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Dynamic Hedging in Incomplete Markets: A Simple Solution

Abstract

Despite much work on hedging in incomplete markets, the literature still lacks tractable
dynamic hedges in plausible environments. In this article, we provide a simple solution to this
problem in a general incomplete-market economy in which a hedger, guided by the traditional
minimum-variance criterion, aims at reducing the risk of a non-tradable asset. We derive fully
analytical optimal hedges and demonstrate that they can easily be computed in various stochastic
environments. Our dynamic hedges preserve the simple structure of complete-market perfect
hedges and are in terms of generalized “Greeks,” familiar in risk management applications, as
well as retaining the intuitive features of their static counterparts. We obtain our time-consistent
hedges by dynamic programming, while the extant literature characterizes either static or myopic
hedges, or dynamic ones that minimize the variance criterion at an initial date and from which
the hedger may deviate unless she can pre-commit to follow them. We demonstrate that our
dynamically optimal hedges typically outperform their static and myopic counterparts under
plausible economic environments. We also show that our results can be applied to portfolio

management with tracking-error.
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1. Introduction

Perfect hedging is a risk management activity that aims to eliminate risk completely. In theory,
perfect hedges are possible via dynamic trading in frictionless complete markets and are obtained
by standard no-arbitrage methods (e.g., Cvitanic and Zapatero, 2004). In reality, however, “per-
fect hedges are rare,” as simply put by Hull (2008). Despite the unprecedented development in
the menu of financial instruments available, market frictions render markets incomplete, making
perfect hedging impossible. Consequently, hedging in incomplete markets has much occupied the
profession. The traditional, pragmatic approach is to employ static minimum-variance hedges
(e.g., Stulz, 2003; McDonald, 2006; Hull, 2008) or the corresponding myopic hedges that repeat
the static ones over time. While intuitive and tractable, these hedges are not necessarily optimal
in multi-period settings and may lead to significant welfare losses (e.g., Brandt, 2003). Moreover,
they do not generally provide perfect hedges in dynamically complete markets. The alternative
route is to consider richer dynamic incomplete-market settings and characterize hedges that
maximize a hedger’s preferences or provide the best hedging quality. The latter is measured by
various criteria in terms of means and variances of the hedging error, as given by the deviation
of the hedge from its target value. Despite much work, the literature still lacks tractable dy-
namic hedges in plausible stochastic environments, with explicit solutions arising in a few settings

(typically with constant means and volatilities of pertinent processes).

In this paper, we provide tractable dynamically optimal hedges in a general incomplete-
market economy by employing the minimum-variance criterion. We demonstrate that these
hedges retain the basic structure of perfect hedges, as well as the intuitive elements of the static
minimum-variance hedges. Towards that, we consider a hedger who is concerned with reducing
the risk of a non-tradable or illiquid asset, or a contingent claim at some future date. Notable
examples include various commodities, human capital, housing, commercial properties, various
financial liabilities, executive stock options. The market is incomplete in that the hedger cannot
take an exact offsetting position to the non-tradable asset payoff by dynamically trading in the
available securities, a bond and a stock (or futures or any other derivative) that is correlated
with the non-tradable. We employ the familiar minimum-variance criterion for the quality of the
hedging but considerably differ from the literature in that we account for the time-inconsistency
of this criterion and obtain the solution by dynamic programming. We here follow a methodology
developed in the context of dynamic mean-variance portfolio choice in Basak and Chabakauri
(2008). In dynamically complete markets, there is no time-inconsistency issue (unlike the problem
in Basak and Chabakauri) and our dynamically optimal minimum-variance hedges reduce to
perfect hedges, unlike their static or myopic counterparts. In incomplete markets, we show that
the variance criterion becomes time-consistent only when the stock has zero risk premium or
when considered under any risk-neutral probability measure (which is not unique here). Our
dynamically optimal hedge can then alternatively be obtained by minimizing such a criterion

under a specific risk-neutral measure.



We obtain a fully analytical characterization of the dynamically optimal minimum-variance
hedges in terms of the exogenous model parameters. The complete-market dynamic hedge,
obtained by no-arbitrage, is determined by the “Greeks” that quantify the sensitivities of the
asset value under the unique risk-neutral measure to the pertinent stochastic variables in the
economy. Ours is given by generalized Greeks, still representing the asset value sensitivities
to the same variables, but now in terms of an additional parameter accounting for the market
incompleteness and where the asset-value is under a specific risk-neutral measure accounting for
the hedging costs. The hedges are in terms of the Greeks since, as we demonstrate, a higher
variability of asset value implies a lower quality of hedging, and hence the need to account for
asset-value sensitivities. We further demonstrate the tractability and practical usefulness of our
solution by explicitly computing the hedges for plausible intertemporal economic environments

with stochastic market prices of risk and volatilities of non-tradable asset and stock returns.

We next compare the performances of our dynamically optimal hedges with those of the
minimum-variance hedges employed in the literature and practice. We quantify the relative
performance by the percentage increase or decrease in the expected hedging error variance when
the hedger switches from our hedge to the alternative one. Two popular alternatives are the classic
static hedge, initially minimizing the hedging error variance and subsequently not readjusting,
and the myopic hedge repeating over time the static one with small horizons. These popular
hedges are simply driven by the comovement of the stock return and the non-tradable asset
payoff over the relevant horizon. Our dynamic hedge inherits this basic structure, but now
tracking the comovement between the instantaneous stock return and the non-tradable asset value
under our risk-neutral measure, and so additionally capturing the arrival of new information.
Consequently, we show that our dynamic hedge typically outperforms the static and myopic
ones in plausible intertemporal settings for stock and non-tradable asset dynamics, especially
when there is predictability in the non-tradable asset. Only in the special case of random walk
processes do the static and myopic hedges coincide with ours. We also compare our hedges
with the dynamic hedges considered in the literature that minimize the hedging error variance
sitting at an initial date. These hedges, which we refer to as the “pre-commitment” hedges,
are generically different from ours since they do not account for the time-inconsistency of the
variance criteria and the hedger may deviate from them at later dates unless she can pre-commit
to follow them. By definition, a pre-commitment hedge outperforms ours at the initial date. We
demonstrate that for a one-year hedging horizon and plausible parameters, it requires less than
half a year for our hedge to start outperforming when the stock and the non-tradable asset follow

geometric Brownian motions (GBMs).

We generalize our basic framework to the case when the hedger additionally accounts for the
mean hedging error, trading it off against the hedging error variance, as commonly considered
in the literature under static settings. We also relate this mean-variance hedging to the bench-
marking literature in which a money manager’s performance is evaluated relative to that of a

benchmark. We show that the dynamic hedge now has an additional speculative component and



additional hedging demands due to the anticipated speculative gains or losses, as in the related
literature. We also show that our main baseline results can easily be extended to the case of

multiple non-tradable assets and stocks.

The subject of hedging is, of course, prevalent in the literature on derivatives and risk man-
agement. Major textbooks, Duffie (1989), Siegel and Siegel (1990), Stulz (2003), Cvitanic and
Zapatero (2004), McDonald (2006), Hull (2008), all present the classic static minimum-variance
hedging and demonstrate its usefulness for real-life risk management applications. Ederington
(1979), Rolfo (1980), Figlewski (1984), Kamara and Siegel (1987), Kerkvliet and Moffett (1991),
In and Kim (2006) employ minimum-variance static hedges and evaluate their quality in differ-
ent empirical applications. Kroner and Sultan (1993), Lioui and Poncet (2000), Brooks, Henry
and Persand (2002) study the performance and economic implications of closely related myopic
hedges. In an economy with a static mean-variance hedger, Anderson and Danthine (1980, 1981)
study futures hedging and evaluate its impact on production, while Hirshleifer (1988) derives
futures risk premia under transaction costs. Roll (1992), Chan, Karceski and Lakonishok (1999),
Costa and Paiva (2002), Jorion (2003), Gomez and Zapatero (2003), Cornell and Roll (2005)
employ static mean-variance criteria and consider portfolio management with tracking error, de-
viation from a benchmark, which is just the opposite of hedging error. In the literature above, the
hedger either cannot rebalance her portfolio over time or is myopic and looks one period ahead
only. This limitation is underscored by Brandt (2003) who demonstrates that when hedging S&P
500 index options under CARA utility, the multi-period hedges can generate substantial welfare

gains.

A steadily growing strand of work investigates optimal dynamic hedges consistent with a
hedger’s utility maximization in typically continuous-time incomplete market settings. Breeden
(1984) provides optimal hedging policies with futures in terms of the value function for a general
utility function over intertemporal consumption. Stultz (1984) derives explicit optimal hedges
with foreign currency forward contacts when the exchange rate follows a GBM and the hedger
has logarithmic utility over intertemporal consumption. He further argues that this hedger
behaves like a myopic mean-variance one. Adler and Detemple (1988) consider the hedging of
a non-traded cash position for logarithmic utility over terminal wealth and provide an explicit
solution in complete markets, and a solution in terms of the value function in incomplete markets.
Svensson and Werner (1993), Tepla (2000) and Henderson (2005) study the optimal hedging of
non-tradable income or assets for general utility over intertemporal consumption or terminal
wealth. To obtain explicit solutions, these authors specialize to constant relative risk aversion
(CARA) preferences, GBM tradable asset prices and an income process following an arithmetic
Brownian motion (ABM), while Henderson additionally obtains hedges for GBM and mean-
reverting incomes in incomplete and compete markets, respectively. For more general processes
or utilities, the solutions in Svensson and Werner and Henderson are typically in terms of value
functions, while in Tepla in terms of sensitivities of tradable wealth with respect to asset and

state prices. Duffie, Fleming, Soner and Zariphopoulou (1997) and Viceira (2001) consider the



hedging of stochastic income with constant relative risk aversion (CRRA) preferences and the
tradable asset and income following GBMs and discrete-time lognormal processes, respectively.
The former work demonstrates the existence of the solution in a feedback form and derives its
asymptotic behavior for large wealth, while the latter work derives a log-linear approximation

for the optimal policies in discrete time.

The rapidly growing so-called “mean-variance” hedging literature in dynamic incomplete
market settings studies optimal policies based on hedging error means and variances. A large
body of literature characterizes these hedges for a quadratic criterion over the hedging error.
In the context of futures hedging, Duffie and Richardson (1991) provide explicit optimal hedges
that minimize the expected squared error when both the tradable and non-tradable asset prices
follow GBMs. Schweizer (1994) and Pham, Rheinlander and Schweizer (1998) in a more general
stochastic environment obtain a feedback representation for the optimal policy. Gourieroux,
Laurent and Pham (1998) derive hedges in terms of parameters from a specific non-tradable
asset payoff decomposition, but are difficult to obtain explicitly. Bertsimas, Kogan and Lo
(2001) solve the quadratic hedging problem via dynamic programming and numerically compute
the optimal hedges. Schweizer (2001) provides a comprehensive survey of this literature with
further references and notes that finding tractable optimal quadratic hedges is still an open
problem. To our best knowledge, with the exception of Duffie and Richardson, there are no

works that derive explicit quadratic hedges.

Duffie and Richardson (1991), Schweizer (1994), Musiela and Rutkowski (1998) solve the dy-
namic minimum-variance hedging problem by reducing it to a quadratic one, thus characterizing
the pre-commitment hedges at an initial date from which the hedger may deviate in the future.
Duffie and Richardson and Bielecki, Jeanblanc and Rutkowski (2004) also characterize the pre-
commitment minimum-variance hedge subject to a constraint on the mean hedging error. This
literature, however, lacks explicit results in the case of stochastic mean returns and volatilities,
and explicit hedges are only obtained in Duffie and Richardson for GBM asset prices. Duffie and
Jackson (1990) derive explicit minimum-variance hedges in futures markets under the special
case of martingale futures prices, which makes the hedging problem time-consistent. In the case
of mean-variance hedging, by employing backward induction, Anderson and Danthine (1983)
obtain hedges in a simple three-period production economy, while Duffie and Jackson (1989) in

a two-period binomial model of optimal innovation of futures contracts.

The remainder of the paper is organized as follows. In Section 2, we describe the economic
setting and determine the dynamically optimal minimum-variance hedges via dynamic program-
ming. We then explicitly compute these hedges in plausible environments with stochastic mean
returns and volatilities, and present the time-consistency conditions. In Section 3, we compare
our dynamically optimal hedge with the pre-commitment, static and myopic hedges, while in
Section 4, we generalize our baseline model to the case of mean-variance hedging and the case of

multiple assets. Section 5 concludes. Proofs are in the Appendix.



2. Dynamic Minimum-Variance Hedging

2.1. Economic Setup

We consider a continuous-time incomplete-market Markovian economy with a finite horizon [0, T].
The uncertainty is represented by a filtered probability space (2, F,{F:}, P), on which are defined
two correlated Brownian motions, w and wy, with correlation p. All stochastic processes are
assumed to be well-defined and adapted to {F;,t € [0,T]}, the augmented filtration generated

by w and wy.

An agent in this economy, henceforth the hedger, is committed to hold a non-tradable asset
with payoff X at time T". The non-tradable asset can be interpreted in different ways depending
on the application. The process X may represent the price of oil, copper or other commodity
that the hedger is committed to sell at time T, or may denote the price of a company share
that the hedger cannot trade so as to preserve company control. Alternatively, the non-tradable
asset may be interpreted as a firm or a project cash flow, the realization of which is defined
by the non-tradable state variable X, such as economic conditions, temperature or precipitation
level.! Without loss of generality, we adopt the first interpretation and postulate the price of the

non-tradable asset to follow the dynamics

(i()it = m(Xy, t)dt + v( Xy, t)dwxy, (1)
where the stochastic mean, m, and volatility, v, are deterministic functions of X. The risk
associated with holding the non-tradable asset can be hedged by continuous trading in two
securities, a riskless bond that provides a constant interest rate r and a tradable risky security.
Depending on the application, the risky security can be interpreted as a stock, a futures contract
or any other derivative security written on the non-tradable asset. Accordingly, the mean and
volatility of instantaneous returns on tradable security, which for expositional simplicity we call
the stock, in general may depend on the non-tradable asset price, X. The dynamics for the stock

price, S, is then modeled as

dS;

? = [L(St,Xt,t)dt—i-O'(St,Xt,t)dwt, (2)
t

where the stochastic mean return, u, and volatility, o, are deterministic functions of S and X.

We will denote p, ot, my and v as shorthand for the coefficients in equations (1)—(2).

The hedger chooses a hedging policy, 6, where 6; denotes the dollar amount invested in the

stock at time ¢, given initial wealth Wy. The hedger’s tradable wealth W then follows the process

dW; = [TWt + et(,ut - 7")] dt + Oiodwy. (3)

'Tf the terminal payoff is a non-linear function of some state variable Y, h(Y7), one can always redefine the
state variable to be X; = F;[h(YT)], so that the terminal payoff is Xr.



The market in this economy is incomplete in that it is impossible to hedge perfectly the fluc-
tuations of the non-tradable asset by tradable wealth. Dynamic market completeness obtains
only in the special case of perfect correlation between the non-tradable asset and stock returns,
p = %1, in which case the non-tradable asset can be replicated by stock trading and the hedge
portfolio uniquely determined by standard no-arbitrage methods. Since perfect hedging is not
possible in incomplete markets, the common approach in the literature is to determine a hedging

policy according to some criterion that determines the quality of hedging.

The mean-variance hedging literature addresses this for hedging criteria based on the mean
and variance of the hedging error, X7 — Wr. The mean squared error, Ey(Xr — Wr)?, is a com-
monly employed measure for the quality of hedging from the class of mean-variance criteria (e.g.,
Duffie and Richardson, 1991; Schweizer, 1994; Gourieroux, Laurent and Pham 1998; Bertsimas,
Kogan and Lo, 2001, among others). In general, these quadratic hedges have a complex struc-
ture in that they are derived either in a recursive feedback form (e.g., Schweizer, 1994; Pham,
Rheinlander and Schweizer, 1998) or depend on parameters from a specific decomposition of the
non-tradable asset price X which are difficult to obtain explicitly (e.g., Gourieroux, Laurent and
Pham, 1998). Duffie and Richardson provide an explicit quadratic hedge for the special case
of both the non-tradable asset and stock prices following GBMs. However, for richer stochastic

environments, quadratic hedging has failed to produce tractable, explicit policies.

Another natural criterion for the quality of hedging is the variance of the hedging error,
vary[Xp — Wr], widely employed in static and myopic settings (analyzed in Sections 3.2-3.3),
as well as dynamic settings (e.g., Duffie and Richardson, 1991; Schweizer, 1994; Musiela and
Rutkowski, 1998; Bielecki, Jeanblanc and Rutkowski, 2004, among others). This literature ob-
tains the variance-minimizing policies primarily as a special case of the quadratic hedging problem
sitting at an initial date. The time-inconsistency of the variance criterion, however, may induce
the hedger to deviate from the initial policy at a later date, as discussed in Section 2.4. More-
over, as in the quadratic case, the variance-minimizing policies have not generally been obtained
explicitly, with the notable exception being the Duffie and Richardson case of both risky assets
following GBMs.

In this paper, we employ the variance-minimizing criterion for the hedger whose problem is
mein var X — Wr], (4)

subject to the dynamic budget constraint (3). We solve this problem by dynamic programming

and hence provide the time-consistent dynamic hedging policy.

2.2. Dynamically Optimal Hedging Policy

In this Section, we determine the dynamically optimal minimum variance hedges. The application
of dynamic programming, however, is complicated by the fact that the variance criterion is

non-linear in the expectation operator and in general not time-consistent. To address these



problems, we follow the approach in Basak and Chabakauri (2008) developed in the context
of dynamic mean-variance portfolio choice and derive a recursive formulation for the hedger’s
objective function, which yields the appropriate Hamilton-Jacobi-Bellman (HJB) equation of
dynamic programming. Proposition 1 reports the optimal policy derived from the solution to

this equation and the resulting optimal quality of the hedge.

Proposition 1. The optimal hedging policy and the corresponding variance of the hedging error

are given by

, pvi o OB [Xpe "I 0] O [Xpe (T
or = x
! o 0Xy + 5 S, ) (5)
T OFE! [ Xr]\2
Wil = — p? 2y2 (Y2 1AT]
var [ Xe —Wy| = (1 p)Et[/t VSXS( X )ds}, (6)

where Wi is the terminal tradable wealth under the optimal hedging policy, and Ef|-] denotes the
expectation under the unique probability measure P* on which are defined two Brownian motions
wy and w* with correlation p such that the processes for the non-tradable asset, X, and stock
price, S, are given by

dXy pa =T . dSt «
X, - (mt — pu = ) dt + vidw’yy, S rdt + ordwy, (7)

and the P*-measure is defined by the Radon-Nikodym derivative

dP* _1 (Tips=r T ps=r
dP ] éfo (HO'S )st fO #ds dws, (8)

Proposition 1 provides a simple, fully analytical characterization of the optimal hedging policy
in terms of the exogenous model parameters and a probability measure P* (discussed below). We
first note that the optimal hedging policy (5) preserves the basic structure of that in complete
markets. Indeed, the perfect hedging policy in complete markets (with p = +1), obtained by

standard no-arbitrage methods, is given by

o Py OB Xre Y] QR [Xpe ) o
g dX, ' S, ’
where Ef*¥[-] denotes the expectation under the unique risk-neutral measure and Ef*N [ Xpe~"(T=1)]
represents the unique no-arbitrage value of the asset payoff X7. The complete-market dynamic
hedge is comprised of the Greeks, given by the sensitivities of the time-t asset value to the non-
tradable asset and stock prices (X and S dynamics under the risk-neutral measure are as in (7)
with p = £1). Thus, our dynamic hedge (5) is a simple generalization of the complete-market
perfect hedge, with the additional parameter p accounting for the market incompleteness and the
measure P* replacing the risk-neutral measure. This is in stark contrast to the optimal hedging
policies obtained in the mean-variance hedging literature which reduce to perfect hedges in com-

plete markets but do not maintain their intuitive structure in incomplete markets. Moreover, as



demonstrated in Section 2.3, our simple structure allows us to explicitly compute the optimal

hedges under various stochastic economic setups.

The probability measure P* naturally arises in our setting and facilitates much tractability.

To highlight the role of this measure, we note the following relation (as derived from Proposition 1

in the Appendix) between the expected discounted non-tradable asset payoff, Xpe "I under
the new and original measures:
Ef[Xpe "] = B[ Xpe T — By [Wie " TD — ). (10)

The residual term, Et[W:;ie_T(T_t) — W4, represents the expected discounted gains in tradable
wealth that the hedger forgoes in order to hedge the non-tradable asset over the period [¢, T, that
is, the cost of hedging. So, the right-hand side of (10) represents the expected discounted terminal
payoff net of the hedging cost, while the left-hand side the expectation under P*. In other
words, the probability measure P* incorporates the hedging cost when computing the expected
discounted asset payoff. Henceforth, we label P* as the “hedge-neutral measure” (see Remark
1), and the quantity E;[X7e "(T=9] as the “hedge-neutral value” of the payoff X7, analogously
to the risk-neutral value in the complete-market case. We further note that the hedge-neutral
value can also be interpreted as the minimal time-t value of a self-financing minimum-variance
hedging portfolio for which the expected hedging error, Ey[ X7 —W7], is zero. To demonstrate this
interpretation, we observe from (10) that the expected hedging error is zero only if the initial
value of the self-financing portfolio equals the expected discounted non-tradable asset payoff
under the hedge-neutral measure, that is, W; = Ef[Xpe " (T=9]. Since the hedge-neutral value is
related to the expected hedging error, the hedger guided by the minimum-variance criterion can
achieve a better hedging quality by accounting for the sensitivities of the hedge-neutral value.
Hence, the hedges are in terms of the hedge-neutral value sensitivities, which we interpret as the

delta-hedges, as in the standard analysis of the Greeks.

The quality of the optimal hedge, as measured by the variance of the hedging error (6), also
has a simple structure. The hedging error variance is driven by the level of market incompleteness,
p?, and becomes zero in complete markets. Moreover, the quality of the hedge decreases with
higher volatility of the non-tradable asset, 14, or higher sensitivity of the hedge-neutral value with
respect to the asset price, OE} [X1]/0X¢, since it becomes more difficult to hedge the non-tradable

asset.

The optimal hedging policy (5) admits intuitive comparative statics with respect to the model
parameters. Assuming for simplicity that the market price of risk, (u¢ — r) /oy, is driven by the
variable X; only, we see that the total investment in absolute terms, |0;], is decreasing in the
stock price volatility, o, because higher volatility makes hedging less efficient. The correlation
parameter p has both a direct and an indirect effect on the magnitude and sign of the hedge. The
direct effect implies that the magnitude of the hedge is decreasing in the absolute value of the
correlation, |p|. Intuitively, for higher absolute correlation more wealth is allocated to the stock

as the hedge becomes more efficient. This effect is most pronounced in complete markets when



p = £1, and the non-tradable asset can perfectly be hedged. With zero correlation, p = 0, the
direct effect disappears as it becomes impossible to hedge the non-tradable asset. The indirect
effect enters via the joint probability distribution of the prices of tradable and non-tradable
assets. This latter effect, along with the effects of the non-tradable asset volatility, time horizon
and market price of risk, can only be assessed in specific examples for which the optimal hedge

can explicitly be computed.

Remark 1 (The hedge-neutral measure). Our hedge-neutral measure P* is a particular risk-
neutral measure, which is not unique in incomplete markets. A similar intuition for P* with the
same label is developed in Basak and Chabakauri (2008) in the context of dynamic mean-variance
portfolio choice, where this measure is shown to absorb intertemporal hedging demands in such
a setting. The measure P* also turns out to coincide with the so-called “minimal martingale
measure” solving mcgn E[—1In(dQ/dP)], where dQ/dP denotes the Radon-Nikodym derivative of

measure () with respect to the original measure P. The minimal martingale measure is argued to
arise naturally in the different context of “risk-minimizing hedging,” introduced by Follmer and
Sondermann (1986) and Follmer and Schweizer (1991). These works define the cost of hedging
as Cy = W, — fg 0,dS. /S, and minimize the risk measure, F;[(Cr — Cy)?], with respect to W,
and 6., for t < 7 < T. In contrast to our work, the resulting hedging policies do not satisfy
the budget constraint and require additional zero-mean inflows or outflows to it. As argued by
Pham, Rheinlander and Schweizer (1998) in the context of mean-variance hedging a more suitable

measure is the “variance-optimal measure” that solves mén E[(dQ/dP)?]. The reason is that in

general the optimal policy can be characterized in terms of the variance optimal measure, and
only in terms of the minimal martingale measure in the special cases where the two measures
coincide under the restrictive conditions of either fOT (s — 1)/0.ds being deterministic or the

stock price, S, not being affected by the state variables.

2.3. Applications

In this Section, we demonstrate that in contrast to the extant mean-variance hedging literature,
our dynamically optimal minimum-variance hedges can easily be explicitly computed in settings
with stochastic means and volatilities. We here interpret the hedging instrument as the stock of
a firm that produces the commodity the hedger is committed to hold. It is then plausible that
the stock mean return is increasing in the commodity price and the stock volatility decreasing,
since the higher commodity price tends to increase the firm cash flows and decrease their risk.
Towards this, we consider two examples, each accounting for one of these effects.? In both ex-
amples, the non-tradable asset price follows a mean-reverting process, which is consistent with

the empirical evidence on oil and other commodity prices. For example, Schwartz (1997) and

2 A more realistic model would combine the two effects and may include dependence on the state variables that
affect both tradable and non-tradable asset prices. In Section 4.2 we show that our model can easily be extended
to incorporate additional state variables.



Schwartz and Smith (2000) provide supporting evidence for Gaussian mean-reverting logarith-
mic commodity prices, while Dixit and Pindyck (1994) and Pindyck (2004) employ a geometric

Ornstein-Uhlenbeck process to model and estimate oil price dynamics.

In our first example, the non-tradable asset price follows a mean-reverting Ornstein-Uhlenbeck
(OU) process:?
dX; = MX — X3)dt + vdwxs, (11)

with A > 0. The stock price has mean returns linear in price X and follows the dynamics

considered in Kim and Omberg (1996) in the context of dynamic portfolio choice:

Cg? = (r + o Xy)dt + odwy. (12)

According to Proposition 1, finding the optimal hedging policy amounts to computing the ex-
pected non-tradable payoff under the hedge-neutral measure. Since under the hedge-neutral
measure the non-tradable asset price, X, also follows an OU process, its first two moments are
straightforward to obtain (e.g., Vasicek, 1977). Corollary 1 reports the optimal hedging policy

and its corresponding quality.

Corollary 1. The optimal hedging policy and the corresponding variance of the hedging error
for the mean-reverting Gaussian model (11)-(12) are given by
9: — &ﬂe—(r+A+pD)(T—t)7 (13)
o
1 — o—20tpp)(T—1)
2(A + pv)

var [ Xr — Wi = (1 - p*)p? (14)

The optimal hedge is a simple generalization of the complete-market perfect hedge, with pv
replacing 7 in complete markets to account for the imperfect correlation between the stock and
non-tradable asset. This explicit solution also yields further insights that cannot be analyzed
in the general framework of Section 2.2. In particular, Corollary 1 reveals that the sign of the
hedge is given by that of the correlation parameter, p. When the non-tradable asset and stock
prices are positively correlated, only a long position in the stock can reduce the hedging error
variance, and vise versa for negative correlation. Moreover, the absolute value of the hedge and
the variance of the hedging error are decreasing in the speed of mean-reversion parameter, .
This is intuitive since a higher speed of convergence to the mean leads to a lower variance of
the non-tradable asset payoff, and hence a smaller hedge. The hedging quality also improves as
the degree of market completeness, captured by p?, increases. Moreover, the hedging quality is
higher for a positive correlation than for a negative one of the same magnitude since positively

correlated stock better tracks the non-tradable asset price.

3The OU process allows considerable tractability at the cost of possibly negative prices. Alternatively, the
hedging strategies can explicitly be derived in a model with the stock mean return driven by a mean-reverting
logarithmic non-tradable asset price, as in Schwartz (1997) and Schwartz and Smith (2000). In this case all prices
would remain positive.
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The second example considers the case of the stock volatility being decreasing in the non-

tradable asset price, which follows a square-root mean-reverting process
dX; = MX — Xy)dt + v/ Xydwyy, (15)

with A > 0. The stock price follows the stochastic-volatility model employed by Chacko and
Viceira (2005) in the context of portfolio choice:

dS; /1

As in the previous example, the explicit hedge follows easily from Proposition 1. Corollary 2

presents the optimal hedge along with the associated variance of the hedging error.

Corollary 2. The optimal hedging policy and the corresponding variance of the hedging error
for the mean-reverting stochastic-volatility model (15)—(16) are given by

0; = p,;Xte—(r+/\+pz7(u—r))(T—t)7 (17)
o T - ‘2X1 — e 2 +pp(p—r))(T—1)
vl Wil = = st — )

e~ MT—1) _ o—2(A\+p0(u—r))(T—t)

A+ 2p0(p—r)

£ (- )R - X) (18)

Corollary 2 reveals that the absolute value of the hedge is increasing in the non-tradable
asset price. This is because a high asset price implies a low stock volatility. Hence, a higher
stock holding is required to hedge the non-tradable asset. The sign of the optimal hedge equals
that of the correlation p and its absolute value is decreasing in the mean-reversion parameter
A. For the same reason as in the previous example, the hedging quality improves with increased

mean-reversion or degree of market completeness.

2.4. Time-Consistency Conditions

We here discuss the time-inconsistency of the variance minimization criterion and establish condi-
tions on the economy, albeit restrictive, under which time-consistency obtains. First, we observe

that by the law of total variance
vary [ Xp — Wrp] = Ey[vary (X — Wr)| + vary[Ep - (Xp — Wr)], 7> 0. (19)

Sitting at time ¢, the hedger minimizes the sum of the expected future (¢+ 7)-variance of hedging
error and the variance of its future expectation, both of which may depend on future strategies.
When the hedger arrives at the future time ¢ + 7, however, she minimizes just the variance at
that time, and regrets having taken into account the second term in (19), the time-¢ variance of

future expectation, since it vanishes at time ¢ + 7, and hence the time-inconsistency.
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The time-inconsistency issue disappears in complete markets (p = +1), where the non-
tradable asset can perfectly be replicated by dynamic trading, leading to zero hedging error
variance. However, it is still possible to have time-consistency of the variance criterion in an

incomplete-market economy under certain restrictions, as summarized in Proposition 2.

Proposition 2. Assume that the stock risk premium is zero, uy —r = 0. Then the variance
criterion (4) is time-consistent and the ensuing optimal dynamic minimum-variance hedging

policy is given by

—r(T—t) —r(T—t)
o = %XtaEt[XTe ] n StaEt[XTe ]

2
O¢ aXt 8St ( 0)

In an economy with no compensation for risk taking and where the stock is traded only
for hedging purposes, the variance criterion becomes time-consistent. The reason is that with
zero stock risk premium, the (discounted) tradable wealth reduces to a martingale and so the
hedging costs (second term in (10)) disappear. Consequently, the non-tradable asset, and hence
time-t hedge, are not affected by future policies, eliminating the time-inconsistency.* Moreover,
we see that the structure of the optimal hedge is as in complete and incomplete markets, but
now the original measure acts as the valuating expectation. This optimal hedge generates those
obtained by Duffie and Jackson (1990), who consider among other problems, minimum-variance
hedging with futures contracts which turns out to be time-consistent. As in Proposition 2, it
can be shown for their economic setting with martingale futures prices and interest accruing on
a futures margin account that the variance criterion is time-consistent and the optimal hedge
is given by (20), which generalizes their explicit hedges derived for martingale and geometric

Brownian motion non-tradable asset prices.

Proposition 2 also allows us to convert the minimum-variance hedging problem considered in

Section 2.2 to a time-consistent one, as discussed in Corollary 3.

Corollary 3. In our incomplete-market economy consider the class of risk-neutral probability
measures, P", parameterized by n, on which are defined two Brownian motions we and w" with

correlation p such that the processes for the non-tradable asset, X, and stock price, S, are given

by
= <mt — pyy =7 _ V31— p2nt> dt + ndw',, —dgt = rdt + opdwy, (21)
Ot t

ax,
Xt
and the P"-measure is defined by the Radon-Nikodym derivative

U] 1 (T ps=ry2, 2 T ps—r T 1
ap —e 2 fo ((%) +775>d5_f0 %dws—fo Nsdw; ’
dP

(22)

where wh is a Brownian motion uncorrelated with w and defined by dwj- = (dwxs—pdwy) //1 — p2.

4Formally, the first term in the law of total variance (19) depends only on future policies, while the second
term depends only on the time-t policy, 6:. As a result, the minimization of time-¢ variance does not lead to any
inconsistency.
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The following minimum-variance criteria
var] [ X7 — Wr, (23)

where the variance is taken under a risk-neutral measure P", are time-consistent with the optimal

hedge given by

OE" [XTefr(Tft)] OE" [XTefr(Tft)]
97] — &X t t
t Ot t 8Xt + St 8515

where E}[)] denotes the expectation under P". Forn =0, a risk-neutral measure is hedge-neutral

, (24)

and the optimal hedge (24) equals the dynamically optimal hedge (5).

Corollary 3 reveals that a risk-neutral measure adjusts the variance criterion so that it be-
comes time-consistent. The criterion (23) treats the non-tradable asset and stock price processes
as if they were under a risk-neutral measure. Under this measure the stock has mean return
equal to the riskless rate r, and hence zero risk premium, which implies time-consistency by
Proposition 2. The dynamically optimal hedge (5) is then obtained from the time-consistent
hedging problem when 7, = 0.

3. Comparison with Pre-commitment, Static and Myopic Hedges

In this Section, we compare our dynamically optimal hedging policy with popular minimum-
variance hedging policies employed in the finance literature and practice. First, we consider
the policy that minimizes the hedging error variance at an initial date. Second, we look at the
classic static hedge that minimizes the hedging error variance at an initial date and does not
allow subsequent portfolio rebalancing. Finally, we study the popular myopic hedge that in each

period hedges the changes in the non-tradable asset price over the next period.

To assess the relative performance of any given two policies, we compare their hedging error
variances. Since the conditional variances in general are stochastic, for tractability we consider a
relative performance measure that computes the percentage increase or decrease in the uncondi-
tional expected variance when the hedger switches from the dynamically optimal to an alternative

hedging policy:
Ey [Vart (XT _ Wj‘:‘lternative)]

Ey[vary (Xt — Wi)]

where Wg/terme#v¢ denotes the terminal tradable wealth under the alternative policy, O ",

At == - 17 (25)

considered in Subsections 3.1-3.3.> A positive relative performance measure implies that the
quality of the dynamically optimal hedge is on average higher than that of the alternative hedge,

in which case we say that the dynamically optimal hedge outperforms the alternative one.

SAll our relative performance results in Sections 3.2-3.3 (Propositions 4-5) remain valid for a more general,
conditional relative performance measure given by var:[ X7 — W] / var, [ X7 — W7] — 1.
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3.1. Comparison with Pre-commitment Policy

We here investigate the performance of the dynamically optimal hedging policy as compared with
that of the policy that minimizes the hedging error variance at an initial date 0, as considered
in the literature (e.g., Duffie and Richardson, 1991; Schweizer, 1994; Musiela and Rutkowski,
1998). As discussed in Section 2, the variance-minimizing hedger may find it optimal to deviate
from the latter policy at future dates unless she can pre-commit to follow it, and henceforth we

refer to it as the pre-commitment policy.

To our best knowledge, Duffie and Richardson are the only ones to provide an explicit ex-
pression for this policy in the context of hedging with futures contacts and interest accruing on a
futures margin account when the futures and non-tradable asset prices follow GBMs. Therefore,
we compare the two policies for the case of the non-tradable asset and stock prices following
GBMs:

dX
=L = mdt + vdwyy, (26)
Xi
d
@5 _ pdt + oduwy, (27)
St

where m, v, u and o are constants. The dynamically optimal hedge is obtained from Proposition
1, while the pre-commitment hedge along the lines of Duffie and Richardson (1991) adapted to
our setup. Proposition 3 presents the two policies and a simple condition for the dynamically

optimal hedge to outperform.®

Proposition 3. The dynamically optimal and pre-commitment policies for GBM non-tradable

asset and stock prices (26)-(27) are given by

o = PYx,elmmr—plu—n/a)T-0), (28)
g
etcommit — %Xte(mf'r‘fpl/(lu,fT)/U)(T*t) (29)

- T —r—pv —T)/0 T m—r—pv —-Tr)/0 - comma
_ “02 ((Xoe(m pr(u=n)/O)T _ y70)ert — (Xyel pr(u=r)/o)(T=t) _ t)) ,
Furthermore, 3 t < T such that the relative performance Ay > 0 for t > t, i.e., the dynamically

optimal hedge outperforms the pre-commitment hedge after a period of time.

Proposition 3 reveals that the dynamically optimal and pre-commitment hedges are generi-
cally different. While the dynamically optimal hedge is a simple generalization of the complete-
market hedge (with p substituted in), the pre-commitment hedge inherits an additional stochastic

term (second term in (29)). To see why this term arises, we observe that if the hedger follows

SProposition 3 does not report the variances of hedging errors under the two policies since this Section focuses on
relative rather than individual performances. These variances, however, can be deduced in the proof of Proposition
3 in the Appendix.
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Figure 1: Relative Performance of Dynamically Optimal and Pre-commitment
Hedges.

The figure plots the relative performance measure A; (equation (25)) as a function of time for varying levels
of market price of risk. The dynamically optimal policy outperforms the pre-commitment one whenever
Ay > 0. Correlation and horizon parameters are assumed to be p = 0.5 and T = 1. The volatility
parameter v = 0.36 is taken from the estimate in Schwartz (1997), based on weekly oil futures price data
in January 1990-1995, while market price of risk range of [0.15,0.6] is consistent with the estimates in
Mehra and Prescott (1985), Cogley and Sargent (2008), and others.

the dynamically optimal policy from time ¢ on, her expected hedging error is (as shown in the
Appendix)
E(Xp — Wi)e T = X elm=r=evin=n)/o)(T=t) _yy, (30)

Hence, the second term in (29) hedges the deviations of the expected discounted hedging error,
E(Xr — W3)e ")), from its time-zero value (compounded by a term reflecting accrued
interest in [0,¢]). The hedger tries to keep this deviation close to zero because a high variability
in the expected hedging error implies a high time-zero hedging error variance (from the law
of total variance (19)). So, when the second term in (29) is positive, the hedger reduces her
stock holding, and hence her anticipated tradable wealth, thereby increasing the future expected
hedging error making it closer to time-zero hedging error; and vise versa when the second term
is negative. The structure of the pre-commitment policy highlights the time-inconsistency of
the problem. It shows that sitting at time ¢, the hedger still behaves so as to maintain a low

time-zero rather than time-t hedging error variance.

Proposition 3 also reveals that the dynamically optimal hedge always outperforms the pre-
commitment one after a certain period of time. Since the pre-commitment hedge minimizes the

time-zero hedging error variance, it performs better for small time periods t. However, at later
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dates, the dynamically optimal hedge performs better since the time-inconsistency makes the pre-
commitment hedge suboptimal. In the case when the non-tradable asset and stock prices follow
GBMs, the relative performance measure, A, can explicitly be computed (as reported in the
proof of Proposition 3). Conveniently, this measure depends only on the correlation parameter
p, non-tradable asset volatility v, market price of risk (u — r)/o, and the hedging horizon T' — .
Since the relative performance measure turns out to not be sensitive to p and v, we focus below

on its behavior with respect to T'— ¢ and (u —7)/o.

We consider a specific example in which the non-tradable asset is oil and the stock represents
the stock of an oil producing company. The GBM model for oil prices is a special case of those
in Gibson and Schwartz (1990) and Schwartz (1997) when the convenience yield is assumed
constant rather than mean-reverting. Figure 1 plots the relative performance measure A; over
time for different market prices of risk. It demonstrates that for plausible parameters and one-
year hedging horizon, the dynamically optimal policy starts outperforming the pre-commitment
policy from mid-year on. Moreover, for lower market price of risk, the relative performance
measure gets closer to zero, reflecting the fact that the difference between the two policies is

reduced (as observed from the expressions (28)—(29)).

3.2. Comparison with Static Policy

We now examine the classic static hedging problem in finance where an initial hedge, chosen to
minimize the hedging error variance, is not readjusted throughout the hedging period. Due to
its tractability and intuitive appeal, the static minimum-variance hedge is widely used by both
practitioners and academics. The classic theory of the static hedge and its real-life applications
are presented in all the prominent textbooks in derivatives and risk-management (e.g., Duffie,
1989; Siegel and Siegel, 1990; Stultz, 2003; Cvitanic and Zapatero, 2004; McDonald, 2006;
Hull, 2008), as well as being employed in empirical works (e.g., Ederington, 1979; Rolfo, 1980;
Figlewski, 1984; Kamara and Siegel, 1987; Kerkvliet and Moffett, 1991;In and Kim, 2006).
As discussed in Section 4.1, a generalization of the static hedge to static mean-variance hedge
(incorporating additionally the mean in the hedging criterion) is also widely employed in the

literature.
A static hedger minimizes the variance of the hedging error at the initial date 0, subject to
the static budget constraint
Wp = Woe'™ + 00(Sp/So — ), (31)
and holds the initially chosen hedge, 85t /S, in units of stock, throughout the hedging horizon.
The solution to this problem is easily obtained and the time-t static hedge is given by’

covo(St/St, XT)

aitatic — (32)
varg [ST/St}
"Since the hedger holds the same number of units of stock over the horizon, 651" = (85'***¢/S)S;.
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The static hedge is simply driven by the comovement of the stock return and the non-tradable
asset payoff over the remaining hedging period. The hedge is positive when the stock is positively
correlated with the asset payoff since then the stock better tracks the asset payoff over the period.
We observe that our optimal dynamic hedge (5) can equivalently be rewritten as
covy(dSy /Sy, dEf [ Xpe (T
0: _ t( t/ ts ;[ T ]) (33)

O

Clearly, the dynamic hedge inherits the basic intuitive structure of the static hedge, but now
tracking comovement between the instantaneous stock return and the change in the hedge-neutral
asset payoff value, and so capturing the arrival of new information. The dynamic hedge is positive
for positive correlation between the stock and hedge-neutral value since then the stock trading

better replicates the non-tradable payoff.

One important difference between the static and dynamically optimal hedges is that the
static hedge in general does not provide a perfect hedge, even in dynamically complete markets
when p? = 1 (with one notable exception as discussed below), in contrast to the dynamic one.
This is because the static hedge cannot adjust to the arrival of new information as it does not
rebalance the initially chosen policy. Consequently, the dynamic hedge always outperforms the
static one when the market is close to being complete. We next compare the two hedges and
their performances under popular price dynamics for which the relative performance measure A;
(expression (25)) can explicitly be computed. In addition to considering the non-tradable and
stock prices following GBMs (26)—(27), we also study the cases of their following ABMs

dX; = mdt+ vdwy, (34)
dS; = pdt+ adwy, (35)

with m, U, i1, & constants, as well as the non-tradable asset following an OU process
dXt = )\(X — Xt)dt + deth, (36)

with X and A > 0 constants. Proposition 4 reports the results.

Proposition 4. The dynamically optimal and static hedges and their relative performances un-

der various non-tradable asset and stock price processes are as given in Table 1.

The dynamically optimal and static hedges coincide in the special case of the non-tradable
asset and stock prices both following ABMs. This is because, with random walk prices, the non-
tradable asset and stock price variances and covariances are deterministic and hence the new
information released over time does not help predict them better than the information available
at the initial date, and therefore the hedging problem is effectively static by its nature. The
two policies are considerably different, however, in the other settings where the dynamic hedge

typically outperforms the static one. In particular, when the non-tradable asset and stock prices
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Table 1
Optimal Dynamic and Static Hedges and Their Relative Performances

The table reports the dynamically optimal and static hedges and the sign of their relative performance
measure A; (equation (25)) when non-tradable asset and stock prices follow various stochastic processes.
We say that the dynamically optimal hedge outperforms the static one when A; is positive, and un-
derperforms when A; is negative. ABM, GBM and OU denote arithmetic Brownian motion (equations
(34)—(35)), geometric Brownian motion (equations (26)—(27)) and Ornstein-Uhlenbeck mean-reverting
(equation (36)) processes, respectively. In all cases, we assume p # 0, since otherwise the stock cannot
hedge the non-traded asset and all the hedges are trivially zero.

Optimal Hedges Performance Processes
dynamic 05 static g5t sign A, asset X stock S
pUS: pUSy 0 ABM ABM
ag g
=Ty (T — voT _ _ + >0
pVO")(t e(m " py} 7 )(T t) ngf 6:02'1"711 e(m #)T { +/_ g < 0 GBM GBM
TS, e~ MT =) L por(T—t) 7S 1—e T

e i el + oU  ABM
?ef()Hrr)(Tft) Pigosr, i:Qe;i: e—hT + ouU GBM

follow GBMs, the dynamically optimal policy outperforms the static one when the correlation
parameter p is positive. With a positive asset-stock correlation, the stock process better imitates
the fluctuations in the non-tradable asset price, which improves the quality of hedging. When the
correlation is negative, the dynamically optimal hedge always outperforms after a certain period
of time (as demonstrated in the Appendix) but may underperform in the beginning if the stock
market price of risk is implausibly high. Finally, when the non-tradable asset price follows an
OU process, the dynamic hedge always outperforms. With the predictability in the non-tradable
asset price present, the dynamic hedge better accounts for the arrival of new information over

time, and hence performs better.

3.3. Comparison with Myopic Policy

Finally, we compare the dynamically optimal and myopic hedges. At each point in time, a myopic
hedger hedges the instantaneous changes in the non-tradable asset price via the instantaneous
changes in tradable wealth. Hence, the myopic hedge can be viewed as the static hedge over
an infinitesimally small hedging horizon, repeated over time. The myopic hedge retains the
tractability of the static hedge which makes it appealing for practitioners and academics (e.g.,
Kroner and Sultan, 1993; Lioui and Poncet, 2000; Brooks, Henry and Persand, 2002).

The myopic hedger at each point of time minimizes the variance of the hedging error over
the next instant
r%in varg [dXt - th], (37)
t
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Table 2
Dynamically Optimal and Myopic Policies and Their Relative Performances

The table reports the dynamically optimal and myopic hedges and the sign of their relative performance
measure A; (equation (25)) when non-tradable asset and stock prices follow various stochastic processes.
We say that the dynamically optimal hedge outperforms the myopic one when A; is positive, and un-
derperforms when A; is negative. ABM, GBM and OU denote arithmetic Brownian motion (equations
(34)—(35)), geometric Brownian motion (equations (26)—(27)) and Ornstein-Uhlenbeck mean-reverting
(equation (36)) processes, respectively. In all cases, we assume p # 0, since otherwise the stock cannot
hedge the non-traded asset and all the hedges are trivially zero.

Optimal Hedges Performance Processes
dynamic 6 myopic ;"% sign Ay asset X stock S
pvgsf, pﬁFSt 0 ABM ABM
0 m—-r  pu—r
v g
p’/;(t e(m—r—pv2)(T—t) »UVUXt + p>0, m-r > pL -r GBM GBM
v ag

m—-T —-T
<ot

= —A(T—t) | r(T—1) =
pVESt Ae )\_:;75 pYS: + ouU ABM

Q

0T g (A1) (T—1)
a.

AR
_|_

ou GBM

subject to the budget constraint (3). The variance of this instantaneous hedging error can
explicitly be computed to be given by a quadratic function of a hedging policy. The minimization
of this variance leads to the following explicit expression for the optimal myopic policy:

pyverie = P2 x, (38)

Ot

The myopic hedge is simply the instantaneous version of the static hedge and is in general
different from the dynamically optimal hedge (5). In particular, the myopic hedge ignores the
potential impact of mean-returns on the hedging error variance since the first term in the asset
dynamics (1) is conditionally riskless over next instant. As a result, the myopic policy in general
does not provide a perfect hedge even in dynamically complete markets, just like the static
one. Consequently, it underperforms the dynamically optimal hedge when the market is close to
being complete. As in the previous Subsection, we compare the myopic and dynamically optimal
hedges for popular price processes, including GBMs (26)—(27), ABMs (34)—(35), and OU (36).

Proposition 5 reports the two hedges under these settings, as well as their relative performances.

Proposition 5. The dynamically optimal and myopic hedges and their relative performances

under various non-tradable asset and stock price processes are as given in Table 2.
The myopic and dynamically optimal hedges coincide under the random walk environment

19



of ABM since the hedging problem is effectively static by its nature, as discussed in Section
3.2. In the other environments, the two hedges generically differ, with the dynamically optimal
hedge typically outperforming the myopic hedge. With predictable OU non-tradable asset prices,
the dynamically optimal policy better incorporates the arrival of new information and hence
outperforms the myopic one, as in static case of Subsection 3.2. When the asset and stock both
follow GBMs, the two hedges coincide in the very special case of the non-tradable asset market
price of risk equalling that of the stock (adjusted by correlation p). The reason is that in this
case the tradable wealth better tracks the non-tradable asset price since the myopic hedge not
only minimizes the instantaneous hedging error variance but also matches the risk premia on the
non-tradable asset and tradable wealth.® The dynamically optimal hedge, however, outperforms
for positive asset-stock correlation and relatively high asset market price of risk, and otherwise
can outperform or underperform. As an example, consider the case of hedging gas prices that
follow GBM with parameters m = 0.836 and v = 0.59 (approximated from OU gas log-prices
estimated in Jalliet, Ronn and Tompaidis (2004)). In this case, the dynamically optimal policy
outperforms the myopic one for positive correlation and plausible stock market prices of risk of
[0.15,0.6].

4. Extensions

We now generalize the results on minimum-variance hedging derived in Section 2 along two
dimensions. First, we consider a more general model in which the hedger is guided by a linear
mean-variance criterion over the hedging error. Second, we demonstrate that the minimum-
variance hedging model can easily be extended to a richer environment with multiple non-tradable

assets and stocks.

4.1. Mean-Variance Hedging and Benchmark Tracking

We here consider a hedger who also accounts for the mean hedging error, and trades it off against
the hedging error variance. Such a mean-variance hedging criterion is commonly employed in a
variety of, primarily static, settings (e.g., Anderson and Danthine, 1980, 1981, 1983; Hirshleifer,
1988; Duffie, 1989; Duffie and Jackson, 1989). Our analysis in this Subsection is also related to
the literature on portfolio management with benchmarking. In this literature, money managers
are evaluated relative to a benchmark portfolio and are concerned about their tracking error,
defined as the deviation of a manager’s performance from that of the benchmark. The mean-
variance tracking error model amounts to mean-variance hedging if we relabel the non-tradable
asset X as the benchmark portfolio and observe that tracking error is the negative of hedging
error. Roll (1992), Jorion (2003), Gomez and Zapatero (2003), Cornell and Roll (2005) discuss

the implications of such benchmarking on portfolio efficiency and asset pricing. Chan, Karceski

8More generally, it can be shown that the dynamically optimal and myopic hedges coincide whenever (me —
r)/ve = p(ue — r)/o¢. The intuition is the same as in the case of GBM asset and stock prices.
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and Lakonishok (1999) and Costa and Paiva (2002) discuss the implications of estimation risk
and robust portfolio selection with benchmarking. These works all employ a static mean-variance
framework by either minimizing the tracking error variance for a given mean, or maximizing the

tracking error mean for a given variance.

A dynamic mean-variance hedger chooses an optimal hedge, trading-off lower variance against

higher mean of hedging error, by solving the dynamic problem
max Ey[Xr — Wr] - %vart (X7 — Wi, (39)
t

subject to the budget constraint (3), where the parameter v captures the hedger’s attitudes
towards risk. The optimal quality of the hedge is measured by the value function Jy, given by
the criterion in (39) evaluated at the optimal policy. As in Section 2 we consider the time-
consistent solution to problem (39) obtained by dynamic programming. Proposition 6 reports

the dynamically optimal hedging policy along with the value function.

Proposition 6. The dynamically optimal mean-variance hedge, 05, and the corresponding value

function, J¢, are given by

0 = ’;—V: x, 28 [Xg;T(T_t)] L, 08 [ngj(T_t)] _ N; U—t;e—r(T—t) (40)
. ’;—V;Xt oE;[ (ST L (MB—XBQ ds)e~rr-0)] s omy(J7 1 (%32 ds)erT0) |
PR T [/tT V§X§<8E§[XT - fs;;,s(“éir)2d7} )as] (41)

+ B[ Xpe T - wier 0 4 %E;f [ /t ! i (“SUZ T)Q ds).

Proposition 6 reveals that the dynamically optimal mean-variance hedge is comprised of three
types of terms. The first two terms in (40) comprise the variance-minimizing hedge of Section 2,
reflecting the hedger’s aversion towards hedging error variance. The third term is the speculative
demand, as referred to in the related works (e.g., Anderson and Danthine, 1980, 1981; Duffie,
1989), and arises due to the hedger’s desire for high mean hedging error. Finally, the last two
terms in (40) are the intertemporal hedging demands, familiar in the portfolio choice literature.
These demands arise due to the fluctuations in the non-tradable asset and stock mean returns
and volatilities, and in our framework are simply given by the sensitivities of the hedge-neutral

value of anticipated speculative gains.

The optimal hedge (40) can explicitly be computed for specific stochastic environments, as
in the case of the minimum-variance hedge. However, in this case, the computations are more
involved, and the hedge depends on the hedger-specific parameter . Moreover, in contrast to the
minimum-variance hedge, the dynamically optimal mean-variance hedge, in general, differs from

its associated pre-commitment one even in complete markets. Furthermore, even though the
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hedging problem can be reduced to one with a time-consistent criterion under some conditions
as in Section 2.4, the solution from such a criterion does not, in general, coincide with the actual
one (40), unlike in the minimum-variance case. The value function (41) that measures the quality
of the optimal hedge implies a better hedge with a higher value. However, it can be verified that
unlike the minimum-variance hedge, the optimal mean-variance hedge does not provide a perfect
hedge (i.e., having zero hedging error variance) even in complete markets because the hedger

forgoes lower hedging error variance for higher mean.

4.2. Multi-dimensional case

We now demonstrate that the results of Section 2 can be extended to the case with multiple
non-tradable assets and stocks. We consider an economy in which uncertainty is generated by
two multi-dimensional Brownian motions wy = (wxi, ..., wxy)' and w = (wy,...,wx)'. By p we
denote the N x K correlation matrix with elements p = {p,x} representing correlations between

the Brownian motions wy, and wy.
There are N non-tradable assets whose prices, X = (X1, ..., Xy) ', follow dynamics

d Xt

X :mi(Xtat)dt+Vi(Xt’t)waXta L= 1a"'7N’ (42)
it

where m; and v; are deterministic functions of X. Welet m = (my,...,my) " and v = (vq,...,vy) "
denote the vector of mean returns and the volatility matrix whose elements v = {v,,;} represent
covariances between the non-tradable asset returns and Brownian motion wyx. At future date
T, the hedger is committed to hold a portfolio of non-tradable assets with payoff ¢ X7, where
¢ = (¢1,...,¢n) " denotes the vector of units held in assets. An asset that is not held by the
hedger (¢; = 0) may still affect the dynamics of the assets held and can be relabeled to be a

state variable, such as economic conditions, temperature or precipitation level.

The risk associated with the portfolio of non-tradable assets can be hedged by trading in a
riskless bond with constant interest rate r and K tradable securities with prices S = (1, ..., Sx) "
that follow the dynamics

dS;

g = p,j(St,Xt,t)dt + Uj(St,Xt,t)Td’wt, 7=1..,K, (43)
J

where j1; and o; are deterministic functions of S and we let 1 = (i1, ..., pixc) " and o = (071, ..., 0%) "
denote the vector of mean returns and the volatility matrix of stock returns, assumed invertible,
respectively. The hedger chooses a hedging policy, 8 = (01, ...,0x), where 0; denotes the vector

of dollar amounts invested in stocks at time ¢. The tradable wealth W then follows the process
AWy = [rWy + 0, (g — )]dt + 6, opduwy. (44)

The hedger’s dynamic optimization problem is as in Section 2. At each time ¢, she minimizes

the variance of her hedging error, ¢' X7 — Wy, subject to the budget constraint (44). The
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optimal policy is then derived by dynamic programming as in Section 2. Proposition 7 reports

the dynamically optimal hedge and its associated quality.

Proposition 7. The optimal hedging policy and the corresponding variance of hedging error are

given by
. B OE* ¢TXT6—7’(T—t) OFE* ¢TXT6—T(T—t)
Ht — (thTo-t I)TIXt t [ aXT ] St t [ 8S—|— ] , (45)
t t
T OE: ¢ X7 OE: ¢ X7
T * _ s T T s
vanfo Xr —Wil = B[ S v (= o) ] S5 oannCl NI

where Ix, and Ig, are square matrices with the main diagonals Xit, ..., Xyt and Sie, ..., Skt,
respectively, I a K x K identity matriz, and Ef|[-] denotes the expectation under the unique
hedge-neutral measure P* on which are defined N-dimensional Brownian motion wy and K-
dimensional Brownian motion w* with correlation p such that the process for the non-tradable

assets, X, and stock prices, S, are given by

dX; _ ‘
X—# = (mit—V;pTat 1(,ut—r)) dt + v} dw?,, 1=1,...,N,
(2
dS; .
?ﬁ = rdt+ojdwf, j=1,..K,
and the P*-measure is defined by the Radon-Nikodym derivative
AP™ 4 [T =) (0s0 ) (ps—r)ds— [ (o5 (s —r)) "
dP )

The dynamically optimal hedge (45) has the same structure as in the case of the single non-
tradable asset and stock, but now additionally incorporates the effects of cross-correlations. This
hedge can explicitly be computed for various stochastic investment opportunities, leading to a
rich set of comparative statics. The expression (46) for the optimal hedging error variance reveals
that the dynamically optimal hedge provides a perfect hedge when p'p = I, which generalizes

the market completeness condition of Section 2.

5. Conclusion

This work tackles the problem of dynamic hedging in incomplete markets and provides tractable
optimal hedges according to the traditional minimum-variance criterion over the hedging error.
The optimal hedges are shown to retain both the simple structure of complete-market hedges and
the intuitive features of static hedges, and are in terms of the familiar Greeks, widely employed
in risk management applications. Moreover, in contrast to the existing literature, the hedges
are derived via dynamic programming and hence are time-consistent. The dynamically optimal
hedges are shown to outperform the static and myopic ones in plausible stochastic environments,

coinciding with them only in the simple case of both risky assets following ABMs. They also
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outperform the pre-commitment hedges after a period of time, as demonstrated in the case of
assets following GBMs. Due to its tractability, the baseline analysis can easily be extended in

various directions, as shown in the paper.
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Appendix: Proofs

Proof of Proposition 1. We obtain the optimal hedge (5) by following the methodology
in Basak and Chabakauri (2008) and applying dynamic programming to the value function Jy,
defined as

J(Xy, S, Wy, t) = var [ X — W7. (A.1)

Suppose, the hedger rebalances the portfolio over time intervals 7. The law of total variance (19)

substituted into (A.1) yields a recursive representation for the value function:
Jt = I%Hl Et[Jt+T] + Vart[Et+T(XT - WT)] (AQ)
t
We next substitute Wr in (A.2) by its integral form
T T
Wr = Wye' (T +/ Os(ps — r)er(T_s)ds +/ Hsaser(T_S)dws, (A.3)
t t

obtained from the budget constraint (3), and take into account that optimal hedges 6%, s €
[t + 7,T], are already known at time-t from backward induction. Letting the time interval 7

shrink to zero and manipulating (A.2), we obtain the continuous-time HJB equation
0 = min F,[dJ;] + var[dG) - d(We" =], (A.4)
t
with the terminal condition Jr = 0, where G} is defined by
T
G( Xy, S, Wi, t) = Ey[ X1 — / 0% (s — r)e" T %) ds]. (A.5)
t

We note that 0;, J; and G; do not depend on wealth W;. To verify this, we substitute Wr in
(A.3) into the variance criterion and observe that the variance criterion is not affected by Wy, and
hence 6}, J; and G depend only on X;, Sy and ¢. Applying It6’s lemma to J;, Gy and Wie (T,

substituting them into (A.4) and computing the variance term, we obtain the equation

aGt 8Gt BGt 2 2 aGt
0="DJ, .6 2pv40¢ XS 7S;
v+ i () meisigt e+ otst ()
oG oG
2,2,2r(T—t) _ t t\ r(T—t)
+ Héll’l |:(9 20tat (pl/tXt 8X + UtSt 8St ) :|, (Aﬁ)
subject to Jp = 0. The minimization in (A.6) has a unique solution
or = P x, 961 v | 6, 9Ct rir ), (A7)
o 0Xy t
Substituting (A.7) back into (A.6), we obtain the following PDE for the value function
0Gy
DJ+ (1= p) (mXi e e ) =0, (A.8)
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with the terminal condition J7 = 0. The Feynman-Kac solution (Karatzas and Shreve, 1991) to

equation (A.8) is then given by

T IGs\2
_ _ 2 S
Jo=(1—-p )Et[/t (usXsaXs) ds] (A.9)

To complete the proof it remains to determine the process G in terms of the exogenous
model parameters. By applying the Feynman-Kac theorem to (A.5), we obtain a PDE for G;.
Substituting 6 from (A.7) into this PDE, we obtain the equation

8Gt me —T 8Gt 8Gt 1 2 282Gt 82Gt 2 282Gt
— — X (v X =12 XeSt———+ — ) =
5 +(mt Pl = ) taXt+rStaSt+2<Vt h 6Xf+ PULO tSt@Xt85t+UtSt 0St2> 0,
with the terminal condition Gr = X7. Its Feynman-Kac solution is then given by
G = B[ Xr), (A.10)

where the expectation is under the unique probability measure P* on which are defined two
Brownian motions w% and w* such that under P* the asset X and stock S follow the processes
given in (7). Substituting (A.10) into (A.7) and (A.9) yields the optimal hedge (5) and the hedging

error variance (6), respectively. To find the Radon-Nikodym derivative dP*/dP, we decompose

the Brownian motion wy as dwx; = pdw; + /(1 — p2)dw;i-, where wi- = (wxy — pwy)/+/(1 — p?)
is a Brownian motion uncorrelated with w;. Applying the Girsanov’s theorem (Karatzas and
Shreve, 1991) to the two-dimensional Brownian motion (wy,w;-)" yields the Radon-Nikodym

derivative (8).

Finally, we derive the representation (10) for E;[Xre™"(T=Y)] by first taking the expectation
of (A.3)

T
E, {W? — Wter(T*t)} =FE; [/ 0% (s — r)eT(T*s)ds}, (A.11)
t
and then substituting (A.10) and (A.11) into (A.5).
Proof of Corollary 1. Under the probability measure P*, the process (11) becomes
o AX o
dXt = ()\ + pV)(m — Xt)dt + deXt? (A12)

for which the conditional moments are well-known (e.g., Vasicek, 1977), yielding

AX AX _
E¥IX 7] = X, — —(A+pp)(T—t)
X )\+p17+( t )\—I-pl7)e

Substituting this into the expressions in Proposition 1 yields the desired expressions (13)—(14).
Q.E.D.
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Proof of Corollary 2. Under the probability measure P*, the process (15) follows dynamics

AX

dX; = ()\ + pv(p — r)) (m

— Xy )dt + 7/ Xydw,. (A.13)

The conditional expectation of Xp is well-known (e.g., Cox, Ingersoll, and Ross, 1985) to be

AX AX .
EffXp]= ———— A e OFpr(pe)(T-1)
i Xr) A+pﬂ(u—r)+< ' /\+p17(u—r))e
Substituting this into the expressions in Proposition 1 yields (17)—(18). Q.E.D.

Proof of Proposition 2. First, we derive a variation of the law of total variance. From the
law of total variance (19) with an infinitesimally small interval 7, we obtain the following equality

in differential form:
0= Ey|dvary(Xr — Wr) + var, (dEs[X7 — Wr])|. (A.14)

Integrating (A.14) from ¢ to T yields

et Xg — Wel = B [/T varg(dEs[ X1 — WT])dS]_

t = (A.15)

From the assumption pu; — r = 0 and the integrated budget constraint (A.3), it follows that
E,[Wr] = Wie" ™=t Hence, by Ité’s lemma

OE [ X7]

OE [ X7
0S;

dE | X1 — = (...)dt X
X — Wr] = (.)dt + 1 Xy ax,

dth + UtSt dwt — HtUtGT(T_t)dwt. (A16)

Substituting (A.16) into (A.15) and computing vars(dE:[ X — Wr]), we obtain:

T . OE,[Xr] OB, [X1]\2 OE,[X1]\2
_ — r(T—s) _ GEsIAT] s AT _ 2\ (ZEsAT]
vary[Xp—Wr| = Ey {/t (930'36 pvs Xs X, 0sSs 95, ) +(1 )( X, ) ds}.

(A.17)
Minimizing the expression under the integral in (A.17) gives the global minimum to the variance
criterion, yielding the hedge (20). Finally, we observe that for p; —r = 0, the dynamically optimal
hedge (5) coincides with the hedge (20) since the Radon-Nikodym derivative (8) equals unity,

and hence the the variance criterion is time-consistent. Q.E.D.

Proof of Corollary 3. The hedging criterion (23) can be represented in integral form (A.15)
in which all the expectations and variances are under the measure P"7 (8). By definition of a
risk-neutral measure P", the stock mean return equals r, and hence E}'[Wr] = W™=t Then,
along the same lines as in the proof of Proposition 2, replacing at each step E[-] and var.[|-] by
EJ[] and var][-], respectively, it can be shown that the criterion (23) is time-consistent and the

solution is given by (5). Q.E.D.
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Proof of Proposition 3. We first compute the optimal hedges and hedging error variances,
and then derive the properties of the performance measure A;. From Proposition 1, under the
measure P* the process X is a GBM with mean return (m — pv(p —r)/0) and volatility v, which

then yields
E;[X7] = Xyelmmeviu=n)/e)(T=t) (A.18)
Substituting (A.18) into Proposition 1, we obtain the dynamically optimal hedge (28) and the

associated hedging error variance

_r (ﬂ—l—?py%)(T_t) 1
var [ X — Wi = (1 — p2)y2Xt262(m_pyuT)(T_t) e

A.19
v+ 2pvEr ( )

The optimal pre-commitment hedge (29) for the case of » = 0 and Wy = 0 has been obtained
by Duffie and Richardson (1991) in the context of futures hedging.® To obtain it for our case of
r > 0 and Wy > 0, we observe that the budget constraint (3) can equivalently be rewritten as

th = Qtﬂtdt + Ot&tdwt, (AQO)

where W, = WierT=t) — Wye'T, g = (p — r)eT(T_t), &, = oe"T=Y_ The hedging problem
with the budget constraint (A.20) reduces to the case with r = 0 and Wy = 0, and hence the

pre-commitment hedge (29) is easily obtained from the solution in Duffie and Richardson.

We next determine var;[ X — W™ by deriving the first and second moments of an

auxiliary process H; which coincides with the hedging error at t = T and is defined as
H, = Xte(mfrfpu%)(Tft) B Wtcommiter(Tft)' (A21)

Substituting the pre-commitment hedge (29) into the budget constraint (3) and applying It6’s

lemma to H; we obtain:

_ 2 _ _r
dH, = (” - T) (Ho — Hy)dt + - "(Ho — Hy)dw; + /T — pPuX,em=er 5T =0 gyl (A.22)

Integrating (A.22) from ¢ to 7 and taking the time-t expectation on both sides yields a simple

linear integral equation for F;[H;], the unique solution to which is given by
Ei[H,] = Ho + (H;, — Hy)e 57700,

To find the second moment of H;, we apply Ito’s lemma to (H; — Hp)?:

—7\2 BTy (T
d(H, — Hy)? = f((“ - ) (Hy = Ho)? = (1= p)2 X2 ZT=0) gty (L )dwy + (...)dwi

Integrating both sides from ¢ to 7 and then taking the time-t expectation we obtain E;[(H,—Hy)?]
as the solution to a linear integral equation given by

n—r

E(H, — Ho)? = (H,— Hp)?e (%00
V2P BT () _ o~ (E5)2 (r—t)

o o

2 (B

b (1= Ppxzememisen d

9For the case of » > 0, Duffie and Richardson provide the optimal pre-commitment hedge assuming interest
accrues to a futures margin account, and so such a hedge will be different from that in our economic setting.
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Given the first two moments of H; and taking into account that Hy = Xr — WE™™i  we obtain:

vary [XT o Wfommit] — (Ht . HO)Qe,(u;r)Q(Tft) (1 _ e,(u;r)2(T—t)) (A.23)
(VP2 ST (T—t) _ —(EST)(T—1)

7‘)2

©w

+ (1 _pZ)VQXt2€2(m—pV —)(T—t)

1/2 + 2py;u;7' + (.LLJ

Since the second moments of X; and H; are determined explicitly, it is straightforward to
explicitly compute Ey[vary(Xy — Wi)] and Ep[vars(Xp — WEmmi)]. The relative performance

measure (25) is then given by:

e(u2+2pu"T_7ﬂ+(%)2)(T—t) 1

2 J—
A, = P = T
V24 2pv -t 4 (212

~ 6(1/2+2,01/%)(T7t) -1

2 - —r\2
1— 67(1/ +2pr BT 4 (B2

+

V2o BT (T 1) _ 4

el

(1- e—<“;>2<T—t>)> 1 (A.24)

Letting ¢ go to T in (A.24), it is easy to show that Ap > 0, and hence there exists a time ¢ such
that A; > 0 whenever ¢ > t.

Finally, we derive relation (30) by rearranging terms in (10) and substituting (A.18).Q.E.D.

Proof of Proposition 4. First, we consider the case when both risky assets follow ABMs

(34)-(35). From Proposition 1, the process for X under the measure P* is given by

a—rsS
dX, = (m — pp™ 2V at + pdw?,.
o
Integrating from ¢ to T" and taking the expectation E;[-] on both sides we obtain:

(T =) = Sy(e T — 1)

B [Xr] = X, +m(T —1) = p i

Substituting this into Proposition 1 yields the optimal hedge reported in Table 1. Since X and S
follow ABMs, covo(Xr, St) = ppaT and varg(St) = 62T Substituting these into 654/ in (32),

we obtain the static hedge, which coincides with the dynamic one, and hence A; = 0.
When the risky asset prices follow GBMs (26)—(27), the dynamically optimal hedge and its

corresponding hedging error variance are given by (28) and (A.19), respectively. The static hedge
reported in Table 1 is obtained from (32) by observing that since X7, S? and X;S; follow GBMs,

var [ Xp| = Xte2m(T_t)(e”2(T_t) - 1), vary[St| = SteQM(T_t)(eJZ(T_t) —1), (A.25)
cove(Xp,Sp) = XtSte2(m+“)(T_t)(ep”U(T_t) —1). (A.26)

Substituting W31 from the static budget constraint (31) into the hedging error variance
we obtain

) static static
var [ X7 — Wil = var, [X7] — 2 OS covy (X7, St) + ( 0
0

: )" var[s1]. (A.27)
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We now show that for p > 0 the performance measure (25) is positive in this GBMs case. We
note that the static hedging error variance (A.27) is a quadratic function of 6y, the minimization
of which along with the expressions (A.25)—(A.26) gives the lower bound for the static hedging

error variance:

(A.28)

i pvo(T—t) _ 12
varg [XT — st_‘tatzc] Z Xt2€2m(T—t) <€V2(Tt) 1 (6 1) > |

ed2(T—t) _ 1

We next rewrite the dynamically optimal hedging error variance (A.19) in integral form and find

its upper bound for p > 0 as:
T -
var [ Xr — Wi = X2(1 - pz)VQeQm(T_t)/ o215 (T=3) ov*(s 1) g g (A.29)
¢
T
< X1 phretmiTy /t e 0ds = XF(1 - p)em 0 (e 0 — 1),
A sufficient condition for the dynamically optimal variance to be lower than the static one is that

the upper bound in (A.29) is below the lower bound in (A.28), which is equivalent to

pro(T—t) _ 1 o2 (T—t) _ 1\ ,ev*(T—t) _q
<37>2 < (e )(e )

5 (A.30)

pro o V2
To show that inequality holds, we rewrite its left-hand side as a squared integral, estimate it

from above and then apply the Cauchy-Schwartz inequality:

(/tT ep”"(T_S)ds)QS (/tT e(§+§)(T_S)ds)2§ (/tT e”Q(T_S)ds) (/tT e”Z(T_s)ds). (A.31)

Computing the integrals in (A.31) we obtain inequality (A.30), and hence A; > 0.

For p < 0 in the case of GBMs, we demonstrate that 67 still outperforms after a certain
period of time ¢. Substituting the dynamically optimal and static hedging error variances, (A.19)
and (A.27), into the performance measure (25), and taking limit as ¢ goes to T" we obtain:

estatic ogtatic ostatic

Eo[v?X2 — 2pvo X7 St b+ o252 ( 5 )?] - Eo[(prXr — Srg )?]

(1= p?)v2Ey[X7] (1= p?)2Eo[X 7]

Ap =

Since A7 > 0 there exists ¢ such that A; > 0 whenever ¢t > t. For some parameter values of
p, o, v and T, the performance measure A; can become negative but only for implausibly large
(= 1)/a 2

The remainder of the results for the case when the asset X follows an OU process and the
stock S follows either an ABM or a GBM can be obtained along the lines of above. First, we
compute the optimal hedges and corresponding hedging error variances by applying Proposition
1. Then, we characterize the static hedges by computing relevant moments for the processes X,
S; and X.S;. Finally, we obtain a lower bound for the static hedging error variance as above,

and compare it with the dynamically optimal one or its upper bound. Q.E.D.

YOFor example, if p = —0.2, v = 0.36, 0 = 0.16 and T = 1, the static policy outperforms at time 0 only for
(w—7)/o > 0.6. If the parameter p increases in absolute value, the lower boundary for the market price of risk
also increases.
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Proof of Proposition 5. The dynamically optimal hedges reported in Table 2 are the same
as in Table 1, while the myopic hedges are immediate from the expression (38). Thus, it remains

to compare the relative performances.

When the risky assets follow ABMs, the two hedges coincide and hence A; = 0. Turning to
the case when both X and S follow GBMs, we derive the myopic hedging error variance using the
expanded law of total variance (A.15) and compare it with the dynamically optimal one. From

the budget constraint in integral form (A.3) and the expression for the myopic hedge we obtain:

E [X . meopic - X m(T—t) (1 _ H—r /T —(m—r)(Tfs)d ) W r(T—t)
X T | = Xie pv e s e )

g t

Applying Itd’s lemma, we derive dE[Xp — WY "], substitute it into the law of total variance

(A.15), and after some algebra determine the myopic hedging error variance:

‘ T C ] — e (mer)(T=5) 9
e W A [T (1 o A
t _
9 o/M—T H—1r\2 1—6*(7”*7“)(71*8) 2
- ds. A.32
+pl/<y pg)( - ))ds (A.32)

We now show that if (m —r)/v > p(p — r) /o, the dynamically optimal hedge outperforms the
myopic one. Comparing the dynamically optimal and myopic hedging error variances given by
(A.29) and (A.32) we observe that a sufficient condition for the dynamically optimal hedge to

outperform the myopic one is

—(m—r)(T—t
1_p]j'u/_r1_e (m 7")( ) >€—py“;T(T—t).
g m—T

This inequality can equivalently be rewritten as

T T
/ e_pVMT#(T_S)dS > / 6_(m_r)(T_S)dS,
t t

which holds whenever condition (m —r)/v > p(u—1)/0o is satisfied. If this condition is violated,

the dynamically optimal hedge can outperform or underperform.

The remainder of the relative performance results for the case when the asset X follows an
OU process while the stock S is an ABM or a GBM are obtained similarly. The dynamically
optimal and myopic hedging error variances are obtained from the expressions (6) and (A.15). It
is then directly observed that the myopic hedging error variance exceeds the dynamically optimal

one for all parameters, and hence A; > 0. Q.E.D.

Proof of Proposition 6. The proof is similar to the proof of Proposition 1. The hedging

problem is solved via dynamic programming and the value function is defined as:

J(X, Sy, Wi t) = Ey[ X — W] — %Vart[XT —wl. (A.33)
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Applying the law of total variance along the same steps as in the proof of Proposition 1, we
obtain an HJB equation. To solve this equation, substituting the budget constraint in integral
form (A.3) into the hedger’s objective (39), we show that the objective is linear in W; and hence
0; and G; do not depend on W;. In contrast to the minimum-variance case, the value function

(T—-t)

linearly depends on Wie” and can be represented as:

J( Xy, Se, Wi, t) = Wee' T8 4 J(Xy, Sy, t).

Applying It6’s lemma to the processes J;, Gy and Wye" T we obtain a PDE for the value
function and the optimal hedge in a recursive form. The optimal hedge in terms of exogenous
parameters is then obtained by applying the Feynman-Kac theorem, as in Proposition 1. Solving
the PDE for J;, we obtain the value function (41). Q.E.D.

Proof of Proposition 7. Proposition 7 is a multidimensional version of Proposition 1 and can
be proven along the same lines. Fist, using the law of total variance, we derive an HJB equation
and then the optimal hedge in a recursive form. Then, applying the Feynman-Kac theorem we
find the optimal hedge in terms of exogenous parameters. Finally, solving the HJB PDE for the

value function, we obtain the hedging error variance in closed form. Q.E.D.
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