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Abstract

We propose and test a theory of learning and informational hold-up in the venture capital
market. The model predicts that higher returns on the current fund increase the probability that
a VC will raise a follow-on fund, the size of the follow-on fund, and the performance fee investors
are charged in the follow-on fund. If learning is asymmetric, such that incumbent investors learn
more about fund manager skill than potential new investors, the model also predicts persistence
in returns, poor performance among first-time funds, persistence in investors from fund to fund,
and over-subscription in follow-on funds raised by successful fund managers. Our empirical
evidence is consistent with these predictions. The model provides a unified framework for
understanding a series of empirical facts about the venture capital industry.

∗We are grateful to Viral Acharya, Rick Green, Arvind Krishnamurthy, Adair Morse, Ludovic Phalippou, Morten
Sørensen, and seminar participants at the 2008 WFA meetings, the Fall 2008 NBER Entrepreneurship meeting,
Georgetown, LBS, LSE, Northwestern, NYU, Toronto, and UC Boulder for helpful comments. Hochberg gratefully
acknowledges funding from the Heizer Center for Entrepreneurial Studies at Kellogg. Ljungqvist gratefully acknowl-
edges generous financial support from the Ewing Marion Kauffman Foundation. We are grateful to VentureOne
for providing LP data. Address correspondence to y-hochberg@kellogg.northwestern.edu (Hochberg), al75@nyu.edu
(Ljungqvist), or a-vissing@kellogg.northwestern.edu (Vissing-Jørgensen).



Performance in venture capital (VC) funds appears highly persistent across a sequence of funds

managed by the same manager (Kaplan and Schoar (2005)). This contrasts with evidence for

mutual funds (Malkiel (1995)), and raises an interesting question: Why do successful VCs not

raise their fees, effectively auctioning off the stakes in their follow-on funds to the highest bidder?

Alternatively, why do successful funds not grow to the point where their return on fund capital

equals investors’ outside option, thus increasing fund managers’ dollar fees?

We propose and test a model of learning and informational hold-up in the VC market which

provides a rationale for VC performance persistence and generates a rich set of empirical predictions

concerning fund returns and fund-raising patterns. The model formalizes the interaction between

fund managers, known in the industry as general partners (GPs), and the investors in their funds,

known as limited partners (LPs). It exploits logic similar to that used in the relationship-banking

literature (Sharpe (1990), Rajan (1992), von Thadden (2004)): LPs who invest in a GP’s fund learn

more about the GP’s skill than do other investors. In particular, they can distinguish between skill

and luck. This asymmetric evolution of information enables ‘incumbent’ LPs to hold up the GP

when he next raises a fund, because other potential investors will interpret failure to reinvest by

incumbent LPs as a negative signal about the GP’s skill.

Our informational assumptions are consistent with the importance the literature attaches to

‘soft’ information in the VC industry. Lerner, Schoar, and Wongsunwai (2007) note that “Reinvest-

ment decisions by LPs are particularly important in the private equity industry, where information

about the quality of different private equity groups is more difficult to learn and often restricted to

existing investors.” VC fund investors typically require wide-ranging information rights which en-

able them to monitor a fund’s performance, primarily in order to inform the reinvestment decision

(Lerner and Schoar (2004)).
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The existence of asymmetric information between incumbent LPs and potential new investors is

the key difference between our model of VC performance and models of mutual fund performance,

such as Berk and Green (2004). It is the reason why arguments in such models against performance

persistence in the mutual fund industry do not apply to the VC industry.

In a setting with learning about GP skill, we derive the optimal fund size and division of

surplus between GPs and LPs. We first derive a set of testable predictions that result from a

setting with symmetric learning by incumbent LPs and potential new LPs. We then introduce

asymmetric learning, assuming that incumbent LPs learn more about the GP’s skill. Asymmetric

learning generates informational hold-up of high-skill GPs which in turn generates persistence in

the net-of-fees returns LPs earn, even when both fund size and the division of surplus are derived

endogenously. While the predictions of the symmetric learning model also hold with asymmetric

learning, we derive additional testable predictions that hold only under asymmetric learning.

We model GPs with a sequence of two funds, each lasting one period. Whether the second fund

is raised depends on what is learned about GP skill during the first fund. GPs differ in investment

skill. There is a large set of risk-neutral potential LPs so that at the beginning of the first period,

the LP market is perfectly competitive. LPs are wealthy and only one LP is required to fund a

given fund in our baseline setting. At the end of period one, the GP and the incumbent LP learn

the GP’s type. With symmetric learning, outside LPs also learn the GP’s type perfectly, while with

asymmetric learning, outside LPs can only update their beliefs about GP skill based on observing

the return of the GP’s first fund.

Under symmetric learning, the LP market is perfectly competitive in both periods, so the GP

receives the entire NPV in each fund. Similar to Berk and Green (2004), the GP chooses the

NPV-maximizing fund size and share of the surplus (the carried interest, or “carry”) such that the
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LP earns his outside option. This yields the following predictions. The probability of raising a

follow-on fund increases in the return to LPs in the GP’s first fund. GPs with higher LP returns

in their first fund raise larger follow-on funds and charge a higher carry. Fund size and carry are

more variable in follow-on funds than in first funds.

Under asymmetric learning, the LP market is perfectly competitive at t=0 but not at t=1. The

incumbent LP has an informational advantage when a GP raises a follow-on fund, allowing him to

extract part of the follow-on fund’s NPV.1 This yields additional predictions. Most importantly,

there will be persistence in net-of-fee returns to LPs. Intuitively, LPs earn higher expected returns

in follow-on funds run by high-skill GPs (since they extract part of the follow-on fund NPV, which

is higher for high-skill GPs) and high-skill GPs tend to have delivered high returns to LPs on their

first fund. Second, the average return to LPs is lower in first-time funds than in follow-on funds.

GPs receive funding on “too good” terms in the first fund, but on average pay this back to their

LPs in follow-on funds. Finally, conditional on a follow-on fund being raised, LPs who invested in

a GP’s first fund should also invest in the GP’s follow-on fund. That is, there should be persistence

in the LP composition across funds, because LPs earn a return in excess of their opportunity cost

of capital in follow-on funds.

If we relax the assumption that incumbent LPs have sufficient capital to fully fund follow-on

funds, additional LPs are needed. Because all LPs in a fund earn the same return, LPs who get

follow-on fund allocations earn a return in excess of their opportunity cost of capital. Our model

thus provides a rational explanation for oversubscription in follow-on funds, especially in those

raised by GPs with high first-time fund returns.
1How much they extract depends on the GP’s and the incumbent LP’s relative bargaining power when raising

the follow-on fund. Without loss of generality, we assume a sequential-offer game. This results in symmetric Nash
bargaining, implying that LPs and GPs share equally in the NPV.
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Unlike in standard models of informational hold-up such as Sharpe (1990), asymmetric learning

is efficient in the VC setting. VC contracts specify both an investment level (fund size) and

the division of the fund’s surplus, and investment (fund size) is NPV-maximizing in both first-

time funds and follow-on funds. Moreover, it is possible that GPs strictly prefer asymmetric to

symmetric learning, because under certain conditions, first-time funds can only be funded under

asymmetric learning.2 Such a preference is consistent with the fact that GPs are willing to provide

their LPs with considerable amounts of soft information about fund strategies and performance

which cannot credibly be communicated to potential new LPs.

Using a large sample of U.S. VC funds raised between 1980 and 2006, we find support for the

predictions of our model, which suggests that asymmetric learning and informational hold-up play

a role in the VC industry. While parts of our empirical evidence overlap with published work,

our evidence relating GP carry to fund returns and our evidence relating oversubscription to fund

sequence and fund returns is to our knowledge new. Furthermore, we believe we are the first to

avoid look-ahead bias in conditioning only on performance measures known ex ante.3

In addition to the relationship-banking literature, our paper relates to the literature on VC

performance and the relationship between LPs and GPs. Kaplan and Schoar (2005) find evidence of

performance persistence in VC funds raised by the same GP and document a positive and concave

relation between performance and future fund-raising. Jones and Rhodes-Kropf (2003) provide

empirical evidence in support of the hypothesis that VCs need to be compensated through higher

expected returns for bearing idiosyncratic risk. Ljungqvist and Richardson (2003) analyze the
2Intuitively, if the average NPV across GP types is negative, first-time funds cannot be funded with symmetric

learning since LPs cannot earn a return equal to or above their outside option. Asymmetric information (the provision
of soft information) serves as a commitment device for GPs who turn out to have skill to give up part of the follow-on
fund NPV to LPs. The resulting rents earned by LPs in follow-on funds make them willing to fund first-time funds
even if they do not earn their opportunity cost of capital on first funds.

3In contemporaneous work, Phalippou (2008) also analyzes performance persistence using ex ante performance
measures.
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cash flow, return, and risk characteristics of private equity funds. Cochrane (2005), Korteweg and

Sørensen (2008),Quigley and Woodward (2003), and Gottschalg and Phalippou (2007) estimate the

risk and return of VC investments. Lerner, Schoar, and Wongsunwai (2007) find large heterogeneity

in the returns that different classes of institutional investors earn in private equity and suggest that

LPs vary in their level of sophistication.

Finally, in contemporaneous theoretical work, Glode and Green (2008) provide an alternative

explanation for performance persistence. In their model, incumbent LPs learn about the prof-

itability of a given GP’s strategy. LPs can ‘steal’ the strategy by revealing it to another GP.

This increases the outside option of LPs who have invested in successful funds and enables them

to extract part of the follow-on fund surplus, generating performance persistence. We view our

explanation for persistence as complementary to that of Glode and Green. In our model, which

emphasizes the role of soft information, GPs cannot credibly reveal their type to outside LPs (and

may optimally set up funds specifically to avoid such revelation). In Glode and Green, GPs do not

want their type revealed for competitive reasons. Both elements are likely relevant in practice.

I. A Model of Learning About GP Skill

A. Setup

General partners and funds: At t=0, risk-neutral GPs raise funds of size I1 lasting one period.

GPs may raise a second fund of size I2 at t=1, after the return of fund 1 is known. GPs differ

in their investment skill, and this heterogeneity affects expected payoffs. For a GP of type i, fund

k = 1, 2 returns a cash flow of Cik = eA
i
k ln (1 + Ik) at t = k. The log function captures decreasing

returns to scale. For a given GP, the cash flows of funds 1 and 2 are drawn independently but from
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the same distribution, with Aik ∼ N
(
µi − 1

2σ
2, σ2

)
. There is a continuum of GP types characterized

by µi. For simplicity, we assume that µi is distributed uniformly over the interval
[
µL, µH

]
.4

Limited partners: There is a large set of identical, risk-neutral investors. We assume each LP has

sufficient wealth so that each fund only requires one LP.5 We distinguish between the ‘incumbent’

LP who has invested in the GP’s first fund, and ‘outside’ LPs who have not. The LP market is

perfectly competitive at t=0. LPs can earn a (risk-adjusted) return of r outside the VC industry.

Learning about GP type: At t=0, no-one knows the GP’s type. At t=1, the GP and the

incumbent LP learn the GP’s type perfectly, and under symmetric learning, so do outside LPs.

Under asymmetric learning, outside LPs only observe the cash flows of the first fund, C1.6 Once

µi is known, the NPV of fund 2, as of t=1, is

NPV2

(
µi
)

=
E1

(
Ci2
)

1 + r
− I2 =

eµ
i
ln (1 + I2)
1 + r

− I2. (1)

Define µ∗ as the value of µi for which NPV2

(
µi
)

at the optimal investment level equals zero. If

the NPV is zero, the optimal investment I2 is zero also, and thus µ∗ = ln (1 + r) . Assume that

µL < µ∗ < µH .

Payoff functions: To characterize the division of a fund’s surplus, we assume the following

contract. The LP receives all cash flows up to the amount invested. Additional cash flows are
4The log-normal distribution of cash flows and the uniform distribution of GP types allow us to solve the model

in closed form but do not drive our results. The more important choice is the functional form of the relation between
cash flows and investment. To generate performance persistence, we need a functional form where C2/I2 is increasing
in GP type even when I2 is chosen optimally to reflect GP skill.

5For simplicity, we assume that GPs have no investable wealth. In practice, LPs typically contribute 99% of a
fund’s capital, with GPs providing the remainder.

6This corresponds to ‘passive monitoring’ in Tirole’s (2005) terminology. We do not incorporate a role for active
monitoring, thus implicitly assuming that the GP always exerts effort. While active monitoring could play a central
role in the relationship between GPs and the entrepreneurs they back, we believe it to be less important in the
relationship between GPs and LPs given the fairly high-powered incentives provided to the GPs via their carry. We
discuss the nature of the GP-LP contract below.
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divided according to a linear sharing rule, with the GP receiving a fraction f , which is his carry.7

For a fund of size I with carry f, the payoffs to the GP and the LP at the end of the fund’s life are

XGP = max (0, f (C − I)) =
{

0 when C ≤ I
f (C − I) when C > I.

(2)

XLP = C −max (0, f (C − I)) =
{
C when C ≤ I
C − f (C − I) when C > I.

(3)

B. Symmetric Learning

Under symmetric learning, the LP market is perfectly competitive at both t=0 and t=1 so that the

GP receives the entire NPV of the fund. Thus, the GP chooses the NPV-maximizing investment

level I2 and sets the carry f2 such that the LP earns the outside option.

Investment in follow-on funds: For follow-on funds, assuming symmetric learning, the GP’s

type is known and a GP of type µi picks I2 to maximize NPV2|µ = µi:

max
I2

eµ
i
ln (1 + I2)
1 + r

− I2 ⇐⇒ I2
(
µi
)

=
eµ

i

1 + r
− 1. (4)

Only funds with µi ≥ µ∗ are raised.

Carry in follow-on funds: The carry is set such that the LP earns the outside option:

E
(
XLP

2 |µ = µi
)

= (1 + r) I2
(
µi
)
⇐⇒

E
(
C2|µ = µi

)
− f2

(
µi
)
E
[
max

(
0, C2 − I2

(
µi
))
|µ = µi

]
= (1 + r) I2

(
µi
)
⇐⇒

f2

(
µi
)

=
eµi ln

(
1 + I2

(
µi
))
− (1 + r) I2

(
µi
)

g2 (µi)
(5)

where we denote E
[
max

(
0, C2 − I2

(
µi
))
|µ = µi

]
by g2

(
µi
)

for notational simplicity and provide

7In practice, VC contracts also include a management fee, as a percent of fund size. For simplicity, we set this fee
to zero. For details of VC fees, see Metrick and Yasuda (2007).
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the closed-form expression for g2
(
µi
)

in Appendix A.

LP return in follow-on funds: The LP’s expected return for a GP of type µi is given by

1 + E
(
r2|µ = µi

)
=
E
(
XLP

2 |µ = µi
)

I2 (µi)
= 1 + r. (6)

With symmetric learning, expected LP returns are equalized across all GP types in follow-on funds.

Thus, there is no performance persistence in the cross-section of first-time and follow-on funds.

First-fund investment, carry, and expected returns are derived in the same way as for follow-on

funds except that the GP’s type is unknown and so expectations are taken over GP types i.

Investment in first-time funds: Each GP picks I1 to maximize Ei (NPV1(µi)) :

max
I1
Ei

[
eµ

i
ln (1 + I1)
1 + r

− I1

]
⇐⇒ Iopt1 =

Ei

(
eµ

i
)

1 + r
− 1 (7)

where, by the uniform distribution of GP types, Ei
(
eµ

i
)

= 1
µH−µL

[
eµ

H − eµL
]
. If the average

NPV across GPs, at the optimal investment level, is negative (i.e., if
Ei

(
eµ
i
)

ln(1+Iopt1 )
1+r − Iopt1 < 0),

a GP cannot raise a first-time fund (nor any follow-on funds) when learning is symmetric.

Carry in first-time funds: The carry is again set such that the LP earns the outside option:

Ei
(
E
(
XLP

1 |µ = µi
))

= (1 + r) Iopt1 ⇐⇒

Ei
(
E
(
C1|µ = µi

))
− f1Ei

(
E
[
max

(
0, C1 − I1

(
µi
))
|µ = µi

])
= (1 + r) Iopt1 ⇐⇒

f1 =
Ei (eµi) ln

(
1 + Iopt1

)
− (1 + r) Iopt1

Ei (g1 (µi))
(8)

where we denote E
[
max

(
0, C1 − I1

(
µi
))
|µ = µi

]
by g1

(
µi
)

for notational simplicity and provide

the closed-form expression for g1
(
µi
)

in Appendix A.
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LP return in first-time funds: The LP’s expected return (given that GP type is not known at

t=0) is given by

1 + Ei
(
E
(
r1|µ = µi

))
=
Ei
(
E
(
XLP

1 |µ = µi
))

Iopt1

= 1 + r. (9)

B.1. Testable Implications under Symmetric Learning

Implication 1: Fund-raising. The probability that a GP raises a follow-on fund is increasing in

the LP return of the GP’s first-time fund: P
(
µi > µ∗|r1

)
increases in r1.

Implication 2: Evolution of fund-size. In the cross-section of GPs with follow-on funds, a

high return to the LP in the first fund predicts a larger second fund: E (I2|r1) increases in r1.

Implication 3: Evolution of GP carry. In the cross-section of GPs with follow-on funds, a

high first-fund return predicts a larger GP carry in the second fund: E (f2|r1) increases in r1.

Implication 4: Cross-fund standard deviation of fund size. The cross-fund standard devia-

tion of fund sizes is higher among follow-on than among first funds: SDi

(
I2|µi > µ∗

)
> SDi

(
Iopt1

)
.

Implication 5: Cross-fund standard deviation of GP carry. The cross-fund standard devia-

tion of GP carry is higher among follow-on than among first funds: SDi

(
f2|µi > µ∗

)
> SDi

(
fopt1

)
.

We verify Implications 1, 2, and 3 numerically in Appendix B. Implications 4 and 5 follow

immediately from the fact that the cross-fund standard deviation of both fund size and carry is

zero in first-time funds and positive in follow-on funds.

C. Asymmetric Learning

Under asymmetric learning, the LP market is perfectly competitive at t=0 but not at t=1. When

outside LPs do not learn the GP’s type, incumbent LPs have an informational advantage in the

follow-on fund. This allows incumbent LPs to extract part of the follow-on fund’s NPV. How much
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they extract depends on how GPs and LPs are assumed to bargain.

Investment and carry in follow-on funds: We assume the GP and the incumbent LP take

turns making offers consisting of a proposed carry and fund size, (f2, I2) . The GP goes first. In

each round, if an offer is rejected, the NPV of the fund shrinks by a factor 1 − p. This represents

lost deal flow due to the delayed start of the fund.

If no agreement is reached, each party receives its outside option. For the incumbent LP, this

equals r (i.e., NPV=0). The GP’s outside option depends on what outside LPs are willing to

offer if no agreement is reached with the incumbent LP. We assume that outside LPs cannot see

(or cannot verify) the bids made prior to breakdown of bargaining with the incumbent LP. We

furthermore assume that the incumbent LP can counter any offer an outside LP makes. The GP’s

outside option is then zero, because outside LPs face a winner’s curse. Say, an outside LP observes

an attractive return on the GP’s first fund. The outside LP knows that if she offers an investment

and carry based on assuming the GP’s type µi exceeds µ∗, the incumbent LP will counter with an

offer that is more attractive to the GP only when µi in fact exceeds µ∗. Thus, the outside LP never

makes a positive NPV investment and rationally withdraws from the market.

We show in Appendix C that sequential bargaining results in the LP accepting the GP’s first

offer. For a given GP type µi, investment in follow-on funds I2
(
µi
)

is as under symmetric learning.

As p → 0, the follow-on fund carry f2

(
µi
)

is set such that the follow-on fund NPV is divided

equally between the GP and the incumbent LP. The following proposition summarizes.

Proposition 1: As p→ 0, the equilibrium outcome of the sequential bargaining game is immediate

agreement with equal division of the fund’s NPV between the GP and the incumbent LP.

Proof: See Appendix C. In what follows, we focus on the case where p→ 0.
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LP return in follow-on funds: The LP’s expected return is

1+E
(
r2|µ = µi

)
=
E
(
XLP

2 |µ = µi
)

I2 (µi)
=
eµi ln

(
1 + I2

(
µi
))
− 1

2

[
eµi ln

(
1 + I2

(
µi
))
− (1 + r) I2

(
µi
)]

I2 (µi)
.

(10)

This implies expected LP returns are no longer equalized across GP types in follow-on funds, unlike

under symmetric learning. Furthermore, the average expected LP return in follow-on funds is

1 + Ei (E (r2|µ = µi) |µi > µ∗) =
1

µH − µ∗

∫ µH

µ∗

(
1 + E

(
r2|µ = µi

))
dµi. (11)

Investment and carry in first-time funds: With asymmetric learning, the LP market remains

perfectly competitive at t=0 (as no learning has taken place yet). The GP can therefore offer any

LP a contract
(
f1, I

opt
1

)
where Iopt1 is the NPV-maximizing investment derived in the symmetric

learning case (equation (7)) and where f1 is such that the LP earns a fair return (i.e., a zero overall

NPV) across the current fund and the follow–on fund that will be raised if µi ≥ µ∗. We thus solve

for f1 as the value which sets the LP’s overall NPV across the two funds to zero. Then f1 solves

0 =

[
Ei
(
NPV1

(
µi
))
−
f1Ei

(
g1
(
µi
))

1 + r

]
+

1
1 + r

Ei
(
NPV2

(
µi
))

2
⇐⇒

f1 =
Ei (eµi) ln

(
1 + Iopt1

)
− (1 + r) Iopt1

Ei (g1 (µi))
+

1
2Ei

(
NPV2

(
µi
))

Ei (g1 (µi))
(12)

with NPV2

(
µi
)

calculated at the NPV-maximizing investment level. (The exact expression for f1

can be found in Appendix D.) Since LPs earn positive NPV in follow-on funds, it is possible that

first-time funds can be raised even if they have negative expected NPV, i.e., if
Ei

(
eµ
i
)

ln(1+Iopt1 )
1+r −

Iopt1 < 0. This will be the case if there is enough dispersion in skill to ensure that the expected

NPV in follow-on funds is sufficient to compensate LPs for the expected loss on first funds.
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LP return in first-time funds: The LP’s expected return (given that GP type is unknown at

t=0) becomes

1 + Ei
(
E
(
r1|µ = µi

))
=
Ei
(
E
(
XLP

1 |µ = µi
))

Iopt1

=
Ei

(
eµ

i
)

ln
(

1 + Iopt1

)
− f1Ei

(
g1
(
µi
))

Iopt1

. (13)

C.1. Testable Implications under Asymmetric Learning

Implications 1-5 do not depend on how the follow-on fund NPV is divided and so hold regardless

of whether learning is symmetric or not. In addition, we have the following testable implications:

Implication 6: Persistence. In the cross-section of GPs with follow-on funds, a high return to

the LP in fund 1 predicts a high return to the LP in fund 2, i.e., E (r2|r1) increases in r1.

Implication 7: Performance of first-time versus follow-on funds. The average return to

LPs is lower in first funds than in follow-on funds, i.e., Ei
(
E
(
r1|µ = µi

))
< Ei

(
r2|µi ≥ µ∗

)
.

Implication 8: Persistence in LPs. Conditional on a follow-on fund being raised, LPs who

invested in a GP’s first fund should invest in that GP’s follow-on fund.

Implication 9: Oversubscription in follow-on funds. Oversubscription is concentrated in

follow-on funds and is more severe for follow-on funds with higher first-fund returns.

We verify Implication 6 numerically in Appendix B. Implication 7 follows from equations

(12) and (13). The second term in (12) implies that f1 is higher if learning is asymmetric.

Since with symmetric learning, Ei
(
E
(
r1|µ = µi

))
= r, it follows from (13) that with asymmetric

learning, Ei
(
E
(
r1|µ = µi

))
< r. Furthermore, since LPs earn half of the follow-on fund NPV,

r < Ei
(
r2|µi ≥ µ∗

)
and thus Ei

(
E
(
r1|µ = µi

))
< Ei

(
r2|µi ≥ µ∗

)
. Implications 8 and 9 follow

directly from the fact that LPs in follow-on funds earn half of the fund’s NPV and thus earn a

return in excess of their opportunity cost of capital.
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An obvious question when faced with performance persistence is why outside LPs could not

simply invest in all follow-on funds with a high realized r1, thus expecting to earn a high value of

E (r2|r1). Our model makes it clear why this is not feasible. The winner’s curse problem described

above implies that outside LPs would only get to invest with those GPs for whom their offers

implied negative NPV to investors. This implies that the “return-chasing” behavior emphasized by

Berk and Green (2004) as the mechanism for elimination of performance persistence breaks down

in the VC setting.

C.2. Extending the asymmetric learning model

Extension 1 – Adding further follow-on funds: How does persistence evolve over a sequence

of more than two funds? In practice, most GPs raise a second fund well before the end of the

first fund’s ten-year life. At that point, incumbent LPs may be only slightly better informed than

outside LPs, so one might expect only weak performance persistence when regressing fund 2 returns

on fund 1 returns. Then, as soft information accumulates, the information asymmetry between

incumbent and outside LPs increases, leading to more performance persistence in higher-sequence

funds. Finally, persistence decreases as sufficient hard information (such as audited returns stated

in a fundraising prospectus) accumulates, allowing outside LPs to infer the GP’s type.

The following quote from Metrick (2006) suggests incumbent LPs retain an informational ad-

vantage even for some of the industry’s most experienced GPs. Arguing why successful GPs, such

as Sequoia Capital, do not increase their carry to eliminate over-subscription, Metrick states that if

a firm were to increase its carry, “... [its] mix of LPs would be different, and some of the long-serving

LPs would be gone. The new LPs, lacking the long-standing relationship, are less likely to remain

loyal if the firm has a poor performing fund.” One way to interpret investor loyalty is as a proxy for
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the LP’s information about the GP. Recall that outside LPs only observe hard information, while

the incumbent LP additionally observes soft information that cannot be credibly communicated to

outside LPs. Thus, if faced with one bad fund return, the incumbent LP will update his belief of

GP skill less than outside LPs will.

The following prediction summarizes:

Implication 10: Evolution of persistence. Persistence should be hump-shaped in fund se-

quence and some persistence should remain even for funds raised by the most experienced GPs.

Extension 2 – Multiple LPs per fund: The relationship-banking literature suggests en-

trepreneurs reduce informational hold-up by borrowing from multiple banks; see Ongena and Smith

(1998) and Boot (2000) for recent surveys. We argue in the next section that GPs ex ante have

no incentive to reduce hold-up in the VC setting because asymmetric learning and informational

hold-up likely lead to more efficient investment outcomes than with symmetric learning. Why? A

pre-commitment to sharing future fund NPV enables GPs to raise first funds even if first funds

have a negative expected NPV.

GPs do, of course, accept capital from multiple LPs, maybe because they want to reduce depen-

dence on any single LP to avoid fund-raising difficulties in future funds should an LP experience

a negative liquidity shock. Alternatively, it may allow LPs to diversify idiosyncratic GP risk and

thus effectively increase the size of the pie (in a risk-adjusted sense).

Whatever the motive for having multiple LPs, the question is whether competition among

incumbent LPs reduces their bargaining power and thus the amount of persistence implied by the

model. For example, could the GP not offer each of a set of N LPs the chance to invest 1/N of the

optimal follow-on fund size at a carry that ensures that their expected return equals their outside

option r? This may not happen, for two reasons. First, LPs might collude against the GP. Collusion
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is possible if LPs value future access to funds sufficiently. In our model, LPs expect to earn r (across

first-time and follow-on funds) when investing with future GPs, but suppose more realistically that

there is a finite supply of LPs who are good at learning. Since learning is valuable, such LPs would

earn more than r in equilibrium. If the LPs collude, they continue to earn more than r forever.

If a given LP competes on carry, he may obtain a larger allocation of the (high-skilled) GP’s next

fund. But other LPs can punish such behavior by not coinvesting with a deviating LP in future

funds. If future returns are sufficiently valuable relative to a larger allocation in today’s fund, LPs

will refrain from competing on carry. Second, it is not necessarily in the GP’s interest to make an

aggressive offer to LPs because he may lose the ability to raise funds for uncertain future lines of

business.8

D. Optimality of Asymmetric Learning

Learning is valuable in both the symmetric and asymmetric learning settings. It ensures that

high-skill GPs receive more capital in follow-on funds and that low-skill GPs (those with negative

NPV) do not raise follow-on funds. This increases the overall value created by the VC industry.

In expectation, GPs earn the full NPV of both their first-time and follow-on funds and thus prefer

learning to no learning (not yet knowing their skill level).

Does asymmetric learning lead to better investment outcomes (i.e., a more efficient outcome)

than symmetric learning? In our model it might. As we argued in Section C, when the expected

NPV of first-time funds is negative, GPs can still raise first-time funds if learning is asymmetric

and there is sufficient dispersion in GP skill that LPs can make up first-time fund losses from infor-
8Think of Kleiner, Perkins starting a series of funds investing in China. If the first China fund is expected to have

negative NPV, these funds cannot be started unless Kleiner, Perkins is able to convince LPs that they will share in
some of the later China funds’ positive NPV.
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mational rents on follow-on funds.9 Soft information effectively serves as a commitment device for

GPs to share some of the follow-on fund NPV with investors, and thus enables long-term contract-

ing which in turn leads to better investment outcomes. This is also the case in standard models of

informational hold-up such as Sharpe (1990), but there the gains from long-term contracting must

be weighed against a distortion in investment in each period caused by distorted interest rates. This

distortion is not present in the VC setting because VC contracts specify both an investment level

(fund size) and the division of the fund’s surplus. We have shown above that this yields first-best

investment levels in each period (i.e., NPV-maximizing fund sizes).

One could argue that long-term contracting should be possible even with symmetric learning,

since hard information is verifiable by courts which could thus enforce long-term contracts. In

practice, contracts do not give LPs explicit rights to invest particular amounts with particular

carries should a follow-on fund be raised, suggesting enforcement problems. Besides such problems,

it may also be difficult or cost-inefficient for LPs to learn the GP’s type only through the collection

of hard information. In that sense, asymmetric learning may lead to more efficient outcomes by

leading to more learning.

II. Sample and Data

We test the model using a sample of U.S. VC funds from Thomson Financial’s Venture Economics

(VE) and from Private Equity Intelligence (PREQIN). Both databases provide data on fund char-

acteristics (such as a fund’s vintage year and size) and, for a sub-sample, fund performance. Given

our focus on GP-LP relations, we screen out entities that are not structured as limited partnerships.
9This efficiency argument is similar to Tirole’s (2005, section 9.4.5), though Tirole considers a setting where

profitability improves over time for a given borrower, while we consider a setting where average profitability improves
over time as low-skill GPs fail to raise follow-on funds.
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Using secondary sources such as Pratt’s Guide, CapitalIQ, Galante’s, and a web search, we exclude

universities, state or local pension plans, government-sponsored entities, and vehicles representing

angel or other individual investors. We also screen out funds of funds, buyout funds,10 hedge funds,

and evergreen funds (i.e., funds without a predetermined dissolution date).

Table 1 describes our sample. It contains 2,812 funds raised by 1,164 VC firms between 1980

and 2006. Of these, 782 funds are in both VE and PREQIN, 44 appear only in PREQIN, and the

remaining 1,986 appear only in VE. The number of funds raised per year averages 64 in the 1980s,

138 in the 1990s, and 121 between 2001 and 2006. The average (median) sample fund raised $124.5

million ($50.0 million) in nominal dollars. Average fund size increased from $30.1 million in 1980

to $44.3 million in 1990, $201.4 million in 2000, and $215.9 million in 2006.

VC funds are under no obligation to disclose performance data publicly. Based on cash flow

data disclosed voluntarily by GPs and/or LPs, VE and PREQIN calculate IRRs net of fees and

carries.11 VE provides two types of IRRs. The first is a single number per fund, reflecting a fund’s

performance as measured from its inception to the earlier of the fund’s liquidation date or the date

we downloaded the data (summer 2007). As funds typically have a ten-year life, this single number

will reflect ultimate, “ex post” performance in the case of funds raised between 1980 and 1996. For

more recent funds, the reported IRR is liable to change as investments are exited or written off.

Thus, whenever we use ex post IRRs, we restrict the sample to vintage years 1980-1996.

While PREQIN reports only this single ex post number, VE in addition reports annual IRRs

for each year between a fund’s inception and the earlier of its liquidation or 2006. This allows us to
10We define as VC funds all funds listed in VE or PREQIN as focusing on start-up, early-stage, late-stage, or

expansion investments, as well as those listed as “venture (general)” or “balanced” funds. In cases where VE and
PREQIN classify a fund differently, we verify fund type using secondary sources.

11VE and PREQIN also report DVPI (the ratio of distributed to invested capital) and TVPI (the ratio of fund value
to invested capital, which is based on both realized cash returns and subjective valuations of unrealized investments).
Our results are qualitatively similar using these performance measures.
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track performance as it evolves over a fund’s life. We can thus avoid the look-ahead bias of relating

a VC firm’s ability to raise a follow-on fund in, say, year four of its current fund to that fund’s

ultimate, ex post performance. Instead, we can condition on “ex ante” available information.12

As Table 1 shows, we have ex post IRRs for 1,009 of the 2,812 funds. The average IRR is 14.2%.

However, this includes recent funds that have yet to switch from making investments to exiting

them. Focusing on the 601 funds from the 1980-1996 vintages, the average IRR is 18.8%. The

median IRR is considerably lower, at 10.3%.13 IRRs vary considerably over time. Average IRRs

were in the single digits for funds raised between 1981 and 1987, in the mid to high teens between

1988 and 1990, in the twenties between 1991 and 1994, 44.3% for 1995 vintage funds, and 63.8% in

the 1996 vintage. For the 1980-1996 vintages, IRRs average 15.3% for first-time funds and 20.4%

for follow-on funds.

III. Testing the Theory’s Predictions

The VC literature already contains evidence to support some of our predictions. Kaplan and

Schoar’s (2005) and Gottschalg and Phalippou’s (2007) findings, using ex post IRRs, support

Implications 1, 2, and 6 (dependence of fund-raising, follow-on fund size, and persistence). Our

purpose in re-testing these implications is to examine whether these findings are robust to using ex

ante IRRs. Our evidence in support of Implications 3 (dependence of follow-on carry on prior-fund

returns), 4 (more variable fund size for follow-on funds), and 9 (more oversubscription for follow-on

funds) is to our knowledge novel. As for the evidence on Implications 5 (more variable carries for

follow-on funds), 7 (lower average performance of first-time funds), and 8 (LP persistence), our work
12As Ljungqvist and Richardson (2003) show, over a fund’s life, performance follows a ‘J-curve’, in the sense that

IRRs tend to be negative in the first few years as the fund is mainly in investment mode and then turn positive after
five or six years as the fund begins to exit its investments through IPOs or M&A transactions.

13While this suggests some positive outliers, winsorizing the data does not materially affect our results.
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confirms earlier findings by Gompers and Lerner (1999), Kaplan and Schoar (2004), Gottschalg and

Phalippou (2008), and Lerner, Schoar, and Wongsunwai (2007).

A. Implication 1: Fund-raising

Implication 1 states that the probability of raising a follow-on fund increases in the return the LPs

earned in the first fund. Column 1 of Table 2 presents a probit model where the dependent variable

equals one if the GP raises a second fund and zero otherwise. The main variable of interest is the

ex post IRR of the GP’s first fund. Since we require ten years of data to measure ex post IRRs,

we restrict the sample to first funds raised in 1980-1996. Note that we allow the follow-on fund to

be raised at any point after the first fund, up until the end of 2006. Following Kaplan and Schoar

(2005), we also control for the log of the first fund’s size and for vintage-year fixed effects.14

The coefficient estimated for prior-fund IRR is reliably positive (p=0.001), consistent with

Implication 1. At the means of the other covariates, a one-standard deviation increase in first-fund

IRR increases the probability of raising a follow-on fund by 27 percentage points. In column 2, we

widen the sample to include all funds (not just first-time funds) to see if the performance-sensitivity

is attenuated for later funds. The results suggest that the most recent fund’s performance is less

important if the VC has a longer track record: While still statistically significant (p=0.043), the

coefficient estimated for prior-fund performance decreases, so that a one-standard deviation increase

in IRR is associated with only a nine point increase in the likelihood of raising another fund.

A potential shortcoming of using ex post IRRs, which we share with Kaplan and Schoar (2005)

and Gottschalg and Phalippou (2007), is that it implies perfect foresight, in the sense that LPs can

predict, when raising a fund, what the previous fund’s ultimate performance will be before the end
14The model does not address variation in first-time fund size. The variation we see in the data could reflect

investors having some (imperfect) ex ante knowledge about which GPs have higher skill or differences in optimal fund
size across industries or geographic areas, so we follow the literature and control for fund size.
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of its investment life. To condition only on information that is known ex ante, we estimate a Cox

hazard model with time-varying covariates. This relates the probability that a VC firm raises a

new fund in year τ to the interim (i.e., ex ante) IRR of its previous fund as reported at the end of

year τ − 1 and the log size of its previous fund.15 Since we use ex ante rather than ex post IRRs

in the estimation, we can include all available vintages through 2006. As VC firms have a non-zero

probability of raising further funds after 2006, we adjust the likelihood function for right-censoring.

Column 3 of Table 2 reports the coefficient estimates. Controlling for the fact that VC firms

with larger funds are more likely to raise another fund, we find that higher LP returns on the

previous fund significantly increase the hazard of raising a new fund (p<0.001). A unit increase in

IRR in year τ − 1 (e.g., from 0 to 100%) is associated with a 25.9% higher likelihood of raising a

follow-on fund in year τ . This mirrors the probit results in columns 1 and 2.

B. Implication 2: Evolution of Fund Size

According to Implication 2, the size of a follow-on fund increases in the return LPs earned in the

previous fund. Table 3 provides evidence consistent with this implication. We use a Tobit estimator

to model the evolution of fund size, controlling for left-censoring in the size variable as a result of a

firm being unable to raise a follow-on fund (presumably due to poor performance). To code failure

to raise a follow-on fund, we identify 362 defunct VC firms in CapitalIQ.16 The dependent variable

equals the log fund size if the firm raises a follow-on fund and zero if it does not. Like Kaplan and

Schoar (2005), we regress this on the prior fund’s IRR and log size as well as vintage-year effects.
15We ignore the first four years of IRR data as the IRR of a fund that is mainly investing and not yet generating

returns is not meaningful. In practice, this affects only first-time funds as VC firms with later funds nearly always
have a prior fund that is at least four years old. For the purpose of the hazard model, first-time funds are treated as
left-censored during their first four years, and the likelihood function is adjusted accordingly.

16Defunct VC firms are those CapitalIQ labels “out of business”, “dissolved”, “liquidating”, “no longer investing”,
or “reorganizing.” We also assume that firms that haven’t raised a fund since 1996 are defunct.
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Controlling for the fact that GPs that have managed larger funds tend to raise larger funds in

the future, column 1 shows that fund size is positively related to the previous fund’s ex post IRR

(p=0.001). However, this specification assumes perfect foresight. In column 2, we instead condition

on the previous fund’s ex ante IRR measured as of the year-end prior to the GP raising the current

fund. Unlike in column 1, which restricts the previous fund to those raised in 1980-1996 to ensure

we have a final IRR, in column 2 we can include all funds with available data.17 The results are

virtually unchanged. At the means of the other covariates, a one-standard deviation increase in

the ex ante performance of the previous fund is associated with a 35.3% or $20.6 million increase

in fund size, from the unconditional mean in the estimation sample of $58.3 million (p<0.001).

C. Implication 3: Evolution of GP Carry

Implication 3 states that GPs increase their carry following high returns on their previous funds. We

hand-collect carry data for 367 funds from GPs and public sources (including the Venture Capital

Journal, press reports in Factiva, and various Harvard Business School case studies). Consistent

with Gompers and Lerner (1999) and Litvak (2008), first-time funds in our data have a lower carry

(mean: 20.6%) than do follow-on funds (mean: 22.6%).

In Table 4, we relate the GP carry to the ex post (column 1) or ex ante (column 2) IRR of the

GP’s previous fund, controlling for fund size and vintage-year effects. In each case, carries increase

significantly in the previous fund’s IRR. In column 2, for instance, a one-standard deviation increase

in the previous fund’s ex ante IRR is associated with a 1.98 percentage point increase in carry on

the next fund (p<0.001).

These estimates could be biased to the extent that poor performance prevents a VC firm from
17Again, we ignore data for the first four years of a fund’s life.
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raising a follow-on fund (left-censoring). In column (3), we estimate a Tobit model where we set

the carry equal to zero if the firm fails to raise a follow-on fund. This increases the performance-

sensitivity of the GP carry to 4.2 percentage points (p<0.001). To our knowledge this is the first

set of results to systematically document a relation between follow-on fund carry and prior fund

performance.18

D. Implications 4 and 5: Cross-fund Standard Deviation of Fund Size and Carry

Table 5 reports the results of tests comparing the standard deviation of fund size and carry in three

different samples: The full set of funds raised between 1980 and 2006; the set of funds raised between

1980 and 1996; and the set of 1980-1996 funds for which we have performance information. In each

sample, we find statistically significant support for Implication 4; see Panel A. Panel B shows

significantly greater variation in carry among more established VC firms, as predicted, in the first

two samples. This is driven by the fact that 88% of first-fund carries cluster at 20% (with the

remainder mostly at 25%), while 60% of follow-on funds have a 20% carry, 23% have a 25% carry,

and 16% have a 30% carry. (In the set of 1980-1996 funds for which we have IRR data, there is no

variation in first-fund carries, so the test statistic cannot be computed.)

E. Implications 6 and 10: Persistence in Returns to LPs

We first replicate Kaplan and Schoar’s (2005) persistence test. In column 1 of Table 6, Panel A, we

regress a fund’s ex post IRR on log fund size, the ex post IRR of the VC firm’s previous fund, and

vintage-year effects. As a crude control for difference in risk-taking across funds, we also include a

dummy variable that equals one for funds classified as investing in early-stage companies.19 Like
18Neither Gompers and Lerner (1999) nor Litvak (2008) condition on prior performance. Metrick and Yasuda

(2007) show that carry per individual partner increases in fund sequence number, but do not relate carry to prior
fund performance.

19Kaplan and Schoar (2005) show that the persistence result is robust to this and other proxies for risk.
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Kaplan and Schoar, we find that fund performance increases with fund size and—consistent with

Implication 6—prior performance (p<0.001). Kaplan and Schoar note that a VC firm’s current

and previous funds will tend to overlap in time, as they are usually raised fewer than 10 years

apart. To mitigate this problem, they suggest including the two prior funds’ IRRs. When we do

so, in column 2, we find that only the previous fund’s IRR is significantly related to the current

fund’s IRR (p<0.001). In column 3, we control for the performance of the second-prior fund only,

to reduce overlap. The persistence effect remains significant (p=0.04), suggesting that Kaplan and

Schoar’s result is not a spurious artifact of the overlapping nature of the data.

Since we have access to ex ante performance data, we can improve on Kaplan and Schoar’s (2005)

persistence test by conditioning on the previous fund’s IRR measured as of the year-end prior to the

year the GP raised the current fund. This yields a somewhat larger persistence coefficient (p=0.035).

A one percentage point increase in the ex ante IRR of the VC firm’s previous fund is associated

with a 0.924 percentage point increase in the ex post IRR of the next fund. In contemporaneous

work, Phalippou (2008) also finds that persistence is present based on performance data known at

the time of follow-on fund raising.

According to Implication 10, persistence should first increase and then decrease across a se-

quence of funds; in early funds, it may even be absent. To test this prediction, we interact the ex

ante IRR measure from column 4 with a dummy variable identifying fourth and higher-numbered

funds. (The cut-off is arbitrary but not selective.) We find no evidence of persistence among sec-

ond and third funds and significant persistence among fourth and later funds. (We have too few

higher-numbered funds in the dataset to reliably test whether persistence subsequently diminishes.)

One concern regarding the persistence result is selection bias: Not every fund in our sample

reports an IRR, and it is possible that those that do are those that experience persistent good
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performance. To explore the extent of this bias, we repeat the analyses in Panel A with exit rates

as the dependent variable instead of IRRs; see Hochberg, Ljungqvist, and Lu (2007). Exit rates

are defined as the fraction of a fund’s investments that were exited through an IPO or an M&A

transaction over the course of the fund’s ten-year life and can be computed for nearly every fund.

As Panel B shows, we continue to find persistence using this alternative measure of performance.

F. Implication 7: Performance of First-time Funds

Implication 7 predicts that follow-on funds outperform first-time funds on average. For vintage

years 1980-1996, average IRRs among follow-on funds are 5.1 percentage points higher (at 20.4%)

compared to first funds (at 15.3%); see Table 1. Though consistent with Implication 7, the difference

is not statistically significant (t-stat = 1.49). Table 7 presents estimates from IRR regressions that

control for fund size, fund stage focus (as a crude proxy for risk), and vintage-year effects. In

column 1, a dummy identifying first-time funds is not statistically significant, though we find that

larger funds have higher IRRs, which is consistent with Implication 7 insofar as follow-on funds tend

to be larger. In column 2, we explore an alternative way of splitting funds into ‘early’ and ‘later’

funds. Until a fund has liquidated all its positions, its reported IRR includes unrealized capital

gains and so contains a subjective element. Many of the funds coded as follow-on funds in column

1 were, in practice, raised before the tenth anniversary of the GP’s first fund. (In our sample, the

average second fund is raised after 3.2 years.) In column 2, we define follow-on funds as those raised

at least 10 years after the first fund. Such funds perform significantly better than earlier funds,

by 8.5 percentage points on average (p=0.05). In column 3, we use a different functional form and

regress IRRs on the VC firm’s age (measured in log years since it raised its first fund). We find

that IRRs increase over a VC firm’s lifetime, by about 3.5 percentage points for a one-standard
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deviation increase in VC firm age (p=0.05).

G. Implication 8: Exit of LPs

Implication 8 predicts that if a GP successfully raises a follow-on fund, investors in the first fund

should also invest in the follow-on fund. Using a large sample of LP data compiled from Venture

Economics and VentureOne,20 we find that on average, 42.4% of LPs in a first fund continue to

invest in the GP’s next fund, falling to 39.9% in later funds. How likely is it that we observe this

level of persistence purely by chance? Say the average fund has ten LPs and there are 250 possible

LPs to choose from in the average year. The probability of randomly choosing four or more (out

of ten) LPs who were investors in the previous fund is 0.00025 (applying the hypergeometric pdf).

We conclude that there is a significant degree of persistence in LP composition across funds.

H. Implication 9: Oversubscription in Follow-on Funds

There is no prior evidence regarding the concentration of oversubscription in follow-on funds and

its relation to prior-fund performance. We compile data on target and final fund sizes from Jan-

uary issues of the Private Equity Analyst in the three years centered on a fund’s vintage year.21

These data are available from 1991. The ratio of final to target fund size averages 101.4%, with

a standard deviation of 35.8% and a range from 6.7% to 310%. For first and follow-on funds, the

subscription ratio averages 94.9% and 103.1%, respectively, consistent with Implication 9. This

difference continues to hold when we regress the subscription ratio on a follow-on fund indicator,

log target fund size, and vintage-year effects; see column 1 of Table 8.

Column 2 tests whether oversubscription is related to prior fund performance. Restricting the
20Neither VE nor VentureOne covers every LP, and even when combined do not provide a complete list of LPs in

a fund. This drawback is also noted by Lerner, Schoar, and Wongsunwai (2007), who use LP data from VE.
21Some funds remain open for investment for longer.
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sample to follow-on funds, we regress the subscription ratio on the previous fund’s IRR measured as

of the year-end before the GP raised the current fund. Controlling for log target size and vintage-

year effects, we find that a one-standard deviation increase in prior performance is associated with

a 4.7 percentage point increase in subscription (p<0.001), consistent with Implication 9.

IV. Discussion and Conclusion

We propose and test a model of the interaction between VC fund managers (GPs) and their investors

(LPs) in a setting where investors learn about GP skill over time. We exploit logic similar to that

presented in the relationship-banking literature: LPs who invest in a GP’s fund learn more about

that GP’s skills than do other LPs who are not invested in the fund. This asymmetric evolution of

information creates a hold-up problem, and this in turn leads to performance persistence.

Our empirical evidence is consistent with asymmetric learning. We find performance persis-

tence in after-fee returns across a GP’s funds (see also Kaplan and Schoar (2005)), even when we

depart from the literature by conditioning only on ex ante available information. Follow-on funds

outperform first funds after fees. There is persistence in LPs from fund to fund, and follow-on

funds are oversubscribed, especially following high returns. We also document empirical evidence

consistent with the predictions of both asymmetric and symmetric learning: The probability that

a GP raises another fund increases in the first fund’s return; better performing GPs raise larger

follow-on funds and charge higher performance fees; and the cross-fund standard deviation of fund

size and fees is higher in later funds.

It may be possible to extend our informational hold-up framework to explain other features

of the data. For example, suppose LPs differ in their ability to learn about GP skill. If there is

a shortage of LPs who are able to learn, and if learning is valuable (as it is in our model), then
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LPs who are better at learning will in equilibrium be compensated by the GP for the services they

provide. This prediction is consistent with the large heterogeneity in the performance experienced

by different classes of LPs shown in Lerner, Schoar, and Wongsunwai (2007). In particular, if

university endowments such as the Harvard Management Company or the Yale Investments Office

are particularly good at learning about a GP’s skill, the model can provide an explanation for the

limited partner puzzle presented in Lerner, Schoar, and Wongsunwai, who find that endowments

earn higher returns from VC investing than do other institutional investor types.
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Appendix: Derivations and Proofs for the Theoretical Model

A. Expressions for g2
(
µi
)
and g1

(
µi
)

g2
(
µi
)

is defined as E
[
max

(
0, C2 − I2

(
µi
))
|µ = µi

]
. From the normality of Ai2 it follows that

ln (C2/I2) = ln
(
eA

i
2 ln (1 + I2) /I2

)
= Ai2+ln

(
ln (1 + I2)

I2

)
∼ N

(
µi + ln

(
ln (1 + I2)

I2

)
− 0.5σ2, σ2

)

Using equations (18.30), (18.24), and (12.2a, 12.2b) in McDonald (2006), this implies that

g2
(
µi
)

= E
[
C2|C2 > I2

(
µi
)
, µ = µi

]
P
(
C2 > I2

(
µi
)
|µ = µi

)
− I2

(
µi
)
P
(
C2 > I2

(
µi
)
|µ = µi

)
=

[
eµi ln

(
1 + I2

(
µi
))
N
(
d2

(
µi
))
− I2

(
µi
)
N
(
d2

(
µi
)
− σ

)]
where

d2

(
µi
)

=
µi + ln

(
ln(1+I2(µi))

I2(µi)

)
σ

+
1
2
σ.

g1
(
µi
)

is defined as E
[
max

(
0,
(
C1 − Iopt1

))
|µ = µi

]
. From the normality of Ai1,

ln (C1/I1) ∼ N
(
µi + ln

(
ln (1 + I1)

I1

)
− 0.5σ2, σ2

)
.

Therefore,

g1
(
µi
)

=
[
eµi ln

(
1 + Iopt1

)
N
(
d1

(
µi
))
− Iopt1 N

(
d1

(
µi
)
− σ

)]
where

d1

(
µi
)

=
µi + ln

(
ln(1+Iopt1 )

Iopt1

)
σ

+
1
2
σ.

B. Verifying Implications 1, 2, 3, and 6

We verify Implications 1, 2, 3, and 6 numerically using two simulated datasets, one for the sym-

metric learning version of the model and one for the asymmetric learning version. The construction

of each of the two data sets is as follows. Pick values for r, µL, µH , and σ. Define a grid of N

equidistant µi values between µL and µH . For each value of µi, draw a vector of M values of r1
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and of r2, respectively, and define an M × 1 vector in which all elements are µi, an M × 1 vector in

which all elements are I2
(
µi
)
, and an M × 1 vector in which all elements are f2

(
µi
)
.22 Stack the

M r1-vectors on top of each other, and do likewise for the r2-vectors, the µ-vectors, the I2-vectors,

and the f2-vectors. Align the stacked vectors to generate an NM × 5 dataset of values of r1, r2,

µi, I2
(
µi
)

and f2

(
µi
)
.

We use the following parameter values: r = e0.14− 1 (i.e., µ∗ = 0.14), µL = 0.04, µH = 0.4, and

σ = 0.1. We use M = 10, 000 and N = 361, corresponding to a grid of GP types with grid size

0.001. The qualitative results are not sensitive to the exact parameter values we choose. To verify

Implication 1, we graph the fraction of funds for which µi ≥ µ∗ in each of 25 r1-buckets in Figure

1, Panel A. Consistent with Implication 1, the probability of raising a follow-on fund increases in

r1. Graphing mean fund size I2 in Panel B, conditional on µi ≥ µ∗, confirms Implication 2 that

follow-on fund size increases in first-fund return. Mean carry in Panel C increases in r1, consistent

with Implication 3. To verify Implication 6, Figure 2 graphs the mean of r2 within a set of r1-

buckets, using only those observations for which µi ≥ µ∗. The graph confirms that performance is

persistent.23 Note also that consistent with Implication 7, the mean of r1 in the simulated data is

Ei
(
E
(
r1|µ = µi

))
= 0.078 while the mean of r2 for µi ≥ µ∗ is Ei

(
r2|µi ≥ µ∗

)
= 0.188.

With symmetric learning, our chosen parameters imply I1 = 0.089 and f1 = 0.24. With

asymmetric learning, I1 is still 0.089 whereas f1 increases to 0.59. While the values depend on

the parameters chosen for the simulation, the fact that f1 is higher when learning asymmetric is

general. Intuitively, the first-time fund carry must be high enough that the GP earns the full NPV

of both the first fund and the follow-on fund (since the LP market is competitive ex ante). A carry

of 59% is unrealistic. To temper the required increase in carry, we could introduce a management

fee. Alternatively, we could use a non-uniform distribution of GP types or introduce asymmetric

bargaining with a higher fraction of follow-on fund NPV going to the GP.24 None of these changes
22I2

(
µi
)

and f2
(
µi
)

are not defined and not needed for µi < µ∗, so just plug in zeros in the I2
(
µi
)
-vectors and

f2
(
µi
)
-vectors corresponding to µi < µ∗.

23The spread in E(r2) is substantial, ranging from around 16% in the bottom bucket to 21% in the top. The range
of E(r2) (and thus the amount of performance persistence) is wider the wider is the range of GP types. To get a sense
of whether the assumed parameter values are reasonable, consider a simple calculation. The optimal investment at
the midpoint of the range of GP types (µ = 0.22) is I2 = 0.0833. At this level of investment, the lowest GP type
generates returns with a mean of E (C2/I2) = 1 and a standard deviation of

√
V (C2/I2) = 0.10. The highest GP

type generates E (C2/I2) = 1.43 with
√
V (C2/I2) = 0.14. The highest GP type is thus 43% more effective than

the lowest GP type for the same I2, with somewhat higher risk. While it is not possible to map our simple model
directly to the data (as GP types are unlikely to be uniformly distributed), this amount of dispersion in GP skill
seems reasonable and is sufficient to generate a wide spread in expected returns on follow-on funds.

24Binmore, Rubinstein, and Wolinsky (1986) provide alternating-offer bargaining games that converge to Nash
bargaining with unequal bargaining powers. One of their settings assumes that one party is faster at making counter-
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would alter our qualitative conclusions.

C. Outcome of Sequential Bargaining

We derive the equilibrium strategies and outcome of the sequential bargaining game between the

GP and the incumbent LP at the start of the follow-on fund. This is done both for general p and

for p → 0. We omit the proof that the proposed equilibrium is the unique perfect equilibrium; it

follows Rubinstein (1982) and Binmore, Osborne, and Rubinstein (1992), section 2.1.

Strategies: For a given value of p, the following constitutes a set of equilibrium strategies:

1. All offers propose the NPV-maximizing investment level I2
(
µi
)

= eµi
1+r − 1.

2. For a GP of type µi, there exists a single pair of proposed carries, fLP2

(
µi
)
, fGP2

(
µi
)

such

that the incumbent LP is indifferent between the contract
(
fGP2

(
µi
)
, I2
(
µi
))

now and the

contract
(
fLP2

(
µi
)
, I2
(
µi
))

in the next round of bargaining and such that the GP is indifferent

between the contract
(
fLP2

(
µi
)
, I2
(
µi
))

now and the contract
(
fGP2

(
µi
)
, I2
(
µi
))

in the next

round of bargaining. These carries are given by

fGP2

(
µi
)

=
p
[
eµ

i
ln
(
1 + I2

(
µi
))
− (1 + r) I2

(
µi
)]
/
[
1− (1− p)2

]
g2 (µi)

fLP2

(
µi
)

= (1− p) fGP2

(
µi
)
.

Proof: The indifference conditions for the GP and the LP are that the expected payoff from

accepting equals the expected payoff from waiting and having your own offer accepted in the

next round:

fLP2

(
µi
)
g2
(
µi
)

= (1− p) fGP2

(
µi
)
g2
(
µi
)
⇐⇒ fLP2

(
µi
)

= (1− p) fGP2

(
µi
)

E
(
C2|µ = µi

)
− fGP2

(
µi
)
g2
(
µi
)

1 + r
− I2

(
µi
)

= (1− p)

[
E
(
C2|µ = µi

)
− fLP2

(
µi
)
g2
(
µi
)

1 + r
− I2

(
µi
)]
.

offers than the other party. Another setting assumes that the parties have different beliefs about the probability of
a breakdown in negotiations.
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Combining the two expressions, we get

fGP2

(
µi
)

=
p

[
E(C2|µ=µi)

1+r − I2
(
µi
)]
/
[
1− (1− p)2

]
g2 (µi) / (1 + r)

=
p
[
eµ

i
ln
(
1 + I2

(
µi
))
− (1 + r) I2

(
µi
)]
/
[
1− (1− p)2

]
g2 (µi)

.

3. The equilibrium strategies are that the GP always offers
(
fGP2

(
µi
)
, I2
(
µi
))

and always rejects

offers with f2 < fLP2

(
µi
)
, and the incumbent LP always offers

(
fLP2

(
µi
)
, I2
(
µi
))

and always

rejects offers with f2 > fGP2

(
µi
)
.

Outcome: Since the GP makes the first offer, the equilibrium outcome is
(
fGP2

(
µi
)
, I2
(
µi
))
,

agreed to in the first round of bargaining. If the incumbent LP made the first offer, it would be(
fLP2

(
µi
)
, I2
(
µi
))

, agreed to in the first round of bargaining.

Limit as p→ 0 : Taking p to zero, and using l’Hôpital’s rule:

fGP2

(
µi
)
→

1
2

[
eµ

i
ln
(
1 + I2

(
µi
))
− (1 + r) I2

(
µi
)]

g2 (µi)

and fLP2

(
µi
)

= fGP2

(
µi
)
. Thus, the GP’s expected payoff, fGP2

(
µi
)
g2
(
µi
)
, equals half the fund’s

NPV, which is the same as what results from Nash bargaining with equal bargaining power and

outside options of zero.

D. Expression for f1 under Asymmetric Learning

f1 solves

f1 =
Ei (eµi) ln

(
1 + Iopt1

)
− (1 + r) Iopt1

Ei (g1 (µi))
+

1
2Ei

(
NPV2

(
µi
))

Ei (g1 (µi))
.

NPV2

(
µi
)

is calculated at the NPV-maximizing investment level I2
(
µi
)

= eµ
i

1+r − 1 and thus given

by

NPV2

(
µi
)

=
eµ

i
ln
(
1 + I2

(
µi
))

1 + r
− I2

(
µi
)

=
eµ

i (
µi − ln (1 + r)

)
1 + r

−

[
eµ

i

1 + r
− 1

]
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which implies

f1 =

[
Ei

(
eµ

i
)

ln
(

1 + Iopt1

)
− (1 + r) Iopt1 + 1

2

(
Ei

(
eµ
i
µi|µi>µ∗

)
(1+r) −

Ei

(
eµ
i |µi>µ∗

)
[ln(1+r)+1]

(1+r) + 1

)]
Ei (g1 (µi))

.

with Iopt1 =
1

µH−µL

[
eµ
H−eµL

]
1+r − 1, µ∗ = ln (1 + r). Furthermore, from the uniform distribution of

GP types it follows that:

Ei

(
eµ

i
µi|µi > µ∗

)
=

1
µH − µ∗

∫ µH

µ∗
eµ

i
µidµi =

1
µH − µ∗

[
eµ

i (
µi − 1

)]µH
µ∗

=
1

µH − µ∗
[
eµ

H (
µH − 1

)
− eµ∗ (µ∗ − 1)

]
Ei

(
eµ

i |µi > µ∗
)

=
1

µH − µ∗
[
eµ

H − eµ∗
]

Ei
(
g1
(
µi
))

=
1

µH − µL

∫ µH

µL

g1
(
µi
)
dµi.
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Table 1. Descriptive Statistics. 
 

  Number of sample funds         Performance 
  of which  Fund size ($m)  All funds  First-time funds  Follow-on funds 

vintage all 

only 
in 

VE 
only in 
Preqin 

in 
both   mean median   

no. of 
funds with 

IRR data 

mean 
IRR 
(%) 

sd 
IRR 
(%) 

median 
IRR 
(%)   

no. of 
funds with 

IRR data 

mean 
IRR 
(%)   

no. of 
funds with 

IRR data 

mean 
IRR 
(%) 

1980 40 34 4 2  30.1 20.0  17 13.0 12.7 12.9  10 10.9  7 16.1 
1981 47 40 1 6  22.6 19.6  18 7.8 8.3 9.9  8 6.3  10 9.1 
1982 66 57 0 9  23.5 15.1  29 3.1 8.9 5.9  19 2.9  10 3.3 
1983 78 66 1 11  31.4 20.1  42 8.6 11.4 7.8  20 9.3  22 7.9 
1984 90 79 0 11  30.4 22.0  52 4.4 7.9 3.5  23 5.5  29 3.6 
1985 62 45 1 16  40.1 20.0  33 9.7 10.8 9.6  9 9.9  24 9.6 
1986 57 39 0 18  52.5 21.6  34 6.8 7.4 6.1  16 5.2  18 8.3 
1987 84 67 1 16  36.1 24.2  57 7.1 15.0 7.2  21 4.5  36 8.6 
1988 57 36 2 19  66.2 32.8  39 13.7 14.2 10.3  7 11.4  32 14.2 
1989 77 46 1 30  66.3 30.5  51 16.3 31.8 12.2  10 26.2  41 13.9 
1990 50 37 2 11  44.3 35.0  20 16.2 21.4 10.4  2 -0.8  18 18.1 
1991 35 24 1 10  40.6 30.0  15 21.9 17.2 22.6  3 27.8  12 20.4 
1992 50 29 0 21  75.3 44.0  26 23.6 28.8 13.8  4 2.7  22 27.4 
1993 71 44 2 25  55.8 35.7  37 26.4 33.3 15.3  8 15.8  29 29.4 
1994 75 43 0 32  83.5 45.0  42 23.5 33.1 17.0  6 7.6  36 26.2 
1995 118 82 1 35  71.0 43.0  51 44.3 57.2 28.1  16 34.6  35 48.8 
1996 100 74 0 26  69.2 50.0  38 63.8 103.8 23.8  10 98.5  28 51.4 
1997 165 110 1 54  85.6 56.7  64 42.7 76.5 6.3  16 35.0  48 45.3 
1998 169 111 1 57  136.5 70.5  73 23.9 105.9 2.2  7 16.9  66 24.7 
1999 259 179 2 78  173.0 100.0  72 -6.7 24.8 -9.8  12 16.5  60 -11.4 
2000 338 234 5 99  201.4 97.5  93 -7.0 12.4 -6.5  12 -0.9  81 -7.9 
2001 177 125 2 50  215.8 69.1  47 -4.3 12.4 -5.8  3 -19.9  44 -3.2 
2002 77 45 4 28  138.6 49.3  22 -1.4 8.7 -0.9  3 -10.0  19 -0.1 
2003 70 39 5 26  127.9 36.6  19 -0.7 15.3 -0.3  3 1.5  16 -1.2 
2004 113 80 1 32  137.6 50.0  16 -0.8 18.4 -5.2  4 3.7  12 -2.2 
2005 133 98 1 34  248.0 107.7  2 -19.3 17.3 -19.3  1 -7.0  1 -31.5 
2006 154 123 5 26  215.9 107.0              

                    
1980-2006 2,812 1,986 44 782  124.5 50.0  1,009 14.2 48.3 4.5  253 14.7  756 14.0 
1980-1996 1,157 842 17 298  51.3 28.1  601 18.8 39.3 10.3  192 15.3  409 20.4 

                                      



Table 2. Fund-raising. 
In columns (1) and (2), we estimate probit models with vintage-year fixed effects. The dependent variable is an 
indicator variable set equal to one if the VC firm raises another fund, and zero otherwise. The variable of interest is the 
previous fund’s ex post IRR. As this can only be measured once the fund’s ten-year life is over, we include only funds 
from the 1980-1996 vintages. Column (1) restricts the sample to first-time funds and thus asks what determines whether 
the VC firm raises a second fund. In column (2), we widen the sample to include all funds (not just first-time funds) to 
see if the performance-sensitivity is attenuated for later funds. In column (3), we estimate a Cox semi-parametric hazard 
model with time-varying covariates using annual data. This models the hazard (i.e., the instantaneous probability) that a 
VC firm raises a new fund in year t. We allow a VC firm to raise multiple funds in succession (i.e., we estimate a 
“multiple-failure” hazard model). The hazard model conditions not on the ex post IRR of the previous fund, but on the 
interim (i.e., ex ante) IRR as reported at the end of year t-1. (Where a VC firm operates multiple funds in parallel as of 
the prior year-end, we use the maximum IRR.) Thus, unlike the probit models in columns (1) and (2), the hazard model 
uses only information that was available at the time of fund-raising. We ignore the first four years of reported IRRs over 
a fund’s life as the IRR of a fund that is mainly investing and not yet generating returns is not meaningful. Practically, 
this affects only first-time funds as VC firms with later funds nearly always have a prior fund that is at least four years 
old. For the purposes of the hazard model, first-time funds are treated as left-censored during their first four years, and 
the likelihood function is adjusted accordingly. Since we do not require ex post IRRs for estimating the hazard model, 
we can include all available vintages through 2006. Since VC firms have a non-zero probability of raising further funds 
after our data end in 2006, the hazard model adjusts for right-censoring. Heteroskedasticity-consistent standard errors 
are shown in italics. We use ***, **, and * to denote significance at the 1%, 5%, and 10% level (two-sided), respectively. 
 

 Prob(follow-on fund raised) 
 First-time  All  All 

 funds  funds  funds 
  (1)   (2)   (3) 
      
log fund size  -0.012 0.266*** 0.389*** 
 0.137 0.518 0.042 
fund IRR (ex post) 5.861*** 1.392**  
 1.770 0.687  
fund IRR (ex ante)   0.230*** 
   0.065 
    
Vintage year FE yes yes n.a. 
Wald test: all coeff. = 0 30.4*** 44.8*** 131.2*** 
Pseudo-R2 32.6% 11.6% 2.7% 
No. of observations 191 598 3,721 
No. of VC firms   262 
No. of funds raised   620 
Model estimated  Probit  Probit  Hazard 
      



Table 3. Evolution of Fund Size. 
The dependent variable in each column is the log of the size of the follow-on fund (in $m) if the firm raises a follow-on 
fund and zero if it does not. To code failure to raise a follow-on fund, we identify 362 defunct VC firms in CapitalIQ. 
Performance data is available for 71 and 126 funds raised by defunct VC firms in columns (1) and (2), respectively. The 
models are estimated using Tobit. The variable of interest in column (1) is the ex post IRR of the previous fund, which 
can either be a first-time and or a follow-on fund. As this can only be measured once the fund’s ten-year life is over, we 
include only data for previous funds from the 1980-1996 vintages. In column (2), we replace this variable with the 
interim IRR of the previous fund measured as of the year-end prior to the year the GP raises the current fund. (Where a 
VC firm operates multiple funds in parallel as of year-end prior, we take the maximum IRR.) If no follow-on fund is 
raised, the IRR of the previous fund is measured ex post (i.e., as of year ten.) In column (2), it is not necessary to restrict 
the vintages. Standard errors are shown in italics. We use ***, **, and * to denote significance at the 1%, 5%, and 10% 
level (two-sided), respectively. Note that the Tobit estimator does not support a heteroskedasticity correction. 
 

 Log size of follow-on fund 
  (1) (2) 
   
log size of previous fund 0.844*** 0.892*** 
 0.069 0.068 
IRR of previous fund (ex post) 0.553***  
 0.172  
IRR of previous fund (ex ante)  0.593*** 
  0.156 
   
Vintage year FE yes yes 
Wald test: all coeff. = 0 222.2*** 322.8*** 
Pseudo-R2 10.4% 10.2% 
No. of observations 534 726 
Model estimated  Tobit Tobit 
   



Table 4. Evolution of GP Carry. 
The dependent variable in each column is the GP’s carried interest (“carry”). The variable of interest in column (1) is 
the ex post IRR of the previous fund. As this can only be measured once the fund’s ten-year life is over, we include only 
data for previous funds from the 1980-1996 vintages. In column (2), we replace this variable with the interim IRR of the 
previous fund measured as of the year-end prior to the year the GP raises the current fund. (Where a VC firm operates 
multiple funds in parallel as of year-end prior, we take the maximum IRR.) In this case, it is not necessary to restrict the 
vintages. Since we condition on the performance of the previous fund, the estimation samples in columns (1) and (2) are 
restricted to follow-on funds and the models are estimated using OLS. The OLS results could be biased to the extent 
that poor performance results in a VC firm being unable to raise a follow-on fund (left-censoring). In column (3), we 
estimate a Tobit model where we set the dependent variable equal to zero if the firm fails to raise a follow-on fund. To 
code failure to raise a follow-on fund, we identify 362 defunct VC firms in CapitalIQ. Performance data is available for 
81 raised by defunct VC firms. Standard errors are shown in italics; in the case of the OLS specifications, they are 
heteroskedasticity-consistent. We use ***, **, and * to denote significance at the 1%, 5%, and 10% level (two-sided), 
respectively. 
 

 GP carry in follow-on fund 
  (1) (2) (3) 
    
log size of current fund -0.001 0.000 0.054*** 
 0.003 0.003 0.000 
IRR of previous fund (ex post) 0.013**   
 0.005   
IRR of previous fund (ex ante)  0.037*** 0.085*** 
  0.006 0.000 
    
Vintage year FE yes yes yes 
Wald test: all coeff. = 0 1.8* 8.1*** 163.1*** 
Adjusted R2 7.2% 21.5% n.a. 
No. of obs 86 197 272 
Model estimated  OLS OLS Tobit 
    



Table 5. Cross-fund Standard Deviation of Fund Size and GP Carry. 
The table reports the results of variance ratio tests comparing the standard deviation of fund size (Panel A) or fund carry 
(Panel B) for first and follow-on funds. We use three different samples: The full set of funds raised between 1980 and 
2006; the set of funds raised between 1980 and 1996; and the set of 1980-1996 funds for which we have performance 
information. We use ***, **, and * to denote significance at the 1%, 5%, and 10% level (two-sided), respectively. 
 

 All funds raised in 1980-2006  All funds raised in 1980-1996  

All funds raised in 1980- 
1996 with IRR 

information 
 No. of    No. of    No. of   
  funds   St.dev.  funds   St.dev.   funds   St.dev. 
            
Panel A: Fund size ($m) 
First-time funds 901  81.0  400  63.6  191  40.7 
            
Follow-on funds 1,906  344.1  751  127.1  407  159.0 
            
F-statistic   18.0***    4.0***    15.2*** 
            
            
Panel B: GP carry (%)                     
First-time funds 50  1.6  14  1.5  8  0.0 
            
Follow-on funds 317  4.0  59  3.2  47  3.0 
            
F-statistic   6.6***    4.5***    n.a. 
            



Table 6. Performance Persistence. 
In Panel A, the dependent variable in each column is a fund’s ex post IRR, net of fees, measured over its ten-year life. 
Accordingly, the sample is restricted to funds raised between 1980 and 1996. To test for persistence of performance 
across funds managed by the same VC firm, we regress the ex post IRR of fund N on the ex post IRR of fund N-1 
(column 1), the ex post IRRs of funds N-1 and N-2 (column 2), and the ex post IRR of fund N-2 (column 3). In column 
(4), we use the interim IRR of fund N-1 measured as of the year-end prior to the year the GP raises the current fund. 
(Where a VC firm operates multiple funds in parallel as of the prior year-end, we take the maximum IRR.) In Panel B, 
we measure performance using exit rates, defined as the fraction of a fund’s investments that were exited through an 
IPO or an M&A transaction over the course of the fund’s ten-year life. All models are estimated using OLS. 
Heteroskedasticity-consistent standard errors are shown in italics. We use ***, **, and * to denote significance at the 1%, 
5%, and 10% level (two-sided), respectively. 
 
Panel A IRR of current fund (ex post) 
  (1) (2) (3) (4) (5) 
      
log size of previous fund 0.065*** 0.071*** 0.058** 0.120*** 0.103*** 
 0.014 0.019 0.027 0.036 0.037 
dummy =1 if early-stage focus 0.100*** 0.114** 0.083 0.128** 0.118** 
 0.033 0.052 0.058 0.058 0.057 
IRR of fund -1 (ex post) 0.797*** 0.741***    
 0.147 0.188    
IRR of fund -2 (ex post)  0.184 0.671**   
  0.259 0.324   
IRR of fund -1 as of previous year (ex ante)    0.924** 0.214 
    0.435 0.329 
… X (sequence number = 4 or higher)     1.011* 
     0.512 
      
Vintage year FE yes yes yes yes yes 
Wald test: all coeff. = 0 5.1*** 5.9*** 6.4*** 2.2** 2.1** 
Adjusted R2 33.8% 26.7% 16.9% 13.6% 15.6% 
No. of observations 318 163 177 189 189 
      
 

Panel B Exit rates (ex post) 
  (1) (2) (3) 
    
log size of previous fund 0.022** 0.027* 0.037** 
 0.010 0.014 0.015 
dummy =1 if early-stage focus 0.051** 0.053** 0.054** 
 0.020 0.025 0.026 
exit rate of fund -1 (ex post) 0.378*** 0.267***  
 0.062 0.095  
exit rate of fund -2 (ex post)  0.236** 0.331*** 
  0.114 0.111 
    
Vintage year FE yes yes yes 
Wald test: all coeff. = 0 6.3*** 5.7*** 4.7*** 
Adjusted R2 18.0% 21.7% 12.7% 
No. of observations 486 269 285 
    



Table 7. Performance of First-time Funds Relative to Follow-on Funds. 
We test for differences in average performance by first-time versus follow-on funds using OLS regressions of fund IRR 
that control for log fund size, fund stage focus, and vintage-year fixed effects. The dependent variable in each column is 
a fund’s ex post IRR, net of fees, measured over its ten-year life. Accordingly, the sample is restricted to funds raised 
between 1980 and 1996. Heteroskedasticity-consistent standard errors are shown in italics. We use ***, **, and * to 
denote significance at the 1%, 5%, and 10% level (two-sided), respectively. 
 

 IRR of fund (ex post)  
  (1) (2) (3)  
     
log size of fund 0.043* 0.030 0.031 
 0.022 0.023 0.023 

dummy =1 if early-stage focus 0.086*** 0.080*** 0.079*** 
 0.028 0.028 0.027 

dummy =1 if follow-on fund -0.014   
 0.036   

dummy for funds raised at least 10 years   0.085**  
after VC firm’s first fund  0.043  

log years since VC firm raised its first fund   0.036** 
   0.018 
    
Vintage year FE yes yes yes  
Wald test: all coeff. = 0 5.9*** 6.1*** 6.1*** 
Adjusted R2 16.1% 16.7% 15.9% 
No. of observations 598 598 598 
Model estimated  OLS OLS OLS  
     

 



Table 8. Oversubscription. 
We obtain data on target fund sizes and final amounts raised per fund by searching January issues of the Private Equity 
Analyst in the three years centered on each fund’s vintage year, as reported by VE or PREQIN. The Private Equity 
Analyst provides this information from 1991, so the sample is restricted to the 1991-2006 vintages. The dependent 
variable is the subscription ratio, that is, the ratio of the final amount raised and the original target fund size. These 
models are estimated as OLS regressions with vintage-year fixed effects. Column (1) uses all funds for which data on 
actual and target fund size can be found in the Private Equity Analyst. Column (2) restricts the sample to follow-on 
funds. Heteroskedasticity-consistent standard errors are shown in italics. We use ***, **, and * to denote significance at 
the 1%, 5%, and 10% level (two-sided), respectively. 
 

 
Amount raised / target 

amount 
  (1) (2) 
   
log target fund size 0.030** 0.006 
 0.013 0.023 
dummy =1 if follow-on fund 0.069**  
 0.033  
IRR of fund -1 as of previous year (ex ante)  0.125*** 
  0.035 
   
Vintage year FE yes yes 
Wald test: all coeff. = 0 5.0*** 3.4*** 
Adjusted R2 6.2% 8.0% 
No. of obs 908 367 
Model estimated  OLS OLS 
   



Figure 1. Symmetric Learning – Probability of Follow-On Fund, Mean Size of
Follow-On Fund, and Mean Carry of Follow-On Fund

The figures illustrate Implications 1, 2 and 3 in the case with symmetric learning. Panel A shows the probability
that a follow-on fund is raised as a function of the realized return on the first-time fund, P (µi > µ∗|r1). Panel B
shows expected (i.e. mean) size of the follow-on fund as a function of the realized return on the first-time fund,
E(I2|r1, µ

i > µ∗). Panel C shows the expected (i.e. mean) size of the carry in follow-on funds as a function of the
realized return on the first-time fund, E(f2|r1, µ

i > µ∗). The model parameters used are r = e0.14 − 1 (and thus
µ∗ = 0.14), µL = 0.04, µH = 0.4, and σ = 0.1.

Panel A. Probability of Raising a Follow-On Fund

Panel B. Mean Size of Follow-On Fund

Panel C. Mean Carry of Follow-On Fund



Figure 2. Asymmetric Learning – Performance Persistence

The figure illustrates Implication 6. It plots the expected (i.e. mean) return in follow-on funds as a function of the
realized return on the first-time fund. The model parameters used are r = e0.14 − 1 (and thus µ∗ = 0.14), µL = 0.04,
µH = 0.4, and σ = 0.1.
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