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We propose a forward-looking heterogeneous implied correlation (HETIC ) model fitted to the
prices of options on the S&P100 and its constituents, and use it to construct superior factor beta
predictors. HETIC market betas are the most efficient and unbiased predictors of realized betas
and explain on average 35.47% of the realized betas variance, outperforming other methods
by far. Mean HETIC market betas explain more than 34% of the cross-sectional variability
in mean excess stock returns. We successfully apply HETIC in beta’ predictions for factors
beyond market (where other forward-looking methods cannot be applied), and also show that
the predictive power rapidly increases in unstable (volatile) regimes. Our beta does not suffer
from using moments of the risk-neutral returns distribution as risk premia on individual/factor
variances and on stochastic correlation approximately cancel out. Moreover, we can naturally
handle negative risk exposures to a factor. To improve the accuracy of historical and realized
beta estimation, we use high-frequency data, and show that this leads to a significant boost
(from 22.20% to 33.85% in terms of R2) in prediction accuracy. The proposed methods are of
great importance to fund managers having a factor exposure target (HETIC betas outperform
other methods by about 30% in risk targeting), for estimating portfolio riskiness or for predicting
stock returns.
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1 Introduction

Return predictability has been the cornerstone of modern empirical asset pricing for a long time,

and linear factor models provide us with a simple expected return estimation methodology. Using

these models makes sense if we believe in them, have a good estimation of the factor risk premia,

and can predict the exposure of a stock with respect to factors, as expressed by the factor betas.

In our paper the main emphasis is on this last point: the predictability of betas.

We make two important contributions in this paper. First, we propose a simple stock corre-

lation structure that allows us to construct a heterogeneous implied correlation (HETIC ) from

available stock and index options. A single additive correlation state variable fitted to reconcile

the observed variances implied by the index option prices and option prices of its constituents

drives the instantaneous correlation matrix process, which is positive definite under minimal as-

sumptions, by determining its deviations from the historical correlation. As options are forward-

looking instruments by nature, they contain information about the market’s perception of future

returns and future return distributions. We show how this information and HETIC can be used

to make superior beta predictions for the market and other factors constructed from available

stock returns. The HETIC predicted market betas explains on average 35.47% of the variance

in the realized betas for DJ30 stocks over our sample period from January 1996 until June 2007,

exhibiting 25% more explanatory power than the best of the rolling window procedures and,

47% more than the closest rival method based on forward-looking option information.

Second, we utilize high-frequency estimators of the second moments of returns to refine

historical and realized beta estimations, and show that this procedure alone can boost the

predictive power (in terms of R2) of the estimated betas from 22.20% to 33.85%. Better beta

leads to more accurate expectations of returns, and in the cross-sectional regression of mean stock

excess returns on mean betas our HETIC market beta outperforms the second best method by

almost 22%, showing an impressive R2 of 34.07%. In the individual return time series predictions

we also lead the race with an R2 of 2.41%.

An important by-product of the HETIC structure is that we are not limited to one-factor

linear models, and can compute forward-looking betas and predict returns using multiple factors.

Due to the forward-looking character of our betas, they are also suitable predictors when the

return distribution is expected to undergo a structural break, i.e. when returns become non-

stationary. During these unstable periods the predictive power of the HETIC betas rises to
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43.65% as compared with the second best result of 38.08% for the high-frequency rolling window

betas.

In recent years several ways to model the correlation between financial assets in continuous

time have been proposed to solve portfolio planning, general equilibrium and other problems.

The biggest challenge researchers have to solve here beyond preserving the properties of the

observed correlations on the market is to guarantee the positive definiteness of the resulting cor-

relation matrix. One solution is to work with the Wishart Autoregressive Process (WAR) that

by construction has all necessary and most desirable properties of the correlation matrix, see e.g.

Gourieroux and Sufana (2004) and Buraschi, Porchia, and Trojani (2006). However, due to a

large number of state variables it is quite complex, and recent work (e.g. Chiriac (2006)) shows

it is not straightforward in empirical work. A polar idea to simplify the stochastic correlation

dynamics to one multiplicative state variable driving the homogeneous correlation matrix has

been implemented by Driessen, Maenhout, and Vilkov (2009). We propose a simple heteroge-

neous model of pairwise correlations with a single additive state variable. When calibrated to fit

the implied variances of options on the index and its constituents, the model becomes HETIC.

The notion of beta, as emanating from the seminal work of Sharpe (1964) and Lintner

(1965) is one of the corner stones of modern finance and one of the most important concepts in

finance theory as well as finance practice. The market beta of a stock represents its sensitivity

to movements of the market index and therefore its systematic risk. Typical applications are

in modern portfolio management, financial risk management, asset pricing, valuation of cost

of capital, or performance measurement. Therefore Wang (2003) and Ghysels and Jacquier

(2006) stress the importance of accurate measurement and even more of accurate prediction of

individual stock betas, especially for hedge fund or pension fund managers. For instance pension

fund managers may want to construct a tracking portfolio with a beta of one, and hedge fund

managers may want to have zero or negative beta portfolios. These groups will clearly benefit

from better beta forecasts.

One of the simplest, but still frequently used technique is to estimate betas based on histor-

ical stock returns and use this estimate as a forecast for the future. Since there is widespread

agreement that betas are time-varying (Keim and Stambaugh (1986), Breen, Glosten, and Ja-

gannathan (1989)) the estimation is typically performed on a rolling window of historical returns.

However, this technique implicitly assumes that the future is sufficiently similar to the past.
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French, Groth, and Kolari (1983) (hereafter FGK) introduce the idea to use option-implied

information to improve the performance of beta forecasts. They continue to use historical corre-

lations but replace historical volatilities with implied volatilities from stock and index options.

Siegel (1995) is the first one who solely uses option-implied information for beta forecasts. He

creates a new derivative, an exchange option, that implicitly reveals the market beta of a stock.

Yet these options are not traded, so that the technique is not applicable in practice.

Christoffersen, Jacobs, and Vainberg (2008) (hereafter CJV) pick up and extend the idea of

using only forward-looking information for beta forecasts. Their technique is based exclusively on

traded stock and index options and does not require a new derivative or historical correlations.

Their final expression for the market beta uses only forward-looking estimates of variance1

and skewness2. The ratio of stock skewness to market skewness serves as a proxy for the

future realized correlation between the market factor and the stock. However, the proxy ignores

the negative correlation risk premium3 that can make the index risk-neutral skewness more or

less pronounced than we would anticipate from a simple individual stock processes aggregation

using the anticipated correlations without a premium. Moreover, their derivations are based on

the assumption of zero skewness of the market regression residual, and this may contaminate

estimations as well, i.e. the ratio of the risk-neutral skew measures may be a biased predictor

of future correlations.

As forecasting techniques based on forward-looking information incorporate market expecta-

tions, they may be favorable in situations where a company faces a major change, such as a large

acquisition or merger. In this paper we use only forward-looking information (i.e. risk-neutral

expectations of certain moments) in our estimation, but the correlation risk premium has by

construction only a minor effect on the predicted betas, and we do not make any restrictive

assumptions on the return distribution.

For the estimation of historical correlation matrices as well as for the estimation of historical

and realized betas we rely on high-frequency data and the recent econometric advances for

the measurement of integrated volatility and integrated covariance. Especially the widespread
1It is estimated in a model-free way with methodology developed by Britten-Jones and Neuberger (2000), Carr

and Madan (1998), and Dumas (1995) who build on the seminal work of Breeden and Litzenberger (1978), and
extended further by Jiang and Tian (2005) to jump-diffusion settings.

2It is computed using the model-free technique proposed by Bakshi and Madan (2000) and Bakshi, Kapadia,
and Madan (2003).

3The existence, sign, and magnitude of the correlation risk premium in stocks (and hence in stock indices) has
been documented by Driessen, Maenhout, and Vilkov (2009).
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availability of high-frequency data as well as the work of Andersen and Bollerslev (1998) have

triggered a vast amount of research focusing on volatility and covariance estimation using high-

frequency data4.

The realized volatility (RV) estimator, as described in Karatzas and Shreve (1991), was the

starting point for the high-frequency volatility estimation. The RV estimator is consistent in

absence of noise as shown in early work by Jacod and Protter (1998).

Brown (1990), Zhou (1996) and Corsi, Zumbach, Müller, and Dacorogna (2001) emphasize

the implications of market microstructure noise in high-frequency data, so current research

concentrates on observed stock prices that are contaminated with noise which renders the RV

estimator inconsistent and biased. Under an additive i.i.d. noise assumption the use of different

time scales, such as two time scales (TSRV) or multiple time scales (MSRV) results in consistent

and unbiased estimators (Zhang, Mykland, and Aı̈t-Sahalia (2005) and Zhang (2006a)). Kernel-

based methods also produce consistent estimates under these conditions (Hansen and Lunde

(2006) and Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008)).

The estimation of integrated covariance becomes additionally complicated by the non-syn-

chronicity of the data. Without noise and with synchronous data the simple realized covariance

(RC) estimator is consistent (Jacod and Protter (1998)). However, non-synchronicity induces

a large bias, known as the Epps effect (Epps (1979)) which drives covariances to zero as the

sampling frequency increases (see also Zhang (2006b) for a detailed discussion). In absence of

microstructure noise Scholes and Williams (1977) introduce an estimator that accounts for this

non-synchronicity by using one lagged and one lead return. An unbiased estimator in a setup

without noise is the cumulative covariance (CC) estimator introduced in Hayashi and Yoshida

(2004) and Hayashi and Yoshida (2005). Though in the presence of additive i.i.d. noise the CC

estimator has a very large variance and becomes biased. Voev and Lunde (2007) show how to

correct for the bias and improve the efficiency of the estimator.

Being able to estimate integrated variances as well as integrated covariances it is an easy step

to the estimation of betas using high-frequency data as it is done in the early work of Scholes

and Williams (1977) and recently by Andersen, Bollerslev, Diebold, and Wu (2006).

For our work we maintain the assumption of additive i.i.d. market microstructure noise, but

sample at frequencies where the Epps effect can be ignored. For the estimation of variances as
4See, e.g. Andersen, Bollerslev, Diebold, and Ebens (2001), Andersen, Bollerslev, Diebold, and Labys (2001)

and Barndorff-Nielsen and Shephard (2002).
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well as covariances we use a modified version of the second-best estimator presented in Zhang,

Mykland, and Aı̈t-Sahalia (2005). We introduce an additional averaging step by computing

their proposed estimator with different time scales and then average over these time scales. This

step is necessary to arrive at a reliable estimator for integrated covariances even for infrequently

traded stocks. From there we can easily compute estimates for correlation matrices as well as

betas based on high-frequency data.

The paper is organized as follows: Section 2 presents a theoretical framework that nests

the dynamics and the factor structure of stock returns, our proposed heterogeneous correlation

model, and the methods of factor beta construction following from the previous structure. The

data used in the empirical part are described in section 3. Then section 4 discusses the estimation

of the realized and implied second return moments and factor betas. Section 5 provides empirical

evidence on the factor beta and return predictability and illustrates further uses of the HETIC

beta approach. Finally, section 6 concludes.

2 The Model

This section develops a sample framework that we use in testing the stock factor exposure and

return predictability. We start from a simple model of a stock market where stock returns are

driven by a number of priced systematic factors and idiosyncratic noise5. Then we propose a new

one-factor model that allows us to describe the heterogeneous correlation matrix in a simple and

robust way. This correlation matrix can be easily fitted to match the variances of the index and

its components under the actual and risk-neutral measure. In the latter case we call this model

Heterogeneous Implied Correlation (HETIC ). In the last part of this section we show how one

can build the factor betas from the estimated correlation matrix and individual stock variances,

and discuss different ways of introducing forward-looking (option-implied) information into these

estimates.
5For sake of simplicity and intuitive exposition we assume that factors and noise processes are diffusions and

that they are driven by standard Wiener processes. However, later estimation procedures does not rely on these
assumptions, i.e. factors and noise can also be driven by jump diffusions or more complicated processes. The
only critical assumption is that one can create a portfolio from available underlying securities to approximate any
factor with a zero error almost surely.
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2.1 Factor Structure of Stock Returns

We assume partial equilibrium settings with N stocks driven by K common factors repre-

sented by a K−dimensional standard Wiener process W f with individual members W f
k , k =

m, 2, ...,K6, and N idiosyncratic shocks represented by a N−dimensional standard Wiener pro-

cess W with individual members Wd, d = 1, ..., N. We assume that N ≥ K.

dSi
Si

= µidt+
∑

k=m,2..K

σfi,kdW
f
k + σidi dWi, ∀i = 1..N. (1)

Each stock’s i exposure to a given factor k is measured by the respective diffusion coefficient

σfi,k. We define the total instanteneous volatility of the stock process Si as σSi ≡ σ
f
i,k + σidi .

The excess return µi − r represents the risk premium on the priced factors W f and can be

written as

µi − r =
∑

k=m,2..K

σfi,kλk, (2)

where λk denotes the risk premium on the respective factor W f
k .

We can then rewrite the stock process as

dSi
Si

= rdt+ σidi dWi +
∑

k=m,2..K

σfi,k

[
λkdt+ dW f

k

]
, ∀i = 1, ..., N. (3)

As factors may not be traded directly, our intention is to replicate them up to a scaling

diffusion coefficient using a family of stock portfolio weight vectors wF
k , k = m, 2, ...,K, consisting

of the stock weights wF
k =

(
wFk,1, .., w

F
k,N

)T
such that

(
wF
k

)T
ln

St+∆t

St
=
∫ t+∆t

t

(
σfkλk −

1
2

(
σfk

)2
)
dt+

∫ t+∆t

t
σfkdW

f
k + εk, (4)

and assuming that εk =
∫ t+∆t
t

(
wF
k

)T
diag

(
σid
)
dW (s)− 1

2

(
wF
k

)T (
σid
)2
ds→ 0 a.s. as N →∞

and the number of non-zero elements of the weights vector wF
k → N.

2.2 Correlations Dynamics

As we discussed in the introduction, modeling correlation in continuous time may be very com-

plex as one has to fulfill several restrictions for the whole correlation matrix.
6We assign the letter m to the first factor and assume it is a market factor.
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An appealing assumption about only one state variable driving all pairwise correlations

has been made by Driessen, Maenhout, and Vilkov (2009) in a recent paper: each pairwise

correlation ρij is a multiplicative function of a scaling factor ρ̄ij and a state variable ρ (t) , i.e.

ρij = ρ̄ij · ρ (t) . This provides us with a simple and robust way of modeling the average level of

correlation when we assume that the scaling factor is the same for all pairs of stocks (e.g., 1),

and impose some restrictions on the state variable process ρ (t) to guarantee positive definiteness

of the correlation matrix. However, even in these simple settings it may not be trivial to find

the restrictions for the state variable when the scaling parameter is heterogeneous, i.e. when we

want to model the dynamics of each pairwise correlation in the stock universe and not of the

average correlation.

We propose a model that extends the idea of one state variable driving all pairwise corre-

lations and allows for a way (surely not as flexible as in WAR) of modeling the heterogeneous

correlation matrix. The most important feature of our model is that the resulting correlation

matrix stays positive definite by changing the measure, under the assumption of a negative cor-

relation risk premium (i.e. when the expected drift of the process increases by the change from

actual to risk neutral measure) if some parametric assumptions are satisfied.

We model the pairwise correlation ρij(t) as follows:

ρij(t) =

 1, if i = j;

(1−∆) · ρhij + 2 ·∆ ·m · ρ(t), otherwise;
(5)

where ρhij denotes the historical pairwise correlation, ∆ is a measure of the allowed deviation

of the pairwise correlation from its historical mean (e.g. it may be related to the historical

standard deviation of the pairwise correlation), 2 · m is a scaling parameter, and ρ (t) is the

correlation state variable7. The following theorem guarantees the positive definiteness of the

resulting correlation matrix.

Theorem 1 The correlation matrix given in (5) is positive definite if the following three con-

ditions are satisfied: (a) 0 ≤ m ≤ 0.5, (b) 0 ≤ ∆ < 1 and (c) 0 ≤ ρ(t) ≤ 1.
7One can think of the pairwise correlation ρij as being a linear combination of the historical pairwise correlation

ρh
ij with weight (1−∆) and the ’aggregated’ correlation state variable ρ̄ = 2m · ρ(t) with weight ∆.
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Proof. We can write the N ×N correlation matrix Σ(t) based on model (5) as:

Σ(t) = IN + (Σh − IN )(1−∆) + 2∆ ·m · (ι · ι′ − IN ) · ρ (t)

= IN ·∆ · (1− 2m · ρ (t)) + Σh · (1−∆) + 2∆ ·m · ι · ι′ · ρ (t) , (6)

where Σh, IN , and ι denote the historical correlation matrix, the identity matrix and an N × 1

vector of ones, respectively. Since IN is positive definite, to guarantee positive semidefiniteness

of the first part of expression (6) we need ∆ ≥ 0 and (1−2 ·m ·ρ (t)) ≥ 0. If we let 0 ≤ m ≤ 0.5 a

sufficient condition for this is given by 0 ≤ ρ(t) ≤ 1. If we assume that the historical correlation

matrix Σh is positive definite, the second part is positive definite if ∆ < 1. Finally, the matrix

ι · ι′ is positive semidefinite and therefore the last part is positive semidefinite if ρ(t) ≥ 0,∆ ≥ 0

and m ≥ 0. As the sum of positive definite and positive semidefinite matrices is positive definite,

these conditions together are sufficient for the positive definiteness of Σ(t)

The correlation state variable ρ controls the level of the pairwise correlations: a high value

of ρ implies high (absolute) pairwise correlations whereas a low value of ρ implies low (absolute)

pairwise correlations. For instance, if we assume ρ = 0, then the pairwise correlation is equal

to ρij(t) = (1 − ∆) · ρhij . For 0 ≤ ∆ < 1 the correlation will be smaller (in absolute value)

than the historical correlation ρhij . If, as the other extreme, we assume ρ = 1, the correlation

will be ρij(t) = (1 − ∆) · ρhij + 2 · ∆ · m. As we later choose the parameter m to be greater

than the average historical correlation to account for extreme correlation values and for the

negative correlation risk premium (that would be normally increasing the expected integrated

correlation), a correlation state variable ρ = 1 implies for most of the pairwise correlations the

inequality ρij(t) > (1+∆) ·ρhij . Taking into account the two extreme cases, we allow the pairwise

correlation ρij(t) to be at least in the range [(1 −∆) · ρhij , (1 + ∆) · ρhij ]. If we now choose the

parameter ∆ to be c times the standard deviation of the pairwise historical correlations (e.g.

about four standard deviations as we do in our empirical section 4.3) we allow the pairwise

correlation to be in the range of c standard deviations of the historical correlation.

The stock market factor (the index) is composed of all N stocks, and given a vector of index

weights wF
m as well as the index variance

(
σFm
)2 at time t8 we can write the variance of the

market factor as follows:
8We omit time as an argument for notational convenience throughout, except when placing particular emphasis

on it.
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(
σFm
)2

=
N∑
i=1

w2
m,i

(
σSi
)2

+
N∑
i=1

∑
j 6=i

wm,iwm,jσ
S
i σ

S
j ρij . (7)

It is clear from (7) that the index variance is driven by individual volatilities σSi and pairwise

correlations ρij . If we use our model (5) for ρij then we can express the state variable ρ as a

function of the other variables in the equation:

ρ =

(
σFm
)2 − N∑

i=1
w2
m,i

(
σSi
)2 − N∑

i=1

∑
j 6=iwm,iwm,jσ

S
i σ

S
j

(
(1−∆)ρhij

)
2m

N∑
i=1

∑
j 6=iwm,iwm,jσ

S
i σ

S
j ∆

. (8)

All variables on the right-hand side of (8) can be easily calculated from the data. To calibrate

the correlation state variable under the actual probability measure, we would use historical

realized (co-)variances for index and for individual stocks, and for the risk-neutral probability

measure (implied correlation state variable) we would use index and individual variances implied

in option prices9 instead of their realized counterparts. Then the set of all pairwise correlations

(5) calculated with the implied correlation state variable is called HETIC.

As we will show later in the empirical section, the implied correlation state variable satisfies

the conditions stipulated in Theorem 1, and hence we are safe to go further in our investigation.

2.3 Factor Betas Construction

Betas reflect the linear relation between a factor and a stock return. Assuming that the con-

ditional covariance between the stock return and the factor return, and the factor return’s

conditional variance are known, we can write the conventional beta of a stock with respect to

the factor k as follows:

βCONVi,k =
Cov

(
ri, r

F
k

)
V ar

(
rFk
) = ρi,k ·

σSi
σFk

, (9)

where rF is the return on the factor portfolio (4). Knowing the weights wF
k of the factor

k replicating portfolio and the variance-covariance matrix for all stocks, we can rewrite the

conventional beta as the expanded beta:
9To calibrate the model in the empirical part of the paper, we will use the Realized (Co-)Variance estimator

for the actual probability measure and the Model-Free Implied Variance for the risk-neutral probability measure.
Both estimators reflect the total integrated quadratic variation of the stock over a period of time (realized or
expected), i.e. empirically we cover a more general class of models than was presented in section 2.1.
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βEXPi,k =

N∑
j=1

wFk,jCov(ri, rj)

V ar

(
N∑
j=1

wFk,jrj

) =

N∑
j=1

wFk,jσ
S
i σ

S
j ρij

N∑
j=1

N∑
l=1

wFk,jw
F
k,lσ

S
j σ

S
l ρjl

. (10)

Thus, to calculate a stock’s beta with respect to any factor, we need an estimate of the

conditional variance-covariance matrix of either the stock and the factor, or the stock and all

components in the factor replicating portfolio (along with the replicating portfolio weights).

There is a myriad of ways and methods to predict future covariances. We can split them

roughly into two groups based on the information they are using. The first group uses historical

information as a predictor for the future, others mix historical information with forward-looking

market instruments such as options to infer investor’s expectations of future returns or even solely

use forward-looking information. We will use heterogeneous implied correlations (HETIC) as in

(5) calibrated to match the option-implied variances on individual and index options, as well as

option-implied volatilities on individual options for the purpose of estimating betas as in (10),

which then become βHETIC .

There have been several other quite successful attempts to use option-implied information in

beta estimation. French, Groth, and Kolari (1983) combine historically estimated correlations

with option-implied variances to improve the market beta:

βFGKi,m = ρm,i

(
σ2
i

σ2
m

) 1
2

. (11)

In another paper Christoffersen, Jacobs, and Vainberg (2008) suggest not only to use option-

implied variances, but also to align the betas with the market’s perception of future correlations

proxied by one of the forward looking moments (option-implied skewness) of the future return

distribution. Their market beta is defined as:

βCJVi,m =
(
Skewi
Skewm

) 1
3
(
σ2
i

σ2
m

) 1
2

. (12)

These methods have been originally limited to calculating betas for the market factor or a

portfolio that has traded options on it, only. Moreover, restrictive distributional assumptions

about the market regression residuals have to be made in the CJV case.

In the empirical section apply our method and the two other mentioned methods to calculate
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forward-looking factor betas and predict both realized betas and realized returns based on those

estimates.

3 Data Description

3.1 Data on Stocks

The stock data used in this paper consist of transaction prices of the S&P100 constituents

from the NYSE’s trades and quotes (TAQ) database, tick data for the S&P100 index from

tickdata.com, daily stock prices from CRSP, and S&P100 index weights from Bloomberg L.P.

The sample period extends from January 4, 1996 to June 30, 2007, for a total of 2894 trading

days. TAQ prices were filtered from the official opening 9:30 EST until 16:00 EST and only

include valid entries. In addition, we remove obvious outliers, such as transaction prices reported

at zero and errors of shifting a decimal place.

We use a calendar time sampling scheme, that is we artificially construct a regularly spaced

one minute price grid for every trading day (i.e. typically 390 data points per day) by using

the size-weighted average10 of all transactions within one minute11. Finally, we fill empty data

points, as a result of no trading activity for a stock within a minute, with the price from the

last available data point before it. On average we have, before filling the empty data points, 257

data points for each stock and day for the period 1996-2000, and 344 data points for the period

2001-2007.

The S&P 100 is a value-weighted index with rebalancing taking place on every third Friday

of the last month in each quarter where the index shares are fixed for the following quarter. Nev-

ertheless the value-based weights of the constituents can change due to stock price movements.

Moreover the list of constituents may also change whenever a company is removed from the index

and a new one is added, and hence new weights are introduced. For the period January 1996

to mid-December 2000 we reconstruct the S&P 100 weights using the market capitalizations of

all companies currently in the index based on daily market capitalizations from CRSP. For the

period from mid-December 2000 to June 2007 we use the official index shares as published by

Bloomberg L.P. to calculate the real index weights on each day.

For ease of presentation we showcase our obtained results in the following sections only for
10For the S&P100 index we take simple averages.
11For instance the data point for 10:30 contains all transactions from 10:29:01 up to 10:30:00.
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a subsample of the S&P 100 stocks, namely the stocks included in the Dow Jones Industrial

Average Index (DJ30) as of February 18, 2008. A list of the corresponding stocks is presented

in Table 1.

3.2 Data on Stock Options

For stock options we use the Ivy DB that contains data on all US exchange-listed and NASDAQ

equities and market indices, as well as all US listed index and equity options, for our sample

period from January 1996 until June 2007.

We select all options on the S&P100 index and all its components with maturities from 30 to

90 days, underlying stock prices for each day, discrete dividends history, and certificate of deposit

rates as the riskfree rate proxy. Then we apply several filters to the options data: we remove all

in-the-money options to diminish the influence of an early exercise premium on our estimations,

all options with zero open interest on a given day or with zero bid prices. To eliminate outliers

and options with non-standard features we also discard options with implied volatilities (IV)

higher than 100%, and options with missing implied volatilities12. Then we select on each day

the maturities for which, after filtering, there are at least 2 call and 2 put options available, so

that we have at least 4 options.

To get the riskfree rate proxy of the exact required maturity, we take known certificate of

deposit yields for maturities between 1 day and 1 year and interpolate them linearly to get

the appropriate yield. As we have options on dividend-paying stocks in our sample, to make

life easier, we adjust the stock price on each day by the discounted value of future dividends.

Discrete dividends are a bit complicated, we do not know them in advance and hence need to

forecast them from the previous dividend payments, i.e. from the common payment schedule.

We adjust the stock prices on each day by the predicted or declared regular dividends (using the

actual yield as a proxy for the anticipated yield), and by the declared special dividend (using

its actual dividend yield). In general the effect of dividends on implied volatilities is minor, so

that the assumptions we make for predicting the dividends should not introduce any substantial

bias.
12The implied volatility in OptionMetrics is calculated from fitting a binomial tree with discrete dividends. The

IV will be missing in the database in case of non-standard settlement of an option, or in case of various arbitrage
conditions violations.
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4 Second Moments and Beta Estimations

As we have seen in the previous sections, to estimate the factor betas we need information on

the second moments of stock returns. Depending on the beta construction method, we will use

historical moments, forward-looking moments, or we will mix both types into one estimation. In

the current section we describe in detail the methods and procedures we use to construct the re-

alized variances/covariances using daily and high-frequency data, the forward-looking variances

from options data, the HETIC from both realized and implied moments, and how we use all

the calculated variables to construct a variety of predicted betas.

4.1 Realized Measures

Our estimation procedure using high-frequency data is based on the structure of stock returns

as in (1) which implies the following structure for the logarithmic price process Xi = log(Si)

dXi = µ∗i dt+ σfi dW
f + σidi dWi,∀i = 1..N ;

where µ∗i captures all drift dynamics, σfi denotes the 1xK vector (σfi,m, . . . , σ
f
i,K) of sensitiv-

ities and dW f denotes the Kx1 vector (dW f
1 , . . . , dW

f
K) of standard Brownian motions.

We assume that the observed logarithmic price process Yi(t) is given by Yi(t) = Xi(t)+εi(t),

where εi(t) captures market microstructural noise effects, including, but not limited to, bid-ask

bounces, asynchronous and discrete trading.

Our assumptions regarding the noise process εi(t) are given by:

1. εi(t) is i.i.d. with E[εi(t)] = 0; and

2. ε is independent of X.

The observed stock return ri(t) for a time interval of length δ is then given by ri(t) = Yi(t)−

Yi(t− δ). For estimation purposes the quantity of interest is the integrated variance/covariance

of the interval 0 to T , given by:

〈Xi, Xj〉 =
∫ T

0
σfi

(
σfj

)′
dt =

∫ T

0

∑
k=m..K

σfi,kσ
f
j,kdt, (13)

Defining n ≡ T/δ a common estimator for this quantity is given by the realized variance

(RV) / realized covariance (RC)
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̂〈Yi, Yj〉(δ) =
n∑
k=1

ri(kδ) · rj (kδ) =
n∑
k=1

(
Yi
(
kδ
)
−Yi

(
(k−1) · δ

))
·
(
Yj
(
kδ
)
−Yj

(
(k−1) · δ

))
. (14)

Without market microstructure noise, i.e. Yi(t) = Xi(t), it is well known that this estimator

is consistent because of the theoretical result that

p lim
n∑
k=1

ri(kδ)rj (kδ) =
∫ T

0
σfi

(
σfj

)′
dt

as the sampling frequency n increases (see Jacod (1994) and Jacod and Protter (1998))

whereas the estimator becomes inconsistent and biased in the presence of noise (see Zhang,

Mykland, and Aı̈t-Sahalia (2005), and Bandi and Russell (2005)).

Zhang, Mykland, and Aı̈t-Sahalia (2005) (ZMAS henceforth) discuss several methods to

estimate the quantity in (13) in the presence of noise. Their first-best estimator, the two time

scale realized volatility (TSRV) estimator, uses information from two different time scales: In a

first step the authors compute ̂〈Y, Y 〉(all) which is estimator (14) using information at a very high

frequency (typically at the highest frequency available). They show that this quantity can be

used to correct for the bias since it is actually a consistent estimator of the variance of the noise.

Using estimator (14) computed at a second (slower) time scale and constructing a suitable linear

combination of these two quantities the authors derive an consistent and unbiased estimator of

the integrated variance/covariance in (13).

Unfortunately we cannot apply the TSRV estimator here since our one minute grid of stock

prices is not fast enough to qualify as a fast time scale. This can be seen in Figure 1 (a), where

we estimate the variance of CSCO for the year 1998 using the TSRV estimator with a fast time

scale of one minute. When choosing the second (slower) time scale faster than 20 minutes, we get

a sharp decline in variance which is due to an overcorrection using ̂〈Y, Y 〉(1 min)
. This indicates

that the estimator ̂〈Y, Y 〉(1 min)
does not represent pure noise and therefore cannot be used for

bias correction.

So, instead of using the first-best estimator of ZMAS we rely on their second-best estimator

which is basically computing the RV/RC estimator (14) at a slower frequency and improving

efficiency by subsampling and averaging. The problem with using a slower time scale is that one

throws away information and therefore loses efficiency. To overcome this problem the authors
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propose to use subsamples and average over the subsamples. To illustrate the idea assume we

have stock returns at a one minute grid, i.e. for times 1, 2, 3, . . .. If we decided to sample at a

ten minute frequency we can do this for different subsamples: for the first subsample we can use

the information from minutes 1, 11, 21, . . .; for the second subsample we can use the information

from minutes 2, 12, 22, . . . and so on. For each of the K = 10 resulting subsamples we can

compute estimator (14). Finally, ZMAS propose to average over the subsamples to improve the

efficiency of the estimator. The resulting estimator is then given by:

̂〈Yi, Yj〉(avg,K)
=

1
K

K∑
k=1

̂〈Y, Y 〉(δ,k)
. (15)

There remains the problem of choosing the optimal sampling frequency δ. A common way to

identify δ is to use signature plots, as introduced by Andersen, Bollerslev, Diebold, and Labys

(2000) and extended to covariance analysis by Griffin and Oomen (2006). In a signature plot

the estimator for the desired quantity is plotted against different sampling frequencies and one

chooses as the optimal frequency the frequency where the estimator starts to level out. As one

can see from Figures 1 (b) and (c) we could choose relatively fast frequencies for the estimation

of the variance, i.e. the estimator starts to level out at frequencies of about 30 minutes. But it

is well known and can be seen in Figure 1 (d) that the covariance estimator does not level out

at such fast frequencies and may exhibit an unstable behavior over a range of frequencies.

To overcome this problem with the covariance estimation we introduce an additional averag-

ing step. That is we compute estimator (15) at frequencies δ = 75min., 100min., . . . , 300min. and

finally average over the different sampling frequencies to obtain our final estimator of quantity

(13):

̂〈Yi, Yj〉 =
1
10

12∑
l=3

̂〈Yi, Yj〉(avg,25l)
. (16)

Hansen and Lunde (2005) show that overnight returns contain substantial information for

variance estimation. Since we are typically estimating the integrated volatility and covariance

over a period of about 60 days, we implicitly include overnight returns here.

As outlined in the introduction non-synchronicity of the data results in an Epps effect for

integrated covariances, i.e. covariances approach zero as the sampling frequency increases. Since

the fastest time scale we are using is 75 minutes, this problem does not arise here, so that we
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abstain from corrections for the Epps effect.

Based on the estimator in (16) for the integrated variance/covariance
∫ T

0 σfi

(
σfj

)′
dt for

stocks i and j we can easily compute estimates of the correlation matrix Σ =
(
ρi,j
)

using

high-frequency data:

ρi,j =
̂〈Yi, Yj〉√ ̂〈Yi, Yi〉√ ̂〈Yj , Yj〉 ,

where the estimators are computed over the desired time period. Moreover we can use the

estimator in (16) to compute estimators for historical as well as realized high-frequency betas

with respect to a given factor k. This reduces to the estimator

̂βCONVi,k =
̂〈Yi, Yk〉̂〈Yk, Yk〉 . (17)

In the same fashion an estimator for the expanded beta (10) can be constructed.

Since we are comparing the beta and return prediction capabilities of our HETIC model

in section 5.1 with the capabilities of a model using historical return information on a daily

basis, we also have to estimate the historical variance-covariance matrix using daily information.

Therefore we apply the simple RV/RC estimator (14) using daily return data (close-to-close),

i.e. δ = 390 min. From there we easily get correlation matrices and betas in the same fashion

as outlined above.

4.2 Forward-Looking (Implied) Measures

To compute the implied moments needed for the different beta methodologies we first prepare

the options database to infer the value of the variance and cubic contracts, or the proxies for the

forward-looking risk neutral variance (MFIV ) and skewness (SKEW ) respectively, as described

in detail by Bakshi, Kapadia, and Madan (2003). Obviously, to calculate the integrals in the

formulas precisely, we need a continuum of option prices. In reality we approximate them from

available option data: using cubic splines we interpolate the implied volatilities of the options

inside the available moneyness range, and extrapolate using the last known (boundary for each

side) value to fill in 1001 grid points in the moneyness range from 1/3 until 313. Then we

calculate the option prices from the interpolated volatilities using the known interest rate for a
13The reason for choosing such a wide grid is that our simulation studies have shown that with a narrower grid

we may not be estimating the skew and kurtosis of the risk-neutral distribution well enough.
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given maturity, and use these resulting prices to compute MFIV and SKEW .

The formulas for these implied measures and the approximation procedure description are

provided in Appendix A. Summary statistics for the quantities of interest for the S&P 100, the

S&P 100 constituents as well as the DJ30 components are presented in Table 2. As expected

from previous research, the S&P 100 index displays a clearly higher, in absolute terms, model-

free skewness while exhibiting a lower model-free variance compared to the S&P 100 index

constituents.

4.3 HETIC

To estimate the HETIC model (5), we first calculate the correlation state variable ρ as in (8) .

For this we need several values like implied variances of the index and its components’, the index

weights, and the historical pairwise correlations. For the computation of the implied measures we

use the methodology outlined in the previous section, the index weights are obtained as described

in section 3.1, and the historical pairwise correlations are computed using high-frequency stock

returns over the last 60 trading days. In addition, we need to specify the parameters of the model

that define the variability of the resulting state variable: first, ∆, the measure of the allowed

relative deviation of the implied from the historical pairwise correlation, and second, the scaling

parameter m of the correlation state variable in HETIC. In our estimations we set both values

to 0.5, i.e. each implied pairwise correlation can at maximum deviate from its historical value by

50% and the resulting correlation will consist of pairwise historical correlation and correlation

state variable with equal weights (50/50):

ρHETICij = 0.5ρhij + 2 · 0.5 · 0.5ρ = 0.5ρhij + 0.5ρ, if i 6= j.

For the admissible range of the state variable ρ ∈ [0, 1] (to guarantee the positive definiteness of

the resulting HETIC matrix), the ρHETICij value is restricted to the bounds
[
0.5ρhij , 0.5ρ

h
ij + 0.5

]
.

We do not offer a formal procedure for choosing the parameters, and rely more on intuition.

The choice of ∆ should be linked to the stability of an average pairwise correlation over time, and

as we estimate the implied correlation matrix for a period of less than two months on average,

we do not expect it to deviate much from the historical counterpart. The mean standard

deviation of the time-series of the historical pairwise correlations is relatively low (0.1250), and

so with our choice of ∆ we should capture most of the variation in correlations. The choice of

18



m is related to the average anticipated correlation level. In our sample the average pairwise

historical correlation is 0.3308, but for the implied correlation after adding the correlation risk

premium we expect a higher value, and hence select m = 0.5.

After plugging in all known and assumed variables, we first get the time series of ρ. The

dynamics of the state variable are shown in Figure 2. It fits well with its permissible range

of values, with a time series mean of 0.4727 and 0.2049 standard deviation. Moreover, it has

negative correlation with market returns (−0.1321) and market level (−0.4359) which confirms

earlier findings that the correlation increases in bad times, i.e. when the market goes down. For

each date we check if our ρ estimate violates the permissible bounds of [0, 1] - it does marginally

violate the upper bound in about 2% of all cases, and we truncate it at the upper bound to

satisfy the technical conditions14.

Having obtained an estimate of ρ we can use equation (5) to compute the whole HETIC

matrix. As expected, the mean HETIC (0.4204) is higher than the mean historical pairwise

correlation (0.3303). What matters most for us is not the mean level of HETIC, but rather its

performance in predicting realized correlations as this will drive the performance of the beta

predictions. We carry out two tests using as predicted values the HETIC and the historical

high-frequency correlation matrices. First, we regress the time series of the cross-sectional mean

realized correlations on the time series of cross-sectional mean predicted correlations; second,

we do the same for individual stock pairs, i.e. we run a number of time-series regressions of

realized pairwise correlations on predicted values. The R2 for the HETIC based regression is

45.05%, while the mean historical high-frequency correlation gives us only an R2 = 41.68%. The

mean explanatory power in individual regressions is 21.29% for HETIC vs. 14.63% for historical

high-frequency correlations.

4.4 Estimating Betas

As described in the introduction our main emphasis is to predict the future linear exposure of

a stock return to a factor, expressed by its beta. Therefore we estimate several types of betas

as described in section 2.3 to see how these betas can predict the realized betas. We consider

historical rolling window betas using high-frequency as well as daily stock return data, the FGK

betas, the CJV betas and the betas emanating from our HETIC model. All betas are calculated
14In the cases of violations the estimated HETIC matrix remains positive definite even without truncation of

the correlation state variable ρ.
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for the market factor; moreover, the historical (realized) and HETIC betas are also calculated

with respect to other factors that are given by certain portfolios of stocks.

We compute the Historical HF betas as well as the Historical Daily betas using the method-

ology outlined in section 4.1. Our final expressions are then given by (17) and the corresponding

expanded version of it where the integrated volatilities and covariances are computed over the last

60 trading days, i.e. using about 23,400 one minute returns, as well as the modified second-best

estimator from ZMAS for high-frequency data and using 60 close-to-close returns and formula

(14) for daily data, respectively.

The computations of the FGK betas, the CJV betas as well as our HETIC betas depend on

implied volatilities, while the CJV betas moreover depend on implied skewness. For the com-

putations of these implied moments we use the methodology outlined in section 4.2. Therefore

we draw on options with a maturity between 30 and 90 days and if several are available within

this range, we choose the options with maturity closest to 60 days.

For the computation of the FGK betas we follow equation (11) where the historical correla-

tions are computed over the last 60 trading days using daily stock return data. The CJV betas

are computed with formula (12). As Christoffersen, Jacobs, and Vainberg (2008) we also do

not compute CJV betas for stocks on a specific date if they display a positive skewness (due to

mathematical reasons). This highlights a problem with the CJV betas as they can only take on

positive values. However, if a stock’s return is negatively correlated with the market return the

beta should be negative15.

The computation of the HETIC betas relies on the computation of the heterogeneous implied

correlation matrix (5) for the specific day as described in section 4.3. Together with the implied

volatilities we can then compute the implied covariance matrix from which we get the implied

betas using the conventional (9) or the expanded (10) formula.

Since we want to forecast realized betas using option-implied information, a natural choice

for the time period over which the realized betas are computed is the option maturity. Here we

use the average option maturity for the S&P 100 constituents and the methodology outlined in

section 4.1 to get high-frequency realized as well as daily realized betas.

Almost all predictive market betas are highly correlated with both the realized beta and

with other predictive betas as shown in Table 3. HETIC has a correlation to realized beta of
15In our full sample 1.58% of the realized HF betas are negative.
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0.57 and to Historical HF beta a correlation of 0.54. Note that the CJV beta has the highest

correlation (0.39) not with the realized beta, but with HETIC (probably due to the use of

forward-looking variances by both methods), and FGK beta has the second highest correlation

(0.73) with HETIC (probably due to the mixing in some manner the forward-looking variances

and historical correlations in both estimation methods).

As we want to use our HETIC betas to predict realized betas, we have to be careful with the

change of measure and the influence of risk premia. Since we are explicitly modeling the implied

correlations, we need to take the risk premia on single stock volatility, on index volatility, and

finally on the correlation between a stock and the market into account. If we simply associate

the risk premia with a scaling factor, defined by the ratio of the average implied quantity and the

average realized quantity, we can analyze the effect of these risk premia on our HETIC betas.

Table 2 includes the scaling factors for single stock volatility (1.17) as well as for index volatility

(1.32). The scaling factor for the correlation between a stock and the market can be easily

computed from Table 5, and is equal to 1.16. If we use this simple risk premia presentation

we get, on average, the following relationship between implied (superscript Q) and realized

(superscript P ) betas:

βQi =
σQi · ρ

Q
iM

σQM
=

1.17 σPi · 1.16 ρPiM
1.32 σPM

= 1.03 ·
σPi · ρPiM
σPM

= 1.03 · βPi ;

so that we expect the relation between implied and realized betas to be very close to one. This

is quite important as only for values very close to one implied betas can be used as meaningfull

predictors for the realized betas.

In Table 4 we present the mean betas for the different forecasting methodologies as well as

the mean realized betas for the DJ30 stocks. The mean values confirm our expectation that the

HETIC betas only include a marginal risk premium, in this case a scaling factor of 1.02 (and an

absolute difference between the mean HETIC and mean realized beta of only 0.0184). Moreover

for 12 out of 30 stocks the HETIC and the realized betas are not significantly different. The

mean beta for the Historical Daily, Historical HF, Realized Daily and Realized HF methodologies

are almost the same. The small difference is induced by the fact that the historical betas are

always computed over a 60 trading days period whereas the realized betas are computed over

the average option maturity.

The absolute difference between the mean realized betas and the mean FGK betas (0.0742)
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as well as the mean CJV betas (0.2360), respectively, is clearly more pronounced. As FGK,

CJV and HETIC all use the same implied volatilities, the differences in betas can only be

due to the different correlation models. Table 5 presents the average correlations between the

DJ30 stocks and the market index as being used in the computations of the market betas. As

expected from the results in Driessen, Maenhout, and Vilkov (2009) the historical correlations

used for FGK betas are lower than the implied correlations from the HETIC model because of

the correlation risk premium. In contrast to this, the artificial correlations, i.e. the ratio of stock

and index skewness, as used by CJV, are clearly higher than the HETIC implied correlations

which explains the higher betas. The distinct difference between the average beta for the CJV

model in our setup (1.16) and the average beta in Christoffersen, Jacobs, and Vainberg (2008)

(0.92) stems from the fact that we are using options with an average maturity of 60 days whereas

CJV use much longer options with an average maturity of 180 days. Stock options with longer

maturity have usually a lower implied volatility whereas this effect is not that prominent for

index options. The same effect can be observed for implied skewness and this is maybe one of

the reasons why the CJV betas in our calculation are higher compared to their setup.

5 Betas and Return Predictability

After using the available methods to estimate the betas, we now turn to studying their compar-

ative power in predicting future betas and expected returns. We do this for both the market

factor, and statistical factors derived from a principal component analysis. We also study how

the prediction capabilities of the beta methodologies differ between stable and unstable regimes.

5.1 Market Factor: Predictability Regressions

At first we run a battery of time-series and cross-sectional tests to isolate the best methodology

in predicting the market betas and excess returns.

First, for each of the DJ30 stocks we run the time-series regression of realized market beta

on its predicted value:

βRealizedi,t = αi + λiβ
Predicted
i,t + εi,t,∀t. (18)

Subscripts i, t refer here and henceforth to stock i as well as time t, respectively. The individual

results and summary statistics for the regression in (18) are given in Table 6. Although predicted
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betas are calculated with differently sampled data from the past (high-frequency returns for

HETIC and Historical HF, daily returns for Historical Daily and FGK), we show in Table 6(b)

that all betas predict the realized betas calculated with high-frequency returns better than the

realized betas from daily return data. This is most probably due to more precise estimates from

high-frequency data, and so in the following we show the results only for high-frequency realized

betas.

As expected from the correlation prediction results in section 4.3, HETIC outperforms other

betas with an average R2 of 35.47%. Furthermore, it exhibits the best explanatory power in

14 out of 30 in individual regressions. The second best beta (Historical HF) explains 33.85%

of the realized beta variance, and delivers the highest R2 in 12 cases. The second best method

using the forward-looking information is FGK, and though it loses the race to Historical Daily

beta on average (with an R2 of 24.12% vs. 28.38%), it still delivers the remaining 4 best

individual results. The slope value test (H0 : λi = 1) for individual regressions shows how close

the realized beta is to its predicted value, and here HETIC is the absolute champion with 18

cases not rejected. Thus, there is clear evidence that for our sample the HETIC market beta

is the most efficient (in terms of explained variability) and the least unbiased (in terms of the

predicted value) predictor of the realized market beta. In Figures 3 (a), (b), and (c) we show the

time-series of the HETIC market beta and of the realized beta for the time period January 2,

1996 to June 30, 2007 for AA (a), XOM (b) and MRK (c), respectively. The predicted HETIC

market betas fit the realized betas in general quite well.

Second, to see how the prediction of the betas is affecting return predictability, we estimate

for each of the DJ30 stocks the regression of the realized returns on the predicted betas:

rRealizedi,t = αi + γiβ
Predicted
i,t + εi,t,∀t. (19)

The results for the individual estimations and an overview are provided in Table 7. The leader-

ship is still in HETIC ’s camp with an average R2 of 2.41%, though Historical HF is better in a

larger number of individual cases (10 vs. 8). In general, the prediction results confirm that stock

returns are hardly predictable on an individual level, but better beta still makes a difference.

Third, to see how well our estimated betas explain the cross-sectional differences in expected
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stock returns, we run a regression of mean stock returns on the mean predicted betas:

r̄i = αi + λβ̄m,i + εi. (20)

Table 8 shows that the mean HETIC beta stands out with a predictive power of 34.07%, while

all other methods deliver comparable results in the range of about 24% to 28%. In Figure 4 we

plot the mean excess returns r̄i against the mean predicted market betas β̄m,i for the HETIC

methodology and show the fitted regression. In a recent study Buss, Schlag, and Vilkov (2009)

use HETIC betas to test the conditional CAPM and find evidence that the truly conditional

HETIC market betas (as they are based on forward-looking information) can account for some

of the cross-sectional differences in expected returns typically attributed to firm characteristics

like size, book-to-market or stock momentum. The traditional historical market betas are not

that flexible and the use of additional factors becomes a necessity.

5.2 Market Factor: Asset Allocation

As market betas are very important for asset allocation and risk management we now analyze

the performance of the different beta methodologies in an empirical asset allocation setup. We

create portfolios with a target beta based on the predicted betas of the individual stocks and

then compare this target beta with the realized beta of the portfolios.

First, we create portfolios consisting of two individual stocks from the universe of the S&P100

stocks. The portfolio weights are chosen such that the target portfolio beta is equal to zero.

For instance, such a setup is typical for pairs trading strategies of hedge funds who go short one

stock and long the other one while being market neutral16.

To implement this portfolio strategy we randomly choose 25, 000 pairs. For each pair we

compute the portfolio weights at the end of every month in our sample period as well as the re-

alized portfolio betas over the following two months. After pooling the observations for each pair

and each month we compute the Mean Absolute Error (MAE) for the different beta prediction

methodologies as a measure of overall fit.

HETIC Betas yield by far the best results, showing an impressive improvement of about

30% compared to the second best method. They exhibit the lowest MAE (0.2921) followed by

the CJV betas (0.4103) and Historical HF betas (0.4172). The Historical Daily Betas and FGK
16See Vidyamurthy (2004) and Whistler (2004).
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betas yield MAEs of 0.5491 and 0.7805, respectively. A better performance of the CJV betas

compared to section 5.1 is probably due to the fact that the biases across the two stocks cancels

out.

Second, we create portfolios consisting of six individual stocks from the universe of the

S&P100 stocks. Again, the portfolio weights are chosen such that the target portfolio beta

is equal to zero. This setup is compabtible with long/short market neutral strategies. For

implementation we randomly choose 50, 000 combinations of six stocks: three stocks which we

go long and three stocks which we go short. Then follow the procedure outlined above.

We would expect the forecasting errors to be higher in this second setup as we now have

six instead of just two stocks. However, we would expect the differences in the performance for

the different beta methodologies to be not as pronounced compared to the two stocks case as

possible biases will be ’diversified away’ better. Again, the HETIC betas yield the best results

with an MAE of 0.5261 followed by the Historical HF betas with MAE of 0.5744 and the other

three methologies with MAEs around 0.68.

In all, the empirical asset allocation application confirms the results from section 5.1 and

shows that HETIC betas are the best predictor for future market betas. As asset allocation is

important not only for hedge fund managers but also for mutual fund manager who typically

want to achieve a portfolio beta of one, we have performed a similar analysis with s target beta

of one. The results are similar to the ones presented above.

5.3 Multifactor Linear Models

The linear pricing models are widely used in predicting expected returns, and it has been shown

that adding factors beyond the market portfolio in general increases their power. We want to see

if the use of the forward-looking information also boosts beta and return predictability for the

linear multifactor models. In short, we want to add more factors to our model, and to perform

an analysis similar to the one shown above. In constructing the stock factors we are limited to

the S&P100 constituents, and hence our use of economic factors, such as size or book-to-market,

is limited. Instead, we rely on the idea of statistical factors obtained from a principal component

analysis (PCA).

We compute the variance-covariance matrix of the returns for all S&P100 constituents for

the period January 2, 1996 to December 31, 2000 using high-frequency data and the estimation

25



methodology outlined in section 4.1. Based on this covariance matrix we then perform a principal

component analysis and finally transform the PCA coefficients into portfolio weights. As the

return of the first statistical factor portfolio has a correlation of 95.35% with the S&P100 index,

we associate the first factor with the market. In addition to this market factor we use two

additional statistical factors from the PCA, so that we end up with a three factor model, in

total explaining about 28.23% of the total variation in realized stock returns.

The FGK and CJV betas cannot be computed for factors that do not have traded options

on them. In contrast, the HETIC model as well as the Historical HF and Historical Daily

methodologies are appropriate to predict betas with respect to these statistical factor portfolios.

These methodologies estimate a whole variance-covariance matrix for the stocks, and using

this information we can compute the predicted betas with the expanded beta expression (10).

Realized betas for the statistical factors are computed using the methodology from section 4.1

and formula (10).

To see how good these models are in predicting realized betas for the statistical factors, we

run over the period January 2, 2001 to June 30, 2007 the following time-series regression for all

DJ30 stocks:

β
(k),Realized
i,t = αi + λiβ

(k),P redicted
i,t + εi,t,∀t; (21)

where k = 2, 3 denotes the statistical factors, excluding the market factor.

Table 9 shows that the HETIC model outperforms the Historical HF as well as the Historical

Daily methods for the second factor, with an average R2 of 65.48% vs. 60.10% and 56.37%,

respectively and delivering the highest R2 for 29 out of 30 stocks. For the third factor the

Historical HF methodology delivers the best results (with an average R2 of 17.93% and the

highest R2 in 13 cases) followed by HETIC (with an average R2 of 16.04% and the highest R2

in 10 cases) and Historical Daily (with an average R2 of 15.49% and the highest R2 in 7 cases).

Second, to analyse the return predictability we run the time-series regression in (19), repre-

senting a one-factor model, as well as the time-series regression based on a three-factor model

given by:

rRealizedi,t = αi + γ
(M)
i β

(M),P redicted
i,t + γ

(2)
i β

(2),P redicted
i,t + γ

(3)
i β

(3),P redicted
i,t + εi,t, ∀t;
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Both regressions are performed for the DJ30 stocks over the period from January 2, 2001 to June

30, 2007. The results are presented in Table 10. The HETIC model delivers the best results

for both types of time-series regressions, with average R2’s of 4.47% of 8.95% for the one factor

and the three factor model, respectively, followed by the Historical HF methodology (3.81% and

8.85%) and the Historical Daily methodology (3.55% and 7.90%).

5.4 Enhancing Predictability

In contrast to historical methodologies (high-frequency and daily) the FGK, the CJV and the

HETIC methods use forward-looking information from option data. An investor would not rely

too much on historical information, and rather use information reflecting updated market beliefs,

if he anticipates some sudden changes (a structural break) in the return distributions. Such a

structural break may take place for the whole economy (and hence for a return driving factor),

e.g. when the political situation is unstable, or it may affect one company only, e.g. when a

company undergoes a restructuring. In the first case we would expect that both components

of the linear pricing model change, i.e. the exposure of the stock to the factor and the risk

premium; in the second case we would only expect the beta to change (for a good review see

Damodaran (2008)). Thus, we would expect forward-looking betas to have an advantage in

highly volatile and unstable periods.

For each stock we split our sample period into two regimes based on the magnitude of the

implied volatility using a two-state Markov regime switching model driven by an asset-specific

state variable sti17:

σMF
it = µsti

+ κstiuit,

where σMF
it denotes the model-free implied volatility of company i at time t and uit ∼ N(0, 1).

Such model allows for a state-dependent mean µsti
and a state-depedent variance κsti .

The asset-dependent state variable sti is unobservable for the investor and treated as latent.

The realizations of the state Sti are governed by a first order Markov chain with constant 2× 2

transition probability matrix P with generic element:

P (Sit = sit|Sit−1 = sit−1) = psitsit−1 , sit, sit−1 = 1, 2.

17For detailed descriptions on model specification and estimation for Markov-Switching models see Hamilton
(1989) and Hamilton (1994).
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As our main goal is to isolate asset-specific periods of high model-free implied volatility,

we impose the additional restriction that the mean of the second regime, the volatile one, is

higher than two times the mean of the overall time-series of the model-free implied volitlities

σMF
it . That way, on average, only the highest 20% of the implied volatilities fall into the volatile

regime.

For each of the two regimes, we then run regression (18) for the market beta separately. The

results are presented in Table 11. For the more stable regime the HETIC model yields the best

results (average R2 of 30.04% and highest R2 in 13 cases) closely followed by the Historical HF

methodology (average R2 of 28.92% and highest R2 in 9 cases). In the case of the more volatile

regime the HETIC model clearly performs best, with an R2 of 43.65% and being best in 19

cases, followed by the Historical HF methodology (average R2 of 38.08% and highest R2 in 4

cases). As shown in Table 11 (b) the difference between the HETIC model and the Historical

HF as well as Historical Daily methodology is significant at the 5% level for the volatile regime

when performing a one-sided test for HETIC Betas being better than Historical HF as well as

Historical Daily betas.

6 Conclusion

Linear factor models are by far the most popular means of predicting stock returns. It is clear

that for a good performance of a model accurate predictions of the stock factor exposures, i.e.

the betas, are crucial.

We propose a new method of factor betas construction which is based on the estimated

heterogeneous implied correlation (HETIC ) model. The HETIC allows us to construct a positive

definite implied correlation matrix that is fitted to the model-free implied variances of options

on the index and its constituents. The estimated correlations are forward-looking by nature,

and hence are based on the most current anticipation of future return dynamics. We show

that HETIC has a better performance in predicting realized correlations than have historical

correlations, and hence it is not surprising that the HETIC betas (that in addition to predicted

correlations use option-implied variances) also shows the best performance in realized betas

prediction. Moreover, we show that the forward-looking correlation structure matters a lot by

itself, as the betas constructed using implied variances and historic correlations still lag behind.

Various tests demonstrate that HETIC betas are the most efficient and unbiased predictor of
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realized betas from five models under consideration. Moreover, HETIC betas explain the most

time-series variability in stock returns among competing methods, and account for a vast part

of the cross-sectional variance in mean stock returns. In addition, they deliver the best results

in an empirical asset allocation application (risk level targeting), outperforming the second-best

methodology by about 30%.

From HETIC estimation and implied variances we have the whole forward-looking variance-

covariance matrix at our disposal, and hence we can construct betas for any factor portfolio

consisting of the available stocks. It turns out that the HETIC beta is the only one from the

methods which uses solely forward-looking information that can be used to construct betas for

factors other than the market. We use a PCA to get statistical factors from the return space,

and test beta and return predictability using this artifical factor structure. Again, HETIC

outperforms the other available methods by far.

For the estimation of historical (and realized) variances and covariances we use daily and

high-frequency returns. From comparing these two methods we conclude that using high-

frequency data leads to more accurate results.

There is one more important use of HETIC that requires further investigation. We show

that the performance of HETIC Betas increases a lot in economically turbulent times, and

we associate this predictability boost with the more precise correlation structure that becomes

particularly important in such periods. Moreover, to be able to predict returns in different

regimes one should have a way to estimate a factor risk premium associated with a given regime.

A recent paper by Buss, Schlag, and Vilkov (2009) takes the first step in this direction, and shows

promising results.

In all, HETIC delivers very promising results for correlation as well as betas and return

predictability within the linear factor models framework.
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Appendix A Construction of Risk-Neutral Moments18

Let the τ -period return be given by the log price relative:

R(t, τ) ≡ ln[S(t+ τ)− S(t)].

Define a variance, a cubic and a quartic contract with the following payoffs:

H[S] =


R(t, τ)2, volatility contract;

R(t, τ)3, cubic contract.

R(t, τ)4, quartic contract.

Let V (t, τ) ≡ E∗t {e−rτR(t, τ)2}, W (t, τ) ≡ E∗t {e−rτR(t, τ)3}, X(t, τ) ≡ E∗t {e−rτR(t, τ)4} repre-

sent the fair value of the respective payoff.

The price of the variance contract is given by

V (t, τ) =
∫ ∞
S(t)

2
(

1− log
(

K
S(t)

))
K2

·C(t, τ ;K)dK+
∫ S(t)

0

2
(

1− log
(

K
S(t)

))
K2

·P (t, τ ;K)dK, (22)

the price of the cubic contract is

W (t, τ) =
∫ ∞
S(t)

6 log
(

K
S(t)

)
− 3

(
log
(

K
S(t)

))2

K2
· C(t, τ ;K)dK

−
∫ S(t)

0

6 log
(

K
S(t)

)
+ 3

(
log
(

K
S(t)

))2

K2
· P (t, τ ;K)dK, (23)

and the price of the quartic contract is

X(t, τ) =
∫ ∞
S(t)

12
(
ln[ K

S(t) ]
)2
− 4

(
ln[ K

S(t) ]
)3

K2
· C(t, τ ;K)dK

+
∫ S(t)

0

12
(
ln[S(t)

K ]
)2

+ 4
(
ln[S(t)

K ]
)3

K2
· P (t, τ ;K)dK. (24)

18The formulas in this appendix closely follow the exposition in Bakshi, Kapadia, and Madan (2003) and are
given for completeness. Only approximation procedure is our own.
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Define

µ(t, τ) = erτ − 1− erτ

2
V (t, τ)− erτ

6
W (t, τ)− erτ

24
X(t, τ). (25)

Then we can calculate τ -period risk-neutral return skew as:

SKEW (t, τ) =
erτW (t, τ)− 3µ(t, τ)erτV (t, τ) + 2(µ(t, τ))3

(erτV (t, τ)− (µ(t, τ))2)
3
2

. (26)

To calculate the integrals in (22), (23) and (24) precisely, we need a continuum of option

prices. We discretize the respective integrals and approximate them from the available options.

As we mentioned earlier, we have at least 4 options at our disposal for each maturity. Using cubic

splines we interpolate the implied volatilities of these options inside the available moneyness

range, and extrapolate using the last known (boundary for each side) value to fill in 1001 grid

points in the moneyness range from 1/3 until 3 . Then we calculate the option prices from the

interpolated volatilities using known interest rate for a given maturity, and use these prices to

compute the model-free variance (MFIV ) and risk-neutral skew (SKEW ) as in (22) and (26).
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Figure 1: Variance / Covariance Signature Plots

In Figure 1 we present variance/covariance signature plots. In (a) we plot the TSRV estimator for

the variance of CSCO for the year 1998 against different choices for the slower time scale. The fast

time scale is one minute. In (b) and (c) we plot the second-best estimator from Zhang, Mykland, and

Aı̈t-Sahalia (2005) (ZMAS) for the variance of DIS for the year 2002 and the variance of JNJ for the

year 1998, respectively, against different choices for the time scale. In (d) we plot the second-best

estimator from ZMAS for the covariance between CHV and WMT for the year 2000 against different

choices for the time scale.
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(a) Variance of CSCO for 1998.

0 20 40 60 80 100
0.15

0.175

0.2

0.225

0.25

0.275

0.3

Time Scale (in min)
V

ar
ia

nc
e

(b) Variance of DIS for 2002.
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(c) Variance of JNJ for 1998.
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(d) Covariance for CHV and WMT for 2000.
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Figure 2: Correlation State Variable versus Mean HETIC Correlation

Figure 2 presents the time-series of the implied correlation state variable and of the mean HETIC

correlation for the S&P 100 constituents. The implied correlation state variable is computed using

the methodology oulined in section 4.3. Then the pairwise HETIC correlation follows directly from

(5). Finally we compute for each day the mean over all available pairwise correlations for the S&P

100 constituents to arrive at the mean HETIC correlation.
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Figure 3: HETIC Beta versus Realized Beta

Figure 3 presents the time-series of the HETIC betas and of the realized betas for AA (a), XOM

(b) and MRK (c) for the period January 2, 1996 to June 30, 2007. The HETIC betas are computed

using options within the range of 30 to 90 days and choosing the options with maturity closest to

60 days if several are available. The parameters for the HETIC computations are m = 0.5 and

∆ = 0.5. The realized betas are calculated on each date for the period until the mean maturity of

the available individual options on that day used for HETIC calculation and using high-frequency

data.
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Figure 4: Mean Excess Return versus Mean HETIC Beta

In Figure 4 we plot the mean excess return for each of the S&P 100 constituents against the mean

HETIC beta. The excess returns are calculated on each date for the period until the mean maturity

of the available individual options on that day used for HETIC calculation. Averages are computed

over the period January 2, 1996 to June 30, 2007. The solid line represents the regression of the

mean excess return on a constant and the mean HETIC beta. The adjusted R2 of the regression is

0.3407, the constant is −0.0100 with a t-statistic for significance of −2.0597 and the coefficient for

the mean HETIC beta is 0.0332.
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Table 1: DJ30 Components

The Table provides the list of the stocks that we use in our predictability analysis in the paper.

The selected stocks were all components of DJ30 on February 19, 2008. For an easier link with the

Ivy DB we provide in addition to the ticker the matching identifier of each stock in the database

(Secid).

Secid Ticker Company Name

107616 MMM 3M CO
101204 AA ALCOA INC
101375 AXP AMERICAN EXPRESS CO
101397 AIG AMERICAN INTERNATIONAL GROUP INC
109775 T AT&T INC
101966 BAC BANK OF AMERICA CO
102265 BA BOEING CO
102796 CAT CATERPILLAR INC
102968 CHV CHEVRON CORP
103049 C CITIGROUP INC
103125 KO COCA-COLA CO
103969 DD DU PONT E I DE NEMOURS & CO
104533 XOM EXXON MOBIL CORP
105169 GE GENERAL ELECTRIC CO
105175 GM GENERAL MOTORS CORP
105700 HPQ HEWLETT-PACKARD CO
105759 HD HOME DEPOT INC
106203 INTC INTEL CO
106276 IBM INTERNATIONAL BUSINESS MACHINES
106566 JNJ JOHNSON & JOHNSON
102936 JPM J.P. MORGAN CHASE & CO
107318 MCD MCDONALDS CORP
107430 MRK MERCK & CO INC
107525 MSFT MICROSOFT CORP
108948 PFE PFIZER INC
109224 PG PROCTER & GAMBLE CO
111459 UTX UNITED TECHNOLOGIES CORP
111668 VZ VERIZON COMMUNICATIONS INC
111860 WMT WAL MART STORES INC
103879 DIS WALT DISNEY CO
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Table 2: Summary Statistics

The Table provides summary statistics for the S&P 100 index, the S&P 100 constituents as well as

the DJ30 components. For the computation of the model-free variance and the model-free skewness

we draw on options with a maturity within the range of 30 to 90 days and if several are available

we choose the options with a maturity closest to 60 days. The average maturity of these options is

given in the Table. The realized excess returns and the realized variances are calculated on each day

for the period until the mean maturity of the available individual options using daily stock return

data and are annualized. Moreover we give the ratio of the mean model-free variance to the mean

realized variance and the average number of available, before filling empty data points, one minute

transaction prices per trading day.

S&P 100 constituents DJ 30 constituents S&P 100 Index

Average number of 1-minute transaction prices per day 277 353 387
Mean excess return, p.a. 0.1181 0.1099 0.0482
Average maturity of options, days 55.09 54.27 60.32
Mean Model-free variance (annualized) 0.37652 0.34382 0.22322

Mean Model-free skewness -0.5628 -0.6310 -1.4009
Mean Realized variance 0.33592 0.29342 0.16892

Ratio of Model-free to Realized variance 1.12082 1.17152 1.32182
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Table 3: Estimated Beta Correlations: Market Factor

The Table provides the summary of the correlation between the daily time series of the mean realized

and of the mean predicted market factor betas constructed with different methods. The averages are

computed over the DJ30 stocks. The Realized beta as well as the predicted HETIC and Historical

HF betas are calculated using the high-frequency data. The Historical Daily and GFK betas are

constructed with daily returns, while CJV beta does not require any historical variance-covariance

matrix for estimations.

Market β Realized HETIC Hist. HF Hist. Daily CJV GFK
Realized 1.0000 0.5703 0.5399 0.4989 0.1329 0.4507
HETIC 1.0000 0.7587 0.7010 0.3924 0.7264
Hist. HF 1.0000 0.8596 0.2190 0.6989
Hist. Daily 1.0000 0.2056 0.7871
CJV 1.0000 0.3325
GFK 1.0000
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Table 4: Betas Calculation Methods: A Comparison

The Table provides the summary of the market beta computations for different methodologies over

the period January 2, 1996 to June 30, 2007. The predicted HETIC, Historical HF and Realized

HF betas are using high-frequency data, Historical Daily, Realized Daily and FGK betas are using

daily sampled returns, while CJV beta does not rely on any stock data for estimation. Realized

beta is calculated on each date for the period until the mean maturity of the available individual

options on that day used for HETIC calculation. For each day within the sample period we compute

the mean market beta over the DJ30 stocks. The Table then reports the mean, median as well as

standard deviation of the resulting time-series of average DJ30 betas. We report the difference

between the mean of the predicted time-series and the mean of the realized time-series of average

DJ30 betas. In addition we test for each DJ30 stock separately if the predicted and the realized

betas are significantly different. As we have overlapping observations, we use Newey-West standard

errors with 30 lags to account for autocorrelation in t-statistic calculation. We report for how many

cases this hypothesis is not rejected.

Forward-Looking (predicted) Historical (predicted) Realized
HETIC CJV FGK HF Daily HF Daily

Mean 0.9433 1.1609 0.8497 0.9288 0.9276 0.9249 0.9239
Median 0.9580 1.1418 0.8559 0.9545 0.9455 0.9533 0.9508
Standard Deviation 0.0825 0.1836 0.1398 0.1073 0.1107 0.1201 0.1241
Mean of Predicted-Realized 0.0184 0.2360 -0.0742 0.0039 0.0037 - -
H0: Realized=Predicted not rej. 12 3 12 30 29 - -
Number of observations 59170 59149 59229 59259 58434 59806 59106

44



Table 5: Correlation Calculation Methods: A Comparison

The Table provides the summary of the correlations between the DJ30 stocks and the market index

as used in the computations of the market betas over the period January 2, 1996 to June 30, 2007.

Realized and historical are using high-frequency data whereas FGK use daily sampled returns for

the historical correlation calculations. HETIC uses high-frequency data and formula (5). For CJV

we report the artificial correlations, as being the ratio of stock to index skewness:
(

Skewi
Skewm

) 1
3
. For

each day within the sample period we compute the mean correlation between the DJ30 stocks and

the market index. The Table then reports the mean, median as well as standard deviation of the

resulting time-series.

Correlation calculation method
HETIC Realized Historical Historical Daily (FGK) Artificial (CJV)

Mean 0.6207 0.5365 0.5379 0.5571 0.7497
Median 0.6251 0.5393 0.5443 0.5650 0.7344
Standard Deviation 0.1120 0.1101 0.1062 0.1125 0.0978
Number of Observations 59170 58434 59259 59229 59149
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Table 6: Stock Beta Predictability: Market Factor

The Table provides the summary of the market factor beta predictability for the DJ30 stocks in

terms of the coefficient of determination (adjusted R2), i.e. in terms of the explained variability

of the Realized beta. Over the whole sample period from January 2, 1996 until June 30, 2007 we

run the regression of the daily time series of the Realized market beta on the predicted market beta

and a constant for several methods of beta construction (βRealized
i,t = αi + λiβ

Predicted
i,t + εi,t,∀t).

As we have overlapping observations, we use Newey-West standard errors with 30 lags to account

for autocorrelation in t-statistic calculation. Realized beta is calculated on each date for the period

until the mean maturity of the available individual options on that day used for HETIC calculation.

The average R2 values are simple averages over all stocks for a given method. For each method

we note the data sampling frequency used for Realized and predicted beta calculation. In Panel

(a) we then provide detailed statistics for each stock, always using high-frequency data (HF) for

beta calculation. In Panel (b) we provide summary statistics, including also the regressions results

for the realized betas from daily returns. The best R2 column shows in how many cases out of 30

regressions the best predictability was achieved.

(a) Individual Regressions Explanatory Power

Adjusted R2 for beta prediction
Ticker HETIC Hist. HF Hist. Daily CJV FGK

MMM 0.5276 0.4771 0.3590 0.0047 0.2643
AA 0.6206 0.7139 0.5551 0.0738 0.4026
AXP 0.3050 0.3896 0.2576 -0.0003 0.0427
AIG 0.3438 0.2733 0.2814 0.0504 0.2430
T 0.4118 0.4448 0.3580 0.2024 0.3616
BAC 0.3622 0.2417 0.1293 0.0408 0.0839
BA 0.3811 0.3519 0.2548 0.0002 0.2086
CAT 0.2632 0.1022 0.2746 0.0305 0.3123
CHV -0.0025 0.0472 0.0090 0.0182 0.0165
C 0.2281 0.1574 0.1515 0.0118 0.0813
KO 0.5998 0.6263 0.5174 0.0069 0.5777
DD 0.4881 0.5409 0.4694 0.0225 0.3641
XOM 0.7429 0.7117 0.6672 0.1860 0.5703
GE 0.4102 0.4518 0.3624 0.0964 0.1236
GM 0.2323 0.1836 0.0748 0.1651 0.0815
HPQ 0.1451 0.1743 0.1076 0.0436 0.0659
HD 0.1218 0.0595 0.0920 0.0020 0.0886
INTC 0.1531 0.1038 0.1166 0.1717 0.2177
IBM 0.1966 0.1156 0.1643 0.0992 0.0713
JNJ 0.5224 0.5369 0.5422 0.0123 0.5458
JPM 0.3149 0.2852 0.1163 0.0861 0.1057
MCD 0.4876 0.4142 0.2376 0.0729 0.2363
MRK 0.3353 0.3298 0.2465 0.0005 0.3126
MSFT 0.1849 0.1244 0.0847 0.0809 0.0606
PFE 0.4359 0.3699 0.4025 0.0010 0.4320
PG 0.6058 0.6150 0.5255 0.0899 0.4830
UTX 0.3074 0.3182 0.2495 -0.0001 0.1361
VZ 0.3942 0.3977 0.2980 0.0370 0.2566
WMT 0.0851 0.1167 0.1606 0.0372 0.1683
DIS 0.4363 0.4817 0.4485 0.0406 0.3206

Average 0.3547 0.3385 0.2838 0.0561 0.2412

Predicted/Realized β HF/HF HF/HF Daily/HF ../HF Daily/HF
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Table 6: Stock Beta Predictability: Market Factor (cont.)

(b) Individual Regressions Explanatory Power: Summary

Market β calculation Best α = 0 λ = 1 Average Average Average
Method Predicted/Realized R2 not rejected not rejected R2 correlation MAE

HETIC HF/HF 14 16 18 0.3547 0.5703 0.2018
Hist. HF HF/HF 12 2 0 0.3385 0.5399 0.2038
Hist. Daily Daily/HF 0 0 0 0.2838 0.4989 0.2370
CJV ../HF 0 2 1 0.0561 0.1329 0.3618
FGK Daily/HF 4 0 1 0.2412 0.4507 0.2647

Hist. Daily Daily/Daily - 0 1 0.2220 0.4381 0.2717
CJV ../Daily - 2 0 0.0386 0.1163 0.3938
FGK Daily/Daily - 0 4 0.1861 0.3903 0.3024
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Table 7: Stock Returns Predictability: Market Factor

The Table provides the summary of the stock return predictability in terms of the adjusted R2 from

regressing daily the series of realized stock excess returns on the predicted market beta rRealized
i,t =

αi+γiβ
Predicted
i,t +εi,t, ∀t. The realized returns are calculated each day over the period to the average

maturity of options used in the HETIC estimation. The predicted HETIC, Historical HF betas are

using high-frequency data, Historical Daily and FGK betas are using daily sampled returns, while

CJV beta does not rely on any historical data for estimation. The average R2 values are simple

averages over all DJ30 stocks for a given method. Panel (a) provides detailed information stock by

stock. Panel (b) gives a summary and different methods predictive power comparison in terms of

the number of individual regressions where a given method achieves the best R2 across all methods.

(a) Individual Regressions Explanatory Power

Adjusted R2

Ticker HETIC Hist. HF Hist. Daily CJV FGK

MMM 0.0067 0.0109 0.0054 0.0068 0.0104
AA -0.0003 0.0048 0.0043 0.0029 0.0107
AXP 0.0376 0.0059 0.0049 0.0080 0.0068
AIG 0.0007 0.0065 0.0167 0.0131 0.0182
T 0.0247 0.0004 -0.0002 -0.0022 0.0024
BAC 0.0142 0.0033 0.0008 0.0009 0.0005
BA -0.0002 -0.0003 0.0060 0.0065 0.0058
CAT 0.2145 0.0838 0.1420 0.0016 0.0998
CHV 0.0191 -0.0027 0.0088 0.1538 0.0056
C 0.0250 0.0195 0.0400 0.0083 0.0187
KO 0.0354 0.0285 0.0283 0.0024 0.0336
DD 0.0088 0.0000 0.0012 0.0135 -0.0003
XOM 0.0066 0.0136 0.0098 0.0060 0.0085
GE 0.0076 0.0117 0.0040 0.0387 0.0005
GM 0.0147 0.0275 0.0105 0.0080 0.0028
HPQ 0.0160 0.0375 0.0255 0.0013 0.0071
HD 0.0500 0.0766 0.0676 0.0222 0.0014
INTC 0.0047 0.0318 0.0303 0.0135 0.0219
IBM 0.0103 0.0009 0.0001 -0.0003 -0.0004
JNJ -0.0005 0.0131 0.0094 0.0183 -0.0006
JPM 0.0157 0.0103 0.0328 0.0076 0.0060
MCD 0.0616 0.0696 0.0376 -0.0006 0.0340
MRK 0.0526 0.0506 0.0600 0.0064 0.0391
MSFT 0.0097 -0.0004 0.0072 0.0089 0.0008
PFE 0.0052 0.0295 0.0230 0.0098 0.0087
PG 0.0197 0.0229 0.0072 0.0185 0.0072
UTX 0.0196 0.0302 0.0303 0.0019 0.0080
VZ 0.0013 0.0087 0.0157 0.0185 0.0359
WMT 0.0429 0.0164 0.0067 0.0252 0.0051
DIS -0.0003 0.0011 0.0005 -0.0001 -0.0005

Average 0.0241 0.0204 0.0212 0.0140 0.0133
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Table 7: Stock Returns Predictability: Market Factor (cont.)

(b) Individual Regressions: Summary

Market Factor Best Average Average Average
β R2 R2 Corr. MAE

HETIC 8 0.0241 0.0588 0.0840
Hist. HF 10 0.0204 0.0488 0.0839
Hist. Daily 4 0.0212 0.0468 0.0843
CJV 5 0.0140 -0.0646 0.0838
FGK 3 0.0133 0.0206 0.0841
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Table 8: Mean Market Factor Beta Explanatory Power

The Table provides the summary of the cross-sectional stock return predictability with the market

factor beta using different methods of beta calculation, i.e. we regress cross-sectionally the excess

return on the mean predicted beta for each method (r̄i = α + λβ̄m,i + εi,∀i). The realized excess

returns are calculated each day over the period to the average maturity of options used in the

HETIC estimation. The predicted HETIC, Historical HF betas are using high-frequency data,

Historical Daily and FGK betas are using daily sampled returns, while CJV beta does not rely on

any historical data for estimation.

Market Factor β R2 α Risk Premium (λ)
(per month) (per month)

HETIC 0.3407 -0.0050 0.0166
Hist HF 0.2580 0.0016 0.0107
Hist Daily 0.2797 0.0007 0.0117
CJV 0.2367 -0.0076 0.0156
FGK 0.2755 -0.0006 0.0142
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Table 9: Stock Beta Predictability Overview: Statistical Factors

The Table provides the summary of the statistical factor betas predictability for the DJ30 stocks in

terms of the coefficient of determination (adjusted R2), i.e. in terms of the explained variability of

the Realized beta. We derive the statistical factors by running a Principal Component Analysis on

the variance-covariance matrix of high-frequency returns of the S &P 100 stocks in the period from

January 2, 1996 until December 30, 2000. The first principal component is highly correlated with

the market factor, hence we present in this table the analysis for the second and the third principal

components. Over the sample period from January 2, 2001 until June 30, 2007 we run the regression

of the daily time series of the Realized factor beta on the predicted factor beta and a constant for

several methods of beta construction (β
(k),Realized
i,t = αi + λiβ

(k),Predicted
i,t + εi,t,∀t, k = 2, 3). As

we have overlapping observations, we use Newey-West standard errors with 30 lags to account for

autocorrelation in t-statistic calculation. Realized beta is calculated using the high-frequency data.

We calculate it on each date for the period until the mean maturity of the available individual options

on that day used for HETIC calculation. The average R2 values are simple averages over the DJ30

stocks for a given method. The best R2 column shows in how many cases out of 30 regressions the

best predictability was achieved.

Factor Best α = 0 λ = 1 Average Average Average
β R2 not rejected not rejected R2 Correlation MAE

Second PCA factor β results

HETIC 29 14 3 0.6548 0.8030 0.1911
Hist. HF 1 15 10 0.6010 0.7595 0.1613
Hist. Daily 0 16 5 0.5637 0.7323 0.1758

Third PCA factor β results

HETIC 10 23 1 0.1604 0.3651 0.1487
Hist. HF 13 11 1 0.1793 0.3844 0.0849
Hist. Daily 7 10 0 0.1549 0.3352 0.1052
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Table 10: Stock Returns Predictability: Market vs. Multifactor Model

The Table provides the summary of the stock return predictability in terms of the adjusted R2 from

regressing daily the series of realized stock excess returns on the predicted market beta: rRealized
i,t =

αi + γiβ
Predicted
i,t + εi,t, ∀t as well as regressing daily the series of realized stock excess returns

on the predicted market beta and the additional two statistical factor betas: rRealized
i,t = αi +

γ
(M)
i β

(M),Predicted
i,t + γ

(2)
i β

(2),Predicted
i,t + γ

(3)
i β

(3),Predicted
i,t + εi,t, ∀t in the period from January 2,

2001 until June 30, 2007. The predicted HETIC, Historical HF betas are using high-frequency data,

Historical Daily betas are using daily sampled returns. The realized excess returns are calculated

each day over the period to the average maturity of options used in the HETIC estimation. The

second and the third principal components are calculated using the variance-covariance matrix of

high-frequency S&P 100 stocks’ returns from January 2, 1996 until December 30, 2000. The average

R2 values are simple averages over all DJ 30 stocks for a given method.

Factor Average R2 for Factor beta regressions
β Market Factor Three Factors

HETIC 0.0447 0.0895
Hist HF 0.0381 0.0885
Hist Daily 0.0355 0.0790
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Table 11: Stock Beta Predictability with Regimes: Market Factor

The Table provides the summary of the market factor beta predictability for the DJ30 stocks in

terms of the coefficient of determination (adjusted R2), i.e. in terms of the explained variability

of the Realized beta. Over the whole sample period from January 2, 1996 until June 30, 2007

we identify two different regimes (stable and volatile) using a two-state Markov-Switching model

based on the model-free implied volatilities. For each regime we run the regression of the daily time

series of the Realized market beta on the predicted market beta and a constant for several methods

of beta construction (βRealized
i,t = αi + λiβ

Predicted
i,t + εi,t,∀t). Realized beta is calculated on each

day for the period until the mean maturity of the available individual options on that day used

for HETIC calculation. The predicted HETIC, Historical HF betas are using high-frequency data,

Historical Daily and FGK betas are using daily sampled returns, while CJV beta does not rely on

any historical data for estimation. The Realized betas are computed using the high-frequency data.

Panel (a) gives an overview for all methods. The average R2 values are simple averages over all DJ30

stocks for a given method. Best R2 column shows the number of cases in which the given method

has the best predictability across all methods. For two stocks out the DJ30 the Markov-Switching

model esimates such a low number of time perids being in the volatile regime that the regression

results were not representative. We therefore do not report R2 and the best method in these cases.

In Panel (b) the t-statistics for the difference in mean R2 across the DJ30 individual stocks for

selected methods are provided. To account for heteroskedasticity we use White standard errors in

t-statistic calculation.

(a) Individual Regressions: Summary

Regime 1 (stable) Regime 2 (volatile)
Market β Average Best R2 Average Best R2

method R2 cases R2 cases

HETIC 0.3004 13 0.4365 19
Hist. HF 0.2892 9 0.3808 4
Hist. Daily 0.2468 3 0.3107 2
CJV 0.0470 0 0.0996 1
FGK 0.2128 5 0.2644 2

(b) Explanatory Power Difference

Hist. HF Hist. Daily
Regime 1 (stable)
HETIC 0.8438 3.5143
Hist HF 3.0615

Regime 2 (volatile)
HETIC 1.8973 3.3724
Hist HF 4.0583
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