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Abstract

We develop a new class of discrete-time asset pricing models with Lévy processes

and use a¢ ne GARCH dynamics to drive the models� time variation. These models

are easy to implement and can capture three important stylized facts of asset returns,

which are non-normality, time-varying return volatility, and the leverage e¤ect. In addi-

tion, this framework yields asset return dynamics that have an a¢ ne structure in their

conditional transform, which leads to simple valuation of various derivatives including

zero-coupon bonds and European options. We apply this newly proposed framework

to various two-factor models consisting of a normal and a pure jump Lévy component.

The results from joint estimation of options and returns on the market index reveal the

important economic role of jumps. Models without jumps cannot reconcile the di¤erence

between market-realized returns and investors�ex-ante expectations of returns with an

economically justi�able equity premium level. We �nd that investors demand 3 to 5%

in annual excess return for bearing the market jump risk.
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1 Introduction

This paper introduces a rich class of discrete-time asset pricing models that combine the

�exibility of Lévy processes with the ease of implementation of GARCH dynamics. Our

models can capture three important stylized facts of asset returns, namely the presence of

jumps, time-varying dynamic of return volatility, and the leverage e¤ect. In addition, this

framework produces a large class of asset return processes that have analytical solutions for

their conditional transform. The price of zero-coupon bonds is available in closed-form, and

the prices of European-style derivatives can be computed using the Fourier inversion method

as discussed in Heston (1993). We refer to this newly developed class of models as the

Lévy GARCH. The risk neutralization of asset returns as well as the statistical method for

estimating the models are also discussed in detail. We demonstrate the versatility of this newly

proposed framework by estimating various two-factor return models consisting of a normal and

a pure jump Lévy component. We conduct two estimation exercises using options and returns

data on the S&P 500 index. The �rst is based on a time-series of daily returns only, while

the second uses options and returns data jointly. The results from both estimation exercises

con�rm that in�nite-activity jumps outperform the �nite-activity Merton jump structure in

�tting returns as well as pricing options. We use a large panel data set of options in the second

estimation exercise and �nd that the normal and jump risks are both priced in the market.1

More importantly, we show that models without the jump risk factor cannot jointly �t the

returns and options data with an economically reasonable level of the equity premium.

Asset pricing ideally involves not only the statistical modeling of returns, but also the

search for an equivalent return process under the risk-neutral measure that can be used to

price derivatives. The task of a �nancial economist is therefore further complicated by the need

to �nd models that can explain the behavior of asset prices under two di¤erent probability

measures. A good model must, in addition, be economically supported. The divergence

between the two probability measures has to be linked by an appropriate vehicle and with a

return premium that is justi�able based on standard theories of risk-return trade-o¤.

In an attempt to model the nature of asset prices, rich and sophisticated models such as

stochastic volatility, GARCH, and a¢ ne-jump di¤usion models (AJD) have been developed

and extensively studied.2 Jump models have become increasingly important in the literature,

and AJD models which build upon on the �nite-activity compound Poisson process have been

gradually adopted as the benchmark for modeling index returns.3 However, Carr and Wu

(2003b) document the existence of many small jumps that cannot be adequately modeled

1This is consistent with Pan (2002) who documents a large jump risk premium from time-series of short-
term and near-the-money index options. In addition, we �nd that the normal risk factor is priced.

2See Hull and White (1989) and Heston (1993) for stochastic volatility models. For seminal GARCH
studies, see Engle (1982) and Bollerslev (1986). For the theoretical framework of asset pricing under a¢ ne
jump-di¤usions, see Du¢ e, Pan and Singleton (2000).

3A short list of these studies includes Andersen, Benzoni and Lund (2002), Chernov, Gallant, Ghysels and
Tauchen (2003), Eraker, Johannes and Polson (2003), Eraker (2004), and Bates (2006).
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using �nite-activity compound Poisson processes. In response, a new strand of literature has

developed which considers more general jump structures, including in�nite-activity jumps.4

These processes, along with the Brownian motion and compound Poisson processes, belong

to a larger class of stochastic processes named Lévy processes. Due to the wide range of

statistical processes that fall within this classi�cation, recent research in asset pricing has

been geared towards the application of Lévy processes to modeling asset returns and pricing

derivatives. This recent research includes the work of Carr, Geman, Madan and Yor (2003)

and Carr and Wu (2004), who combine Lévy processes with a subordinated stochastic time

change. The ensuing processes are referred to as time-changed Lévy processes. Carr and Wu

(2004) show that their framework encompasses almost all of the models proposed in the option

pricing literature.

The Lévy GARCH models introduced in this paper can be thought of as discrete-time

counterparts of the continuous time models in Carr and Wu (2004). However, our approach

for producing the equivalent mechanism of the random time change e¤ect di¤ers from the

one used in the existing literature (see also Huang and Wu (2004), and Bakshi, Carr and

Wu (2007)). Instead of evaluating Lévy processes at stochastic time points, we introduce

time-varying dynamics by relying on heteroskedasticity in the parameters that govern these

processes. We also expand on Carr and Wu (2004) by providing a tractable framework for the

risk neutralization of asset returns, thereby enabling joint studies of their dynamics under the

physical and risk-neutral measures.

We use a¢ ne GARCH dynamics to drive the time-varying dynamic for three main reasons.

The �rst reason is the tractability of the pricing formulae. We provide a general solution to

the conditional transform of asset returns that can be drawn from various combinations of

Lévy processes and a¢ ne GARCH dynamics. Our result, in fact, nests all the existing a¢ ne

GARCH models used in the option pricing literature.5 The second reason is the leverage ef-

fect that is automatically built into the model. Because most a¢ ne GARCH dynamics permit

asymmetric response between asset returns and their volatilities, the leverage e¤ect can be

easily incorporated into our models. Carr and Wu (2004) show that when introducing the

leverage e¤ect in their models, the conditional transform of asset returns can only be solved

analytically using the well-established methods in the literature after applying a complex mea-

sure change technique. This is not the case for the Lévy GARCH models as we show that the

conditional transform of asset returns can be directly solved using simple iterated expecta-

tions. Our third reason for using a¢ ne GARCH dynamics is ease of implementation. GARCH

models are powerful �lters that are extensively used by �nance academics and practitioners.

4See for example the Inverse Gaussian and the Normal Inverse Gaussian models of Barndor¤-Nielsen (1998),
the variance-gamma model of Madan and Milne (1991), and the CGMY process of Carr, Geman, Madan and
Yor (2002).

5This includes the a¢ ne GARCH dynamic of Heston and Nandi (2000), the Inverse Gaussian GARCH
model of Christo¤ersen, Heston and Jacobs (2006), and the component GARCH model of Christo¤ersen,
Jacobs, Ornthanalai and Wang (2008).
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However, it must be noted that these a¢ ne GARCH dynamics di¤er in an important way from

the standard models used in the literature. As the total return residuals are not always used

in the GARCH updating process, the models do not su¤er from the problem of excessively

large estimates of conditional variance after large stock market movements.

The estimation of some Lévy GARCH processes may require additional �ltering techniques

due to the presence of latent state variables. We show that this can be easily accommodated

using the particle �lter (see Pitt (2002)), and that our models can be estimated using maximum

likelihood. Our estimation procedure is relatively quick, and much more straightforward than

the MCMC technique used in Li, Wells and Yu (2006). In addition, our maximum likelihood

estimation does not require that the density of the Lévy process be known analytically, as long

as these processes can be simulated using a robust algorithm. This is clearly advantageous as

most of the Lévy processes do not have a closed-form density function.

Methodologically, the work presented in this paper contributes to the �eld of asset pricing

in several ways. The �rst of these is the development of the Lévy GARCH framework. Our

setup allows for a wide variety of asset return speci�cations by combining Lévy processes with

a¢ ne GARCH dynamics. Our second contribution is a risk neutralization framework that

is economically appealing and analytically tractable. We assume an a¢ ne structure for the

equity premium which greatly facilitates the identi�cation of the risk premia that each Lévy

shocks implies on the expected excess return. In addition, the conditional equity premium

dynamic can accommodate both nonlinearity and time variation as documented by Dai and

Singleton (2002), and Bakshi, Carr and Wu (2008). The third contribution is the application

of our framework to nona¢ ne GARCH dynamics. This is of paramount importance because

most of the GARCH processes studied empirically are nona¢ ne, and hence do not admit

analytical pricing transforms. We show that most of the Lévy processes considered in this

paper, once transformed into the risk-neutral measure, stem from recognizable distributions.

The risk-neutral dynamics of asset prices can therefore be simulated, and derivatives can be

priced via Monte Carlo simulation as in Duan (1995).

This paper also contributes to the �eld of empirical asset pricing. We estimate and test

our models on S&P 500 index options and returns using two di¤erent approaches. The �rst

involves MLE estimation on daily returns from 1985 to 2005. To our knowledge, Bates (2008)

is the only study that estimates time-changed Lévy processes of in�nite-activity using only

return data. Previous empirical estimations of time-changed Lévy processes such as Huang and

Wu (2004) have relied solely on option prices. Li, Wells and Yu (2006) use MCMC to estimate

models where returns follow a stochastic volatility process plus a Lévy jump. However, they

do not estimate the case of time-changed Lévy jumps. The lack of time series estimates of

time-changed Lévy processes is probably due to the inherent econometric complexity. Our

discrete-time framework can therefore partially alleviate the econometric challenges that have

hindered empirical research in this area.
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The second estimation approach involves joint MLE estimation on weekly call options

and daily returns data. We use a large data set of options and returns (1996-2005). To our

knowledge, this is the most extensive joint estimation exercise ever conducted in the option

pricing literature.6 The use of an extensive data set in joint estimation allows us to precisely

estimate the long-run factor risk premia in our models. In turn, this helps us answer the

most important economic issue in empirical option pricing: which risk factors are priced in

the market, and by how much?

We estimate four models where returns are driven by shocks from the normal and pure-

jump Lévy component. Two choices of jump processes are studied. The �rst is the �nite-

activity Merton jump, and we refer to models associated with this jump as MJ-LGARCH.

The second is the in�nite-activity Normal Inverse Gaussian (NIG) jump. We refer to models

with NIG jumps as NIG-LGARCH. In addition to two di¤erent jump types, we model each

jump under two di¤erent dynamics: one which has a homoskedastic jump process, and one

which has a heteroskedastic (i.e., time-changed) jump process.

Using these two di¤erent estimation approaches, we are able to draw a number of important

conclusions. (1) In�nite-activity jumps are preferable to the standard �nite-activity Merton
jump structure. This statement holds true from the perspective of returns �tting as well

as options pricing. (2) When �tting the time series of returns, and in the presence of a
time-varying normal component, it is not necessary to model the in�nite-activity NIG jumps

as time-varying. On the other hand, it is important to have time-varying dynamics for the

�nite-activity Merton jump process. (3) The presence of jumps in option pricing models is
economically important. Without the jump component, the divergence between the physical

and risk-neutral measures cannot be explained using an economically justi�able level of equity

premium. Our results from joint MLE show that the equity premium level implied by a model

without jumps is 23% per annum. On the other hand, for models with jumps, the implied

equity premium levels are about 8% and 6.3% for the MJ-LGARCH, and NIG-LGARCH

respectively. (4) Both jump and normal risk factors are priced in the market. For the MJ-
LGARCH, we �nd that investors demand 3% and 5% in excess annual returns for bearing

the market jump and di¤usive normal risks respectively. Similarly for the NIG-LGARCH, the

jump risk is priced at 5% per year, while the di¤usive normal risk is priced at about 1.3% per

year.

The rest of this paper proceeds as follows. Section 2 discusses the construction of time-

changed Lévy processes in discrete time. Section 3 introduces the model and presents the

closed-form generating function for asset prices. In section 4, the risk neutralization procedure

is discussed. Section 5 discusses the methodology used to estimate the Lévy GARCH models.

6Existing studies on the joint estimation use data covering short time periods or a small subset of the cross
section of options. Chernov and Ghysels (2000) use approximately one option per day (at-the-money and
shortest to maturity). Pan (2002) uses two options per day (at-the-money and short-term) from 1989 to 1996.
Eraker (2004) uses up to three options per day from 1987 to 1990.
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Section 6 presents the empirics, and �nally Section 7 concludes.

2 Building discrete-time models based on time-changed

Lévy innovations

2.1 Lévy processes

Lévy processes have been the driving force behind most asset pricing models. In order to

appreciate the richness of this class of stochastic processes, consider a sample path that is

right continuous with left limit of fXt 2 Rjt � 0g and X0 = 0: Under the usual probability

space and �ltration, if the increments Xt+s �Xt for s > 0 have a stationary and independent

distribution, we say that Xt has in�nitely divisible distribution and is a Lévy process. This

de�nition of a Lévy process encompasses most of the past and existing distributions used in

the �nance and economics literature. It is convenient to work with the generalized Fourier

transform of a Lévy process because the density is not always available analytically. The

transform is given by

Fx (�) = E
�
e�Xt

�
= et	x(�); � 2 Dx � C (2.1)

where � is in the complex domain Dx � C such that (2.1) is well-de�ned. Following Wu

(2006) and Bates (2008), we will refer to 	x (�) as the cumulant exponent of Xt: Note that the

characteristic function and the moment generating function are special cases of the generalized

Fourier transform. For generality, we use the generalized Fourier transform in this paper by

specifying � in the domain Dx of the complex plane, and for brevity, we refer to Fx (�) simply
as the conditional transform in most parts of this paper.

The log of the generalized Fourier transform of a Lévy process Xt is linear in time, with the

slope being its cumulant exponent. This fact follows from a well-known property of in�nitely

divisible distributions. The Lévy-Khintchine theorem states that any Lévy processes can be

decomposed into a constant drift, a Brownian part, and a pure jump part. Using one version

of the Lévy-Khintchine formula, we can write the cumulant exponent of a Lévy process as

	x (�) = ��+
1

2
�2�+

Z
R0

�
e�x � 1� �x1fjxj<1g

�
� (dx) : (2.2)

The measure �(dx) is called the Lévy measure de�ned on R0 which dictates how jumps occur.7

The term � represents the constant drift and �2 is the variance of the Brownian part. In the

case of a pure jump process, there is no Brownian part, and hence �2 = 0. The triplet

7Jumps of size x in the set R0 (real line excluding zero) occur according to a Poisson process with intensity
parameter

R
R0 � (dx) :
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[�; �2; � (dx)] is often referred to as the Lévy characteristics, and completely determines the

properties of the Lévy process.

2.2 Time-changed Lévy processes

Carr and Wu (2004) develop option pricing models based on time-changed Lévy process in

order to address three stylized facts of asset prices. The �rst is that asset prices jump, leading

to nonnormal return innovations. This stylized fact can be trivially captured through an

appropriate choice from a plethora of Lévy processes. The second stylized fact is that return

volatility is stochastic. Because Lévy processes are in�nitely divisible, stochastic volatilities

can be generated by evaluating the sample path of a Lévy process at a random time. Carr

and Wu (2004) apply this technique to option pricing and refer to the resulting models as

time-changed Lévy processes. Speci�cally, they model the activity rate of the stochastic time

change using well-established techniques from the a¢ ne term structure literature. This results

in great tractability of option pricing formula under several rich speci�cations for the stock

price. The generalized Fourier transform for time-changed Lévy processes
�
Xt 2 Rd jt � 0

	
with X0 = 0 involves taking expectations over two sources of randomness,

FXt (�) = E
h
e�

0
X
Tt

i
= E

h
E
h
e�

0
Xs j Tt = s

i i
(2.3)

The inner expectation is taken conditional on XTt �xed at Tt = s, and its solution is given

by (2.2). The outer expectation then operates on all the possible values of stochastic time Tt;

and its solution is taken from the bond pricing literature.

The third stylized fact in asset prices is that returns and their volatilities are correlated.

This is commonly referred to as the leverage e¤ect which simply demands that XTt be cor-

related with its Lévy subordinator. Unfortunately, when introducing correlation between

stochastic time change and its Lévy innovation, the expectation in (2.3) cannot be solved

through simple iterated expectations. To overcome this problem, Carr and Wu (2004) intro-

duce an ingenious method of taking the expectation in (2.3) under a complex measure change.

This new measure is free of the leverage e¤ect, as the correlation between the time change

and Lévy innovation is absorbed into the measure change. We refer interested readers to Carr

and Wu (2004) for the details of this procedure.

2.3 Modeling time-changed Lévy processes in discrete-time

In discrete time, it is quite counter-intuitive to think of time units as being random. Moreover,

data on asset prices are often recorded at �xed frequency. Consider a simple case of daily

log returns with ln (St+1=St) = Xt+1. The one-day conditional discrete-time version of the
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generalized transform is given by

Fx (�; t; t+ 1) = E
�
e�Xt+1j t

�
= e	x(�;t;t+1); � 2 Dx � C (2.4)

where 	x (�; t; t+ 1) is the one-day conditional version of the cumulant exponent of Xt+1.

It follows that its conditional n-day ahead cumulant exponent is given by n summations of

	x (�; t; t+ 1). Because the exponent of the conditional transform in (2.4) is no longer linear

in time as in (2.1), the applicability of random time change is not so obvious.

In order to produce the equivalent e¤ect that random time change has on Lévy innovations,

we make use of an observation that almost all Lévy processes are time homogeneous in one of

their parameters. This property is de�ned as follows.

De�nition 1 The property of time homogeneity. Consider a Lévy process xt+1 2 R with
distributional parameters �: If there exists a non-empty set ht+1 � � such that the conditional
cumulant exponent of xt+1 over the time interval (t; t+ 1) is given by

	x (�; t; t+ 1) = ht+1�x (�) ; (2.5)

with �x (�) independent of ht+1, then we say that X is time homogeneous in the parameter

ht+1; and �x (�) is the coe¢ cient in the cumulant exponent.

The above de�nition can be extended to d-dimensional Lévy processesXt+1 2 Rd. In this case,
we will have 	X (�; t; t+ 1) = �X (�)

0 ht+1 and it is easy to see that the conditional cumulant

exponent ofXt+1 is a¢ ne in the time-homogeneous parameters ht+1: A well-known example of

a time-homogeneous Lévy process is the zero-mean normal distribution, or Brownian motion.

Consider daily log returns that distributed according to N (0; �2). The generalized Fourier

transform is given by 1
2
�2�2, and hence is time homogeneous in �2: This property implies

that annual log returns (365 days) will be distributed as Normal (0; 365�2). Under the

decomposition in (2.5), the cumulant exponent of Lévy process X is now linear in ht+1:

We therefore see that this time-homogeneous parameter is an ideal candidate for dynamic

modeling in order to mimic the e¤ect of random time change on Lévy innovations. Thus, our

approach for producing random time change e¤ect is through heteroskedastic speci�cations of

ht+1.

In order to model the leverage e¤ect, which is one of the three stylized facts of asset

prices, we must allow for ht+1 to be correlated with the return process. Equally important

is that we want to choose speci�cations of ht+1 such that the generalized Fourier transform

for asset returns is analytically tractable. Given this, we propose to model ht+1 with a¢ ne

GARCH dynamics. We denote this conditional dynamic as ht+1 = G (ht;�tj 
t), where 
t
is the conditioning information set from time 0 to t. We let �t represent a vector of state

variables (other than ht), which must be predictable one period prior to t:
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The generalized Fourier transform for Lévy processes XT conditional on time t < T is

found through a series of iterated expectations

FX (�; t; T ) = Et

h
Et+1

h
: : : ET�2

h
ET�1

h
e�

0XT

i i
: : :
i i

= e	X(�; t; T );

where Es [ ] denotes the expectation taken with respect to the conditioning information set


s: Accordingly, the cumulant exponent 	X (�; t; T ) will follow a recursive updating rule

that depends on the dynamic in G (ht;�tj 
t) and the choice of Lévy innovations. As usual,
we will assume the exponential a¢ ne form in asset prices using d-dimensional Lévy processes

Xt+1. The GARCH �ltration of ht+1 is then driven by at least one conditioning innovation in

Xt. We advocate the use of an a¢ ne GARCH dynamic because it has three main advantages.

The �rst is the tractability in the cumulant exponent which enables us to price European-style

derivatives by inverting the transform. Second, the leverage e¤ect can be trivially generated

in the GARCH process as ht+1 must be correlated with at least one of the processes in Xt.

This produces automatic correlation in asset returns and volatilities. In addition, pricing

derivatives will also be straightforward as we do not have to apply a complex measure change

technique as in Carr and Wu (2004) in order to solve for 	X (�; t; T ) analytically. The third

advantage of using GARCH is that it is a simple �lter to implement. Models that use GARCH

as the �lter are therefore extremely useful in the empirical asset pricing research. For future

reference, we name asset pricing dynamics based on our framework introduced above as Lévy

GARCH processes:

3 Lévy GARCH models

3.1 Asset returns under the physical measure

We start our analysis in the physical measure using the d-dimensional contemporaneously

independent Lévy processes Xt+1 :

Assumption 1 Let P denote the physical measure with the asset return process given by

Rt+1 = log

�
St+1
St

�
= rt+1 + �

0ht+1 + #
0
Xt+1 � �X (#)

0 ht+1; (3.1)

where # 2 Rd, and the elements in ht+1 2 Rd are time-homogeneous parameters of Xt+1 :

Note that �X (#)
0 ht+1 is the convexity adjustment term which makes #

0
Xt+1 a martingale.

The conditional expectation of the asset price is given by Et [St+1] = Ste
rt+1+�

0ht+1 ; where

rt+1 is the risk-free rate applicable from t to t + 1: We assume time-deterministic functions

for interest rates and ignore dividends for notational simplicity. Thus, the rate of return in

9



excess of the risk-free rate is equal to �0ht+1:We will refer to �
0ht+1 as the conditional equity

premium. This is similar to the risk return trade-o¤ in the multifactor APT framework, with

� 2 Rd denoting the market price of risks. When ht+1 follows a GARCH dynamic; the model
produces time-varying risk premia. The conditional variance of the log return is given by

V art(Rt+1) = #
0
Covt

�
Xt+1

�
#: The Covt

�
Xt+1

�
term is the conditional covariance matrix,

which is diagonal and a¢ ne in ht+1: Consequentially, the conditional return variance will also

be an a¢ ne function of ht+1 . Therefore, the time-homogeneous parameters ht+1 can most

usefully be thought of as the parameters that control the variance of returns.

3.2 Speci�cations of the Lévy process

Many di¤erent Lévy processes can be used in the Lévy GARCH framework. We summarize

their properties in Table 1. All the processes considered here satisfy the property of time ho-

mogeneity. We let ht+1 denote the time-homogeneous parameter in all types of Lévy processes

that we consider.

The Lévy triplet [�;�2; � (dx)] completely determines the characteristics of a Lévy process.

A simple case of the normal distribution arises when there is no jump, � (dx) = 0, and the

drift part is zero, � = 0: The variance in the di¤usive part becomes the time-homogeneous

parameter ht+1 = �2. This type of Lévy innovation will serve as the building block for several

a¢ ne GARCH dynamics. The cumulant exponent of the N(0; ht+1) is given by

	Normal (�; t; t+ 1) = ht+1
�2

2
:

Pure jump Lévy processes are classi�ed according to the property of their Lévy measure

� (dx) : When
R
R0 � (dx) <1 ; the Lévy process is of �nite activity as there are �nitely many

jumps (including zero) in any �nite interval. The jump process of Merton (1976) is a well-

known example of a �nite activity jump process. Its construction is based on the compound

Poisson process where each jump is distributed as Normal
�
�; �2

�
and arrives according to a

Poisson distribution with arrival rate ht+1: The cumulant exponent of a Merton jump process

can be derived using (2.2) or through successively applying iterated expectations on Poisson

and Normal random variables. It has the following form

	MJ (�; t; t+ 1) = ht+1(e
��+ 1

2
�2�2 � 1):

The use of the Merton jump structure is the standard practice in the continuous-time

jump-di¤usion literature. See Du¢ e, Pan and Singleton (2000) for details. Applications of

the Merton jump process to discrete-time GARCH processes include the work of Maheu and

Mccurdy (2004), Duan, Ritchken, and Sun (2006).

Unlike �nite activity jump processes, in�nite activity jumps can arrive with in�nite num-
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bers in any �nite time interval. In this case, the integral of the Lévy measure
R
R0 � (dx) no

longer exists. Several of these processes have been extensively studied in the asset pricing

literature. Examples include distributions that exist only on the positive half line such as the

Gamma distribution, the Inverse Gaussian (IG) distribution, and the Tempered Stable (TS)

distribution. These positive-supported distributions are good candidates for modelling jumps

in volatility with an a¢ ne GARCH dynamic. Examples of in�nite activity jump processes

that exist on the real line are the Variance Gamma (VG) model of Madan and Milane (1991),

the Normal Inverse Gaussian (NIG) of Barndor¤-Nielsen (1998), the CGMY model of Carr

et al. (2002), the log-stable (LS) model of Carr and Wu (2003a), and the Meixner process of

Schoutens (2000). The VG and NIG distributions are subclasses of the family of Generalized

Hyperbolic distributions studied in Prause (1999).

3.3 A¢ ne GARCH speci�cations

For any one-period models with �nal time T , the conditional transform of asset returns

can usually be derived without much di¢ culty. According to our Lévy GARCH framework

(3.1), we can write this transform as an exponential a¢ ne function in hT as ET�1
�
e�RT

�
=

e�rT+Z(�)
0hT ; where Z (�) is a d-dimensional vector with a general form

�����X (#) + �X (�#) :

The explicit expression of Z (�) will depend on the choice of Lévy innovations as �X (#) is the
coe¢ cient in the cumulant exponent of Xt+1 which we summarize in Table 1. For multiple-

return periods, the expression for the conditional transform of asset returns will also depend

on the dynamic of ht+1, which we model using a¢ ne GARCH processes.

De�nition 2 A¢ ne GARCH. Consider a GARCH dynamic G (ht;�tj 
t) that provides
the �ltration for the time series of ht+1 2 Rd based on the Lévy innovations Xt 2 Rd : For
generality, we let m be the number of auto-regressive lags on ht+1 and n be the number of lags

on the vector of state variables �t+1 2 Rq, where both ht+1 and �t+1 are predictable at time t:
If the joint conditional transform of

(Xt+1;ht+2;�t+2) evaluated at � = (�x;�h;��)

with �x and �h d� 1 vectors, and �� a q � 1 vector; has an a¢ ne expression in (ht+1;�t+1)
and their lags according to

Et

h
e�

0
xXt+1+�0hht+2+�

0
��t+2

i
= eV(�)+

Pm

i=1
Wi(�)

0ht+2�i+
Pn

j=1
Yj(�)0�t+2�j (3.2)

with a scalar V (�), d� 1 vectors Wi (�)�s and q � 1 vectors Yj (�)�s, then G (ht;�tj 
t) has
an a¢ ne GARCH dynamic.
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Our de�nition only requires that the joint conditional transform of
�
X0
t+1;h

0
t+2; �

0
t+2

�0
be

exponential a¢ ne in (ht+1;�t+1) and their lags. This is su¢ cient as we will show that, when

this condition is met, the generating function for asset prices will be exponential a¢ ne; and

hence analytically tractable. For applications to asset pricing at time T conditional on period

t; we are interested in the solution to the generating function of ST

f (�; t; T ) = Et

h
S�T

i
= S�t Et

�
e�
PT�t

k=1
Rt+k

�
for � 2 R:8 There exist a plethora of combinations of GARCH dynamics and Lévy innovations
that can be nested into the Lévy GARCH framework. We therefore provide a general form

of their generating function. In subsequent sections, we present explicit expressions for a few

selected cases that are widely used in the existing literature.

Proposition 1 Consider the asset price dynamic in (3.1), where heteroskedasticity in the
model is driven by the a¢ ne GARCH process G (ht;�tj 
t) on the time-homogeneous parame-
ter ht+1:The solution to the generating function of the asset price at time T; conditional on

time t, takes the form

f (�; t; T ) = S�t e
A(�;t;T )+

Pm

i=1
Bi(�;t;T )0ht+2�i+

Pn

j=1
Cj(�;t;T )0�t+2�j ; (3.3)

where the a¢ ne coe¢ cients can be solved through the following recursive relations

A (�; t; T ) = �rt+1 +A (�; t+ 1; T ) + V (�)
B1 (�; t; T ) = � (�� �X (#)) + B2 (�; t+ 1; T ) +W1 (�)

Bi (�; t; T ) = Bi+1 (�; t+ 1; T ) +Wk (�) for i = 2; : : : ;m� 1
Cj (�; t; T ) = Cj+1 (�; t+ 1; T ) + Yj (�) for j = 1; : : : ; n� 1
Bm (�; t; T ) = Wm (�) ; Cn (�; t; T ) = Yn (�)

with

� = (�#;B1 (�; t+ 1; T ) ; C1 (�; t+ 1; T )) :

At the terminal date, these a¢ ne coe¢ cients must satisfy the boundary conditions A (�;T; T ) =
0, Bi (�;T; T ) = 0 for all i�s, and Cj (�;T; T ) = 0 for all j�s:

Proof. See appendix A.
8Notice that the generating function of the asset price f (�; t; T ) is a product of the conditional transform

of the asset return and S�t :
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The simplest case is when ht is homoskedastic because there is no need to recursively

update these coe¢ cients. In fact, their solutions take extremely simple forms

A (�; t; T ) = �
T�tP
k=1

rt+k ; B1 (�; t ; T ) = Z (�) (T � t) ;

and zeros for the rest of the a¢ ne coe¢ cients.

In this paper, we illustrate the application of Lévy GARCH by focusing on a version of (3.1)

that is most representative of modern asset pricing models. The recent trend in option pricing

is to model the asset�s log returns with two stochastic components: a Brownian component

and a pure jump component. To model the leverage e¤ect, the Brownian part is speci�ed to

be correlated with shocks in volatilities. Under this setup, the P-measure log return process
can be written as

P measure : Rt+1 = rt+1 + �zhz;t+1 + �yhy;t+1 + zt+1 + yt+1; (3.4)

where zt+1 is normally distributed as Normal (0; hz;t+1) and yt+1 is a pure jump process.

For generality, we leave yt+1 unspeci�ed with only the requirement that hy;t+1 be its time-

homogeneous parameter. We note that this dynamic is a special case of (3.1) with X0
t+1
=

(zt+1; yt+1) ; and #
0 = (1; 1): To assist with econometric identi�cation, we let �z = �z �

�z (1) and �y = �y � �y (1) ; which represent the market price of risks and the martingale
compensators respectively.

3.3.1 Heteroskedasticity via a GARCH(1,1) dynamic

Huang and Wu (2004) use a similar setup as in (3.4) to study option pricing models based on

time-changed Lévy processes with stochastic time change that follows the square root model

of Cox, Ingersoll and Ross (1985). We can extend this setup to our Lévy GARCH process.

For the dynamic of ht+1 ; we use the a¢ ne GARCH(1,1) of Heston and Nandi (2000), which is

known to have CIR square root process as its continuous-time limit; see appendix B in Heston

and Nandi (2000) for proof.

We assume two di¤erent a¢ ne GARCH(1,1) dynamics for hz;t+1 and hy;t+1

hz;t+1 = wz + bzhz;t +
az
hz;t

(zt � czhz;t)2 (3.5)

hy;t+1 = wy + byhy;t +
ay
hz;t

(zt � cyhz;t)2 :

The return speci�cation in (3.4) together with the GARCH speci�cation (3.5) encompasses var-

ious models that have been studied in the option pricing literature. In fact, it has continuous-

time limits that are equivalent to those of the SV4 model of Huang and Wu (2004). We note

that the parametrization of (3.5) is slightly di¤erent from the a¢ ne GARCH(1,1) model in
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Heston and Nandi (2000). This is because we use nonstandardized normal innovations as

the conditioning variables in the above GARCH dynamic. There is no empirical consequence

from writing the model according to (3.5) instead of using the notation in Heston and Nandi

(2000). The solution to the conditional transform for the return process (3.4) and the a¢ ne

GARCH(1,1) dynamic (3.5) takes the following form

f (�; t; T ) = S�t e
A(�; t; T )+Bz(�; t; T )hz;t+1+By(�; t; T )hy;t+1 ; (3.6)

where the expressions for the a¢ ne coe¢ cients are provided in appendix B. Notice that in

the simple GARCH(1,1) case, there is no state variable �t+1, and hence all Cj coe¢ cients
disappear. In addition, we drop the i subscripts in Bi since there is only one autoregressive
lag in ht+1: However, extensions to GARCH(m,n) can be easily derived based on our general

solution.

When there is no pure jump component, hy;t = 0; (3.4) and (3.5) reduce to the Heston-

Nandi GARCH(1,1) model. The GARCH �ltrations of hz;t+1 and hy;t+1 are based on expost

knowledge of the normal shock zt of the return Rt: This approach is quite unconventional of a

GARCH speci�cation as zt is now a latent process, and must be �ltered out. The motivation

for separating the normal component from the total return innovation zt + yt is to obtain an

a¢ ne GARCH dynamic. It could be argued that the need to �lter zt somewhat undermines

the purpose of a GARCH process. However, hz;t+1 and hy;t+1 can still be easily updated once

zt is known. The �ltration of zt is constructed using E [zt j
t] ; and particle �ltering can be
used for estimating the model. Particle �ltering is very fast and e¢ cient. It can handle highly

nonlinear state-space forms. Moreover, its implementation naturally lends itself to model

estimation based on the maximum likelihood method as shown by Pitt (2002). We discuss

our proposed method for �ltering and estimation in a later section.

3.3.2 Richer heteroskedastic behavior through a component model

It is known that it is far from accurate to model the dynamic of returns and volatility using a

normal innovation together with a simple GARCH(1,1) process. A similar observation applies

to stochastic volatility models such as Heston (1993). This issue has been addressed in the

literature by either modeling the return with nonnormal innovations or by allowing for richer

volatility dynamics. The latter approach includes the introduction of component factors in

the volatility modeling as in Engle and Lee (1999), Alizadeh, Brandt and Diebold (2002),

Bollerslev and Zhou (2002), and Chernov, Gallant, Ghysels and Tauchen (2002). In the

GARCH literature, Engle and Lee (1999) model volatility using two factors representing the

short-run and long-run components. Christo¤ersen, Jacobs, Ornthanalai and Wang (2008)

develop an a¢ ne GARCH version of Engle and Lee (1999), and demonstrate its superior

option pricing performance relative to the benchmark a¢ ne GARCH(1,1) process. The richer
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volatility dynamics enable the component model to capture patterns in long-maturity as well

as in short-maturity options.

We can apply the speci�cation of Christo¤ersen, Jacobs, Ornthanalai and Wang (2008) to

the Lévy GARCH framework. Assuming the return process (3.4), we write the dynamic of

hxi;t+1 for xi = fz; yg as

hxi;t+1 = �xi;t+1 + bxi (hxi;t � �xi;t) +
axi
hz;t

��
z2t � hz;t

�
� 2cxizthz;t

�
(3.7)

�xi;t+1 = wxi + �xi�xi;t +
'xi
hz;t

��
z2t � hz;t

�
� 2dxizthz;t

�
:

In this setup, the dynamic of hz;t+1 and hy;t+1 can most usefully be thought of as having two

components: �z;t+1 and �y;t+1 which represent the long-run components, and hz;t+1 � �z;t+1
and hy;t+1 � �y;t+1 which represent the short-run components.
From the dynamic in (3.7), we see that the long-run components, �z;t+1 and �y;t+1, are the

state variables in our a¢ ne GARCH setup. We can also observe that the a¢ ne component

GARCH dynamic has one lag (m = n = 1) in both the time-homogeneous parameters and

the state variables: Therefore, the solution to the generating function for asset price will

also contain a coe¢ cient C (�; t; T ) in addition to B (�; t; T ) and A (�; t; T ) : The generating
function takes the form

f (�; t; T ) = S�t e
A(�; t;T )+B(�; t;T )0ht+1+C(�; t;T )0�t+1 ; (3.8)

where ht+1 = (hz;t+1; hy;t+1)
0, �t+1 = (�z;t+1; �y;t+1)

0 ; and

B (�; t; T ) =
�
Bz (�; t; T )
By (�; t; T )

�
; and C (�; t; T ) =

�
Cz (�; t; T )
Cy (�; t; T )

�
:

Note again that since m = n = 1, we have dropped the i and j subscripts in Bi and Cj
for notational simplicity. The recursive relations for these a¢ ne coe¢ cients are included in

appendix B.

3.3.3 Heteroskedasticity with jumps in a¢ ne GARCH

The consensus in the literature is that jumps are important for realistic modeling of the return

dynamic. However, opinions on jumps in volatility remain mixed. But increasingly, evidence

from option data suggests the presence of jumps in volatility (see Eraker (2004), and Broadie,

Chernov and Johannes (2007)). This feature of asset pricing can also be modeled in the Lévy

GARCH framework. One simple method is to add a jump (in�nite or �nite-activity) process

to the existing a¢ ne GARCH dynamic. For instance, consider the following return and a¢ ne
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GARCH(1,1) dynamic augmented with a jump

Rt+1 = rt+1 + �zhz;t+1 + �yhy;t+1 + zt+1 + �yt+1 (3.9)

hxi;t+1 = wxi + bxihxi;t + dxiyt +
axi
hz;t

(zt � cxihz;t)
2

for xi = fz; yg : The above model is a slight adaptation of (3.4) where zt+1 is normally
distributed as N (0; hz;t+1) ; and yt+1 is a pure jump process but with positive support. We

limit the above model to jumps with the probability of P (yt+1 < 0) = 0 in order to ensure

positivity in the dynamic of ht+1: This includes the restriction that dz and dy be equal or

greater than zero. We also introduce the scaling coe¢ cient � 2 R for the jump innovations
in the return dynamic, and hence we must have �y = �y � �y (�) in (3.9). A negative value
for � would imply that the jump yt+1 represents a downside risk in the return which is often

referred to as a �crash�, while a positive value of � would signify the opposite. Examples of

jump processes with positive support include the Poisson jump with constant jump size �, the

inverse Gaussian distribution, the Gamma distribution, and the Meixner process. We note

that Carr and Wu (2004) introduce a similar process in their time-changed Lévy framework,

where they use the log-stable (LS) process to model the negative jump. Since the LS process

consists of in�nite number of negative jumps, we can also extend their approach to (3.9) by

letting yt+1 be distributed as LS and restricting dz and dy to be negative.

Adding jumps to the a¢ ne GARCH dynamic in this manner does not destroy the a¢ ne

property because the cumulant exponent of yt is a¢ ne in its time-homogeneous parameter.

For the return and GARCH model (3.9), the generating function takes the form

f (�; t; T ) = S�t e
A(�; t; T )+Bz(�; t; T )hz;t+1+By(�; t; T )hy;t+1 (3.10)

where the expressions for the a¢ ne coe¢ cients are provided in appendix B. A more complex

a¢ ne GARCH model with jumps is studied in Christo¤ersen, Heston and Jacobs (2006), who

model returns and price options using an a¢ ne inverse Gaussian GARCH. Their speci�cation

can also be nested in the Lévy GARCH framework.

4 The risk-neutral measure

4.1 Change of measure

In the discrete-time framework, stock prices can jump to an in�nite set of values in a single

period, thus the equivalent martingale measure (EMM) is not unique. We follow the usual

approach (e.g. Heston (1993)) by establishing the existence of a risk-neutral probability

density such that returns on all assets�ex-dividend payout are equal to the risk-free rate.

Assumption 2 The conditional Radon-Nikodym derivative that links the physical measure

16



(P) to the risk-neutral measure (Q) is given by

dQ�

dP
j Ft+1

dQ�

dP
j Ft

= exp
�
�0Xt+1 � �X (�)

0 ht+1
�
; (4.1)

where Xt+1 2 Rd is a vector of Lévy innovations in returns, and �X (�)
0 ht+1 is similarly

de�ned as in (3.1). We refer to � 2 Rd as the EMM coe¢ cients that act as the wedge between

the objective and risk-neutral measure.

This Q measure depends on the values in �, which have to be solved prior to pricing

derivatives. The solutions will be such that the discounted return on assets less its dividend

is a martingale. Our choice of the Radon-Nikodym derivative falls within the framework of

Gerber and Shiu (1994) who use the Esscher transform (1932) to price options. Applications

of the Esscher transform in derivatives pricing is common, see for example Carr and Wu (2004)

for an application in option pricing, and Ahn, Dai and Singleton (2007) for an application to

term structure modeling.9

The solution for � is obtained by imposing the local martingale restriction on asset returns

under the Q measure. That is, for any unit time interval,

EQt [exp (Rt+1)] = exp (rt+1) :

Multiple solutions may exist such that the local martingale restriction holds. However, the

identi�cation of � is facilitated by the speci�cation of our Lévy GARCH framework. We

make use of the property that the cumulant exponent of our Lévy processes and total equity

premium are both a¢ ne in ht+1 to derive the following proposition.

Proposition 2 Assume an exponential a¢ ne model for asset prices as in (3.1) with the
Radon-Nikodym derivative given by (4.1). For the existence of an equivalent martingale mea-

sure Q, the EMM coe¢ cients in � 2 Rd must satisfy the following set of equations

� = �X (#) + �X (�)� �X (#+�) ; (4.2)

Proof. See appendix C.
For Xt+1 2 Rd, (4.2) consists of d equations. These equations are solved independently

with their solutions corresponding to each value in �. We note how � enters into (4.2) where

each equation has its own market price of risk parameter. This simpli�es identi�cation of

the risk premium that is associated with each Lévy shock. For example, consider the return

dynamic in (3.4). Applying the local martingale restriction, we arrive at the following two

9See also Buhlmann et al. (1998), Chan (1999), and Siu, Tong and Yang (2004) who economically motivate
the use of the Esscher transform as the economy�s pricing kernel.
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equations:

�y = �y (1) + �y (�y)� �y (1 + �y) (4.3)

�z = ��z: (4.4)

We have the same solution for �z as that from the method of LRNVR of Duan (1995). In

order to solve for �y; more details on the speci�cation of the jump process is required. In some

cases, we cannot analytically solve for �y, but from (4.3), it can be solved for numerically with

ease. The market prices of risks �z and �y enter separately into the above two equations (4.4)

and (4.3). This result is very useful because it allows us to isolate the two sources of risk in

the economy, namely normal and jump risks.

4.2 The market price of risk

We assume that the total equity premium is a¢ ne in ht+1. According to (3.1), the total equity

premium is given by


t+1 = log
EPt [exp (Rt+1)]

EQt [exp (Rt+1)]
=

dP
i=1

�xihxi;t+1; (4.5)

where �xi and hxi;t+1 are the market price of risk and the time-homogenous parameters asso-

ciated with the ith Lévy innovation in Xt+1. The equity premium 
t+1 exhibits time variation

that depends on the GARCH dynamic of ht+1: This is a desirable result given the existing

evidence for stochastic risk premia, see for instance Fama (1984), Fama and Bliss (1987), and

Bakshi, Carr and Wu (2008). When hxi;t+1 = hxi is constant, the premium required to hold

the ith factor will also be constant. Intuitively, the required premium on an investment that

is exposed to the uncertainty xi should not change unless the nature of the risk in xi changes

(hxi changes), or there is a change in the investor�s risk-taking behavior (�xi changes).

The long-run equity premium is determined by taking unconditional expectations of (4.5).

This gives 
 =
Pd

i=1 �xiE [hxi;t+1] ; where E [hxi;t+1] will depend on the choice of GARCH

dynamic for each hxi;t+1: The a¢ ne structure of 
 has an interesting implication for empirical

option pricing studies. Given a �xed level of the long-run equity premium, we can study how

changing the weights that each shock has in the total equity premium a¤ects option prices.

This could shed light on the prevailing debate of relative signi�cance that jump risk premia

have on option pricing.

There is a direct relationship between the market prices of risks and the EMM coe¢ cients.

That is, for each set of risk and return trade-o¤s �, there is a corresponding � that determines

the divergence between the physical and risk-neutral distributions of asset prices. Notice that

in equation (4.2), when the risk xi is not priced in the market (�xi = 0) ; we must have

�xi = 0 as the solution. In a special case when none of the risks are priced, � = 0, the

distributions of the asset price under the two probability measures are identical. In the
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standard risk-return trade-o¤, an average investor would demand a reward for bearing some

level of uncertainty (�xi > 0). This aversion to risk implies a positive value of the total equity

premium. Consequentially, the resulting EMM coe¢ cient �xi will be negative to ensure that

the discounted stock price is a Q martingale. In the case of term structure models where all

innovations are normally distributed, the two parameters � and � are linearly related (see

equation (4.4)), and their names often used interchangeably. Ahn, Dai and Singleton (2007)

refer to � as the market price of risk parameter.

Our choice of the Radon-Nikodym derivative (4.1) leads to a pricing kernel that is identical

to the one commonly used in the a¢ ne literature which takes the form

ln
Mt

Mt+1

= um � �m ln
St+1
St

�
dP
i=1

�
i
xi;t+1; (4.6)

with �i = ��m � �xi and um is such that Et [Mt+1=Mt] = exp(�rt+1): As pointed out in
Bates (2006), this speci�cation nests various approaches. For instance, when �m = ��xi for
all i = 1; : : : ; d; (4.6) reduces to a myopic power utility pricing kernel used in the implicit

pricing kernel literature. Furthermore, if St is a good proxy for the overall wealth such as the

market index, �m is the coe¢ cient of relative risk aversion in an economy with power utility.

When the coe¢ cient �i is nonzero, it implies that there is a risk premium for the ith shock in

addition to the direct wealth-related e¤ects on marginal utility captured by �m ln (St+1=St) :

For instance, in our return model (3.4), nonzero values for �z and �y imply the presence of

volatility and jump risk premia that are extraneous to the direct e¤ects of the overall wealth.

This corresponds to an economy where investors are averse to jumps (see Bates (2006)) and

volatility-related shifts in the investment opportunity set.

4.3 Asset price dynamics under the risk-neutral measure

To price derivatives, we must characterize the dynamic of the asset price under the risk-

neutral measure. First, we look at the e¤ect that the change of measure (4.1) exerts on the

Lévy processes Xt+1:

Proposition 3 Consider a P-measure Lévy process Xt+1 2 Rd with the conditional cumulant
exponent given by (2.5). Its equivalent process X�

t+1 under the risk-neutral measure, consis-

tent with the Radon-Nikodym derivative in (4.1), is characterized by the following conditional

cumulant exponent

	QX (�; t; t+ 1) = (�X (� +�)� �X (�))
0 ht+1 (4.7)

= ��X (�)
0 h�t+1;

where h�t+1 2 Rd is a vector of Q-measure time-homogeneous parameters, and ��X (�) is the
coe¢ cient in the cumulant exponent of X�

t+1:

19



Proof. Apply the change of measure and take the expectation as follows

EQt

h
e�

0Xt+1

i
= Et

h
e�

0Xt+1��X(�)0ht+1+�0Xt+1

i
= e(�X(�+�)��X(�))

0ht+1 = e	
Q
X(�; t; t+1);

and equate the exponents.

Another advantage of the Lévy GARCH framework is that the Q-measure cumulant ex-
ponent of X�

t+1 will also be a¢ ne in the vector of time-homogeneous parameters. Given this,

we are ready to show the risk-neutral return dynamic for the Lévy GARCH process in (3.1).

Lemma 1 Risk-Neutral Lévy GARCH dynamic. Under the risk-neutral measure, the
asset�s return dynamic can be written as

log

�
St+1
St

�
= rt+1 � ��X (#)

0 h�t+1 + #
0X�

t+1

where X�
t+1 is the risk-neutral Lévy process with the cumulant exponent (4.7).

Proof. See appendix C.
When using the Esscher transform to de�ne the change of measure, the new process X�

t+1

will always be an equivalent Lévy process.10 The conditional Q-measure cumulant exponent
of the asset return can be derived using Proposition 3, and the conditional risk-neutral density

of asset returns can be computed via Fourier inversion. This is advantageous because we do

not need to recognize the distribution that characterizes X�
t+1 in order to price derivatives, as

long as its conditional transform under the physical measure is known.

If, under the risk-neutral measure, the a¢ ne GARCH dynamic G
�
ht;�tj 
Qt

�
remains

a¢ ne, which according to our de�nition (3.2) implies that

EQt

h
e�

0(X0
t+1;h

0
t+2; �

0
t+2)

0i
= eV

�(�)+
Pm

i=1
W�
i (�)

0ht+2�i+
Pn

j=1
Y�j (�)

0�t+2�j : (4.8)

In this case, the generating function of asset prices is analytically known and can be immedi-

ately derived. Note that we apply star superscripts to the above a¢ ne coe¢ cients in order to

distinguish them from their physical measure counterparts. The generating function of asset

prices under the risk-neutral measure at time T; conditional on the current period t; takes

the same form as (3.3)

f � (�; t; T ) = S�t e
A�(�;t;T )+

Pm

i=1
B�i (�;t;T )

0ht+2�i+
Pn

j=1
C�j (�;t;T )

0�t+2�j :

10See the discussion of Delbaen, Schachermayer and Schweizer in Gerber and Shiu (1994). For the
continuous-time version, see appendix A in Carr and Wu (2004).
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Assuming the risk-neutral a¢ ne GARCH property in (4.8), these coe¢ cients can be solved

using the same recursive relations as in Proposition 1

A� (�; t; T ) = �rt+1 +A� (�; t+ 1; T ) + V� (�)
B�1 (�; t; T ) = � (�� �X (#)) + B�2 (�; t+ 1; T ) +W�

1 (�)

B�i (�; t; T ) = B�i+1 (�; t+ 1; T ) +W�
k (�) for i = 2; : : : ;m� 1

C�j (�; t; T ) = C�j+1 (�; t+ 1; T ) + Y�j (�) for j = 1; : : : ; n� 1
B�m (�; t; T ) = W�

m (�) ; C�n (�; t; T ) = Y�n (�)

with � = (�#;B�1 (�; t+ 1; T ) ; C�1 (�; t+ 1; T )) : Although the change of measure does not
guarantee that G

�
ht;�tj 
Qt

�
will be a¢ ne, the design of an a¢ ne GARCH process often

ensures that the a¢ ne property will hold after the measure change. In fact, all existing a¢ ne

GARCH processes in the literature are also a¢ ne in the Q measure, including our examples

in sections 3.3.1-3.3.3.

Although the pricing of derivatives using the inverse transform method does not require

knowledge of the distribution of X�
t+1; it is often useful to understand the e¤ect that mea-

sure change has on these Lévy innovations. If the processes in X�
t+1 stem from recognizable

distributions, then we can price derivatives via Monte-Carlo simulations, which leads to po-

tential applications of the Lévy GARCH framework to nona¢ ne GARCH dynamics. This is

of paramount importance as most of the empirically studied GARCH dynamics are nona¢ ne.

It turns out that, under the Lévy GARCH framework, several processes once transformed into

the risk-neutral measure will be distributed in the same way as they were under the physical

measure. For clarity, we use the simple example of a normally distributed random variable

zt+1 � N (0; hz;t+1) to illustrate our point. Applying the change of measure according to (4.7),
we see that the risk-neutral process z�t+1 will have the following conditional cumulant exponent

	Qz (�; t; t+ 1) = ��zhz;t+1 +
1

2
�2hz;t+1:

The above is essentially the conditional cumulant exponent for a normally distributed random

variable with variance hz;t+1and mean �zhz;t+1: Note that, from (4.4), �z = ��z and therefore
the change of measure a¤ects zt+1 by shifting its mean to the left by �zhz;t+1:

Similarly, we can apply the change of measure (4.7) to each pure jump Lévy process pre-

sented in Table 1, and try to recognize the distribution of its transformed cumulant exponent.

For most of the Lévy processes presented in Table 1, their risk-neutral and physical distribu-

tions are distributed according to the same type of stochastic process, although with di¤erent

parameters. For convenience, we summarize the results in Table 2. We cannot associate the

risk-neutral transformed cumulant exponent of the double exponential jump (DEP), and the

log-stable (LS) process with any of the well-known distributions. We therefore denote their Q
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measure distribution as �unrecognizable�. However, Mo and Wu (2007) use a special case of

the DEP jump, with p = �1 and 1� p = �2, to study risk premia in international economies.
They show that this process has a recognizable risk-neutral transformed density, and we refer

to this distribution, which is a special case of Kou�s DEP as the DEP-MW. We summarize

the e¤ect that the change of measure has on the parameters governing each Lévy process on

the right column of Table 2. Because the transformation of these parameters from P to Q is
purely algebraic, and is accomplished by applying (4.7), we do not include them in this paper.

Returning to the P-measure asset price in (3.4), we can write its equivalent risk-neutral
dynamic as

Rt+1 = rt+1 +

�
�z �

1

2

�
hz;t+1 � ��y (1)h�y;t+1 + z�t+1 + y�t+1;

where z�t+1 � N (��zhz;t+1; hz;t+1) : For generality, we keep the distribution of yt+1 unspeci�ed.
Therefore, little can be said about y�t+1 except that its conditional cumulant exponent is given

by ��y (�)h
�
y;t+1: The convention in the GARCH literature is to express the normal shock as

a mean zero innovation. Therefore, we use the transformation z�t+1 = zt+1 � �zhz;t+1, and
rewrite the Q-measure asset price as

Q measure : Rt+1 = rt+1 �
1

2
hz;t+1 � ��y (1)h�y;t+1 + zt+1 + y�t+1 (4.9)

with zt+1 � N (0; hz;t+1) :
The procedure for risk neutralizing an a¢ ne GARCH process is straightforward. It in-

volves replacing the Lévy innovations Xt+1 in the GARCH updating with the risk-neutral

X�
t+1: Furthermore, we can write the Q-measure a¢ ne GARCH process using the risk-neutral

transformed parameters. We note that this condition is not necessary for the derivation of

the Q-measure generating function of the asset price. It is, however, the convention in the
literature. The reparametrization of an a¢ ne GARCH dynamic implies writing G

�
ht;�tj 
Qt

�
as G

�
h�t ;�

�
t j 
Qt

�
. The relationship between h�xi;t+1 and hxi;t+1 in the Lévy process xi in Xt+1

is given by

h�xi;t+1 =

�
�xi (1 + �xi)� �xi (�xi)

��xi (1)

�
hxi;t+1;

for i = 1; : : : ; d: This follows from our result in (4.7). For the reparametrization of �t using

��t ; more information on the nature of �t is required. However, in most cases, it is possible

to write the dynamic of G
�
h�t ;�

�
t j 
Qt

�
using the same structure as G (ht;�tj 
t) but with the

risk-neutral transformed parameters and reparametrized GARCH coe¢ cients. This method is

highly convenient as the generating function for the asset price under the risk-neutral measure

f � (�; t; T ) = EQt

h
S�T

i
will be of the same form as f (�; t; T ). For convenience, we include the

derivation of the risk-neutral dynamic for a¢ ne GARCH models discussed in sections 3.3.1-

3.3.3 in the appendix D.
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4.4 Option pricing

Given that the risk-neutral generating function of asset price f � (�; t; T ) is known, we can

value European-style derivatives using the Fourier inversion method as in Heston (1993),

Lewis (2000), Du¢ e, Pan and Singleton (2000), and Bakshi and Madan (2000). Using one

version of the inverse transform, the price of a European call option at time t with expiration

date T , strike price K, and current spot price St is given by

C (St; K; T; r ) = e�r(T�t)EQt
�
(ST �K)+

�
(4.10)

= St

�
1

2
+
1

�

Z 1

0

Re

�
K�i�f � (i�+ 1)

i� f �(1)

�
d�

�
�e�r(T�t)K

�
1

2
+
1

�

Z 1

0

Re

�
K�i�f � (i�)

i�

�
d�

�
:

Note that we have assumed a constant interest rate in order to simplify the expression.

4.5 Bond pricing

Following the extant literature on a¢ ne term structure models, we assume that the one-

period risk-free rate from t to t + 1 is given by rt+1 = �0 + �
0
xXt+1, where Xt+1 is the

d-dimensional Lévy process with �x 2 Rd+. The a¢ ne structure of rt+1 allows us to derive
the conditional transform for the interest rate dynamic and to price zero-coupon bonds using

the same techniques discussed in section 3.3. For the interest rate dynamic, the P-measure
conditional transform is given by Et

�
e�rt+k

�
= e	r(�;t;t+1), where

	r (�; t; t+ 1) = ��0 + �X (��x)
0 ht+1

is the conditional cumulant exponent. Given this, all the statistical moments of the one-period

interest rate dynamic can be derived, and its transition density P (rt+1jrt) can be computed
via Fourier inversion.

We now discuss the implications of our model for pricing zero-coupon bonds. The time t

zero-coupon bond price paying $1 at maturity T is given by

B (t; T ) = EQt

�
e�
PT�t

k=1
rt+k

�
= Et

�
T�tQ
k=1

Mt+k

Mt+k�1

�
; (4.11)

where Mt+k is the pricing kernel consistent with the equilibrium pricing measure

Mt+k

Mt+k�1
=
U 0 (Ct+k�1)

U 0 (Ct+k)

for k = 1; : : : ; T � t, and Ct is the aggregate consumption at time t: In order to solve the
expectation (4.11) in the context of the Lévy GARCH framework, the dynamic of the pricing
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kernel must have an a¢ ne structure. From (4.6), we see that the setup of our economy leads

to an a¢ ne pricing kernel. We can therefore apply the technique in Proposition 1 and solve

for the price of a zero-coupon bond. For generality, and to keep notation manageable, we

assume that the one-period a¢ ne pricing kernel takes the form

log
Mt+1

Mt

= um + �
0
0ht+1 + �

0
xXt+1;

where �0 and �x are d-dimensional vectors. The constant term um is such that Et [Mt+1=Mt] =

exp (�rt+1) ; where the statistical dynamic for rt+1 is discussed above. For notational sim-
plicity, we will assume that the a¢ ne GARCH dynamic for ht+1 satis�es the property (3.5).

Using the technique shown in the proof of Proposition 1, solving (4.11) is equivalent to solving

for

Et

�
e
��
PT�t

k=1
log

Mt+k
Mt+k�1

�
= eA(�;t;T )+

Pm

i=1
Bi(�;t;T )0ht+2�i+

Pn

j=1
Ci(�;t;T )0�t+2�j

and evaluating it at � = 1: The a¢ ne coe¢ cients are solved using the same recursive relations

as in Proposition 1, but with the following slight modi�cations

A (�; t; T ) = ��m +A (�; t+ 1; T ) + V (�) ;
B1 (�; t; T ) = ��0 + B2 (�; t+ 1; T ) +W1 (�) ;

and � = (��x;B1 (�; t+ 1; T ) ; C1 (�; t+ 1; T )).

5 Estimation method

5.1 Filtration of latent variables

GARCH models are very popular among �nance academics and practitioners due to their ease

of implementation. When G (ht;�tj 
t) is an updating scheme conditional only on ht and 10Xt,

there is no need to separately identify each residual in Xt. In this case, the �ltration of ht+1 is

extremely straightforward. For clarity, we illustrate this using the return model in (3.4) and

adapt the GARCH dynamic of hz;t+1 in (3.5) to

hz;t+1 = wz + bzhz;t +
az
hz;t

(zt + yt � czhz;t)2 : (5.1)

The di¤erence between (3.5) and (5.1) lies in the conditioning innovation where, in (5.1), the

total return residual zt+yt enters directly into the GARCH dynamic. Therefore, the �ltration

of hz;t+1 in (5.1) is extremely simple and can be performed quickly. We can directly estimate

the model using standard maximum likelihood. Unfortunately, the dynamic of (5.1) does not

admit tractable formulae for the cumulant exponent and hence no closed-form solution for
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European-style derivatives exists.

When the dynamic of G (ht;�tj 
t) requires that the total return residual is separated, we
need to rely on a �ltering technique in addition to GARCH. Because a model of this type

consists of jumps which produce signi�cant nonlinearity, a �lter that relies on a linearized state-

space, such as the Kalman �lter, is not appropriate. In addition, many of the well-known Lévy

processes do not have closed-form density functions, which makes the estimation problem more

challenging, as we cannot construct likelihood functions in the traditional way. A few methods

have been proposed for estimating models based on time-changed Lévy processes. Li, Wells

and Yu (2006) use Markov Chain Monte Carlo (MCMC) method to estimate models with

stochastic volatilities and Lévy jumps. This is a very reliable method because the model�s

parameters are drawn from its exact (or close approximate of the) posterior distributions.

The downside of the MCMC method is that each model requires a di¤erent, custom-tailored

estimation strategy. Moreover, it is computationally intensive.

Bates (2008) and Bakshi, Carr and Wu (2008) use Fourier inversion to obtain the condi-

tional density of returns for a time-changed CGMY Lévy process. They estimate their models

by maximizing their resulting likelihood functions. When the �ltration of the time change

process is exact, Fourier inversion will yield the true likelihood. Nevertheless, likelihood es-

timation based on the Fourier inversion can be computationally intensive as each inversion

involves a numerical integration on the complex plane. For the �ltration of the latent time

change process, Bates (2008) uses the Approximate Maximum Likelihood (AML) method in-

troduced in Bates (2006). On the other hand, Bakshi, Carr and Wu (2007) use the unscented

Kalman �lter which is accurate up to the second order for any nonlinearity.

One of our objectives in the development of the Lévy GARCH models is ease of imple-

mentation. In addition, we wish to use an estimation strategy that is based on the likelihood

framework because it allows for simple performance comparison between various models. We

propose that the particle �ltering (PF) technique is used for the �ltration of the return inno-

vation.

5.2 The particle �lter

The PF is based on the Sampling Importance Resampling (SIR) algorithm where the latent

state variables are sampled and resampled with predetermined weights. The algorithm pro-

vides exact �ltration when the number of particles used approaches in�nity. Gordon, Salmond

and Smith (1993) show that PF is a convenient �lter for non-linear models. Johannes, Polson

and Stroud (2008) apply the PF to continuous-time jump di¤usion models and examine its

property in detail. Christo¤ersen, Jacobs and Mimouni (2007) use the PF to �t returns and

option prices on various a¢ ne and nona¢ ne stochastic volatility models.

Consider Lt as a vector of latent variables. The problem at hand is to compute the
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expectation

E [Lt j 
t] =
Z
Lt P (Lt j 
t) dLt; (5.2)

where P (Lt j 
t) is the �ltering density. The conditioning information set
t = (R0; R1; : : : ; Rt),
includes all current and past information on the asset�s returns. By Bayes�rule, the �ltering

density is given by

P (Lt j 
t) =
P (Rt j Lt; 
t�1)P (Lt j 
t�1)

P (Rt j 
t�1)
(5.3)

_ P (Rt j Lt; 
t�1)P (Lt j 
t�1) :

Direct integration of (5.2) is di¢ cult as the density P (Lt j 
t) is not always available in
analytical form. However, if we can sample Lt from P (Lt j 
t) ; then we can compute (5.2) by
simple averaging. This procedure is referred to as Monte Carlo integration. The PF algorithm

works by approximating the �ltering density such that the sampling of Lt is e¢ cient. The

application of the PF only requires two assumptions: (A1) the state evolution Lt can be

simulated from transition density P (Lt j Lt�1); and (A2) the likelihood of Rt conditional on
Lt�1 and Rt�1 can be exactly evaluated:

Given (3.4) and the GARCH dynamic (3.5), our objective is to �lter out zt from the return

Rt: There are two Lévy innovations here: a normal part and a pure jump part. Thus, the

�ltering problem for zt is equivalent to the �ltering problem for yt: This follows from the fact

that

E [zt j 
t] = Rt � rt � �zhz;t � �yhy;t � E [yt j 
t] :

Following (5.3), the �ltering density for the pure jump component can be written as

P ( yt j 
t) _ P (Rt j yt; 
t�1)P (yt j 
t�1) :

The PF algorithm involves two recursive steps. Step 1 consists of simulating N particles

of yit from P (yt j 
t�1), and step 2 involves resampling these particles proportional to the
probability weights

wit = P
�
Rt j yit; 
t�1

�
:

These resampled fy�t g
i are now approximately distributed according to P (yt j 
t) : Given this,

the expectation of yt and zt can be trivially computed. The use of PF to �lter out the pure

jump part o¤ers two remarkable advantages. First, the density function of yt does not have

to be analytical, as long as it can be simulated e¢ ciently. This is extremely useful because a

large number of Lévy processes only have analytical expressions in their characteristic function.

Several Lévy processes such LS, Meixner, and CGMY do not have analytical density function

but can be simulated through a robust algorithm. In fact, the Lévy-Khintchine formula (2.2)

shows that all pure jump Lévy processes can be modeled as several tiny Poisson jumps. See
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Schoutens (2003) for an overview of simulation procedures. The second advantage is in the

resampling stage. It is extremely simple because the resampling weights wit are computed

using the normal density function.

5.3 Maximum likelihood estimation

The conditional density of the returns process (3.4) is given by

P (Rtj 
t�1) =
Z
P (Rt j yt; 
t�1)P (yt j 
t�1) dyt:

This integration cannot always be solved analytically. We then turn to the method of Monte

Carlo integration. Pitt (2002) and Gordon, Salmon and Smith (1993) show that the above

integration is just the mean of non-normalized resampling weights wit computed in the PF re-

sampling stage (step 2). The model parameters can be estimated by maximizing the Maximum

Likelihood Importance Sampling (MLIS) criterion function:

MLIS =
TP
t=0

log

�
1

N

NP
i=1

wit

�
; (5.4)

where N is the number of particles used for PF, and T is the number of return periods. It

is easy to see that when N becomes increasingly large, MLIS approaches the true likelihood

function. For improved e¢ ciency, we can apply techniques such as the smooth resampling of

Pitt (2002), and the auxiliary particle �lter (APF) of Pitt and Shephard (1999).

6 Empirical results

6.1 Data and Methodology

We investigate various two-factor Lévy GARCH models consisting of a Normal and a Lévy

jump component. We estimate and test our models using two di¤erent approaches. The

�rst approach involves MLE estimation on daily S&P 500 index returns from 1985 to 2005.

After, we risk neutralize these MLE estimates and value the index call options. The second

estimation approach involves joint estimation using an extensive data set of S&P 500 index

options and returns (1996-2005). In practice, the task of �tting a model to option prices alone

is numerically demanding. Estimating a model based on returns and options data jointly

further adds to the econometric challenge. Existing studies that implement joint estimation

therefore use data covering short time periods, or spanning small subsets of the cross sections

of options.11 Our ability to conduct this extensive joint estimation clearly underlines the nu-

merical advantage of the Lévy GARCH framework. In addition, the joint estimation allows

11This includes Chernov and Ghysels (2000), Pan (2002), and Eraker (2004).
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us to provide a more detailed study of long-run risk premia. This is of great economic impor-

tance because these risk premia explain the di¤erences between the physical and risk-neutral

distributions of asset prices.

The return data from January 1985 to December 2005 are obtained from CRSP. Our

period includes the crash of October 1987, when the index falls by almost 25 percent in a

single day. We retrieve the S&P 500 index call option quotes for the period 1996-2005 from

OptionMetrics and eliminate quotes that report zero trading volume. Subsequently, we apply

the �lters proposed by Bakshi, Cao and Chen (1997) to the data. We only keep Wednesday

options with maturities of more than one week and less than a full calendar year. We choose

Wednesday because it is the least likely day to be a holiday, and it is less likely to be impacted

by day-of-the-week e¤ects. For further discussion of the advantages of Wednesday data, see

Dumas, Fleming and Whaley (1998). Table 3 presents descriptive statistics for the option

quotes by moneyness and maturity. The shape of the volatility smirk is evident from Panel C

across all maturities, with short term options exhibiting the steepest volatility smirk.

6.2 MLE based on daily returns

We estimate the models using a time series of S&P 500 daily returns from January 1985 to

2005. We use this sample because it is su¢ ciently long enough to obtain precise estimates,

and the interval also covers the ten-year period of our option data. We model the log return

dynamic under the physical measure as

Rt+1 = rt+1 + �zhz;t+1 + �yhy;t+1 + zt+1 + yt+1:

This equation is identical to (3.4), but we present it here again for convenience. We model

yt+1 using two di¤erent pure jump Lévy processes: the �nite-activity Merton jump (MJ),

and the in�nite-activity Normal Inverse Gaussian jump (NIG). The MJ process has been

extensively studied in the option pricing literature in the context of jump-di¤usion models.12

The NIG process of Barndor¤-Nielsen (1998) is also well-known and has been applied to price

American options in Stentoft (2007) and �t returns and volatility dynamics in Forsberg and

Bollerslev (2002). These two processes have very di¤erent jump structures. The number of

jumps arriving over any interval is �nite for MJ, while for the NIG it is in�nite. We will refer

to the return dynamic in (3.4) with the MJ jump as the MJ-LGARCH, and with the NIG

jump as the NIG-LGARCH.

In addition to two di¤erent jump processes, we assume that the dynamic of the time-

homogeneous parameter hy;t+1 of each jump type is either constant or state-dependent. Specif-

12See for instance, Bates (1996, 2000), Pan (2002), Andersen, Benzoni, and Lund (2002), Eraker (2004),
Chernov, Gallant, Ghysels, and Tauchen (2003), Broadie, Chernov, and Johannes (2007).
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ically, we study the following cases

LGARCH(1) : hy;t+1 = k and LGARCH(3) : hy;t+1 = khz;t+1

This classi�cation of the dynamic for hy;t+1 is inspired by Huang and Wu (2004) who consider

four di¤erent speci�cations which exhaust all sources of heteroskedasticity in models based on

jump and di¤usion shocks. For brevity, we focus on the two most common speci�cations in

this paper. LGARCH(1) is the most common speci�cation in the jump-di¤usion literature. In

fact, if we let yt+1 follow a MJ process, the MJ-LGARCH(1) becomes closely linked to the SVJ

model in the continuous-time literature.13 The speci�cation of LGARCH(3) has the intuitive

feature that jumps arrive at a rate proportional to the risk associated with the normal shock

to returns. Therefore jumps will arrive at higher frequency in high volatility periods.

We assume a simple a¢ ne GARCH(1,1) dynamic for the variance of the normal component

hz;t+1: Following our example in section 3.3, the LGARCH(1) is a special case of (3.5) when

hy = wy; by = 0; ay = 0; and cy = 0: Similarly, the LGARCH(3) is nested as a special

case of (3.5) with wy = wzk, by = bz, ay = azk, and cy = cz: In addition to the four di¤erent

models above (two jump processes plus two di¤erent dynamics for hy;t+1); we also estimate the

benchmark Heston-Nandi GARCH(1,1) model. We refer to this model as the HN-LGARCH

which is a special case of our return process (3.4) without the jump component: In all of

our estimations, we use the method of variance targeting. This method reduces the number

of parameters by one, and ensures consistency in the variance level across all models. For

simplicity, we also assume a constant 5% risk-free rate.

6.2.1 Discussion of the MLE estimates

Table 4 reports the results from MLE estimation of the �ve di¤erent models that we consider.

The results are based on the MLIS method using the PF algorithm with 10,000 particles. Our

most parsimonious model is the HN-LGARCH which has four parameters compared to seven

or eight in the models with jumps. Note that there is one less parameter in the LGARCH(3)

model because it is not possible to econometrically identify �z from �y using only information

from returns. This is because the mean return for the LGARCH(3) model is given by

�zhz;t+1 + �yhy;t+1 =
�
�z + �yk

�
hz;t+1:

We therefore only report the estimate of � =
�
�z + �yk

�
for the LGARCH(3) models. Com-

parison of the log likelihood values indicates that the HN-LGARCH performs poorly relative

to the other four models which contain an additional jump component. Based on the log

likelihood values in Table 4, we arrive at two conclusions. The �rst is that there is an ad-

13For empirical studies of the SVJ model, see Bakshi, Cao and Chen (1997), Bates (1998), Bates (2000),
Pan (2002), Andersen, Benzoni and Lund (2002), and Eraker, Johannes and Polson (2003).
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ditional bene�t of using in�nite-activity jumps to �t the return of the S&P 500 index. This

�nding is consistent with Li, Wells and Yu (2006) who estimate continuous-time models with

Lévy jumps. We conjecture that this increase in likelihood is due to the more �exible jump

structure that is inherent in the in�nite-activity jump processes.

Our second conclusion concerns the importance of the time variation in the jump struc-

ture. This is equivalent to the importance of subordinating a pure jump Lévy process with

a stochastic time change. Our �ndings indicate that, while it is important to have time-

varying dynamic in the �nite-activity Merton jump process, this is not necessarily true for

the in�nite-activity NIG jump process. This result signi�cantly contributes to the literature

on time-changed Lévy processes. To our knowledge, existing studies do not investigate the

importance of �time change� in the in�nite-activity jump process. Bates (2008) estimates

daily returns using a time-changed CGMY process. However, his study does not look at the

marginal importance of the time change e¤ect in the in�nite-activity Lévy jump processes.

We explain our second conclusion as follows. In�nite-activity jump processes are con-

structed based on many tiny jumps which arrive according to a stochastic Poisson intensity.14

Therefore, the time change e¤ect is already built into the structure of these jumps. This

is especially true for the NIG process which can be constructed from evaluating Brownian

processes at stochastic time intervals according to the IG process. Therefore, additional time

change e¤ects on the NIG process will be of second-order importance in the presence of

stochastic volatility in the Brownian component of returns.Our �nding on the importance of

time-varying jump arrival rates (or jump intensities) is supportive of the work of Bates (2006),

and Christo¤ersen, Jacobs and Ornthanalai (2008).

The results from particle �ltering based on the maximum likelihood method are shown in

Figure 1. We plot the conditional return variance of our four LGARCH models in the top

panels. To save space, we exclude the analysis of HN-LGARCH for this �gure. The middle

and bottom panels show the time series of �ltered jump and standardized normal components

of the daily returns. The conditional variance from the NIG-LGARCH is very di¤erent from

the MJ-LGARCH around the 1987 crash, as the conditional variance of the MJ-LGARCH

increases signi�cantly during this period. On the other hand, the spike in the conditional

variance implied by the NIG-LGARCH during the crash of 1987 is at the same level as in the

dot-com bubble collapse in 2000 and the post 9/11 period. Although this may seem strange, it

must be noted that crashes are usually associated with negative skewness and large kurtosis.

Hence, the evidence for crashes is not necessarily re�ected in the second return moment.

14This follows from the Lévy-Khintchine theorem. See equation (2.2) for more intuition.
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Figure 2: News impact curves for various LGARCH models
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Notes to �gure: We plot the news impact curve for various LGARCH models based on the parameters

from Table 4. The plots illustrate, for each model, how the current period�s return residuals (news

impact) conditionally a¤ect the volatility of returns on the next period. The y-axis represents the

percentage change in the annualized return volatilities
�p

V art (Rt+1)�
p
V art�1 (Rt)

�p
252�

100: The x-axis represents standardized returns of magnitude Rt=
p
V art�1 (Rt). For all models,

we assume that the current volatility is equal to the model�s implied long-run volatility level

The bene�t of using in�nite-activity jump processes is also evident from the middle and

bottom panels of Figure 1 where we decompose the jump and normal shocks from daily returns.

We standardize the normal shocks with their conditional variance to illustrate misspeci�cation.

It is evident that the MJ-LGARCH model has di¢ culty modeling the crash of 1987. The NIG-

LGARCH model handles this much better by letting the jump component explains almost the

entire 25 percent drop in the index return.

6.2.2 The news impact curve

Bates (2006, 2008) correctly argues that standard GARCH models (i.e., HN-LGARCH) gen-

erate excessively large estimates of conditional variance after large stock market movements.

Our MJ- and NIG-LGARCHmodels, however, do not su¤er from this problem. This is because

only a fraction of the return residual enters into the GARCH updating scheme. Therefore, the

conditional variance predicted by our models will not necessarily be a monotonic function of
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the stock return movement. Figure 2 illustrates this property of our MJ- and NIG-LGARCH

models using the �news impact curve�, which is commonly used for interpreting the di¤erences

between volatility models. This method was introduced by Schwert (1990), and later chris-

tened by Engle and Ng (1993). All models produce news impact curves that are asymmetric,

with negative returns having a larger impact on volatility updating than positive returns. This

feature is often referred to as the leverage e¤ect. The volatility level of the LGARCH models

do not increase signi�cantly after the days with moderately good news (positive returns). This

property is consistent with the evidence in Chen and Ghysels (2008) who examine the news

impact curve of high frequency returns data using semi-parametric MIDAS regressions. The

news impact curve of the HN-LGARCH model is clearly distinct from the rest. The volatility

revisions are monotonically linked to the magnitude of asset returns. Therefore, large returns,

and especially the negative ones, will drive the conditional volatility up excessively high.

6.2.3 Discussion of the option pricing performance

Using the estimates from Table 4, we risk-neutralize our models using the framework described

in section 4, and price S&P 500 call options from January 1996 to December 2005. For a fair

comparison across all models, we assume a zero equity premium level when pricing these

options. This is accomplished by setting �z = 0 and �y = 0 (see equation (4.5)). We �x

the market price of risk parameters because their estimates can be imprecise when estimated

using returns data.

Using a zero equity premium assumption, the risk-neutral parameters (except the market

prices of risks) are equal to their MLE estimates from the physical measure. At each time

period t; we compute call option prices

Cj = C
�
Kj; � j; Sj; rj;�

Q; hz (t+ 1)
�

by applying (4.10). The parameters Kj; � j; rj; and Sj are the strike, maturity, risk-free rate,

and the underlying index level associated with each jth option. Note that in all LGARCH

models considered here, each call price is also a function of the model�s risk-neutral parameters

�Q; and the variance of the normal component hz (t+ 1) : The daily time series of hz (t+ 1),

for t = 0; : : : ; T , is �ltered from an a¢ ne GARCH dynamic under the physical measure, and

then matched to each jth option traded on day t: We report the pricing errors under the

implied volatility root-mean-squared error (IVRMSE) metric. This is an adopted standard

in the option pricing literature, and the bene�ts of this loss function is discussed in Broadie,

Chernov, and Johannes (2007). The computation of IVRMSE is as follows. We �rst compute

the implied volatility of each call option price using the Black-Scholes formula. This gives us

the Black-Scholes implied volatilities IV (Cj; Kj; � j; Sj; rj) : The IVRMSE is then computed
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as the square root of
1

N

NP
j=1

�
�BSj � IV (Cj; Kj; � j;Sj;rj)

�2
;

where �BSj is the Black-Scholes implied volatility of the jth observed call price, andN = 21; 718

is the total number of option contracts used in the analysis.

We report option IVRMSE next to the log likelihood value in Table 4. For the HN-

LGARCH, we report the annualized IVRMSE (%), while for the other four models, we report

the ratios of their IVRMSE relative to the HN-LGARCH model. The results show that

MJ-LGARCH models slightly improve on the benchmark HN-LGARCH. Nevertheless, MJ-

LGARCH(3) performs signi�cantly better than MJ-LGARCH(1). These �ndings support the

work of Christo¤ersen, Jacobs and Ornthanalai (2008) who show that state-dependent jump

intensity is important for option pricing. They also �nd that jumps of the Merton type cannot

signi�cantly improve option pricing performance unless sizeable jump risk premia are present,

which is consistent with our results here because we set �y = 0:

The NIG-LGARCHmodels with in�nite-activity jumps perform particularly well at pricing

options. The improvement of 12 to 15 percent is quite remarkable considering that these

parameters�estimates are not �tted to option data. Similar to the result from the Merton

jump models, we see that LGARCH(3) is preferable to LGARCH(1) from an option pricing

perspective. Therefore, a time-varying dynamic (or stochastic time change) in the in�nite-

activity jump process seems bene�cial for the pricing of derivatives. This is not surprising

as the conditional skewness and kurtosis play signi�cant roles in generating the smirk e¤ect

observed in the implied volatility curve. Therefore, models with richer speci�cation in the

higher moments such as the in�nite-activity jumps may be more preferable than the �nite-

activity jump processes.

We provide additional evidence on the pricing performance of various LGARCH models in

Table 5 where IVRMSEs are compared across three dimensions: moneyness, maturity, and the

VIX index level. For the HN-LGARCH model, we report the annualized IVRMSE(%) while

for the others, we report their ratio IVRMSEs relative to the HN-LGARCH. Table 5 shows

that option pricing improvement of the NIG-LGARCH model relative to the HN-LGARCH

is robust across moneyness, maturity, and the market variance (VIX level). The evidence is

quite strong, especially for the NIG-LGARCH(3) model which outperforms the HN-LGARCH

model by more than 10 percent at all levels of moneyness and maturity.

6.3 Joint MLE based on options and returns

A good option pricing model must come with an economically justi�able assumption on the

pricing kernel. Besides �tting options data, the models must produce daily returns that are

consistent with the dynamic of the underlying asset under the physical measure. Unfortu-

nately, most empirical option pricing studies are primarily interested in minimizing option
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pricing errors. Consequently, much is known about the risk-neutral dynamic of the asset

price, while little is known about how these underlying risk factors are priced in the model.

In order to recover risk premia, we employ an objective function that allows us to anchor our

parameters in both the physical and the risk-neutral measures. We estimate our parameters

using the joint MLE of weekly index options on each Wednesday from 1996 to 2005, as well

as daily S&P 500 index returns for 1995-2005. We use one year of daily returns prior to the

option sample in order to initialize the path of the volatility �lter. The total log likelihood,

which is our objective function, can be written as

LogLkhood = LPreturns + L
Q
options: (6.1)

The construction of the log likelihood from daily index returns LPreturns is given by equation

(5.4), and is identical to the previous section. For the log likelihood of options LQoptions, we

assume the following data generating process

�BSj = IV (Cj; Kj; � j;Sj;rj) + "j; (6.2)

with "j � Normal (0; �2") : Because the residuals of the implied volatility pricing error are as-
sumed to be normally distributed, the construction of LQoptions is straightforward. We estimate

our models by maximizing the joint log likelihood (6.1) with respect to the structural parame-

ters in �P: The structural parameters in the joint MLE of MJ-LGARCH and NIG-LGARCH

models are

�PMJ�LGARCH = f�z; �y; b; a; c; �; �; kg and �PNIG�LGARCH = f�z; �y; b; a; c; �; �; kg :

It is important to note that all parameters which are required for the GARCH �ltration and

the pricing of options are identi�ed in �P: This is because the risk-neutral parameters are

endogenously determined by the market price of risk parameters �z and �y: In addition, these

market prices of risk show up in the equity premium equation (4.5), which determines the

gross rate of realized return in the physical measure. Our joint estimation therefore imposes

consistency between the two probability measures. Using the results in Table 2, and the

risk-neutral reparametrization of the a¢ ne GARCH(1,1) dynamic in the appendix D, we can

determine the risk-neutral parameters for our models. For convenience, we explicitly show how

these parameters are endogenously linked to their physical measure parameters in appendix

E.

We focus our empirical analysis on LGARCH(3) models. We exclude the joint MLE of

LGARCH(1) models because our from the previous section show that a time-varying dynamic

in the jump component is important for option pricing. Joint MLE on options and returns

is, therefore, conducted on three models: MJ-LGARCH, NIG-LGARCH, and the benchmark

35



HN-LGARCH.

6.3.1 Discussion on the estimates from joint MLE

Table 6 reports the results from joint MLE of the three models considered in this section.

First, we underline the consistency and the stability of the structural parameters that govern

the GARCH dynamic and the jump innovation by comparing our estimates in Table 6 to the

results in Table 4. Interestingly, the di¤erences are minimal. In theory, these two sets of

parameters should not di¤er as they describe the dynamic of the same underlying asset under

the physical measure.

All parameters are statistically signi�cant, including the market price of risk parameters.

For models with jumps, we can identify the market price of jump risk separately from the

market price of risk associated with the normal component of returns. Table 6 also reports the

long-run total equity premium implied by each model in annualized percentage terms. The

premia are computed by taking unconditional expectations of equation (4.5). This results in


 = �z�
2
z + �y�

2
y;

where �2z = E [hz;t+1] = (w + a) = (1� b� ac2) is the model�s long-run implied variance of
the normal component of returns. Similarly, �2y = E [hy;t+1], and it follows that �2y = k�2z;

because of the LGARCH(3) speci�cation. In the MJ-LGARCH and NIG-LGARCH models,

the equity premium is composed of two risk factors. We interpret �z�2z as the long-run normal

risk premium, and �y�2y as the long-run jump risk premium.

Judging the performance of our three models based on the log likelihood values shows

that the NIG-LGARCH model is far superior to the MJ-LGARCH model, and also to the

HN-LGARCH model. This evidence supports the �nding of Huang and Wu (2004) and Carr

and Wu (2003a) who �nd that models with in�nite-activity jump structures are better at

�tting option prices than models with �nite-activity Merton jumps. The superior option

pricing performance of the NIG-LGARCH model is also re�ected in the IVRMSE shown in

Table 6. Somewhat surprisingly, the MJ-LGARCH model only outperforms the HN-LGARCH

model by 3% using the IVRMSE metric. A similar �nding is reported in Eraker (2004), who

conducts joint estimation using the MCMC technique on S&P 500 options and returns data

from January 1987 to December 1990. He �nds that models with Merton jumps do not

improve on the Heston (1993) stochastic volatility model, based on option pricing errors.

Bates (2000) arrives at a similar conclusion. Utilizing cross sections of options from 1988 to

1993, he imposes consistency between the underlying returns and option prices. He reports a

2% improvement in option pricing from jump models relative to Heston (1993). Our �nding

regarding the option pricing performance of jump models di¤ers from that in Broadie, Chernov

and Johannes (2007). They �nd that jump models do improve on the Heston (1993) model by
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up to 50% based on the IVRMSE metric. However, we note that their approach is di¤erent

from ours, because they do not estimate options and returns jointly. In addition, they recover

the variance path by minimizing the IVRMSE, instead of inferring it from the underlying asset

return dynamic. Hence, they do not impose the full consistency between the two probability

measures in their estimation.

6.3.2 The economic role of jumps in option pricing models

If standard Merton-type jumps cannot signi�cantly reduce option pricing errors, then what is

their role from an economic standpoint? To answer this, we study the equity premium level

implied by each LGARCH model. From Table 6, we see that the equity premium implied by

the HN-LGARCH model is about 23%, which is unrealistically large. The literature on the

estimate of equity premium is too extensive to cite in full here. However, most estimates in

the literature vary between 3% and 10%. It is therefore di¢ cult to justify the equity premium

level implied by the HN-LGARCH model.

The equity premium levels implied by the MJ- and NIG-LGARCHmodels are 8% and 6.3%

respectively. These values are much more economically plausible, and also fall within the range

of estimates reported in the literature. Our results therefore illustrate the importance of jump

risk factors in option pricing models. Without the jump component, the divergence between

the two probability measures cannot be explained with an economically justi�able equity

premium level. Bates (2000) also points out that stochastic volatility models require extreme

parameters that are implausible given the time series of option prices. On the other hand,

jump-di¤usion models imply more plausible estimates of the volatility process parameters.

Our joint MLE results therefore support the conclusion in Bates (2000). However, we are the

�rst to formally link the di¤erences between physical and risk-neutral measure parameters to

the implied equity premium.

Our joint estimation of jump models also provides additional evidence regarding the factor

risk premia. Existing studies diverge on estimates of jump and di¤usive volatility risk premia.

We note that the normal risk premium in our model is closely linked to the volatility risk pre-

mium in the continous-time literature in a subtle way. This is because the a¢ ne GARCH(1,1)

dynamic assumes that normal innovations in returns and GARCH variance dynamic are per-

fectly correlated. Our estimate is roughly consistent with Pan (2002), who documents return

risk premia of 3.5% and 5.5% for the jump and di¤usive risks, respectively. Nevertheless, her

estimate of the di¤usive risk premium is not statistically signi�cant from zero. Eraker (2004)

reports signi�cant jump and marginally signi�cant volatility risk premia only in the most com-

plex jump speci�cations that he considered.15 Nevertheless, his estimates of the risk premia

are small, and it is di¢ cult to interpret them economically in term of the expected return risk

15The most complex speci�cation considered in Eraker (2004) is the SVSCJ model. It is closely related
to the MJ-LGARCH(3) speci�cation in this paper with the addition of correlated jumps in volatilities and
returns.
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premia. Because our data set covers such a long time period and spans rich cross sections of

options, we are able to obtain more precise estimates of the jump and normal risk premia.

Depending on the model, we �nd that investors demand approximately 3% (MJ-LGARCH)

to 5% (NIG-LGARCH) on average per year, in excess return, for bearing the market jump

risk. To infer the magnitude of the normal risk premium, we subtract the jump risk premium

from the total equity premium in each model. This yields annual return premium for bearing

the market normal risk of approximately 5% (MJ-LGARCH) and 1.3% (NIG-LGARCH).

Figure 3: QQ-plots of implied volatility residuals from joint options and returns MLE
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Notes to �gure: We use the implied volatility residuals of each model computed using estimates in

Table 6. We plot these implied volatility residuals against the normal quantiles (QQ-plot), which is

represented on the x-axis. From left to right, the panel shows the QQ-plot for the implied volatility

residuals of the HN-LGARCH model, the MJ-LGARCH(3) model, and the NIG-LGARCH(3) model,

respectively. The dash-dot line in each plot represents the case of a normal density.

6.3.3 Further analysis on the option pricing performance

Figure 3 shows the conventional QQ-plots of the implied volatility residuals from joint options

and returns MLE. These plots show that the data generating process in (6.2) is misspeci�ed.

The misspeci�cation in Figure 3 is the least severe for the NIG-LGARCH model. The bottom

rows of Table 6 present the statistical moments of the implied volatility residuals for each

model. The violation of the nonnormality assumption is the most severe for the HN-LGARCH,

with the MJ-LGARCH model a close second. The weakness of the standard Merton jump

model is clearly seen in Figure 3 as it fails to capture the right tail of the distribution of the

implied volatility�s residuals.
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Figure 4: Implied volatility smirks for various maturities and models
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Notes to Figure: We use Black-Scholes implied volatilities computed from the joint MLE and plot

implied volatility smirks of the data and the models for three di¤erent periods: a low volatility

period, a medium volatility period and a high volatility period. Low volatility period is between

2005/01/01 to 2005/04/31. Medium volatility period is between 1997/03/01 to 1997/06/31, when

the average VIX level is 19.98. High volatility period is between 2001/06/01 to 2001/10/31. The

moneyness is on the horizontal axis and each row of panels corresponds to a di¤erent maturity.

We next look at the ability of each model to produce the well-known smirk e¤ect. Figure

4 plots, for each of the models, the implied volatility smirks across moneyness for four dif-

ferent maturity buckets: 15-30, 30-60, 90-140, and 200-340 days to maturity. To study the

importance of di¤erent volatility regimes, we present our analysis for three di¤erent volatility

periods. The �rst sample period is from January 1, 2005 until April 30, 2005. The average

value of the VIX over this period is 13.22%, and we refer to it as a low volatility period. The
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second sample period is from March 1, 1997 until June 30, 1997. This is when the average

VIX value is about 19.98%, and we deem it a medium volatility period. The third sample

period is from June 1, 2001 until October 30, 2001, which is a high volatility period. The

average value of the VIX index is 26.11% in this period. The main conclusion from Figure 4

is that the NIG-LGARCH model produces smirks with the most realistic slopes. All models,

however, produce roughly the same level of implied volatility. Overall, Figure 4 con�rms the

superiority of the in�nite-activity jump process (NIG) over the �nite-activity Merton jump

process for the purpose of option valuation

7 Conclusions

In this paper, we develop a rich class of discrete-time models for asset pricing. We use a¢ ne

GARCH dynamics to drive the heteroskedasticity in our models, and we show that our entire

framework produces a¢ ne conditional transforms of asset returns. We choose a¢ ne GARCH

dynamics to model heteroskedasticity in asset returns because they admit tractable formulae

for many securities of interest, they can capture the leverage e¤ect, and they are relatively

simple to implement. Due to the tractability of the conditional transform, the price of zero-

coupon bonds is known analytically, and European-style derivatives can be priced via Fourier

inversion.

In addition to the theoretical development of this framework, we also suggest a system-

atic approach for estimating these models based on the maximum likelihood methodology.

Our discrete-time framework produce models that converge to time-changed Lévy processes

in the continous-time limits. However, our models are more simple to implement than their

continous-time counterparts due to the aid of GARCH dynamics. This suggests various pos-

sible directions of future empirical research, such as conducting a large-scale speci�cation

analysis of Lévy GARCH models using returns data similar to Bates (2008), and implement-

ing the Lévy GARCH framework to model credit default swaps.

Using a comprehensive data set of options and returns in the joint MLE, we uncover the

important economic role of jumps. We �nd that, without a jump component, the divergence

between the physical and risk-neutral probability measures cannot be explained with an eco-

nomically justi�able equity premium level. Finally, we note that future research in which

models are estimated from options and returns data jointly could lead to a better understand-

ing of how risk factors are priced in the market. This is of great signi�cance because risk

premia are the economic fundamentals in the pricing of all �nancial assets.
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Appendix

7.1 A: Proof of proposition 1

The solution to the generating function is achieved by exploiting the a¢ ne structure of our

setup. We start by assuming that the generating function of asset price at any future period

t+ k; conditional on time t; has the following exponential a¢ ne form

f (�; t; t+ k) = Et

h
S�t+k

i
= S�t Et

�
e�
Pk

i=1
Rt+i

�
= S�t e

A(�;t;t+k)+
Pm

i=1
Bi(�;t;t+k)0ht+2�i+

Pn

j=1
Cj(�;t;t+k)0�t+2�j ; (7.1)

where A (�; t; t+ k) is a scalar, Bi (�; t; t+ k)�s are d�1 vectors, and Cj (�; t; t+ k)�s are q�1
vectors. For asset price with terminal period T; we are interested in �nding the expressions

for the a¢ ne coe¢ cients

A (�; t; T ) ; Bi (�; t; T )�s ; Cj (�; t; T )�s

which solve the conditional generating function f (�; t; T ) = Et

h
S�T

i
: We proceed by using

the property of iterated expectation

f (�; t; T ) = Et

h
Et+1

h
S�T

ii
= Et [f (�; t+ 1; T )]

= Et

�
S�t+1e

A(�;t+1;T )+
Pm

i=1
Bi(�;t+1;T )0ht+3�i+

Pn

j=1
Cj(�;t+1;T )0�t+3�j

�
= S�t Et

�
e�Rt+1+A(�;t+1;T )+

Pm

i=1
Bi(�;t+1;T )0ht+3�i+

Pn

j=1
Cj(�;t+1;T )0�t+3�j

�
where, in the second line above, we have substituted the assumed solution to f (�; t+ 1; T )

according to (7.1). We also substitute in the dynamic of Rt+1 from (3.1) into the above equa-

tion. After simpli�cation and removing the nonstochastic component from the expectation

operator, we have the following expression for f (�; t; T ) =S�t

e�rt+1+�(���X(#))
0ht+1+A(�;t+1;T )+

Pm

i=2
Bi(�;t+1;T )0ht+3�i+

Pn

j=2
Cj(�;t+1;T )0�t+3�j �

Et

h
e�#

0Xt+1+B1(�;t+1;T )0ht+2+C1(�;t+1;T )0�t+2
i
:

In order to solve the conditional expectation above, we make use of the a¢ ne GARCH

de�nition in (3.2) and note that

� = (�#;B1 (�; t+ 1; T ) ; C1 (�; t+ 1; T )) :

This allows us to write the expression f (�; t; T ) =S�t in the exponential a¢ ne form with its
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exponent given by

�rt+1 + � (�� �X (#))
0 ht+1 +A (�; t+ 1; T ) +

mP
i=2

Bi (�; t+ 1; T )0 ht+3�i + (7.2)

nP
j=2

Cj (�; t+ 1; T )0 �t+3�j + V (�)+
mP
i=1

Wi (�)
0 ht+2�i +

nP
j=1

Yj (�)0 �t+2�j:

Using the assumed a¢ ne structure (7.1), the expression in the exponent of f (�; t; T ) =S�t can

also be written as

A (�; t; T ) +
mP
i=1

Bi (�; t; T )0 ht+2�i +
nP
j=1

Ci (�; t; T )0 �t+2�j: (7.3)

The expressions for A (�; t; T ), Bi (�; t; T ) ; and Cj (�; t; T ) can now be solved by matching

the coe¢ cients of ht+2�i and �t+2�j, between equations (7.2) and (7.3), for i = 1; : : : ;m and

j = 1; : : : ; n: This procedure will yield recursive relations for the a¢ ne coe¢ cients as shown

in Proposition 1. The boundary conditions for the a¢ ne coe¢ cients are derived using the fact

that ET
h
S�T

i
= S�T :

7.2 B: Expressions for the a¢ ne coe¢ cients

Heteroskedasticity via a GARCH(1,1) dynamic

The solutions for the a¢ ne coe¢ cients in (3.6) are given by the following set of recursive

relations

A (�; t; T ) = �rt+1 +A (�; t+ 1; T ) + Bz (�; t+ 1; T )wz + By (�; t+ 1; T )wy

�1
2
log (1� 2Bz (�; t+ 1; T ) az � 2By (�; t+ 1; T ) ay)

Bz (�; t; T ) = ��z + Bz (�; t+ 1; T )
�
bz + azc

2
z

�
+ By (�; t+ 1; T ) ayc2y +

(�� 2Bz (�; t+ 1; T ) azcz � 2By (�; t+ 1; T ) aycy)2

2(1� 2Bz (�; t+ 1; T ) az � 2By (�; t+ 1; T ) ay)
By (�; t; T ) = byBy (�; t+ 1; T ) + ��y + �y (�) ;

where the parameters are de�ned according to section (3.3.1) and �y (�) is the coe¢ cient in

the cumulant exponent of the jump process evaluated at �.

Heteroskedasticity via a component GARCH dynamic

Assuming the return dynamic (3.6) together with the component GARCH model (3.7), the

coe¢ cients in the generating function (3.8) can be solved through the following recursive

relations
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A (�; t; T ) = �rt+1 +A (�; t+ 1; T )
�

P
xi=fz;yg

�
Bxi (�; t+ 1; T ) axi + Cxi (�; t+ 1; T )

�
wxi � 'xi

��
�1
2
log

 
1�

P
xi=fz;yg

2Bxi (�; t+ 1; T ) axi �
P

xi=fz;yg
2Cxi (�; t+ 1; T )'xi

!
Bz (�; t; T ) = ��z + Bz (�; t+ 1; T ) bz ��

�� 2
P

xi=fz;yg
�
Bxi (�; t+ 1; T ) axicxi � Cxi (�; t+ 1; T )'xidxi

��2
2
�
1� 2

P
xi=fz;yg

�
Bxi (�; t+ 1; T ) axi � Cxi (�; t+ 1; T )'xi

��
By (�; t; T ) = By (�; t+ 1; T ) by + ��y + �y (�)
Cz (�; t; T ) = Bz (�; t+ 1; T ) (bz � 1) + Cz (�; t+ 1; T ) �z
Cy (�; t; T ) = By (�; t+ 1; T ) (by � 1) + Cy (�; t+ 1; T ) �y:

Heteroskedasticity with jumps in a GARCH(1,1) dynamic

The solutions to the a¢ ne coe¢ cients in (3.10) are identical to the simple GARCH(1,1) case

for A (�; t; T ) and Bz (�; t; T ) : However, the recursive relation for By (�; t; T ) is di¤erent and
is given by

By (�; t; T ) = byBy (�; t+ 1; T ) + ��y + �y (�) ;

where �y (�) is the coe¢ cient in the cumulant exponent for the jump innovation (with positive

support) evaluated at

� = ��+ Bz (�; t+ 1; T ) dz + By (�; t+ 1; T ) dy:

C: Return dynamics under the risk-neutral measure for Lévy GARCH

models

Proof of Proposition 2

The solution for � is solved by imposing a local martingale restriction EQt
�
eRt+1

�
= ert+1 :

After applying the change of measure according to the Radon-Nikodym derivative (4:1) ; we

have

EQt
�
eRt+1

�
= Et

h
exp�

0Xt+1��X(�)0ht+1+Rt+1
i

= Et

h
ert+1+�

0Xt+1��X(�)0ht+1+(���X(#))0ht+1+#
0
Xt+1

i
= ert+1+ (���X(#)��X(�))0ht+1Et

h
e(#+�)

0Xt+1

i
:
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Note that when taking the expectation, the exponent of the last line above has to equate to

rt+1: This leads us to the following result

(�� �X (#)� �X (�))
0 ht+1 + �X (#+�)

0 ht+1 = 0;

which su¢ ciently proves the result in Proposition 2.

Proof of Lemma 1

We start by directly applying the Radon-Nikodym derivative (4:1) to the asset price dynamic

EQt

�
St+1
St

�
= Et

h
ert+1+�

0Xt+1��X(�)0ht+1+(���X(#))0ht+1+#
0
Xt+1

i
= ert+1+ (���X(#)��X(�))0ht+1Et

h
e(#+�)

0Xt+1

i
= ert+1+ (���X(#))0ht+1+(�X(#+�)��X(�))0ht+1

= ert+1+(���X(#))
0ht+1+	

Q
X(#; t; t+1): (7.4)

Note that we have applied the result in Proposition (3) to the last line of the above equations,

where

	QX (#; t; t+ 1) = (�X (#+�)� �X (�))
0 ht+1 = �

�
X (#)h

�
t+1;

which is the conditional cumulant exponent of the risk-neutral Lévy processes X�
t+1 evaluated

at #: The asset return under the Q�measure can now be equivalently written as

log

�
St+1
St

��
= rt+1 + (�� �X (#))

0 ht+1 +X
�
t+1:

We are left to prove that (�� �X (#))ht+1 is equal to ���X (#)h�t+1: To do this, we use the
fact that under the equivalent martingale measure Q; all assets have returns equal to the
risk-free rate. Therefore, it follows from (7.4) that

(�� �X (#))ht+1 = �	QX (#; t; t+ 1) = ���X (#)h�t+1

which completes the proof.

44



D: Risk-neutral reparametrization of a¢ ne GARCH dynamics

Risk-neutral reparametrization of a GARCH(1,1) dynamic

The procedure for reparametrizing the GARCH dynamics is systematic. For a GARCH(1,1)

dynamic (3.5), we �rst write its dynamic using the risk-neutral innovations z�t and y
�
t

hxi;t+1 = wxi + bxihxi;t +
axi
hz;t

(z�t � cxihz;t)
2 (7.5)

for xi = fz; yg. Because z�t has a mean of ��zhz;t; we substitute z�t = zt � �zhz;t into the
above equation. In addition, we recall that from (4.7), we have the following transformation

h�xi;t+1 =

�
�xi (1 + �xi)� �xi (�xi)

��xi (1)

�
hxi;t+1 = �xihxi;t+1:

It is important to note that, for the normal innovation, �z = 1 and thus h�z;t+1 = hz;t+1:

Because we leave yt+1 unspeci�ed, we do not know the explicit form of �y: Substituting all

this into (7.5), and simplifying we have

h�xi;t+1 = w
�
xi
+ bxihxi;t +

a�xi
hz;t

�
zt � c�xihz;t

�2
for xi = fz; yg with the following reparametrizations of the GARCH parameters

c�xi = cxi + �z w�xi = wxi�xi a�xi = axi�xi :

Risk-neutral reparametrization of a component GARCH dynamic

Replacing zt with z�t in (3.7), gives

hxi;t+1 = �xi;t+1 + bxi (hxi;t � �xi;t) +
axi
hz;t

��
(z�t )

2 � hz;t
�
� 2cxiz�t hz;t

�
�xi;t+1 = wxi + �xi�xi;t +

'xi
hz;t

��
(z�t )

2 � hz;t
�
� 2dxiz�t hz;t

�
for xi = fz; yg: Next, we substitute z�t = zt � �zhz;t; h�xi;t = �xihxi;t; and �

�
xi;t+1

= �xi�xi;t+1

into the above, then simplify. It turns out that the component GARCH model under Q
measure can be written as

h�xi;t+1 = ��xi;t+1 + bxi
�
h�xi;t � �

�
xi;t

�
+ e�xihz;t +

a�xi
hz;t

��
z2t � hz;t

�
� 2c�xizthz;t

�
��xi;t+1 = w�xi + �xi�

�
xi;t
+ g�xihz;t +

'�xi
hz;t

��
z2t � hz;t

�
� 2d�xizthz;t

�
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with the following reparametrizations of the GARCH parameters

w�xi = wxi�xi a�xi = a
�
xi
�xi c�xi = (cxi + �z) d�xi = (dxi + �z)

g�xi = �xi'xi�z (2dxi + �z) '�i = �xi' e�xi = axi�z�xi (2cxi + �z) :

Note that the dynamic for h�z;t+1 can be further simpli�ed because �z = 1:

Risk-neutral reparametrization of a GARCH(1,1) dynamic with jumps

Replacing fzt; ytg with fz�t ; y�t g and following the systematic procedure as shown in the two
cases above, the Q-measure dynamic of a GARCH(1,1) with jumps in (3.9) can be written as

h�xi;t+1 = w
�
xi
+ bxihxi;t + d

�
xi
y�t +

a�xi
hz;t

�
zt � c�xihz;t

�2
for xi = fz; yg ; with the following reparametrizations of the GARCH parameters

w�xi = wxi�xi a�xi = a
�
xi
�xi c�xi = (cxi + �z) d�xi = dxi�xi :

E: Risk neutralization for the MJ- and NIG-LGARCH models

We give explicit expressions for the returns and GARCH dynamics under the risk-neutral

measure of the two LGARCH models studied in this paper. Note that the market prices of

risks disappear under the risk-neutral measure (�z = �y = 0) : This result follows from Lemma

1. Equation (4.4) shows that the EMM coe¢ cient for the normal risk factor is �z = ��z.
However, the solution for the EMM coe¢ cient of the jump component �y, will be depend on

the choice of the jump structure.

For MJ-LGARCH, applying (4.3) with the Merton jump structure gives

0 = �y �
�
e
�2

2
+� � 1

�
� e

�2y�
2

2
+�y�

�
1� e(

1
2
+�y)�2+�

�
:

The above equation cannot be solved analytically: However, the solution for �y can be solved

numerically. After applying the measure change, the risk-neutral parameters of a Merton

jump y�t+1 is linked to its parameters under the physical measure by

h�y;t+1 = hy;t+1e
�2y�

2

2
+�y�; and �� = � + �y�

2:

The above result is directly taken from Table 2. For the LGARCH(1), recall that we have

hy;t+1 = k; and for the LGARCH(3), we have hy;t+1 = khz;t+1, this implies that k� =

k exp
�
�2y�

2

2
+ �y�

�
:
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Next we solve for �y in the NIG-LGARCH model. Applying (4.3) with the NIG jump

structure gives the following relation

�y = �
1

2
� � �

q
��2y

�
1 + �2y

� �
1� 4�2 + �2y

�
2
�
1 + �2y

� ;

where

�y = �y �
�q

�2 � �2�
q
�2 � (� + 1)2

�
:

In order to see how the risk-neutral jump parameters are linked to their physical measure

counterparts, we again refer to Table 2. This shows us that �� = �+�y; while the rest of the

parameters remain unchanged.

Finally, using (7.5), the risk-neutral a¢ ne GARCH(1,1) dynamic that drives the het-

eroskedasticity of hz;t+1 in both the MJ- and NIG-LGARCH models becomes

hz;t+1 = wz + bhz;t +
az
hz;t

(zt � c�zhz;t)
2 :

The only GARCH parameter that changes due to the risk neutralization is c�z = cz + �z.
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Table 2: Summary of measure change from P to Q for selected pure jump Lévy processes

P measure distribution Q measure distribution Parameters�transformation

Finite-activity jump process
PJ: �P= fht+1; �g PJ: �Q= fht+1; bg h�t+1= ht+1e

��

MJ: �P=
�
ht+1; �; �

2
	

MJ: �Q=
�
h�t+1; �

�; �2
	

h�t+1=ht+1e

�
��+�2�2

2

�
; ��= � + ��2

DEP: �P= fht+1; p; �1; �2g unrecognizable

DEP-MW: �P= fht+1; �1; �2g DEP-MW: �Q= fht+1; ��1; ��2g ��1= �1��; ��2= �2��

In�nite-activity jump process
IG: �P= fht+1; bg IG: �Q= fht+1; b�g b�=

p
b+ 2�

NIG: �P= fht+1; �; �g NIG: �Q= fht+1; �; ��g ��= � + �

Gamma: �P= fht+1; bg Gamma: �Q= fht+1; b�g b�= b� �

VG: �P= fht+1; �; bg VG: �Q= fht+1; ��; b�g ��= � + �; b�= b�1
2
� (2� + �)

TS: �P= fht+1; ; 
; bg TS: �Q= fht+1; 
; b�g b�=
�
b1=
�2�

�

LS: �P= fht+1; �; �g unrecognizable

CGMY: �P= fht+1; G;M; Y g CGMY: �Q= fht+1; G�;M�; Y g G�= G� �; M�=M � �

Meixner: �P= fht+1; �; �g Meixner: �Q= fht+1; �; ��g ��= � + ��

Notes to Table: The table shows the resulting risk-neutral measure distributions from the
change of measure through the Esscher transform for selected pure jump Lévy innovations
that we present in Table 1. DEP-MW refers to a restricted version of the double-exponential
jump (DEP) with p = �1 and 1 � p = �2, which is studied in Mo and Wu (2007). The
parameter � refers to the EMM coe¢ cient for each of the Lévy innovation, which can be
solved from (4.2). Most of the Lévy innovations retain their own distribution after applying
the change of measure, but with di¤erences in the parameters; we apply star superscripts to
these risk-neutral measure parameters that di¤er from their physical measure counterparts.
Note that we cannot associate the risk-neutral transformed cumulant exponent of the DEP
and LS processes with any of the well-known distributions. We therefore denote their Q
measure distributions as "unrecognizable".
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DTM<20 20<DTM<80 80<DTM<180 DTM>180 All
S/K<0.975 123 1,841 2,078 2,293 6,416

0.975<S/K<1.00 554 2,557 1,076 645 4,851
1.00<S/K<1.025 867 2,282 717 366 4,236
1.025<S/K<1.05 571 1,337 413 191 2,516
1.05<S/K<1.075 257 839 263 139 1,501

1.075<S/K 298 1,190 466 237 2,198
All 2,670 10,046 5,013 3,871 21,718

DTM<20 20<DTM<80 80<DTM<180 DTM>180 All
S/K<0.975 5.39 13.96 26.29 43.56 28.95

0.975<S/K<1.00 11.82 24.12 44.31 77.13 34.58
1.00<S/K<1.025 23.86 36.25 60.76 92.19 42.77
1.025<S/K<1.05 43.30 55.37 79.43 110.79 60.90
1.05<S/K<1.075 66.65 76.40 99.07 127.03 83.53

1.075<S/K 111.08 120.90 135.19 169.19 127.98
All 38.52 45.00 53.41 67.76 50.40

DTM<20 20<DTM<80 80<DTM<180 DTM>180 All
S/K<0.975 0.2075 0.1876 0.1875 0.1831 0.1863

0.975<S/K<1.00 0.1768 0.1768 0.1831 0.1865 0.1796
1.00<S/K<1.025 0.1785 0.1813 0.1948 0.1955 0.1842
1.025<S/K<1.05 0.2034 0.1983 0.2040 0.2041 0.2009
1.05<S/K<1.075 0.2554 0.2187 0.2122 0.2056 0.2227

1.075<S/K 0.3561 0.2691 0.2379 0.2266 0.2695
All 0.2120 0.1971 0.1950 0.1893 0.1970

Notes to Table: We use European call options on the S&P 500 index. The data are obtained from
OptionMetrics. The prices are taken from nonzero trading volume quotes on each Wednesday
during the January 1, 1996 to December 31, 2005 period. The moneyness and maturity filters
used by Bakshi, Cao and Chen (1997) are applied to the data. The implied volatilities are
calculated using the Black-Scholes formula.

Table 3: S&P 500 index call option data (1996-2005)

Panel A. Number of call option contracts

Panel B. Average call price

Panel C. Average implied volatility from call options



No jump 
μ b a c Normal

HN-LGARCH 6.07E-01 9.09E-01 4.52E-06 1.16E+02 0.0289
(7.56E-01) (7.55E-03) (2.74E-07) (1.08E+01)

LogLkhood : 17354 Option IVRMSE (%) : 5.44

Finite-activity Merton jump
μz μy b a c θ δ k Normal Jump

MJ-LGARCH (1) 1.04E+00 2.31E-04 9.42E-01 2.90E-06 1.25E+02 -6.78E-03 2.57E-02 4.62E-03 0.0280 0.0008
(1.04E-02) (4.59E-06) (4.78E-04) (1.24E-07) (3.00E+00) (8.29E-05) (7.15E-04) (1.63E-06)

LogLkhood : 17503 Option IVRMSE ratio : 0.98 5.31309304

μ b a c θ δ k
MJ-LGARCH (3) 4.15E+00 9.49E-01 2.58E-06 1.22E+02 -2.83E-03 1.72E-02 5.98E+02 0.0244 0.0044

(3.00E-03) (3.08E-05) (1.37E-08) (3.99E-01) (1.73E-06) (5.02E-05) (2.77E+00)
LogLkhood : 17519 Option IVRMSE ratio : 0.94 5.10866983

Infinite-activity Normal Inverse Gaussian jump
μz μy b a c α β k Normal Jump

NIG-LGARCH (1) -5.01E-01 1.11E+00 9.39E-01 2.02E-06 1.55E+02 1.54E+01 -9.11E+00 3.14E-04 0.0190 0.0098
(1.41E-03) (2.97E-03) (6.69E-05) (2.73E-08) (1.67E+00) (7.51E-04) (1.03E-02) (5.55E-07)

LogLkhood : 17547 Option IVRMSE ratio : 0.88 4.765

μ b a c α β k
NIG-LGARCH (3) 1.40E+00 9.41E-01 2.00E-06 1.55E+02 1.53E+01 -9.04E+00 2.71E+00 0.0216 0.0073

(2.61E-03) (1.08E-04) (3.65E-08) (1.20E+00) (4.33E-03) (3.70E-02) (5.73E-03)
LogLkhood : 17545 Option IVRMSE ratio : 0.85 4.6177

Table 4: MLE Estimates of Levy GARCH models on S&P 500 returns: 1985-2005

Notes to Table: We apply MLE to the daily return series of the S&P 500 index from January 1985 to December 2005. HN-LGARCH refers to the
Heston-Nandi GARCH model which has no jump component. We estimate two types of jump innovations, finite-activity Merton Jump (MJ) and
infinite-activity Normal Inverse Gaussian (NIG). For each type of Lévy jump, we consider the LGARCH(1) model where the jump distribution is
constant (homoskedastic), and LGARCH(3) where the jump distribution is heteroskedastic and state-dependent. Reported under these estimates are
standard errors computed using the outer product of the gradients. We use these MLE estimates to price options and compute their IVRMSEs. We
report % IVRMSE for the HN-LGARCH case, and for the jump models we report IVRMSE ratios relative to the HN-LGARCH. The two right
columns refer to the annualized long-run variance implied from the MLE estimation. For jump models, we report the magnitude of the return
variances according to their two sources: the normal and the jump components. All models are estimated using variance targeting.

Avg Annul Var

Avg Annul Var

Avg Annul Var



Panel A: Sorting by moneyness
HN-LGARCH MJ-LGARCH(1) MJ-LGARCH(3) NIG-LGARCH(1) NIG-LGARCH(3)

Moneyness IVRMSE(%) IVRMSE Ratio IVRMSE Ratio IVRMSE Ratio IVRMSE Ratio
S/K<0.975 4.479 0.905 0.843 0.894 0.858

0.975<S/K<1.00 4.187 0.949 0.900 0.937 0.896
1.00<S/K<1.025 4.523 0.965 0.921 0.938 0.895
1.025<S/K<1.05 5.508 0.996 0.956 0.907 0.888
1.05<S/K<1.075 6.748 1.013 0.980 0.857 0.846

1.075<S/K 9.510 1.015 0.997 0.797 0.783
All 5.444 0.976 0.938 0.875 0.848

Panel B: Sorting by maturity
HN-LGARCH MJ-LGARCH(1) MJ-LGARCH(3) NIG-LGARCH(1) NIG-LGARCH(3)

Maturity IVRMSE(%) IVRMSE Ratio IVRMSE Ratio IVRMSE Ratio IVRMSE Ratio
DTM<20 7.261 1.010 0.984 0.831 0.826

20<DTM<80 5.331 0.993 0.953 0.880 0.853
80<DTM<180 4.937 0.932 0.888 0.887 0.849

DTM>180 4.886 0.924 0.887 0.910 0.865
All 5.444 0.976 0.938 0.875 0.848

Panel C: Sorting by VIX level
HN-LGARCH MJ-LGARCH(1) MJ-LGARCH(3) NIG-LGARCH(1) NIG-LGARCH(3)

Maturity IVRMSE(%) IVRMSE Ratio IVRMSE Ratio IVRMSE Ratio IVRMSE Ratio
VIX<16 3.329 0.909 0.923 0.852 0.796

16<VIX<22 4.112 1.077 1.034 0.821 0.952
22<VIX<26 5.635 0.993 0.946 0.859 0.869
26<VIX<30 7.126 0.960 0.915 0.888 0.825

30<VIX 9.676 0.916 0.880 0.917 0.783
All 5.444 0.976 0.938 0.875 0.848

Table 5. IVRMSE (% and ratios) of LGARCH models by moneyness, maturity, and VIX level

Notes to Table: We use the MLE estimates from Table 3 to compute the implied volatility root mean
squared error (IVRMSE) for various moneyness, maturity, and VIX level bins. HN-LGARCH refers to
the Heston-Nandi GARCH model which has no jump component. MJ-LGARCH refers to the jump
models that rely on the finite-activity Merton jump process, while NIG-LGARCH refers to the jump
models that rely on the infinite-activity Normal Inverse Gaussian jump process. We denote the models
that have homoskedastic jump specification with an LGARCH(1) extension. Similarly, we denote the
models that have heteroskedastic and state-dependent jump specification with an LGARCH(3)
extension. The IVRMSE is reported in percentage levels for the HN-LGARCH model. For the MJ-
LGARCH and NIG-LGARCH models, we report the IVRMSE ratios relative to the HN-LGARCH
model. 



Parameters MLE estimates Std error MLE estimates Std error MLE estimates Std error

λz 7.36E+00 (1.83E-02) 2.61E+00 (7.23E-04) 5.73E-01 (5.25E-04)
λy 2.092E-03 (3.09E-07) 7.72E-01 (6.61E-05)
b 9.33E-01 (4.80E-05) 9.48E-01 (1.31E-05) 9.40E-01 (1.35E-05)
a 3.68E-06 (5.33E-09) 2.77E-06 (5.35E-09) 2.02E-06 (3.62E-09)
c 1.21E+02 (3.60E-02) 1.23E+02 (9.15E-02) 1.55E+02 (1.46E-01)

θ   or   α -2.83E-03 (5.87E-07) 1.60E+01 (5.16E-04)
δ   or   β 2.85E-02 (2.39E-05) -9.60E+00 (3.45E-03)

k 8.00E+02 (1.08E+00) 2.76E+00 (9.57E-04)

GARCH Persistence

Avg Total Annual EP (%)
Avg Annual Jump RP (%)

Avg Annual Normal RP (%)

IVRMSE (%) 
IV residual BIAS (%) 
IV residual skewness
IV residual kurtosis

Log Likelihood 

22.90 8.04

112880112207

Table 6: Joint option and returns MLE estimates of selected LGARCH models on the S&P 500 index
NIG-LGARCH(3)

0.9869 0.9902

MJ-LGARCH(3)HN-LGARCH

3.14

3.85
0.49 0.36 -0.05

4.90 1.34

3.97

0.9887

6.30
4.96

3.40

Notes to Table: We apply MLE to jointly estimate options and returns data. The data set consists of daily returns of the S&P 500 index from Jan
1995 to Dec 2005, and Wednesday call options from Jan 1996 to Dec 2005. We report only the results for jump models that have heteroskedastic
and state-dependent jump specification. These models are denoted with an LGARCH(3) extension. Reported beside each estimate is the standard
error computed using the outer product of the gradients. Reported are the physical estimates. Risk-neutral estimates can be computed from these
values. “The Avg Total Annual EP” refers to the long-run equity premium implied by these estimates. “The Avg Annual Jump RP” and "The
Avg Normal RP" refer to the long-run jump and normal risk premia implied by these estimates. We also report the option IVRMSE computed
based on these optimal values. The "IV residual skewness" is the skewness computed from the option pricing implied volatility residual. The
"IV residual kurtosis" is defined in a similar manner. 

1.30
7.09

0.36
3.63

1.14

115599
6.56


	Ornthanalai_Econometrica.pdf
	OrnthanalaiAllTables_Econometrica2008.pdf

