor expansion is the
usual correction in the Gaussian case, 1

2σ2.
15Some contracts are not observed each Wednesday within a month. New contracts become available to

participants as the index moves away from the range of available strike prices. Also, some contracts are not
available each week because they were excluded from the weekly sample due to liquidity concerns.

16Specifically, we estimate a restricted version of the practitioner’s HG model that allow for kurtosis but
maintain the identification of the risk-neutral volatility and skewness (See Section VII). As a robustness
check (not reported) we repeated the exercise using skewness estimated from the simple HG model presented
above. The results are not qualitatively different.
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and of our skewness estimates (Panel (b)). Skewness typically varies around -1 but dipped
close to -2.5 in the summer of 1998 and in the second half of 1999, and slightly below 1.5 in
the Fall of 1996 and the Spring of 2004.

C Implied Skewness And The Risk Premia

Table II presents the results from regressions of excess returns at horizons of 1, 3, 6,
12, 24 and 36 months on the ratio of the volatility spread to skewness. 17 The results are
striking. Point estimates for the slope coefficient are close to -2 as predicted by the model.
Moreover, at horizons of 3, 6, and 12 months, where we would expect the forward-looking
nature of the option-implied estimate to be the most relevant, estimates are -2.24, -2.04 and
-2.13, respectively. In fact, at any horizon, we cannot reject the null hypothesis that the
coefficient is equal to -2. Next, the constant is not significantly different from zero so that
the two most important implications of the model cannot be rejected empirically. Finally,
the predictability of excess returns is low at the 1-month horizon (i.e. R2 is 1.85%) but rises
steadily with the horizon, reaching 5.6%, 9.7% and 11.3% at horizons of 6, 12 and 36 months.

For comparison with results available in the existing literature, we also consider regres-
sions on the volatility spread which displays some predictive power at horizons of 9 and
12 months. However, coefficients are not significant at other horizons. Finally, we ask if
the volatility spread contains information beyond that revealed by the volatility to skewness
ratio. The results from the regressions are presented in Table II. Since volatility and the
ratio of the volatility spread to skewness are correlated, the coefficients become unreliable,
even changing signs. However, their combined predictive power does not rise above that of
the volatility to skewness ratio, further supporting the implications of the model.

D Discussion

We can also interpret the results in the broader context of a general equilibrium model.
There, the price of risk is determined by preference parameters. In particular, in an economy
with power utility, ν corresponds to the risk-aversion parameter (see e.g. Bakshi et al. (2003))
which can be estimated given estimates of the risk premium, µ− r, and return volatility, σ,
obtained from observed returns data. Equation 6, which is repeated here,

ν +
1

2
≈ µ− r

σ2
+

1

2

(µ− r)2 + σ4

12

σ3
α∗,

17Precisely, our measures of risk-neutral moments pertain only to the distribution of returns at a horizons
of 12 months or less. Nonetheless, if these moments exhibit persistence, their predictive power will extend
to longer horizons as is indeed the case
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shows that ignoring skewness (the last term) leads to upward bias in the estimate of the
price of risk and, hence, of risk aversion. Intuitively, when agents are risk-averse, and the
risk premium is positive, a more negative value of skewness corresponds to an increase in the
quantity of risk: the probability of lower returns increases. Then accounting for skewness
reduces the price of risk required to fit the observed equity premium and, ultimately, leads
to lower estimates of risk aversion in the economy.

Note that the effect of skewness is economically significant. Since 1980, the sample mean
and volatility of one-year returns is 14.72% and 6.13%, respectively, and the first term of
Equation 6 is equal to 20.5. In other words, if risk is summarized by the volatility of market
returns, then the equity premium appears too large and leads to excessively high estimates
of the coefficient of risk aversion. However, the coefficient of skewness, α, in the last term
is 12.88. For a value of skewness, say, of -1, the estimate of the price of risk is 7.63, less
than half than if we ignore the impact of skewness. Moreover, the estimates of skewness we
obtain below are often lower than -1.

The results shows the linkages implied by the HG model between the equity premium, the
volatility spread and the skewness hold (Equation 7). This suggests that an understanding
of the volatility spread and of the equity premium demands an understanding of the deter-
minants of skewness. Moreover, it shows that properly conditioning on implied skewness
is key to deciphering the information content of options prices for future returns. In fact,
reversing the relationship, and interpreting the volatility spread as the returns on a specific
portfolio of options,

√
h∗t −

√
ht =

1

2α∗t

(
EP

t [ln (St+i/St)]− EQ
t [ln (St+i/St)]

)

we see that a version of the CAPM conditional on skewness “explains” the returns on the
volatility spread portfolio. This offers an answer to the question posed in Carr and Wu
(2009) which asks what factor may explain the volatility spread.

Our results contrast with existing results (e.g. Bakshi and Kapadia (2003), Bollerslev
et al. (2008)) where the spread is linked to variance risk being priced. In our model, the
asymmetry in returns shifts the risk premium and the risk-neutral volatility. This induces
the link between the volatility spread and the equity premium. Similarly, Polimenis (2006)
and Bakshi and Madan (2006) link the volatility spread to higher order moments of the
historical distribution. From the tight linkages we uncover, we conclude that an understand-
ing of the volatility spread, and its relationship with the compensation for risk, demands
an understanding of skewness variations. In particular, this new stylized fact should help

14



discriminate across competing theories of the observed volatility spread.18

V Implied Volatility and Skewness Surface

In the context of the BSM model, it was recognized early that inverting option prices for
the volatility parameter provided a good measure of future returns volatility. However,
the HG model offers a separate parametrization for volatility and skewness allowing us to
easily measure both the volatility and skewness implicit in option prices.19 In this section,
we study the trade-offs involved between volatility and skewness when fitting option prices.
We first analyze how the implied volatility curve varies across different values of skewness
and, second, how the implied skewness curve varies with volatility. The results are intuitive.
The impact of skewness on implied volatility is asymmetric, depending both on the sign of
skewness and of moneyness. In particular, negative skewness tilt a smirked IV curve toward
a symmetric smile. On the other hand, the impact of volatility on implied skewness displays
a more complex pattern.

An important conclusion from this section is that the HGmodel exhibits enough flexibility
to restore the symmetry of the volatility smile. In other words, variations of the IV curve
can be interpreted directly in term of skewness within the HG model. Moreover, both the
level and the shape of the IV curve are sensitive to the choice of the skewness parameter. In
particular, this implies that empirical studies of the volatility spread based on BSM implied
volatility are affected by measurement errors due to the impact of skewness.

A Inverting The Implied Volatility and Skewness Surface

Volatility and skewness cannot be inverted uniquely from a single option price. Instead,
for each strike price, the HG model implies a function describing the set of volatility and
skewness pairs matching the observed price: a volatility-skewness curve. This is in contrast
with the BSM model where any given option price can be inverted uniquely for the volatility
parameter. Of course, if the HG model is true, using options with different strike prices
would identify uniquely a volatility-skewness couple. In fact, only two different strike prices
would be sufficient for this purpose. In practice, the HG model extends the BSM model in
only one direction, allowing for a skewness parameter. Other deviations from the underlying
assumptions cause the volatility-skewness curve to vary across moneyness in such a way that

18Bakshi and Madan (2006) conclude that the historical skewness plays a relatively small role in the
determination of volatility spread but they did not consider risk-neutral skewness.

19See Bates (1995) for a review of the literature on the forecasting of volatility using option prices and
Andersen et al. (2005) for a review of volatility measurement from stock returns. See Kim and White (2003)
for a discussion of the lack of robustness of the usual sample skewness estimator
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no unique couple can match every observed price. Thus, in the HG model, the counterpart to
the IV curve is the implied volatility and skewness surface. This surface is the representation
of the set of volatility and skewness pairs matching the observed option prices for varying
strike prices.

To draw the volatility and skewness surface, we first pick a value of skewness from a
grid. Then, each day and for each available strike price, we invert the option price for the
volatility parameter and obtain an implied volatility curve. As we vary the value of skewness
we obtain different IV curves and, together, they yield an implied volatility and skewness
surface. A section of this surface at a given value of skewness is one possible IV curve.
Each day, these different IV curves are alternative, and equivalent, representations of the
data. Each embodies all the information about the distribution of returns and, in addition,
measurement errors due to transaction costs, illiquidity and asynchronous trading. The next
section provides the results.

B Impact Of Skewness on Implied Volatility Curves

The average volatility-skewness surface is given in Figure 3 in level (Panel (a)) and in
percentage deviations from the benchmark BSM IV curve (Panel (b)). Panel (a) displays
the usual smirk in the IV curve when skewness is zero. More interestingly, it shows that the
average IV curve is flat for values of skewness around -1.20 Next, consider the deviations from
the BSM curve in Panel (b). The case with skewness equal to zero corresponds to a straight
line at zero. As we consider values of skewness away from zero, the IV curve is tilted one way
or another depending on the sign of return asymmetry considered. For negative values of
skewness, the IV curve is tilted toward positive values of moneyness. Conversely, for positive
values of skewness, the IV curve is tilted toward negative values of moneyness. In other
words, as we shift probability mass toward the left (right) tail of the return distribution,
the implied volatilities required to match observed prices increase (decrease) for out-of-the-
money calls and decreases (increases) for in-the-money calls thereby tilting the IV curve back
toward a symmetric smile. In the extreme cases, allowing for non-zero skewness can raise or
decrease measured implied volatility by more than 15% relative to the BSM case. Clearly,
the HG model is sufficiently flexible to capture the skewness implicit in option prices.

C Results For Different Option Maturities

Next, Figures 4 (a)-(e) present implied volatility and skewness surfaces within different
maturity groups while Figures 5 (a)-(e) report the same results but in percentage deviations

20The curve is not strictly flat and this may be due to the impact of kurtosis, or to a composition effect.
We discuss these possibilities below.
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from BSM values. Starting with skewness equal to zero, which corresponds to the BSM
case, we see the the shape of IV curve varies substantially across maturities. As discussed
in section III, the average BSM IV curve is a slightly asymmetric smile for short maturities:
implied volatility obtained from in-the-money options is higher than for out-of-the-money
options. The smile then gradually disappears as we increase maturity and the IV curve
eventually becomes smirked. For negative values of skewness, and for any maturity, the
IV curve is tilted toward a symmetric smile. For short maturities, small negative values
of skewness ar sufficient to establish a symmetric smile. As we increase maturity, however,
more negative values are necessary. Looking at deviations from the case with zero skewness
(Figure 5) we see that the impact of a given variation in skewness decreases as we increase
maturity.

D Impact Of Volatility On Implied Skewness

Figures 6 (a)-(f) present implied values for skewness across different values of implied
volatility. For at-the-money options, there is no tradeoff between volatility and skewness.
However, the impact of volatility on implied skewness is asymmetric and highly nonlinear
on both sides of the moneyness spectrum. As the volatility of returns decreases, and the
probability mass is closer to the mean, the skewness value required to match observed price
increases for out-of-the-money options, implying a higher right-tail, but decreases for in-the-
money options, implying a lower left-tail. The reverse is true when we increase the value
of volatility. In both cases the impact is not monotonic as we move away from at-the-
money. Rather, the pattern follows a sharp V-shape, or inverted V-shape, where changes of
volatility have no impact on implied skewness for at-the-money options, the largest impact
for intermediate moneyness, and a lower impact for distant moneyness. This is likely an
indication of a trade-off between the skewness and the kurtosis in the HG distribution to
match observed prices. Finally, the impact of volatility on implied skewness rises with the
option maturity.

VI Practitioner’s Models

The previous section shows that the implied volatility and skewness surface can be described
as the smooth tilting of the IV curve across values of skewness. However, while the HG
model provides enough flexibility to match the skewness present in option data, the IV curve
typically remains slightly curved. This is may due to excess kurtosis21 and may bias our

21In contrast with the Gaussian case, the kurtosis of the HG distribution varies with parameter values.
Its kurtosis is proportional to the square of the skewness.
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estimates of skewness. In this section, we propose HG-based option pricing formula that are
robust to the presence of excess kurtosis. Intuitively, we consider one-term expansions of
the HG model that allow for kurtosis. This results is the analog of rationalizations of the
P-BSM model as a two-term expansion around the Gaussian density.

The practitioner’s variants of the BSM model [P-BSM] and of the HG model [P-HG] cap-
ture deviations from the Gaussian or HG distributions by modeling volatility as a quadratic
function of moneyness. That is, in the P-BSM case, we have

σ(ξ) = σ0(α, κ)(1 + γ1(α, κ)ξ + γ2(α, κ)ξ2),

and, in the P-HG case, we have

σ(ξ) = σ0(κ)(1 + γ1(κ)ξ + γ2(κ)ξ2)

where ξ is moneyness and α and κ are the skewness and excess kurtosis of the risk-neutral
distribution, respectively.

The practitioner’s IV curve smooths through the cross-section of option prices, ignores
local idiosyncracies and focuses on the impact of higher-order moments. This approach is
pervasive because of its empirical performance and, also, because its parameters (i.e. σ0,
γ1 and γ2) are usually interpreted in terms of the variance, skewness and kurtosis of the
true underlying risk-neutral distribution. For these reasons, parameters of the IV curve are
commonly estimated without restrictions. In the following, we document that estimates of σ0,
γ1, and γ2 vary when we allow for skewness. This contrasts with the usual interpretation of γ1

as a measure of skewness. The remainder of the section provides restrictions on parameters
of the IV function such that we can recover direct estimates of α and κ from option prices.

A Unconstrained IV Curves

We evaluate empirically the impact of skewness on estimated IV curves. To do so, fix the
value of α and estimate the P-HG model at each date. That is, choose values of σ0, γ1 and γ2

that minimized squared pricing errors. Next, average the unconstrained estimates through
time. Finally, repeat the exercise for different values of skewness and trace the relationships
between skewness and estimates of σ0, γ1 and γ2 . For simplicity we define

ξ =
ln(S/K)(−rτ)

σ̄
√

τ
,

and group maturities.
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Figure 7 presents the results. Panel (a) presents average estimates of σ0. For contracts
maturing at the next settlement date, at-the-money implied volatility is 20% on average when
skewness is zero. When skewness decreases to -3, estimates of at-the-value volatility increase
to 23%. Intuitively, shifting some probability mass toward one side of the distribution
involves a trade-off for pricing in-the-money versus out-the-money options. For a constant
level of skewness, this tension can be reduced by an increase in the level of volatility. A
similar pattern occurs at longer maturities, but the impact of skewness gradually decreases.
Panel (b) presents the results for the asymmetry parameter. In line with intuition we find
that γ̂1 varies linearly with the value of β : both parameters are measures of the underlying
skewness. Finally, Panel 8c shows that γ̂2 also varies substantially with skewness but the
relationship is not linear.22

The impact of skewness on the IV curve parameter implies that the information on the
underlying risk-neutral moments will be shared across unrestricted parameters estimates.
Furthermore, the fact that estimates of α and of γ1 are (linearly) correlated suggests that they
are poorly identified. The following section introduces a framework which lead to restrictions
on σ0, γ1 and γ2 such that only α̂ can capture the risk-neutral skewness. Absent these
restrictions, parameters of the IV curve capture some of the asymmetry in the underlying
distribution leading to biased estimates of α. The unambiguous identification of skewness is
necessary to provide a measure of the risk premia from implied volatility and skewness and
to evaluate the impact of skewness on option prices.23

B HG Model With Excess Kurtosis

We now provide a rigorous justification of the P-HG model when the true distribution
displays excess kurtosis. We can characterize sufficient restrictions on the parameters of the
IV curve such that β̂ is identified as the risk-neutral skewness in this more general model
as well. In this context, parameters of the IV curve are restricted to (known) functions of
excess kurtosis. In other words, any deviation from a flat IV curve can only be linked to
deviations of κ from zero. As a by-product, we obtain an estimator of the kurtosis in excess
of the Gamma distribution.

Intuitively, we assume that the true density of returns can be represented by an Edgeworth
expansion around the Gamma distribution. This is similar to earlier work using the Gaussian

22This contrasts with the theoretical results of Zhang and Xiang (2005). They argue that in the Gaussian
case and up to a first-order approximation σ0(β, κ) is linear in the risk-neutral volatility, γ1(β, κ) is linear in
skewness, and γ2(β, κ) is linear in kurtosis. However, they assume that the skewness and excess kurtosis of
the underlying distribution can be chosen independently while in fact there is a tight link between the two
for any given correctly specified density. Moreover, they linearize around the case where σ = 0 and this may
lead to a poor approximation.

23Note that merely imposing γ1(α, κ) = 0 does not identify an estimator of α with skewness.
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distribution (Jarrow and Rudd (1982), Corrado and Su (1996)) but the Gamma distribution
allows an exact match of the first three moments. We then impose the equality of the option
pricing formula under the true model and the P-HG model for at-the-money options.

Suppose that the true evolution of stock returns under the risk neutral measure can be
described as

RT = (r − δ∗) T + σ∗
√

Ty,

where δ∗ is a risk-adjustment term, y is a random variable with mean zero, unit variance,
skewness, α∗ and kurtosis, λ∗. We allow for non-normality beyond the HG and assume that
the probability density of y is given by

f(y) = h(y) +
λ∗2 − 3α∗2√

T

4!

d4h(y)

dy4
, (13)

where h(y) is the standardized gamma density. This is a one-term Edgeworth expansion of
standardized gamma distribution around the case with no excess kurtosis. If y is normally
distributed, then α = 0 and δ = σ∗2

2
.This approach captures fat tails in excess of the

Gamma distribution but ignores deviations beyond the fourth moment. Our objective here
is to allow for a non-trivial implied volatility and skewness surface due to excess kurtosis
and to derive explicitly the function σ0(κ), γ1(κ) and γ2(κ). Proposition 4 builds on a no-
arbitrage argument and provides a closed-form characterization of option prices and of the
risk-adjustment term.

Proposition 4. If the logarithm of gross stock returns has the density given by Equation 13,
then the price of a call option, C∗(K, T ), with maturity T , underlying price S0 and strike
price K is

C∗(K, T ) = S0P (a∗, d∗1)− e−rT
(
1 + T 2σ∗4κ4

)
KP (a∗, d∗2)

+ κe−rT K
T 2σ∗

β∗3
[−h′′(d∗2) + σ∗β∗h′(d∗2)− σ∗2β∗2h(d∗2)

]
,

when β < 0 and

C∗(K, T ) = S0Q (a∗, d∗1)− e−rT
(
1 + T 2σ∗4κ4

)
KQ (a∗, d∗2)

− κe−rT K
T 2σ∗

β∗3
[−h′′(d∗2) + σ∗β∗h′(d∗2)− σ∗2β∗2h(d∗2)

]
,
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when β > 0. We define the excess kurtosis, κ =
λ2− 6β∗2

T

4!
, and

d∗2 =
ln(K/S0)−

[
r + ln(1−σβ)

β2

]
T + ln(1 + T 2σ4κ)

σβ

d∗1 = d2 (1− σβ)

a∗ =
T

β2
,

where h is the density of the standard gamma distribution.

C Identified practitioner’s HG

We are now looking for the restrictions on the parameters of the P-HG model such that
estimation of β delivers a convergent estimate of the risk-neutral skewness β∗. Zhang and
Xiang (2005) provide the restriction for the case where the Gaussian density is used in the
approximation. To find the link between the parameters of the P-HG model with parameters
of the true distribution, we impose the following restrictions

C∗(K,T ) = C(K, T )

∂C∗(K, T )

∂K
=

∂C(K,T )

∂K
∂2C∗(K, T )

∂K2
=

∂2C(K,T )

∂K2

when evaluated at-the-money (i.e. K = S0e
rT ). These restrictions are given in the appendix

but note that they are trivially satisfied whenever κ = 0 since in this case the HG model is
true and the IV curve is flat for some value of skewness. Of course this corresponds to the
case σ0 = σ, β = β∗ and γ1 = γ2 = 0. We linearize the restrictions around this point (i.e.
κ = 0) and obtain

σ0 − σ

σ
= A1(σ, α)κ (14)

γ1 = B1(σ, α)
σ0 − σ

σ
+ B2(σ, α)κ (15)

γ2 = C1(σ, α)
σ0 − σ

σ
+ C2(σ, α)γ1 + C3(σ, α)κ, (16)

where the coefficients are given in the appendix.24 Then, small deviations of the underlying
density from a HG distribution lead to deviations from a flat implied volatility and skewness

24We differ from Zhang and Xiang (2005) who linearize the restrictions around σ = 0. Arguably, lin-
earizing around the HG distribution is likely to provide a better approximation than linearizing around the
deterministic case.
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surface. This highlights the impact of excess kurtosis on the estimates of σ0, γ1 and γ2. It
also makes clear that deviations from a flat IV curve are only due to excess kurtosis. More
importantly, these restrictions ensure that α corresponds to the risk-neutral skewness and
that the practitioner’s HG model conforms to the true returns density.

VII Option Pricing Results

In this section, we estimate each model and compare their performance. The results show
that the HG framework substantially improves in-sample, hedging and out-of-sample perfor-
mances. The improvements are robust if we impose identification of the skewness parameters,
as discussed in the previous section. Indeed, the improvements remain when the only de-
viation from the simple HG model is a constant adjustment to kurtosis. Out-of-sample,
imposing the identifying restrictions does not degrade pricing performance. In other words,
a fixed implied volatility and skewness surface combined with variations in skewness delivers
most of the in-sample and out-of-sample improvements. We also compare the hedging per-
formance of each model to highlight the importance of skewness. Again, allowing for varying
skewness but fixing kurtosis provides significant improvement.

Overall, our approach delivers a reliable measure of skewness while offering improved
forecasting and hedging performance. In contrast, the P-BSM model does not allow for
sufficient flexibility to match the skewness implicit in the data and offers lower hedging and
out-of-sample performance. While the more general models we consider perform better in-
sample, these improvements disappear out-of-sample. This implies that skewness captures
most of the persistent deviations from the Gaussian case and that excess kurtosis and other
deviations are transitory.

A Description Of Models

We evaluate the basic HG model and the usual P-BSM model. We also include three
different versions of the P-HG model based on the quadratic IV curve,

σt(ξ) = σ0(1 + γ1ξ + γ2ξ
2).

where the first version, P-HG1, imposes the simple restriction that γ1 = 0. This is another
way to see that the usual interpretation of γ1 as a measure of skewness, while intuitive,
is misleading. The second model, P-HG2, imposes the restrictions derived in the previous
section and delivers an estimate of skewness robust to excess kurtosis. Finally, P-HG3 is
unrestricted. This is a simple way to evaluate the cost, in terms of fit, of estimating skewness
directly.
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We also introduce “smoothed” versions of these models where some parameters of the
IV curves are held constant through the sample. First, the smoothed version of the P-HG1
model, labeled SP-HG1, still imposes that γ1 is zero but holds γ2 constant through time.
Next, SP-HG2 still allows for a flexible fit of skewness through time but keep excess kurtosis
constant through time. We include this model as a simple way to evaluate the relative
importance of skewness and kurtosis for option pricing and hedging. Finally, the SP-HG3
model imposes the following structure on the IV curve,

σ(ξ) = σ0(1 + (γ10 + γ11α)ξ + (γ20 + γ21α)ξ2).

which is a simple attempt to implement the observation made in Section VI that parameters
of the IV curve vary with skewness. Finally, estimation is performed through minimization
of squared pricing errors in the weekly sample.

B In-Sample RMSE

B.1 HG And BSM Models

Table III presents in-sample Root Mean Squared Errors [RMSE] where each results is
expressed as a percentage of the BSM’s RMSE. Panel (a) presents results across moneyness
while Panel (b) presents results across maturities. Although the most flexible (i.e. P-HG3)
model achieves an RMSE which is 14% of the benchmark, most of the improvement comes
from using the HG distribution: the simpler HG model’s RMSE is 37% of the BMS’s RMSE
but with only more parameter measuring skewness.

B.2 Practitioner’s Variants

Interestingly, even with one extra parameter, the P-BSM does not offer much improve-
ment (35% vs 37%) over the straightforward HG model. The models offer similar results
across maturities but their performances differ across strike prices. The P-BSM improves
pricing for in-the-money options at the expense of larger errors for other moneyness groups.
On the other hand, the P-HG1 and the P-HG2 models achieve RMSEs that are 28% and
23%, respectively, but with the same number of parameters as the P-BSM model. However,
in contrast with the P-BSM model, the lower errors for out-of-the-money options are not
compensated by higher errors for options that are nearer the money. Thus, models based on
the HG distribution appear to offer more flexibility than the practitioner’s BSM in choosing
risk-neutral skewness and kurtosis but with equal or less parameters.

Although the naive γ1 = 0 restriction seems reasonable, it fails in practice with larger
RMSE. Comparing models, we see that imposing the correct identification constraints (P-
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HG2) provides substantial improvement over the P-HG1, especially for short maturity, out-
of-the-money call options. Finally, with one more parameter, the P-H3 offers much lower
in-sample RSME (14%) than any other model across all moneyness and maturity categories.

B.3 Smoothed Coefficients

Smoothed models have less parameters but the SP-HG2 model still improves (31%) over
the P-BSM model but with less parameters. This model has the flexibility to fix skewness
from date to date but imposes a constant excess kurtosis. That is, deviations of the IV
curve from the HG case are kept constant. Thus, in-sample, a flexible fit of the underlying
risk-neutral skewness is key while variations in kurtosis are less important. Finally, while
more flexible HG-based models improve the in-sample fit, the next section show that this
result is not robust out-of-sample, indicating a relatively minor role for information beyond
the third moment.

C Out-of-sample RMSE

The improved performance of models based on the HG distribution may be due to over-
fitting and may not hold out-of-sample. This section compares the out-of-sample perfor-
mance of each model. First, we estimate each model from options in a given week.25 We
then fix these parameters and price options observed in the following week. Table IV presents
one-week out-of-sample RMSE for each model across strike prices (Panel (a)) and across ma-
turities (Panel (b)).

Out-of-sample, the improvement in fit relative to the BSM decreases for all models. This
indicates that some of the deviations from the Gaussian case are transitory. The lowest
relative RMSE is now 57%, obtained for the P-HG3 model, with 4 parameters. On the other
hand, the worst result is 68%, obtained for the P-BSM model, with 3 parameters. This
add to the evidence that the practitioner’s version of the BSM model does not properly fit
the persistent skewness and kurtosis present in the data. Strikingly, the SP-HG2 model,
which uses 2 parameters and fixes excess kurtosis through the sample, actually improves
out-of-sample RMSE (64%) over the more flexible P-HG2 and P-BSM models. Some of the
variations in excess kurtosis required to match (in-sample) option prices in this category are
transitory, degrading out-of-sample performances. Restricting parameters of the IV curve to
capture that part of its variations due to skewness improves the out-of-sample fit.

25For smoothed model, we estimate parameters that are held constant through the sample in a first pass.
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D Hedging Errors

Hedging errors implied by each model may convey more economic significance to risk-
managers. Below, we verify that allowing for skewness significantly alter hedging strategy
theoretically, and improves hedging results empirically. Also, we verify that any improved
hedging performance persists at horizons beyond one week. The SP-HG2 model, with 2
parameters and where skewness is separately identified, offers the next to best performance.
This highlights, again, the value of theoretically sound restrictions. Again, we find that the
unrestricted P-HG3 model performs best.

D.1 Comparing The Greeks

As in the BSM model, we can compute explicitly the sensitivity of option prices to
changes in the underlying parameters, including the sensitivity to changes in skewness. We
provide these in the appendix. These derivatives depend on the direction of asymmetry and
everywhere the symmetric case (i.e. β = 0) leads to the standard results from BSM. To see
the impact of skewness, we draw options sensitivities across strike prices for different values
of skewness. In the computations, we use the average values of volatility, of the interest
rate and of the index level. Figure 8 presents results for the first and second derivatives
with respect to the underlying, Delta and Gamma, as well as the derivative with respect to
volatility, Vega. The results are reported in levels in the top panels (Panel (a) to (c)) and
in percentage deviations from the symmetric case in the bottom panels (Panel (d) to (f)).

First, the pattern of Delta across moneyness is familiar. The sensitivity is small for deep
out-of-the-money options but grows to close to one for deep in-the-money options. Varying
skewness does not alter this picture but looking at levels hides significant deviations. At
skewness equal to -2.5, which occurs in our sample, short positions in the stock are as much
as 20% higher for some out-of-the money or near to at-the money options. Next, the impact
on Gamma is dramatic. In the symmetric case, Gamma appears quadratic in moneyness
with highest values for at-the-money options. Decreasing skewness lowers Gamma for in-
the-money options but increases Gamma for out-of-the-money options. When skewness is
-2.5, Gamma is as much as 50% lower then when skewness is zero for in-the-money options
and 50% higher for out-of-the-money options. Finally, skewness has an asymmetric impact
on the sensitivity of options to variations in volatility. When skewness is -2.5, Vega decreases
by more than 20% for out-of-the-money options but increases by nearly 20% for in-the-money
options. Clearly, ignoring the impact of skewness can lead to large hedging errors, which is
confirmed empirically in the next section.
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D.2 Comparing Hedging Performance

We follow Dumas et al. (1998) and compute hedging errors as

εt = ∆Cactual
t,t+h −∆Cmodel

t,t+h

which is a measure of the impact of changes in model errors from t to t + h on the hedging
strategy.26 By this measure, a good model delivers hedging errors that are close to zero on
average. Table V and Table VI present the results for hedging horizons from one to four
weeks ahead (i.e. h = 1, 2, 3, 4).

Consider hedging errors at the 1-week horizon (Table Va). First, the BSM model appears
to perform well, with hedging errors averaging 1.6 cents. But this hides important disparities
across maturities. Average hedging errors range from 36.7 cents for out-of-the-money options
to -39 cents for in-the-money options. Moreover, the more flexible P-BSM model has higher
overall hedging errors (-4.6 cents) with substantial average errors (-18.8 cents) for the lowest
strike prices.

When considering the overall mean and the dispersion of hedging errors across maturities,
the best performing models are variants of the P-HG model. Identification restrictions for
skewness perform well. In particular, the SP-HG2 model offers both low overall hedging
errors and low dispersion across moneyness. Averages remain below 10 cents across strike
prices. Table Vb draws a similar picture at the 2-week horizon. The P-BSM model sees
its average performance deteriorate to -8.2 cents and mean hedging errors now range from
-21.8 to 7.1 cents. Again, HG-based models offer better performance. The SP-HG2 model
still offers the best performance: the mean pricing error is 0.002 cents in the entire sample
and ranges from -13.6 cents to 8.6 cents across moneyness. Finally, results at the 3 and 4-
week horizons (Tables (a) and (b)) quickly deteriorate for the BSM and the P-BSM models.
However, the SP-HG2 model still performs well. The overall averages at 3-week and 4-week
horizons are -4.3 cents and -2.1 cents.

E Discussion

Overall, the results favor the more general P-HG3 model. It offers lower in-sample and
out-of-sample RMSEs as well as better hedging performances at all horizons. This contrasts
with the frequent observation that the P-BSM model offers sufficient flexibility. Indeed,
option prices based on the HG distribution offer better performance than the P-BSM with
as many parameters (P-HG1 and P-HG2) or less (SP-HG2). If we interpret the practitioner’s

26This abstracts from the hedging errors due to discrete adjustments. See Galai (1983) for details.
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models as expansions around the Gaussian or the Homoscedastic Gamma distributions, the
results imply that expanding around the Gaussian density is restrictive and does not offer
sufficient flexibility to match the skewness and kurtosis implicit in the data. Moreover, when
we consider the sequence of models, we see that imposing restrictions such that skewness
is correctly measured and excess kurtosis constant does preserve most of the performance
improvement.

Another way to view these results is to consider the results of Bates (2005) and Alexander
and Nogueira (2005). Essentially, they show that for any contingent claim that is homogenous
of degree one, all partial derivatives with respect to the underlying can be computed by
taking partial derivatives of option prices with respect to strike prices. This implies that, if
the number of observed option prices is arbitrarily large, we can compute delta and gamma
exactly from non-parametric derivatives. In practice, however, some parametric model is
fitted to observed prices from which derivatives can be imputed. The hedging performances
of the P-BSM and the P-HG models imply that the latter offer a better fit of the true
option price curve across the strike continuum and, therefore, a better fit of the true option’s
delta and gamma. In other words, the relatively poor fit of skewness by Gaussian-based
expansions translates in inaccurate option sensitivity measures and larger hedging errors
relative to approximations based on the Gamma density.

For our purposes, the performance of the SP-HG2 model implies that the parametric
measure of risk-neutral skewness is relevant. This provides a measure of skewness that is
easy to compute and requires less data than a non-parametric measure. Moreover, together
with the regression results from Section IV, the importance of skewness for hedging and out-
of-sample pricing confirms the key link between the risk premium and volatility shift across
moneyness and skewness. Indeed, imposing the additional restriction that excess kurtosis
is constant yields the next to best out-of-sample and hedging performances. Interestingly,
the estimate of κ is negative (-0.042). Then relaxing the link between kurtosis and skewness
allows for more asymmetry to be applied to the data than the benchmark HG model does.
This adjustment is significant: to keep kurtosis constant but with κ equal to zero, skewness
would have to be reduced (closer to zero) by 0.21. Taken together, the results lead us to
adopt the SP-HG2 as our preferred model to measure the option-implied skewness.

VIII Term Structure Of Moments

Section V presented the trade-off between volatility and skewness when fitting option data.
One important observation is that a different value of skewness was required to restore
the symmetry of the IV curve for different maturities. This suggests that the risk-neutral
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distribution converges at slower rate than implied by the i.i.d. assumption. While the time-
dependance of returns is well documented in the literature, the framework presented here
allows for a transparent presentation of deviations from i.i.d. returns. We use the fact that
skewness should decay toward zero with the square root of horizon,

√
(H). If this is verified

in the data, estimates of skewness multiplied by the square root of the horizon should not
vary with the maturity of an options. Otherwise, the term structure of implied skewness
reflects a degree of dependence implicit in option prices. Similarly, the excess kurtosis of
returns should decay with H and annualized estimates of volatility should be flat across
horizons. A key question is on what moment does the time dependence of returns have the
greater impact.

An important advantage of our parametric approach is that we can obtain estimates of
risk-neutral moments at much longer horizons than is usually the case with non-parametric
methods. We estimate the term structure of volatility, skewness and kurtosis using the SP-
HG2 model discussed above. We minimize pricing errors separately for each maturity (1, 2
and 3 months, and then from 4 to 6 and from 7 to 9 months. See Section III). Figure 9
presents the results.

Figure 10a presents the average (annualized) implied volatility for each maturity. The
time-series average rises from close to 21.4% for the next settlement month to 21.8% at a
maturity of 3 months. Thereafter, implied volatility remains more or less flat. Figure (b)
presents results for (negative) the implied skewness. In contrast with implied volatility, the
implied asymmetry rises sharply for all maturities we consider. Figure 10c shows the term
structure of (negative) the implied excess kurtosis. Perhaps surprisingly, excess kurtosis rel-
ative to the HG distribution decreases with maturity. Overall, the term structure evidence
indicates that the distribution of expected returns violates the i.i.d. assumptions. However,
the impact of dependence appears to have a much greater impact on implied skewness than
on other moments. In contrast, measures of implied volatilities flatten out beyond a matu-
rity of 3 months while measures of implied excess kurtosis decrease with maturity. To our
knowledge, this differential impact of time-dependence on skewness and kurtosis has never
been documented.

IX Conclusion

We provide a simple extension of the BSM option pricing model. The Homoscedastic Gamma
model allows for arbitrary skewness in the distribution of returns and delivers closed-form
option pricing formula at any maturity. We provide a natural change of measure under which
returns are HG under the historical and the risk-neutral probability measures. An important
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implication is that the relationship between the equity premium and the volatility spread
is conditional on skewness. It is the ratio of the volatility spread to skewness that predicts
excess returns. Empirically, we find coefficients that correspond to implications from the
model. Also, the information content of the volatility spread improves when we adjust for
skewness. This new stylized fact should help to discriminate among competing theories of
the volatility spread.

This link between the equity premium, skewness and the volatility spread implies that
skewness is key for pricing and hedging options. We first introduce the implied volatil-
ity and skewness surface, which we study empirically. This is a new tool that provide a
transparent interpretation of variations in the shape and level of the IV curve in terms of
skewness. Next, we develop the practitioner’s version of the HG model. This approaches
is robust to deviation of kurtosis from the HG model. Empirically, models based on the
HG distribution perform better than their Gaussian counterparts. Hedging performances
are also substantially improved. The results suggest that allowing for flexible time-variation
in skewness is key for improving option pricing. Finally, we document the term structure of
volatility, skewness, and kurtosis out to an horizon of 9 months. We find that dependence in
returns have a larger impact on skewness than kurtosis, highlighting, again, the importance
of skewness.
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X Appendix

A Proposition 1
Our candidate SDF is, for given ν,

Mt = exp (−ν (∆) εt + Ψ (ν (∆))) ,

where Ψ is the log-cumulant function of ε,

Ψ(u) = 2u

√
h (∆)

α (∆)
− 4

α (∆)2
ln

[
1 +

1
2
uα (∆)

√
h (∆)

]
.

Following CEFJ, this SDF defines an Equivalent Martingale Measure [EMM] if and only if

Ψ(ν (∆)− 1)−Ψ(ν (∆))−Ψ(−1) + (µ− r0)∆ = 0,

which has the following unique solution for ν (∆),

ν (∆) = − 2
α (∆)

√
h (∆)

+
g (∆)

g (∆)− 1
,

where

g (∆) = exp

(
− (µ− r0)∆

4
α (∆)2 +

α (∆)
√

h (∆)
2

)
.

Proposition 2 of CEFJ establishes sufficient conditions on Ψ for the solution to be unique.

B Limit of Risk-Neutral Volatility
Define

Π0 ≡ (µ− r)

β(∆) ≡ α(∆)

√
∆
2

σ∗(∆) ≡
√

h∗(∆)/
√

∆,

and note that the drift correction term can be written as

2

√
h∗ (∆)−

√
h (∆)

α (∆)
=

σ∗ (∆)− σ

β(∆)
∆. (17)

We first study the limit of the numerator as skewness tends to zero. Using the definitions above we have
(see Proposition 2)

σ∗ (∆) =
g(β (∆))− 1
β(∆)g(β(∆))

(18)

where, with a slight abuse of notation,

g(β(∆)) ≡ exp(−Π0β(∆)2 + β(∆)σ), (19)

which leads to an indeterminacy when skewness tends to zero. We use the first order expansion of the
exponential function, exp(x) = 1 + x + xθ(x) where θ(x) tends to zero when x tends to zero. Substituting
in Equation 18 leads to, after some simplification,

σ∗ (∆) =
−Π0β (∆) + σ + θ (β (∆))

1−Π0β (∆)2 + β (∆) σ + β (∆) θ (β (∆))
,
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and taking the limit shows that σ∗ (∆) → σ when β (∆) → 0.

Note then that the limit of 17 leads to an indeterminacy. We will again apply a Taylor expansion but,
first, we compute the first order derivative of (18) with respect to β(∆) using Equation (19) to compute the
derivative of g (β(∆)) which leads to

dσ∗ (β(∆))
dβ(∆)

=
1− g (β(∆)) + β(∆) (σ − 2Π0β(∆))

β(∆)2g (β(∆))
,

where again we face an indeterminacy. We use a second-order expansion of g(β(∆))

g(β (∆)) = g(0) + β (∆) g′(0) +
1
2
g”(0)β (∆)2 + β (∆)2 θ (β (∆)) ,

where θ(β(∆)) tends to zero when β(∆) tends to zero. Substituting these results in a first-order expansion
for σ∗(β(∆)),

σ∗ (β(∆)) = σ∗ (0) +
dσ∗ (β(∆))

dβ(∆)
(0)β(∆) + β(∆)θ (β(∆)) ,

leads to
σ∗ (∆)− σ

β(∆)
= −

(
Π0 +

σ2

2

)
+ θ (β(∆)) ,

which, in the limit, delivers the desired result. Note that we then have

µ∆ + 2

√
h∗(∆)−

√
h(∆)

α(∆
=

(
r − σ2

2

)
∆ + ∆θ(β(∆)).

and, finally, that if we substitute the second-order expansion for g(∆) in the solution for ν, we get

ν (∆) → µ− r + σ2

2

σ2
=

µ− r

σ2
+

1
2
,

C Taylor Expansion of the Price of Risk
We want to show that,

ν (β) ≈ µ− r

σ2
+

1
2

+
(µ− r)2 + σ4

12

σ3
β

where

ν (β) = − 1
βσ

+
g (β)

g (β)− 1
g (β) = exp(−(µ− r)β2 + βσ).

Recall that ν (0) = (µ− r)/σ2 + 1
2 and note that

ν′ (β) =
1

β2σ
− g′ (β)

(g (β)− 1)2

g′ (β) = (−2(µ− r)β + σ) g (β) ,

We evaluate the limit of this derivative as β → 0 using, as above, the second-order expansion of g(β). After
tedious but straightforward computations, the result is

ν′ (0) =
(µ− r)2 + σ4

4 − 2(µ− r)σ2 + σ4

3 − (µ− r)σ2 + 2(µ− r)σ2 + (µ− r)σ2 − σ4

2

σ3

=
(µ− r)2 + σ4

12

σ3
.
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D Proposition 2
From CEFJ, the logarithm risk-neutral of the risk-neutral Moment Generating Function is

ΨQ∗ (u) = −uΨ′ (ν (∆)) + Ψ (ν (∆) + u)−Ψ(ν (∆))

= 2u

√
h∗ (∆)
α (∆)

− 4
α (∆)2

ln
[
1 +

1
2
uα (∆)

√
h∗ (∆)

]
,

implying that

ε∗t+∆ =

√
h (∆)√
h∗(∆)

εt+∆ + ν (∆)
√

h (∆).

The HG model can then be written as

ln (St+∆/St) = r0∆− γ∗ (∆) +
√

h∗ (∆)ε∗t+∆,

where

γ∗ (∆) = ΨQ∗ (−1) = -2
√

h∗ (∆)
α (∆)

− 4
α (∆)2

ln
[
1− 1

2
α (∆)

√
h∗ (∆)

]
,

and with √
h∗(∆) =

2(g (∆)− 1)
α (∆) g (∆)

.

Substituting back in the equation for returns under the risk-neutral measure, and simplifying, yields the
results.

E Greeks
For notational simplicity we introduce a ≡ H/β(∆)2. We begin with the sensitivity to changes in the
underlying stock price. The HG option price is homogenous of degree one in stock price and strike. Then
the standard result holds and the option delta is simply

∂Ct

∂St
= C1,t, (20)

which depends on skewness. Next, the sensitivity of the option’s delta with respect to the stock price is

∂2Ct

∂S2
t

=
e−(d2+rf H)da−1

2

|β|σ∗Γ(a)
K

S2
t

, (21)

which also depends on skewness and moneyness. The sensitivity of option prices to changes in the underlying
risk-neutral volatility is

∂Ct

∂σ∗t
=
|β|σ∗e(−rf H)K

σ∗(1− βσ∗)
e−d2da

2

Γ(a)
, (22)

and, finally, the sensitivity of option prices to changes in the skewness of returns is given by

∂Ct

∂β
= −2a

β

[
(ln(d2)−Ψ(a)) Ct −Ke(−rf H)P (a, d2) ln(1− βσ)

]
(23)

+
2a

β
Γ(a)da

2St(1− βσ)a
2F̄2(a, a; a + 1, a + 1;−d1)

− 2a

β
Γ(a)da

2Ke(−rf H)
2

F̄2(a, a; a + 1, a + 1;−d2)

− Ke(−rf H) σ∗

1− βσ∗
e−d2da

2

Γ (a)
,

where
Ψ(a, z) = P (a, z) ln(z)− Γ (a) za

2 F̄2(a, a; a + 1, a + 1;−z),

and where 2 F̄2(·) is the regularized hypergeometric function.
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F Proposition 3
A no-arbitrage price of a European call option with strike price K and maturity T can be obtained from the
computation of the discounted expectation of the terminal payoff under the risk-neutral measure. That is,

Ct(K, M) = EQ [max (St+T −K, 0)]
Ct = exp(−rT )StE

Q
[
exp (Rt,M ) 1[Rt,M >ln(K/St)]

]− exp (−r0T ) KPQ [Rt,M > ln(K/St)] .

We can compute PQ[Rt,M > ln(K/St)] from the distribution function of a gamma variable. Note first that

PQ[Rt,M > ln(K/St)] = PQ

[
β (∆)√
∆M

y∗t,M >
ln(K/St)− µ∗ (∆)M∆√

∆Mσ∗ (∆)
+
√

∆M

β (∆)

]
,

where we define
2
√

M

α (∆)

(
ε∗t,M +

2
√

M

α (∆)

)
= y∗t,M ∼Q Γ

(
4M

α (∆)2
, 1

)
,

based on the characterization of the standardized Gamma distribution given in Equation 2. If α (∆) > 0,

PQ[Rt,M > ln(K/St)] ==
Γ

(
T

β2(∆) ;
T

β2(∆) + ln(K/St)−µ∗(∆)T
β(∆)σ∗(∆)

)

Γ
(

T
β2(∆)

) ,

where Γ(a, x) is the upper incomplete gamma function27 and if α (∆) < 0,

PQ[Rt,M > ln(K/St)] = =
γ

(
T

β(∆)2
; T

β(∆)2
+ ln(K/St)−µ∗T

β(∆)σ∗(∆)

)

Γ
(

T
β(∆)2

)

= 1−
Γ

(
T

β(∆)2
; T

β(∆)2
+ ln(K/St)−µ∗T

β(∆)σ∗(∆)

)

Γ
(

T
β(∆)2

) .

Similarly,

EQ
[
exp (Rt,M ) 1[Rt,M >ln(K/St)]

]

= exp
(

µ∗ (∆) M∆− σ∗ (∆) M∆
β (∆)

)
EQ

[
exp

(
σ∗ (∆) β (∆) y∗t,M

)
1h β(∆)√

∆M
y∗t,M >κ

i
]

where we use

κ =
ln(K/St)− µ∗ (∆) M∆√

∆Mσ∗ (∆)
+
√

∆M

β (∆)
.

Then, if α (∆) > 0, and using that y∗t,M has a standard gamma distribution with parameter M∆
β(∆)2

, we have

EQ

[
exp

(
σ∗ (∆) β (∆) y∗t,M

)
1h

y∗t,M >
√

∆Mκ
β(∆)

i
]

=
∫ ∞

(1−σ∗(∆)β(∆))
√

∆Mκ
β(∆)

exp
(−z∗t,M

) (
z∗t,M

) M∆
β(∆)2

−1

(1− σ∗ (∆)β (∆))
M∆

β(∆)2

Γ
(

M∆
β(∆)2

)dz∗t,M

=
Γ

(
M∆

β(∆)2
;
(

M∆
β(∆)2

+ ln(K/St)−µ∗(∆)∆M
β(∆)σ∗(∆)

)
(1− σ∗ (∆) β (∆))

)

Γ
(

M∆
β(∆)2

)
(1− σ∗ (∆)β (∆))

M∆
β(∆)2

27The upper incomplete gamma function is defined as Γ(a, x) =
∫∞

x
ta−1e−tdt while the lower incomplete

gamma function is defined as γ(a, x) =
∫ x

0
ta−1e−tdt. Note that Γ(a) = Γ(a, 0) while γ(a) = γ(a,∞).
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and, using the change of variables (1− σ∗ (∆)β (∆)) y∗t,M = z∗t,M , it follows that

EQ
[
exp (Rt,M ) 1[Rt,M >ln(K/St)]

]

= exp
((

µ∗ (∆)− σ∗ (∆)
β (∆)

)
T

) Γ
(

T
β(∆)2

;
(

T
β(∆)2

+ ln(K/St)−µ∗(∆)T
β(∆)σ∗(∆)

)
(1− σ∗ (∆) β (∆))

)

Γ
(

T
β(∆)2

)
(1− σ∗ (∆) β (∆))

T
β(∆)2

.

If, however, α (∆) < 0 then

EQ

[
exp

(
σ∗ (∆) β (∆) y∗t,M

)
1h β(∆)√

∆M
y∗t,M >κ

i
]

=
γ

(
M∆

β(∆)2
;
(

M∆
β(∆)2

+ ln(K/St)−µ∗(∆)∆M
β(∆)σ∗(∆)

)
(1− σ∗ (∆) β (∆))

)

Γ
(

M∆
β(∆)2

)
(1− σ∗ (∆)β (∆))

M∆
β(∆)2

,

and then

EQ
[
exp (Rt,M ) 1[Rt,M >ln(K/St)]

]

= exp
((

µ∗ (∆)− σ∗ (∆)
β (∆)

)
T

) γ
(

T
β(∆)2

;
(

T
β(∆)2

+ ln(K/St)−µ∗(∆)T
β(∆)σ∗(∆)

)
(1− σ∗ (∆)β (∆))

)

Γ
(

T
β(∆)2

)
(1− σ∗ (∆) β (∆))

T
β(∆)2

.

G Proposition 4
Suppose that the underlying stock price evolution under the risk-neutral measure is given by

RT = (r − δ) T + σ
√

Ty

where δ is a risk-adjustment factor, y is a random number with mean zero, variance 1, skewness, 2β√
T

and
kurtosis, λ2. Suppose also that the probability density of y is described by the following Edgeworth series
expansion around the standardized gamma distribution:

f (y) = g (y) +
λ2 − 6β2

T

4!
d4g (y)

dy4
,

where g(y) is the standardized gamma density function given by

g(y) =
√

Tza−1e−z

|β|Γ(a)
if βy > −

√
T ,

and where z =
√

T
β y + a. Imposing that gross stock returns are a martingale under the risk-neutral measure,

EQ
0 [exp (RT )] = EQ

0 [exp
(
(r − δ)T + σ

√
Ty

)
]

= exp ((r − δ)T )
∫

exp
(
σ
√

Ty
) [

g (y) +
λ2 − 6β2

T

4!
d4g (y)

dy4

]
dy,

leads to the required risk-adjustment,

δ =
1
T

ln

[
exp

(
−σT

β
− a ln (1− βσ)

)
+

λ2 − 6β2

T

4!

∫
exp

(
σ
√

Ty
) d4g (y)

dy4
dy

]
.
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The price of a European call option is

c∗0 = e−rT

∫ ∞

−d∗2

(
S0 exp

(
(r − δ)T + σ

√
Ty

)
−K

)
f (y) dy

where
d∗2 =

ln (S0/K) + (r − δ)T

σ
√

T
.

We have

c∗0 = e−rT

[
S0 exp ((r − δ)T )

∫ ∞

−d∗2

exp
(
σ
√

Ty
)

f (y) dy −K

∫ ∞

−d∗2

f (y) dy

]
.

For the first integral, we have
∫ ∞

−d∗2

exp
(
σ
√

Ty
)

f (y) dy =
∫ ∞

−d∗2

exp
(
σ
√

Ty
)

g (y) dy + κ

∫ ∞

−d∗2

exp
(
σ
√

Ty
) d4g (y)

dy4
dy

and for β ≤ 0, say, and d∗1 = d̄2 (1− σβ) we have
∫ ∞

−d∗2

exp
(
σ
√

Ty
)

g (y) dy =
e−σβa

(1− σβ)a P (a, d∗1)

while
∫ ∞

−d∗2

exp
(
σ
√

Ty
) d4g (y)

dy4
dy

= a2e−σβa

[
P (a−4,d∗1)
(1−σβ)a−4 − 4 P (a−3,d∗1)

(1−σβ)a−3

+6 P (a−2,d∗1)
(1−σβ)a−2 − 4 P (a−1,d∗1)

(1−σβ)a−1 + P (a,d∗1)
(1−σβ)a

]
.

Next, for the second integral above,
∫ ∞

−d∗2

f (y) dy =
∫ ∞

−d∗2

g (y) dy + κ

∫ ∞

−d∗2

d4g (y)
dy4

dy

with

∫ ∞

−d∗2

g (y) dy =
∫ a−d∗2

√
T

β

0

za−1e−z

Γ (a)
dz = P

(
a, d̄2

)

∫ ∞

−d∗2

d4g (y)
dy4

dy = a2

[
P

(
a− 4, d̄2

)− 4P
(
a− 3, d̄2

)
+

6P
(
a− 2, d̄2

)− 4P
(
a− 1, d̄2

)
+ P

(
a, d̄2

)
]

.

H Identifying Restriction on the P-HG
The equality of prices from the true model and the P-HG for at-the-money options implies that

P (a, d∗1)− P (a, d∗2) = P (a, d1)−
(
1 + T 2σ4κ

)
P (a, d2)

+ κ
T 2σ

β3

[−h′′ (d2) + σβh′(d2)− σ2β2h(d2)
]
,

while the equality of the first derivative of prices implies

P (a, d∗2) +
σI0γ1

σ̄
√

T

d∗2βh(d∗2)
(1− βσ0I)

=
(
1 + T 2σ4κ

)
P (a, d2)

+ κa2
[
h′′′ (d2) + σ3β3h(d2)

]
,
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and, finally, the equality of the second derivatives implies

h (d∗2)
σ0I

[
1 +

(2a− d∗1 − d∗2)βσI0γ1

(1− βσ0I) σ̄
√

T
+

d∗2β
3σ3

I0γ
2
1

(1− βσ0I)
2
σ̄2T

+
2d∗2β

2σ2
I0γ2

(1− βσ0I) σ̄2T

]
=

(
1 + T 2σ4κ

) h (d2)
σ

+
κa2

σ

[
h(4) (d2) + σ3β.3h′(d2)

]
.

Then, linearizing the left sides of the equations around σ0 = σ, γ1 = 0 and γ2 = 0, respectively, and the
right side around κ = 0 leads to

σI0 − σ

σ
= a2 (1− σβ)

(
σ3β3 P (a, d2)

h (d2) d2
+

(a− 1) (a− 2)
d3
2

− (a− 1) (2 + σβ)
d2
2

+
1 + σβ + σ2β2

d2

)
κ

γ1 = − σ̄
√

T (a− d1)
βσ2

σI0 − σ

σ
+

σ̄
√

Ta2 (1− σβ)
d2

[
β3σ3P (a, d2)

h (d2)
+ 2β2σ2 +

h(3) (d2)
βσh (d2)

]
κ

γ2 = − σ̄2T

2β2σ2d2

(
h′ (d2) (a− d1)

h (d2)
− 1 + σβ

)
σI0 − σ

σ

+− σ̄
√

T (2a− d1 − d2)
2d2βσ

γ1 +
(

σ +
h′(d2)
βh (d2)

)
σ (1− σβ) σ̄2T 3

2d2β2
κ

where

d2 =
−a ln (1− σβ)

σβ

d1 = d2 (1− σβ)

a =
T

β2

κ =
λ2 − 6β2

T

4!
.
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Table I: Summary statistics for strike price and maturity categories.

(a) Summary statistics by moneyness

Moneyness
<0.95 <0.975 <1 <1.025 >1.025 All

Number of Contracts 3343 2418 3859 3077 3809 16506
Average Call Price 28.24 31.80 37.22 47.05 78.85 46.05
Average IV 19.43 19.23 19.36 20.13 22.66 20.26

(b) Summary statistics by maturities

Contract Month
1 2 3 4-6 7-9 10-12 All

Number of Contracts 4303 4016 2377 2822 1726 1167 16506
Average Call Price 36.60 39.53 42.91 51.53 61.95 72.74 46.05
Average IV 20.47 20.24 20.37 20.19 20.15 20.24 20.26

(c) Summary statistics by moneyness and maturities. For each moneyness and strike price category, the first
line gives the number of contracts and the second line gives the average Implied Volatility.

Moneyness
Months <0.95 0.95 to 0.975 0.975 to 1 1 to 1.025 >1.025
1 96 398 1104 1172 1533

21.39 18.65 18.63 19.55 22.92
2 354 668 1113 848 1033

19.80 18.66 19.13 20.08 22.75
3 461 445 647 406 418

19.75 19.24 19.78 20.94 22.61
4-6 973 481 504 371 493

19.27 19.48 20.00 20.88 22.39
7-9 805 262 280 167 212

19.18 20.35 20.33 21.26 22.46
10-12 639 157 194 89 88

19.44 20.72 20.99 21.48 22.30
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Table II: Predictability of Excess Returns by Implied Skewness.

The table reports the results of n-period regressions of returns on the SP500 index in excess of a yield of
maturity of n months:

1
n

n∑

j=1

(
rM,t+j − y

(n)
f,t+j +

IVt

2

)
= an + b>n PREDt + εn,t+n.

The regressor PRED is a combination of IV-RV and (IV-RV)/IS, where IV and IS are annualized implied
volatility and skewness from all option contracts, and RV is the annualized realized volatility. Reported in
square brackets and in brackets are respective robust t-statistics for the null that the coefficient is equal
to zero, and for the null that the coefficient is equal to −2. The sample period is from January 1996 to
December 2004.

1 3 6 12 24 36

Constant -22.19 -5.43 -3.50 -7.14 -6.93 -18.96
[-0.65] [-0.20] [-0.12] [-0.24] [-0.24] [-0.70]

(IV-RV)/IS -3.28 -2.24 -2.04 -2.13 -1.58 -1.64
[-2.66] [-2.52] [-2.69] [-3.85] [-2.38] [-2.66]
(-1.04) (-0.27) (-0.05) (-0.23) (0.64) (0.57)

Adj. R2 1.85 3.11 5.59 9.72 8.06 11.28

Constant 0.10 2.86 -8.13 -10.68 -0.63 2.31
[0.00] [0.08] [-0.26] [-0.33] [-0.02] [0.07]

IV-RV 7.33 6.38 8.11 8.28 4.37 2.12
[1.76] [1.65] [3.01] [3.40] [1.51] [0.75]

Adj. R2 -0.03 1.18 5.83 9.72 3.52 -0.11

Constant -11.78 -3.23 -10.59 -13.93 -5.15 -7.55
[-0.33] [-0.10] [-0.34] [-0.44] [-0.16] [-0.25]

IV-RV -7.46 -1.53 4.83 4.63 -1.15 -5.29
[-0.93] [-0.25] [1.18] [1.24] [-0.27] [-1.71]

(IV-RV)/IS -4.79 -2.55 -1.06 -1.19 -1.81 -2.59
[-1.98] [-1.66] [-0.86] [-1.35] [-1.98] [-3.31]

Adj. R2 1.27 2.21 5.55 10.05 7.05 14.06
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Figure 1: Number of call option contracts at each date
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Figure 2: Time series of implied volatility and implied skewness from the smoothed version
of the SP-HG2 model. This is a practitioner’s version of the Homoscedastic Gamma model
where the IV curve is restricted to depends only on the (constant) excess kurtosis.
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Figure 3: Implied Volatility curves across values of skewness in level (Panel (a)) and in
percentage deviation relative to the benchmark (i.e. zero skewness) BSM case (Panel (b)) ,
The grid covers 41 equidistant values of skewness and moneyness is defined as ln(S/K)(−rτ)
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Figure 4: Implied volatility and skewness surfaces for different maturity categories where
moneyness is defined as ln(S/K)(−rτ). Maturity groups are defined using settlement dates.

−2.85
−1.9

−0.95
0

0.95
1.9

2.85
3.8

>1.025

1.0125

0.9875

0.9625

<0.95 

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

skewnessMoneyness

Im
pl

ie
d 

V
ol

at
ili

ty

(a) Month 1

−2.85
−1.9

−0.95
0

0.95
1.9

2.85
3.8

>1.025

1.0125

0.9875

0.9625

<0.95 

0.18

0.2

0.22

0.24

0.26

0.28

skewnessMoneyness
Im

pl
ie

d 
V

ol
at

ili
ty

(b) Month 2

−2.85
−1.9

−0.95
0

0.95
1.9

2.85
3.8

>1.025

1.0125

0.9875

0.9625

<0.95 

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

skewnessMoneyness

Im
pl

ie
d 

V
ol

at
ili

ty

(c) Month 3

−2.85
−1.9

−0.95
0

0.95
1.9

2.85
3.8

>1.025

1.0125

0.9875

0.9625

<0.95 

0.18

0.19

0.2

0.21

0.22

0.23

skewnessMoneyness

Im
pl

ie
d 

V
ol

at
ili

ty

(d) Months 4 to 6

−2.85
−1.9

−0.95
0

0.95
1.9

2.85
3.8

>1.025

1.0125

0.9875

0.9625

<0.95 

0.185

0.19

0.195

0.2

0.205

0.21

0.215

0.22

0.225

skewnessMoneyness

Im
pl

ie
d 

V
ol

at
ili

ty

(e) Months 7 to 9

49



Figure 5: Deviations of implied volatility and skewness surfaces from the BSM IV values for
different maturity categories. Moneyness is defined as ln(S/K)(−rτ) and maturity groups
are defined using settlement dates.
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Figure 6: Implied skewness curve for different values of volatility, in percentage deviation
from BSM IV values, for different maturity groups. Moneyness is defined as ln(S/K)(−rτ)
and maturity groups are defined using settlement dates.
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Figure 7: Time-series average of estimates of Θt = (σt, γ1,t, γ2,t) from the P-HG3 (unre-
stricted) model but for different values of skewness. The parameters govern the IV curve:
σi,t = σI0,t(1 + γ1,tξi + γ2,tξ
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Figure 9: Term Structure of implied volatility, (minus) the implied skewness and (minus)
the implied excess kurtosis from the SP-HG2 model.
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