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The Effect of Investment and Financing Policies

on Credit Risk

ABSTRACT

We investigate the impact on credit risk of endogenous investment and capital
structure decisions. To this aim, we propose a realistic dynamic structural model
featuring endogenous investment, capital structure and default. We calibrate the
model using accounting and market information by fitting the empirical credit risk
data for different risk classes. We find that while investment and financing deci-
sions, when made in the interest of all stakeholders, reduce credit risk, they greatly
increase credit risk if they are in the best interest of shareholders, and the effect is
more significant if investment and financing are jointly decided. Moreover, we find
that in presence of dynamic investment/disinvestment decisions, the possibility to
adapt capital structure over time in order to benefit from a positive net tax shield
and to avoid distress cost is only a minor determinant of credit risk. Similarly,
the effect of debt transaction costs on yield spreads is also relatively small when
compared to agency costs.

JEL Classification: G12, G31, G32, E22.
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Introduction

The credit risk of corporate bonds is the result of both macroeconomic conditions and
firms decisions made in capital markets with frictions. Using the structural approach
pioneered by Merton (1974), the literature has focused mostly on the influence of capital
structure decisions and financial market imperfections on the yield spread. For example,
the effects of taxation, debt covenants, transaction costs, different types of recovery, and
stochastic interest rates have been considered. However, less attention has been paid to
the effect of investment/disinvestment decisions on the yield spread. In the presence of
market imperfections, investment decisions interact with financing decisions for at least
two reasons. First, the gap between capital expenditure and internal funds is a major
determinant of debt issuance decisions, and second, cash flows generated by current
investments affect the future need for funds.

In this work we contend that incorporating endogenous investment and capital struc-
ture decisions, and exploring their joint effect, can advance our knowledge of the deter-
minants of yield spreads. We propose a dynamic structural model within an infinite
horizon discrete-time stochastic framework, to analyze the joint effect of dynamic in-
vestment and financing decisions on the yield spread, in a setting with market frictions,
like corporate and personal taxes and debt and equity issuance costs. Investment can
be financed using operating cash flows or external (debt and/or equity) funds. The debt
contract is a long term callable bond, and there is a dynamic choice of capital structure
and endogenous default. Likewise, the effects of costly financial distress and bankruptcy
costs are included.

The joint effect of dynamic capital structure and investment policies is rather different
from the case where they are separately considered. The basic idea is well summarized
in the following simple example, drawn from Sundaresan and Wang (2006). Assume
a firm has two compound (investment and expansion) options, and can issue a blend
of debt and equity to finance the capital expenditure at the two exercise dates. The
issuance is assumed to be contingent on the investment/expansion decision, with debt
issued first being more senior. At the time of the first issuance, the firm is unlevered,
so the capital structure decision maximizes total firm value, which in this case equals
equity value. When the second portion of debt is issued, the capital structure decision
together with the investment decision are made to maximize the equity value, which at
this time is different from the firm value because of the presence of more senior debt.
Both the capital structure and the investment decisions at the expansion date may be
sub-optimal from senior debt holders’ perspective. Hence, the price of debt at the time
of the first investment/financing decision rationally incorporates agency costs related to
both second best investment and second best financing.1

1Conversely, we only have an agency issue related to investment when the debt is issued by a currently
unlevered firm. In this case, the agency cost is just due to current and future equity maximizing

2



In this work we are interested also in exploring the effects of these agency issues on
the price of corporate debt. Our model generalizes the simple idea illustrated above: we
consider both expansion and contraction opportunities, and we allow capital structure
decisions to be unrelated to investment decisions.2 The model is general enough to be
carried over empirical cross-sectional distributions of leverage, default rates and credit
spreads.

Our work builds on existing dynamic models. The model is derived from Cooley
and Quadrini (2001), although we have a richer specification for financial markets and
taxes. Hennessy and Whited (2007) and Moyen (2007) describe the interaction between
investment and financing policies in a firm with endogenous default risk within a one-
period debt model with endogenous investment. If the bond maturity is one year, the
model does not include debt transaction and refunding costs, which create a liquidity risk
(from the definition given by Childs, Mauer, and Ott (2005)) and endogenously increase
the default risk. Moreover, a model based on one-period debt would not account for
agency costs due to a second best capital structure policy. Our model differs from
theirs because we use infinite-maturity debt and consider also the effect of investment
irreversibility. Our model is under many respects similar to the one by Titman and
Tsyplakov (2007), but it is different from theirs because we deal also with investment
reversibility and its effect on credit risk, whereas they assume that once a new asset is
in place, only depreciation can reduce it. As we will see, reversibility has a significant
impact on the credit risk. Our model is also similar to the one by Obreja (2006), although
his purpose is to analyze the role of financial leverage to explain the distribution of
expected equity returns. Lastly, Hackbarth, Miao, and Morellec (2006) take a a quite
different perspective on the topic. They analyze the effect of macroeconomic conditions
on credit risk, and they do so in a setting with no investment flexibility.

Given the simultaneous investment and financing decisions, the solution of the val-
uation problem for equity and debt is the fixed-point of a two-dimensional Bellman op-
erator. Since our model includes perpetual (as opposed to one-period) debt, we cannot
rely on the solution approach introduced by Cooley and Quadrini (2001) and extended
by Moyen (2007) and Hennessy and Whited (2007) to solve the problem. Therefore, we
introduce an efficient numerical algorithm for this purpose.

To calibrate the model, we compute empirical credit risk metrics using firm ac-
counting information (Compustat), share prices (CRSP), ratings (Standard & Poor’s),
default rates (Moody’s Investors Service (2006)), and yield spreads on industrial bonds
(Reuters). Then, we match these data with simulated data from the model on a per
credit merit class basis. We do no have different parameters for different risk classes (as

investments decisions. This case has been studied by many authors, like Leland (1998), Childs, Mauer,
and Ott (2005), Moyen (2007), and Titman and Tsyplakov (2007).

2In a similar framework, Gamba and Triantis (2008b) analyze the effect on firm value of following
alternative financing policies to match the investment policies, including also the effect of a deviation
from first best investment and first best financing decisions.
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do Huang and Huang (2003)); rather, we have one model to fit all risk classes, while
fitting also their frequencies. We think this is superior to matching the whole sample
average yield spread or, alternatively, the investment bonds’ and speculative bonds’ av-
erage credit spreads, because we can better capture the endogenous heterogeneity of
firms belonging to different credit classes.

We find that agency costs are a key determinant of the yield spreads. Investment
and financing decisions made by self-interested equity holders, when separately analyzed,
reduce the value of debt. This effect is much more significant when both decisions are
jointly considered. In contrast, financial and investment flexibility reduce credit risk if
decisions are made in the interest of all stakeholders (first best).

We also find that the possibility to dynamically change the capital structure does
not significantly affect the investment policy, as long as decisions are equity value max-
imizing. As a consequence, at the steady state, the yield spreads in the case with both
dynamic financing and dynamic investment are very similar to the ones of a firm with
constant capital structure and dynamic investment. Similarly, in good states, we find
that the investment policy is not affected by the possibility of issuing debt. That is, it is
almost the same as the investment policy of a company constrained to remain unlevered.

We observe that the effect of the tax shield to adjust the debt level is less important
in the presence of dynamic investment. That is, the main drivers of capital structure
decisions are neither corporate nor personal taxes, as it would be for models based on
dynamic capital structure only, but rather the interaction with investment/disinvestment
choices. Also debt transaction costs have a minor effect when dynamic investment is
included in the model: they are just minor determinants of capital structure decisions
and of credit risk.

The outline of our work is as follows. In Section I, we present the model of the firm
and the valuation framework. Next, in Section II we calibrate the model using empirical
data. In Section III, we analyze the effect of financial and investment flexibility on the
yield spread. We also discuss the effect of taxes and debt transaction costs. In Sec-
tion IV, we offer our concluding remarks. Finally, Appendix A and Appendix B provide
the details of the numerical procedure we use to solve the model and the calibration
procedure, respectively.

I. The model

We introduce the valuation model for corporate securities in a setting with endogenous
investment, dynamic capital structure decisions, and default.
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A. Economic environment

The source of uncertainty is the productivity of firm’s capital stock, denoted x. We
assume that x = ez, and z follows the AR(1) process

zt+1 = (1− ρ)z̄ + ρzt + σεt+1, εt+1 ∼ N(0, 1), |ρ| < 1 (1)

where z̄ is the long term mean, (1 − ρ) is the speed of mean reversion and σ is the
conditional standard deviation.3 For valuation purposes we will consider the process
under the risk-neutral measure, which differs from the one in equation (1) because z̄ is
replaced by z∗ = z̄ − φ, where φ is the the risk premium related to z.4

As a consequence, the EBITDA (operating cash flow before taxes), denoted π(k, x),
which depends on both the book value of assets, k > 0, and the shock, x, is

π(k, x) = xkα − f, (2)

where f > 0 is a fixed cost that summarizes all expenses, and π exhibits decreasing
returns to scale (α < 1). We assume that the firm cannot change the production
technology, although it can change the level of production capacity. It is worth noting
that, as a consequence of operating leverage, the EBITDA rate has volatility which is
higher the lower the level of k.

We assume that capital depreciates both economically and for accounting purposes
at a constant rate d > 0. So, given a capital stock k and a debt level b, Earnings Before
Taxes (EBT) are equal to the firm’s EBITDA minus depreciation and the interest to be
paid for the outstanding debt:

y(k, b, x) = π(k, x)− dk − rb.

We introduce a corporate tax function, g, defined as a convex function of EBT, which
we denote y, to model a limited loss offset provision:

g(y) =

{
yτ+

c if y ≥ 0

yτ−c if y < 0,
(3)

where τ−c and τ+
c , such that 0 ≤ τ−c ≤ τ+

c < 1, are the marginal corporate tax rates for
negative and positive earnings, respectively.5 Investors pay taxes on the returns on the

3The process in equation (1) is motivated by the fact that there is empirical evidence that earnings
are persistent. See also Gomes (2001), Hennessy and Whited (2005), Hennessy and Whited (2007), and
Moyen (2007).

4An analysis of the issues related to the existence of a martingale measure in a discrete time setting
is offered by Elliott and Madan (1998).

5This choice for the corporate tax function is borrowed from Leland and Toft (1996). In unreported
results we implemented also the more accurate convex tax function used by Hennessy and Whited
(2005), with no substantial difference in our main conclusions. A more realistic tax environment is
described in Liu, Qi, and Wu (2006). The one we use here is suited for the purpose of this work.
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securities issued by firms. We assume that taxes on cash flows are levied at constant
rates: τe ∈ [0, 1[ for equity holders, and τb ∈ [0, 1[ for bondholders.

We assume that the firms can raise funds by issuing equity and debt and that financial
markets rationally price the cash flows paid to these securities. As for debt financing,
the companies issue risky callable consol bonds with face value b ≥ 0 and a coupon
rate equal, for practical convenience, to the risk free rate r. The debt adjustment cost
function is

q(b′, b) =

{
q0 + q1 |b′ − b| if b′ 6= b

0 otherwise,
(4)

where q0 is a fixed component and q1 is the issuance cost proportional to the change
from current debt, b, to new debt b′.6 The adjustment cost function, q, entails a cost
in case of both an increment and a decrement of debt. This might be perceived as an
oversimplification, because while issuing new debt (b′ > b) generates underwriting costs,
it is less clear what the debt retirement cost should be, as it is witnessed also by Leary
and Roberts (2005), p. 2597. On the other hand, it is widely acknowledged that there
are implicit costs to reduce the level of debt, due to restrictions on the possibility to pay
down debt in advance or on debt repurchase or due to the illiquidity of the secondary
market.

Funds can be raised also by issuing equity. In this case, a flotation cost is incurred,
which is motivated by information asymmetry and underwriting fees. Hence, if the
amount raised by the firm is cfe, the actual (negative) cash flow by the equity holders is
cfe · (1+λ1)−λ0, where λ0 ≥ 0 is a fixed cost component and 0 < λ1 < 1 is a parameter
defining the proportional flotation cost.7

The dynamic framework is infinite-horizon and discrete-time. We assume that the
firm has two control levers: the book value of assets in place, denoted k, and the face
value of outstanding debt, b.

6This function for direct costs for debt restructuring is different from the one in other models. Mauer
and Triantis (1994) assume q1 = q+1 when b′ > b, and q1 = q−1 when b′ < b, where q−1 is in fact the
cost for issuing equity, as in their model debt repurchase can be financed only by issuing new equity.
In our model we do not have this restriction. Fischer, Heinkel, and Zechner (1989), Goldstein, Ju, and
Leland (2001) and Strebulaev (2007), for analytic convenience (i.e., to preserve the scaling property),
specify the adjustment cost as q(b′, b) = q1b

′ if b′ 6= b and q(b′, b) = 0 otherwise. That is, the cost is
proportional to the total amount of debt issued, and not just to the increment b′ − b. We do not need
this simplification, because we solve the valuation problem numerically.

7This cost function is drawn from of Gomes (2001). Instead, Hennessy and Whited (2007) use a
convex flotation cost function. In unreported results we implemented it, but with no qualitative change
of our main conclusions.
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B. Investment, capital structure, default

At any date, the firm can decide to invest or disinvest to reach a new level of assets k′.

If there is positive investment, then the cost is represented by ξ = k′ − (1 − d)k
and it can be financed either with internal funds, such as cash flows from operations, or
with external funds, by issuing debt or equity. We assume that capital is homogeneous,
so we cannot distinguish between investments made at different dates for depreciation
purposes.

On the contrary, if the firm decides to disinvest, it does so at a liquidation price,
and then the cash inflow is `((1 − d)k − k′), with ` ≤ 1. This introduces investment
irreversibility in the model, and as a consequence, physical asset is not equivalent to
cash.8 For notational convenience, to describe the payoff from investment/disinvestment
ξ we define the function χ(ξ, `) as

χ(ξ, `) =

{
ξ if ξ ≥ 0

ξ` if ξ < 0.

We model also the state of financial distress (liquidity crisis): if financial distress
worsens, the firm defaults. Different conditions have been used in the literature to
model financial distress. We assume that distress takes place when after-tax operating
cash flow is insufficient to cover the coupon payment:

rb > π(k, x)− g(y(k, b, x)).

In this case, the firm sells at a discount s ≤ ` the minimum amount of capital, (rb+ g−
π)/s, to make the promised payment.9

Equity holders may decide to increase or reduce the debt to a new level b′ for the
next period. We assume that bondholders do not have the power to block any additional
debt issuance. In case it is optimal to change the level of debt to b′, all the outstanding
debt is called at par value, b, and new debt is issued at the market value D(k, b′, x).
While the assumption of calling at the face value preserves the rights of the current

8This is different from what Hennessy and Whited (2007) and Moyen (2007) assume, because in their
models the investment decision is fully reversible, or equivalently, capital is as liquid as cash. Moreover,
irreversibility generates an implicit investment cost, which makes investment lumpy.

9While our definition of financial distress in line with Titman and Tsyplakov (2007), Strebulaev
(2007), and Gamba and Triantis (2008a), the consequences of financial distress are somehow different.
A reduction of cash flow is directly introduced in Titman and Tsyplakov (2007) model. In fact, in their
model financial distress generates a cost that is financed either by issuing debt or equity. In ours, the
asset sale implies an additional investment that is financed exactly in the same terms: either with equity
or debt. This is different also from Strebulaev (2007), because asset sales are based on a discount to
market value in his model, as opposed to a discount to book value in our model. Asset sales motivated
by liquidity crises have been documented by Asquith, Gertner, and Scharfstein (1994).
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debt holders in the event the firm increases its debt level, on the other hand, it entails
a refunding cost given by the difference between the market price and the face value of
debt, D(k, b′, x)− b. Said difference will always be negative in case of a debt reduction,
but it can also be positive when debt increases, and the market value of the new debt is
higher than the face value of existing debt.

The firm can be taken off its steady state path in case of default on its debt obliga-
tions. From the above assumptions, all bonds have the same priority in this event. We
assume endogenous default; i.e., default is decided by equity holders to preserve limited
liability. In the event of default, we assume that debt holders can use debt collection
laws to seize the residual value of the firm as an unlevered ongoing concern, at the de-
preciate capital level k(1 − d), net of bankruptcy costs. Hence, the debt tax shield is
lost and absolute priority rule applies. Note that the unlevered asset value includes the
positive value of the option to optimally lever the firm and decide the new investment
policy. Moreover, to preserve the stationarity of the infinite horizon model, we assume
that in case of default, after paying the bankruptcy costs, debt holders become the new
owners continuing operations henceforth.

C. Security valuation

The valuation model can be described as a dynamic program: at any date, after observing
x, for given (k, b) the firm chooses a new level of capital, k′, and a new level of debt, b′. If
the firm is solvent, investment and financing decisions can be made with no restriction.
On the other hand, in case of default, we assume that no decision is made regarding
investment and capital structure, and the equity holders exercise the limited liability
right by surrendering the firm to bondholders at the current level of depreciated capital.

The value of the equity, denoted E(k, b, x), is the solution of a Bellman equation
based on the optimization of the sum of current cash flow and the expected present
value of future optimal cash flows (i.e., the continuation value).10 The value of debt
rationally incorporates the optimal policy decided by shareholders. Hence, the current
value of the debt is the present value of future payoff to bondholders contingent on
equity holders decisions.

10We assume that managers always pursue shareholders’ interest. It is beyond the focus of this
work to analyze such agency issues. In addition, as mentioned in the introduction, we assume perfect
symmetric information between equity holders and bondholders.
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The cash flow to equity holders in case of no default, in state (k, b, x) assuming the
firm is solvent, for a decision (k′, b′), is

cfe(k, b, k′, b′, x) = max {π(k, x)− g(y(k, b, x))− rb, 0}
+ (D(k′, b′, x)− b) Ib′ 6=b(b′)− q(b′, b)

− χ
(
k′ − k(1− d) + max

{
rb+ g(y(k, b, x))− π(k, x)

s
, 0

}
, `

)
. (5)

In this equation, Ib′ 6=b(b′) is equal to one when b′ 6= b and zero otherwise, and D(k′, b′, x)
is the ex–coupon price of debt, considering that the new book value of assets is k′, and
the new book value of debt is b′. The first line of equation (5), at the right-hand side,
captures the after tax operating cash flow, if positive; the second line presents the net
flow from a capital structure change; in the third line we have the net flow from a change
in the capital stock, including the effect of depreciation and of fire sales, when the after
tax operating cash flow is negative.

The value of the equity at state (k, b, x) is the solution of the dynamic program

E(k, b, x) = max

{
max
(k′,b′)

{e(k, b, k′, b′, x) + βEk,b,x [E(k′, b′, x′)]} , 0
}
, (6)

where the actual cash flow to equity holders is

e =

{
cfe · (1− τe) if cfe ≥ 0

cfe · (1 + λ1)− λ0 if cfe < 0.
(7)

In equation (6), the discount factor is β = (1 + rz(1 − τe))
−1, where rz denotes the

certainty equivalent rate of return on equity flows,11 and the expectation is computed
with respect to the transition probability of the process in (1), conditional on the current
state of the firm, (k, b, x).

Interpreting equation (6), at the current state, shareholders maximize their value,
given by the current cash flow plus the continuation value, by selecting the new level of
book value of asset and liabilities. In this case, the optimal policy is

(k∗, b∗) = arg max
(k′,b′)

{e(k, b, k′, b′, x) + βEk,b,x [E(k′, b′, x′)]} , (8)

provided that the value of equity is positive. If e(k, b, k∗, b∗, x) + βEk,b,x [E(k∗, b∗, x′)] is
negative (i.e., the firm cannot recover from financial distress), then shareholders default

11The certainty equivalent rate of return on equity flows, rz, is determined under a tax equilibrium
setting as rz = r(1 − τb)/(1 − τe), where τb is the personal tax on debt income and τe is the personal
tax on equity income. Notice that, in the same setting, the discount factor for bond flows is βb =
(1 + r(1− τb))−1. Hence, βb = β = βe. See Sick (1990) for details.
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on servicing debt and surrender the firm to debt holders. In this case, the production
capacity is kept at its current level, k(1− d), and the firm becomes all-equity-financed:
(k∗, b∗) = (k(1− d), 0).12 To summarize, the optimal policy is

ϕ(k, b, x) = δ(k, b, x) · (k(1− d), 0) + (1− δ(k, b, x)) · (k∗, b∗), (9)

where

δ(k, b, x) =

{
1 in case of default

0 otherwise
(10)

is the default indicator function.

To compute D(k, b, x), the ex–coupon value of debt under the assumption that the
firm is solvent, we have to determine the cash flow to debt holders at (k, b, x), when
firm’s decisions are made:

cfd(k, b, x, ϕ) = (1− δ(k, b, x)) [rb(1− τb) + Ib′ 6=b(b′)b+ (1− Ib′ 6=b(b′))D(k′, b′, x)]

+ δ(k, b, x)(1− c) min{E(k(1− d), 0, x), b}, (11)

where (k′, b′) = ϕ(k, b, x) and E(k(1−d), 0, x) is the value of the corresponding unlevered
(b = 0) firm from equation (6), at the depreciated capital level k(1 − d), and c is the
proportional bankruptcy cost.13 The first line of equation (11) displays, in the right
hand side, the value to current bondholders if the firm is solvent at (k, b, x); the second
line shows the value if the firm is in default.

Hence, the value of debt is

D(k, b, x) = βEk,b,x [cfd(k′, b′, x′, ϕ)] , (12)

Equations (6) and (12), determining the value of equity and debt, is a system of simulta-
neous non–linear equations that must be solved numerically. In Appendix A we describe
the numerical method we use to solve the valuation problem.

12This is different from Mauer and Triantis (1994) and Obreja (2006), who assume that an insolvent
firm cannot make any decisions. Instead, in our model, if a firm is insolvent, it first tries to make up
the debt payment using existing asset or issuing new equity. If still it is insolvent and shareholders do
not find it profitable to refund, the firm defaults.

13Equation (11) sets also the debt principal as an upper bound for the cash flow to bondholders in
case of bankruptcy. In unreported results, we investigated as alternative possibilities, the recovery cash
flow to debt holders in case of default is either a proportion of the depreciated book value of asset,
cfd(k, b, x) = k(1 − d)(1 − c), or of the face value of their claim cfd(k, b, x) = b(1 − c). The results
presented in Section III are qualitatively not affected by this choice. We do not consider strategic debt
service (see, for instance, Mella-Barral (1999)): it is beyond the scope of this paper to dissociate default
from liquidation.

10



D. Variations on the base model

For comparison purposes, in our analysis we will consider also different versions of the
baseline model described above.

The first type of variation is related to a different objective function. Instead of
maximizing the value of equity, we alternatively assume that the dynamic investment
and financing decisions aim at maximizing the total firm value, defined as the sum of
equity and debt values. The dynamic program for the firm value, V = E + cfd, is

V (k, b, x) = max
(k′,b′)

{e(k, b, k′, b′, x) + βEk,b,x [E(k′, b′, x′)]

+rb(1− τb) +D(k′, b′, x′) (1− Ib′ 6=b(b′)) + bIb′ 6=b(b′)} . (13)

Denoting with (k∗, b∗) the maximand of the problem in (13), the corresponding value of
equity is E(k, b, x) = e(k, b, k∗, b∗, x) + βEk,b,x [E(k∗, b∗, x′)] if it is strictly positive (and
hence (k∗, b∗) is the optimal solution). Otherwise, the firm is in default and the optimal
decision is (k(1− δ), 0), the value of equity is set to zero, E = 0 (i.e., V = cfd), and the
default indicator, δ(k, b, x), equals one.

The second variant is obtained by assuming that equity holders can follow the in-
vestment (or, alternatively the financing) policy, which maximizes the total firm value in
equation (13), and then they choose the financing policy (alternatively, the investment
policy) in their own interest, but with the investment (financing) policy constrained to
be first best. This intermediate type of problem is used in a later section to isolate the
effect of agency issues related to distirtions of either first best financing or first best
investment.

The third type of variation is related to investment and financing flexibility. A first
case is based on the assumption that there is no dynamic choice of investment and capital
structure (referred to as SF-SI model).14 Hence, we assume that debt and capital are
kept constant over time. Since we are interested in a steady state solution, we assume
that the physical capital of the firm is maintained at the level k by forcing the firm to
expense the depreciation, dk. The second restricted specification of the model, denoted
DF-SI, assumes static investment decisions (i.e., k is constant),15 but allows for dynamic
decisions on capital structure.16 The last variation of the base model assumes static

14This specification is in the same spirit of the model proposed by Leland (1994), although there
are many differences as far as the cash flow process, the tax environment and the financial market are
concerned.

15Differently from Strebulaev (2007), we do not introduce financial distress in the version with static
investment and dynamic capital structure. Since in this specifications there is no investment (apart
from replacement of depreciated capital), allowing for fire sales would not permit to have a steady state
solution of the problem, because eventually, all the capital stock would be depleted.

16This specification is in the spirit of Fischer, Heinkel, and Zechner (1989) or Goldstein, Ju, and
Leland (2001), although some features of the cash flow process and the tax functions are different.
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capital structure (i.e., b is constant) together with dynamic investment, and will be
denoted SF-DI.17 Given the above restrictions, for convenience, we denote the baseline
version (with dynamic investment and capital structure) as the DF-DI model.

II. Model calibration

This section aims at selecting the values of the model parameters for which the estimated
credit risk measures reflect actual measures. Specifically, our target credit risk measures
are quasi-market leverage, historical average credit spreads, and default rates per rating
class. We consider seven (whole letter) risk classes, ranging from from AAA/Aaa (com-
panies with extremely strong capacity to meet financial obligations) to C (class made of
companies with rating CCC/Caa or worse).

The calibration procedure can be described as follows. We first select the quasi-
market leverage (QML) as the criterion to assort companies into risk classes. The
justification for this choice is provided in Appendix B.

Then, we use Monte Carlo simulation to create a sample of companies and to compute
the quasi-market leverage ratio together with the target credit risk measures for each
company in the sample. Note that, since in the DF-DI model the leverage at a given date
is path dependent, the only way to generate a mapping between quasi-market leverage
and the credit risk measures is by explicitly considering the pattern of past decisions;
i.e., by using simulation. With this mapping, we generate the estimated distribution
of risk classes and compute the average of the credit risk measures per rating class.
The simulation procedure, the classification of simulated companies into credit classes,
and the computation of estimated metrics, all needed for the calibration process, are
explained in detail in Appendix B.

Table V displays a summary of the empirical metrics for our dataset, which con-
sists of an unbalanced panel of 9048 US firms (excluding financial, insurance, and real
state firms) from years 1997 to 2005, with between 887 and 1110 companies per year.
Appendix B also expounds on the dataset.

Table I reports the values of model parameters. We take some of these values from
previous research and we modify some other with the purpose of (i) reasonably improving
the fitting of the simulated credit metrics with respect to the empirical ones, and (ii)
making unlikely to have optimally unlevered firms in the sample. This process produces
the “best fit” values or calibrated values.

17A model with static debt and dynamic investment has been studied by many authors. For instance,
Leland (1998), Childs, Mauer, and Ott (2005), Titman and Tsyplakov (2007), and Moyen (2007).
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Specifically, the value of the parameters of the flotation cost function, λ0 = 0.08 and
λ1 = 0.09, are derived from Gomes (2001) and are greater than the ones in Strebulaev
(2007). Proportional debt adjustment costs are provided in Fischer, Heinkel, and Zech-
ner (1989) with q1 = 0.01. Our constant and proportional transaction costs are higher:
q0 = 0.04 = q1. We use a return to scale of α = 0.476, higher than the one in Gomes
(2001), who proposes α = 0.30 but with a different hypothesis on productive technology.
We include also a fixed cost, to increase both the operating and (as a consequence) the
financial leverage. Gomes (2001) also provides ρ = 0.62 and σ = 0.15, that are lower
than ours. In Moyen (2004), α = 0.45, ρ = 0.6 and σ = 0.2 and the fixed cost is f = 1.3.
So, our parameters are similar to hers, with the exception of a higher ρ. Note that
Hennessy and Whited (2005) provide a (structural) estimate of ρ equal to 0.74, not far
from our choice. The depreciation rate, d, and the salvage value, s, are the same as in
Hennessy and Whited (2005). The selling price of capital stock in case of disinvestment,
` = 0.9, represents the degree of investment irreversibility, and is greater than the one
in Gamba and Triantis (2008a). The personal tax rates τe = 0.15 and τb = 0.20 are
in line with the ones in Hennessy and Whited (2007) and in many other papers. The
corporate tax rate is the same as in Hennessy and Whited (2007) (τ+

c = 0.40). With
our selection of parameters, the rate of net tax advantage to debt in case of positive
earnings is 34.12%. The tax rate for losses is 15%, which means a limited possibility of
loss offsetting. Finally, the risk-free rate is 5% on a annual basis and the risk-premium
is 6%, in line with many other models.

Table V collects also the simulated statistics for the three credit risk measures. While
the fitting of QML to empirical data is excellent for all credit classes, and is good for
credit spreads and default rates in classes from AAA through B, the fitting for class C
is rather poor. We consider this a satisfactory result for the purpose of our work.

Finally, we conduct a sensitivity analysis of some model parameters to make sure
that our results are not driven by any single feature of the model. In our experiments,
we noticed that the parameters related to the production function, α, f , the corporate
tax on positive earnings, τ+

c , are the ones that have the largest impact on the average
yield spread and the average default rate. To a lesser extent, the average yield spread
and the average default rate depend also on the parameters related to the exogenous
state variable, ρ and σ, on the tax rate on corporate bonds, τb, on the liquidation price, `,
and on the salvage value, s. Finally, the other parameters, like the tax rate on negative
earning, τ−c , the equity flotation costs, λ0 and λ1, the debt adjustment costs, q0 and q1,
and the bankruptcy cost, c, have an even smaller impact on the distributions, and are
used mostly to improve the fitting of simulated credit spreads.
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III. Results

A. Financial flexibility and investment flexibility

In this section, we analyze how the price of debt depends on dynamic investment and
capital structure choices. We compare the spread between the yield on corporate debt
and the risk-free rate, Y S = rb/D−r, whereD is the ex–coupon value of debt in equation
(12), for the base case model with dynamic investment and dynamic financing decisions
(DF-DI), to the yield spread for three restrictions of the same model: DF-SI (dynamic
financing and static investment), SF-DI (static financing and dynamic investment), and
SF-SI (static financing and static investment), using the values of model parameters
from Table I.

The upper panel of Figure 1 plots the yield spread against the productivity of the
firm’s capital stock, x at a debt level (in nominal terms) b = 2 and at a capital stock
k = 7.68. Unless stated differently, we will always base our subsequent discussion on
this choice of k and b.18 The yield is obtained considering that equity holders exploit
flexibility (whether only financial (DF-SI), or only investment (SF-DI) or both (DF-DI))
in their own interest (second best).

In general, the negative slope of the yield spread as a function of the productivity
is as expected: highly profitable companies generate enough operating cash flows and
have no problems to meet current debt obligations. More importantly, we observe that
SF-DI and DF-DI have almost the same yield spread,19 and that the spreads of DF-SI
and SF-SI are very close to each other. In addition, the cases with dynamic investment
have the highest spreads in all states. Lastly, financial flexibility, even if decided in the
sole interest of shareholders, reduces credit risk.

18k = 7.68 and b = 2 are the modes of the simulated distribution of capital stock and nominal debt,
respectively. The qualitative results presented below do not depend of the specific choice of k and b.
In unreported analysis we found the same qualitative results for different levels of k and b. These are
available from the authors on request.

19The result that introducing financing flexibility slightly reduces the yield spread differs from that of
Dangl and Zechner (2004). They show that, comparing a (continuous time, infinite horizon) model with
dynamic capital structure choice to a model with static capital structure, the yield spread of the former
is (for many, but not all parameter choices) higher that the yield spread of the latter. The explanation
they offer is that, in a dynamic capital structure setting, the firm will increases the debt exposure in
good states (high cash flow from operations). We will later show this is not the case in our framework:
the firm is not willing to increase the debt only to to exploit the tax shield, when the capital stock is
held constant (static investment). The debt level is only increased, in case of dynamic investment, to
fund investments.
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The bottom panel of Figure 1 depicts the yield spread in case the current debt and
the capital stock cannot be changed over time. Specifically, this is derived from the
value of the firm’s debt by considering only the default option,

D0(k, b, x) = lim
T→∞

(
T∑
t=1

βt(1− τb)rb(1− CDPk,b,x(t)) + βT b(1− CDPk,b,x(T ))

+
T∑
t=1

βtEk,b,x [R(k, b, x′)δ(k, b, x′)]

)
. (14)

In the above equation, CDPk,b,x(t) is the cumulative default probability up to year t at
the current state;20 R(k, b, x) = (1−c) min{E(k(1−d), 0, x), b} is the recovery in case of
default, and δ(k, b, x) is the default indicator function. Equation (14) reads as follows:
the first line is the present value of coupon payments in case the firm does not default;
the second line is the present value of the expected recovery in case of default. Notice
that the expectation of recovery from default at year t requires the computation of the
marginal default probability at t assuming the firm is not in default at t− 1. The yield
spread in the bottom panel of Figure 1 is then computed as Y S0 = rb/D0 − r.

First, we notice that for the DF-SI case, the possibility to adapt capital structure
over time reduces credit risk. Second and more important, Y S0 is zero for the two cases
of dynamic investment (SF-DI and DF-DI); i.e. the default option alone contributes
nothing to credit risk in these cases and the yield spread is entirely due to current and
future investment and financing decisions together with the fact that these decisions are
made in the sole interest of equity holders. In the above comparison, it is impossible
to disentangle theses two effects and to provide an assessment of the importance of this
opportunistic behavior on credit risk.

In Figure 2 we plot the spread of the same four versions of the model when the
decisions are made in the best interest of all stakeholders (first best), as opposed to
just equity holders (second best). First, we notice that with dynamic investment and
financing decisions, debt is almost riskless in the first best case, whereas in the second
best case (Figure 1) we had the highest yield spread. Keeping investment constant, while
dynamic financing is first best, slightly increases credit risk in bad states, although the
yield spread is lower than the one under the corresponding second best case. This reveals
a somehow surprising result that there can be an agency issue related to capital structure
decisions. We will explore this in a later section. On the other hand, holding capital
structure constant, while dynamic investment is first best, increases the yield spread

20The marginal default probability at t, is defined as DP (t) = Πt−1
nd Πdδ, where Π is the Markov

transition probability matrix (see Appendix A), Πnd is the transition matrix restricted to non-default
states, according to the indicator function δ, and Πd is the matrix restricted to transitions from non-
default states to default states, based on δ. The cumulative default probability is defined as CDP (T ) =∑T

t=1DP (t). The expected recovery from default is given by Πt−1
nd ΠdR.
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by a bigger extent. It is noteworthy that, although investment decisions are made to
maximize the firm value and so the spread is smaller than in the corresponding second
best case, the credit risk is much bigger than in the static case (SF-SI).

The big differences between first best (Figure 2) and second best (Figure 1) suggest
that not only investment and financing decisions are interrelated, but also they jointly
encourage an opportunistic behavior from shareholders. Therefore, it is important to
analyze the mechanism in which these agency issues operate and interact as far as credit
risk is concerned. This is the goal of the next subsection.

B. Agency costs

Figure 3 shows the yield spread vs. the state variable, x, when both financing and
investment decisions are endogenous (DF-DI), using the values of model parameters
from Table I. Both decisions can be made in the best interest of shareholders (second
best policy, hereafter (S)) or of all stakeholders (first best policy, hereafter (F)). These
cases are the same as reported in Figures 1 (upper panel) and 2, respectively.

As previously remarked, we find that second best investment and financing decisions
together reduce significantly the price of bonds. It is important to stress that these
two distortions from a first best policy are inherently interconnected. By construction,
financing decisions affect and are affected by investment decisions. Nevertheless, for
clarity sake, we analyze each type of deviation from a first best policy in isolation.

To correctly measure the contribution to credit risk of either a second best investment
policy or of a second best financing policy, we compute the spread for two intermediate
cases, denoted DF-DI(F,S) and DF-DI(S,F) respectively. In the first one, DF-DI(F,S),
at any date, after observing x, a new level of debt is chosen by picking b∗ from the
solution of the firm value maximization problem in (13). Conditional on this choice,
equity holders select the level of capital stock in their best interest. Thus, by comparing
the yield spread for this intermediate case to the one for DF-DI(F), we isolate the impact
of a second best investment policy. In the second intermediate case, DF-DI(S,F), the
decision process is reversed: equity holders choose their best financing policy conditional
on a first best investment policy (i.e., conditional on a k∗ coming from the solution of
problem (13)). This case permits to isolate the effect of a second best debt policy on
the yield spread. Both these intermediate cases are included in Figure 3. We notice that
following a second best financing, while investment is first best, increases the spread but
to a lower extent than following also a second best investment. On the other hand, when
the debt policy is first best and investment is second best, default risk is increased to a
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higher level than in the DF-DI(S) case.21 To explain this behavior we have to analyze
also the investment and the financing policies.

Table II shows the average investment policy in case of dynamic financing for different
values of the state variable. Both financing and investment decisions can be first best or,
alternatively, second best. For each level of the state variable, x, the average investment
policy is computed as the average of the ratio k∗/(k(1− d)) in non-default states, where
the average is taken with respect to current k, and k∗ is the optimal investment. Notice
that k∗, under second best, is the optimal investment policy from equation (6), whereas,
under first best, it is derived from equation (13). The current nominal debt is b = 2. An
average ratio above/below one implies the firm is investing/disinvesting. The comparison
of DF-DI(F,S) to DF-DI(F), which are the cases of interest here, shows the distortion
on the investment policy.

In good states (x higher than 1), equity holders acting in their best interest under-
invest relative to first-best.22 A lower investment with exactly the same debt policy (by
construction) increases the payout to equity holders. In bad states (x < 1), we observe
a great deal of disinvestment; i.e., equity holders have strong incentive to sell part of the
asset. This behavior increases the severity of default (i.e., it increases the probability of
default and reduces the recovery value). In general, shareholders disinvest in bad states
essentially because they try to avoid financial distress costs.23 Actually, while equity
holders do not suffer from default costs, in a liquidity crisis they bear the cost of selling
assets at a discount with a lower proceed than the liquidation price in case of voluntary
disinvestment, because s < `. This cost can be partly avoided by generating enough
cash to pay the coupon through disinvestment. Hence, in bad states, we see that in
the F,S case, they disinvest more readily than in the F case. Finally, for intermediate
states (x equal to 1) equity holders invest more in their own interest than they would
do to maximize total firm value. If things go badly, they are better prepared to service
a first-best debt policy payments, because they have more capital to sell and to collect
cash from. If things go well, they will use the debt funds to generate higher payouts;
that is, they will choose a lower level of investment, as described above.

21This happens for the DF-DI(F,S) case at states around one. This is because, when firms are forced
to adopt a first best debt policy, they assume more debt and since second best investment is lower, they
default at higher states, when x is just below one.

22 The underinvestment distortion gives rise to the classical overhang problem, in the sense of Myers
(1977), if the debt level is not changed. On the contrary, if the debt level is changed, current debt
holders are reimbursed at par, and play no role in the distortion. New bond holders are the ones who
anticipate the failure to invest at the first-best, and incorporate it into a lower price of newly issued
debt. This is precisely the situation we are describing here. Hennessy and Whited (2007) have already
documented underinvestment with a source different from debt overhang.

23Later in this section we provide also other motivations for disinvestment in bad states.
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From the above analysis, we can state that there is an agency issue related to invest-
ment policy.24 In our dynamic setting, debt holders rationally incorporate this incentive
to implement an investment policy of self-interest into a lower price of debt. This is so
independently of the current level of debt, b, and of the optimal face value of debt, b∗. Ac-
tually, if b = 0 and b∗ > 0, then the new debt is issued at D(k∗, b∗, x) and the shareholders
bear the cost of the sub-optimal investment policy because they collect less cash from
debt issuance. If instead b > 0, then equity holders can decide either to change or to keep
the current debt level. In the first case (b∗ > 0 and b∗ 6= b), the new bondholders ratio-
nally anticipate the equity-maximizing investment policy, and they transfer this agency
cost to equity holders through the price D(k∗, b∗, x), and consequently, through the yield
spread. Hence, shareholders immediately bear the consequences of their (second best)
investment decision through the net cash flow from debt change, D(k∗, b∗, x)−b. Also in
the second case (b∗ = b), the equity maximizing investment policy is incorporated into
the debt price although, differently from the previous case, bond holders cannot readily
transfer this cost to equity holders because the debt contract is long-term. Yet, they an-
ticipated this distortion from the first best decision when, in a previous year, the equity
holders decided to issue debt for a face value b. So the price of debt reflects not only
current, but also future sub-optimal investment decisions. Precisely, in our discussion
of the investment policy distortion (case DF-DI(F,S) of Table III), we see that in good
states there is also a change in the level of debt. Current debt holders do not suffer the
consequence of sub-optimality, for they receive more than the fair value of their claim,
b ≥ D(k∗, b, x). On the contrary, shareholders are the ones who immediately bear the
consequences of the distortion.

As shown by Gamba and Triantis (2008b), agency issues related to financing decisions
can be as important as the ones for the investment decisions. This agency cost is the
debt value shortfall deriving from an equity maximizing, as opposed to the firm value
maximizing, financing decision. To isolate the effect of this type of agency issues we
compare the first best case F to S,F; i.e., a case with second best financing conditional
on first best investment.

Table III provides the average debt policy in several cases. For each level of the
state variable, x, the average debt policy is computed as the average of the ratio b∗/b in
non-default states, where the average is taken with respect to current b, and b∗ is the
optimal face value of debt from equation (8) under second best and from (13) under first
best. The book value of assets is k = 7.68. An average ratio above/below one implies
the issuance/retirement of debt. The comparison of DF-DI(S,F) to DF-DI(F) shows the
distortion on the debt policy: in good states, with the exception of very high values for x,
equity holders acting in their best interest issue more debt than under the first best case.
With this policy, the current bondholders receive the par value, and since b ≥ D(k∗, b, x),

24This analysis is in line with the approach proposed by other authors like Leland (1998), Childs,
Mauer, and Ott (2005), Moyen (2007), where the capital structure decision is made to maximize the
total firm value.

18



they do not suffer from a second best capital structure decision. On the other hand,
in bad states shareholders no longer pay down the debt, as it would be optimal from a
firm value maximizing perspective. In this case, the current bondholders bear the cost
of sub-optimality of capital structure decision (i.e., no change of the debt level). While
they cannot readily transfer this cost to equity holders, they rationally anticipate this
in previous years when the debt was issued. So the price of debt is lowered (or the yield
is increased) by future second best capital structure decisions. Titman and Tsyplakov
(2007) also reported that value-maximizing firms have a more symmetric incentive to
increase and decrease debt. On the contrary, they also find that equity-maximizing firms
are not inclined to reduce their debt.

This distortion is absent when debt maturity is prespecified, either optimally, as in
Childs, Mauer, and Ott (2005),25 or not, as in Hennessy and Whited (2007) and Moyen
(2007). In all these cases, the debt decision is always made after the debt expiry, when
the firm is unlevered, and so the price of newly issued debt fully reflects all the agency
costs.

Lastly, for the current choice of parameters, we do not see any optimal debt reduction
from the perspective of equity holder. This seems to be in line with the argument
presented in Dangl and Zechner (2004) that shareholders have a put option to default
and they never reduce the debt level because this would decrease the value of the option.
In our model, this argument is no longer valid because we have financial distress costs,
which are borne by equity holders. Actually, for a different choice of parameters, such
that the cost of financial distress is particularly high relative to debt transaction costs,
we have that if debt level is low, for some particular unfavorable states, it is in the best
interest of equity holders to reduce the debt exposure to avoid potential distress costs.

We can now analyze the joint effects on credit risk of distortions on first best invest-
ment and financing decisions. Comparing the average investment policy of DF-DI(F)
to that of DF-DI(S) in Table II, we observe underinvestment in good states, which is
(by construction) rationally incorporated by bondholders into a lower debt price. The
key to understand this distortion of the investment policy lies precisely in the second
best financing policy. When the debt level is decided under the second best case, equity
holders choose a much lower one because debt financing is relatively more expensive
than under the first best case. Less debt funds are raised, and as a consequence, should
equity holders keep investment at the first best level, they would necessarily finance it
using external equity, which is not optimal from their viewpoint. As a result, they react
by reducing investment.26 In the end, in DF-DI(S) we see a lower investment ratio and
a lower level of debt, compare to first best case, so that shareholders have on average

25In Childs, Mauer, and Ott (2005) the debt maturity is chosen at the initial date to maximize the
total firm value.

26Titman and Tsyplakov (2007) also report an incentive to underinvest when investment and financing
decisions are made in the shareholders’ interest.
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about the same level of cash flow as the one they have under the first best policy. Note
also that, in good states, the investment policy for DF-DI(S) is similar to that of a
firm constrained to stay unlevered; i.e. the additional funds raised trough debt are not
invested, and are used to increase the payout to shareholders.

From Table II, in bad states for the DF-DI(S) case, we observe a stronger incentive to
sell part of the asset than in the DF-DI(F) case, tough to a lower extent compared to DF-
DI(F,S). Disinvestment goes together with a constant debt policy; i.e., instead of using
the cash to pay down the debt, equity holders are using the proceeds to complement the
low cash flow from operations in an attempt to keep their cash flows at a reasonably
constant level. It is this joint opportunistic effect that creates credit risk and increases
the yield for DF-DI(S), as we see in Figure 3. A second motivation for the liquidation
of assets in bad states comes from the fact that the volatility of the cash flow rate is
increased when k is low, due to the operating leverage induced by fixed costs. To clarify
this point, in Table IV we compute the cash flow rate volatility, σCF , for three different
capital levels, k = 4, 7, 10, assuming that the current productivity is x = 1 and the
current face value of debt is b = 2. The cash flow for a given k and x, is

CF (k, x) = π(k, x)− g(π(k, x)− dk − rb)− rb,

where π(k, x) is the EBITDA from equation (2) and g is the corporate tax function
from (3). The growth rate of cash flow is defined as CF (k, x′)/CF (k, 1) − 1, and µCF
and σCF are its expected value and standard deviation, respectively. From the last row
of the table, we can see that the lower k the higher σCF . Hence, operating leverage
permits equity holders to better exploit the convexity of their value function.27 This is
why, in Table II, we have that also equity holders managing a firm constrained to stay
unlevered, disinvest, though only in very bad states.

Notice that the distortion of keeping the level of debt constant only shows in states
where the firm disinvests. Differently from Titman and Tsyplakov (2007) (but simi-
larly to Moyen (2007)), in our model shareholders can partially reverse the investment
decisions made in previous steps. This is an important feature of the model that is
worth exploring further. Figure 4 and Table II show, respectively, the yield spread and
the investment policy for the two extreme cases of no-disinvestment and fully reversible
investment. By no-disinvestment we precisely mean that ξ = k′ − (1− d)k ≥ 0 in cases
of no liquidity crisis, so that voluntary sales of capital stock are ruled out.28 The fully
reversible case is when disinvestment does not entail costs, or ` = 1.29 From Table II,

27From unreported results, we obtain that the higher the current face value of debt, the bigger is the
incentive to disinvest.

28Yet, fire sales can occur in case of financial distress. For this reason, the average investment ratio
lies slightly below one in bad states.

29This makes the capital stock equivalent to a highly profitable form of cash balance. Yet, in our
model (see equation (9)) shareholders cannot sell assets to the point of causing the default, because in
that case their policy is undone and the firm asset is restored.
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we learn that the average investment ratio is the same in good states for the two cases
at hand and for the base case DF-DI(S). However, this is not true in bad states. As
expected, equity holders are more actively disinvesting if the asset is reversible. The
consequence is a reduction of the collateral (i.e., the value of unlevered equity) in case of
default and a slightly higher yield spread than in the base case. The opposite is true in
the case of no disinvestment. The collateral is rarely reduced (only in cases of fire sales,
when the reduction is forced), and debt holders ask for a lower yield on their claim.

Financial flexibility does not affect much credit risk when decisions are second best.
This can be seen from Table II: joint investment and financing policies in the sole interest
of equity holders, DF-DI(S), generate an investment policy identical in all states to that
of a static capital structure, but with dynamic investment, SF-DI(S). This is due to the
fact that, in good states, the distortion on the financing policy under second best, which
consists of issuing less debt, pushes the investment ratio down to, on average, the same
level as the one in the SF-DI(S). For low values, there is disinvestment independently
from a static or dynamic capital structure. The same investment together with the same
financing in bad states produce a yield spread in the fully dynamic case almost identical
to the one in the SF-DI(S) case (see Figure 1).

When investment is static and debt is the only lever, DF-SI,30 equity holders still
make decisions of self-interest, but the effect on the yield spread is not as important
as in the fully dynamic case. Figure 5 plots the yield spread for the variation on the
base model with only dynamic capital structure. As shown, the spread derived from the
second best financing policy is greater than the one from the first best policy. From the
corresponding average debt policy in Table III, we can see that in good and intermediate
states the firm tends to reduce debt when decisions are firm value maximizing. This
reduction makes debt almost riskless in those states. This is not the case if equity
holders act in their own interest, as in DF-SI(S). No matter how good the state is, debt
is almost always kept constant, even if the net tax shield is positive. The consequence
is that, although reduced in good states, the yield spread never reaches zero.

From Table III, we have that, when the capital structure is the only lever (DF-SI),
in bad states the firm issues debt, no matter if following a first or second best goal.
In the base model (DF-DI), in bad states voluntary disinvestment is preferred to fire
sales since the cost is lower. Likewise, disinvestment is preferred to the issuance of new
securities, because of direct and indirect (e.g., the refunding cost) transaction costs. In
the latter case, debt issuance is preferred to equity issuance. This is so because, although
shareholders would pay the refunding cost coming from a lower market value of debt in
case new debt is issued, they would never inflate new equity cash if the state is poor. In
the case at hand (DF-SI), as disinvestment and fire sales are ruled out, there are only two
channels to raise cash to service the coupon: either debt or equity issuance. If the current
debt level is low, the refunding cost is either small or positive when increasing the debt

30This case is similar, but not identical, to the one presented by Dangl and Zechner (2004).
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(i.e., the cash inflow from new debt issuance, D(k, b′, x), is higher than current debt, b),
and so there is a net inflow from the debt policy. Moreover, if new debt is issued, current
debt holders receive more than the fair value of their claim (b ≥ D(k, b, x)). Therefore,
issuing debt is the best policy for all stakeholders. This is the reason why we observe a
debt policy ratio higher than one in bad states under first best. In addition, comparing
the debt policy of DF-SI(F) and DF-SI(S), we see a stronger incentive to issue debt
in the latter case. As it would happen with disinvestment in the fully dynamic case,
shareholders issue more debt with the aim of using part of the proceeds to complement
their low cash flow generated by the operations.

C. Corporate and personal taxes

In the previous analysis, we have noticed that many of the observed effects on yield
spreads are motivated by how a specific feature affects the debt policy. Since Modigliani
and Miller (1958) and (1963), the net tax shield has been considered a key determinant
of capital structure decisions and hence of credit risk. We investigate here the influence
of taxes (and specifically of τ+

c and τe) on credit risk, in a framework where the capital
structure choice is motivated also by investment/disinvestment and is affected by agency
issues.31

To this aim we compare three cases. In the first, we use the baseline parameters
(τ+
c = 40% and τe = 15%). In the second case, we reduce τ+

c to 35% while keeping τe
at the base value. On the contrary, in the third case, we reduce τe to 10.23%, with τ+

c

at the base value. The net tax advantage to debt, when earnings are positive, in our
setting is computed as

τ+
c −

(
1− 1− τb

1− τe

)
,

and it is approximately 34.12% in the base case, and 29.12% in the other two cases,
where either the corporate tax rate or the personal tax rate on equity is reduced.

The effect of a change on taxes is almost the same for all three specifications of the
model – fully dynamic, only dynamic financing and static: a reduction on corporate
taxes always has a larger impact on the yield spread than an equivalent reduction on
personal taxes on equity flows. Figure 6 plots the yield spread against the state variable
for the SF-SI, and the DF-DI model, and for the three cases at hand. We see that a lower
corporate tax rate significantly reduces the spread, whereas an almost similar reduction
of the personal tax rate does not change the spread.

31We exclude τb from our analysis because our valuation setting is neutral (i.e., the price of debt,
and also the yield spread, does not change) with respect to personal taxes on bond flows (see Gamba,
Sick, and Aranda León (2008)), except in case of default, because we do not model a tax credit for
bondholders on bankruptcy losses.
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This can be motivated as follows. Corporate taxes are levied on earnings before taxes
(EBT). As a consequence, a reduction on corporate taxes increases the net operating
cash flow. On the one hand, this higher cash flow can be used to better service the
debt, i.e, to avoid financial distress; on the other hand, the residual after the coupon
payment augments the cash flow to equity holders. Both destinations reduce the default
probability, and consequently, the yield spread.32 On the contrary, if we reduce personal
taxes on equity flows by the same percentage, first of all it does not increase the net
operating cash flow. Second, the effect is smaller, because the tax rate is applied to equity
cash flow, which is always lower than the EBT due to the presence of investment.33 The
conclusion is that personal taxes have a lower impact on the value of equity, the default
probability, and consequently, the yield spread. Alternatively, to see a reduction on the
yield spread of a similar magnitude to the corporate tax case, we would need a bigger
reduction on τe.

D. Transaction costs

In this section, we want to see if the effects of a debt policy motivated also by invest-
ment/disinvestment decisions are due also to debt transaction costs.

Figure 7 plots the yield spread vs the state variable, for the DF-SI and the DF-
DI versions of the model with and without direct transaction cost of debt (q0 = q1 =
0), when financing and investment decisions are made to maximize equity value. We
compare these cases to the corresponding baseline cases. Table III compares the average
debt policy of DF-SI and DF-DI with and without debt transaction costs.

As for the DF-SI case, zero transaction costs on debt reduces the yield spread.34

When compared to the debt policy of the base case case with transaction costs, DF-
SI(S), we can see that more debt is issued in bad states, practically no debt is retired at
the intermediate states, and more debt is issued in good states, because debt issuances
and retirements are less expensive. In addition, in very good states, equity holders are
free to issue more debt to exploit the net tax shield, as, in case there is a subsequent
downturn of x, they can conveniently reduce the debt exposure, fully exploiting financing
flexibility. In the end, this policy reduces the risk and, consequently, the yield spread.
Actually, when there are no transaction costs, debt can become riskless in good states,

32In unreported analysis, we observe that a change of τ+
c (e.g., 1-2%) does not influence the yield

spread until it increases the cash flow to a given threshold such that the default probability is reduced.
In addition, we also obtain that a higher corporate tax rate on negative earnings, τ−c , (i.e., a significant
rebate in case of losses) also, and for the same reason, reduces the yield spread.

33This is maintenance investment in the SF-SI and DF-Si cases. For the DF-DI, disinvestment only
takes place to avoid financial distress.

34In unreported analysis, we noticed that lower flotation cost on equity also reduces the yield spread
in the case of DF-SI. Since the results for zero equity transaction costs are very similar to the ones we
are presenting here, we report only the analysis of the effect of debt transaction costs.
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due to the positive role of a dynamic capital structure policy, as in the first best case
(see Figure 5).

As for the DF-DI model, transaction costs have almost no effect on the yield spread.
Compared to the previous case, the effect on the debt policy is less significant (and in
unreported results we have that there is almost no affect on the investment policy). The
fact that transaction costs only impacts the DF-SI case reinforces the idea that model
parameters directly affecting the debt policy (for instance, transaction costs discussed
here or corporate taxes discussed in the previous section) have only a small effect on the
yield on corporate debt.35

IV. Concluding remarks

We have developed a discrete-time and infinite-horizon structural model for credit risk
of corporate debt featuring endogenous investment, endogenous capital structure, and
default. Investment and leverage policies are simultaneously decided to maximize equity
value. Corporate investments are partially irreversible and are financed with internal
and external equity and with debt. The debt contract is a defaultable consol bond,
with a call provision. The firm faces both constant and proportional debt adjustment
costs and both constant and proportional equity flotation costs. The financial distress
cost is represented by a fire sale discount. In the case of bankruptcy, bondholders pay
bankruptcy costs and receive the unlevered ongoing concern. The corporation has a
convex tax function, thus including a limited loss offset provision, and investors face
personal taxes, with higher rates for bond flows than for equity flows. We assume that
equity holders and bondholders have the same information.

Our goal was to analyze how the price of debt, or alternatively the yield spread,
depends on dynamic investment and capital structure choices, in a setting with market
frictions. To this end, we calibrated the model using firm accounting information from
Compustat North America Industrial Annual and market data from the CRSP, from
Moody’s Investor Service for the cumulative default rates, and Reuters for the credit
spread paid by industrial bonds. We calibrated the model by matching default risk
statistics (leverage, yield spread, default rates) on a per credit class basis.

Our results show that, when policies are firm value maximizing, dynamic investment
and dynamic capital structure decisions reduce the yield on corporate debt with respect
to the case where both capital structure and investment are static. However, exactly
the opposite is true if dynamic decisions are made in the best interest of equity holders:
debt becomes riskier and yield spreads are higher than in the static case. The spread

35In unreported analysis we computed Y S0 for both DF-SI and DF-DI. We observe that zero trans-
action costs have a positive effect (i.e., a reduction in the yield spread) only in the first case.
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when investment and financing decisions are second best is similar to the one of a firm
with constant capital structure such that the investment/disinvestment policy is decided
in the sole interest of shareholders. We also find that the possibility to adapt the capital
structure over time does not modify the investment policy, as long as shareholders’ make
self-interested decisions.

We observe that the effect of the tax shield on the yield spread is of second order in the
presence of dynamic investment. That is, the main driver of capital structure decisions is
not the tax shield as in models based on dynamic capital structure only. Rather, the main
driver is the interaction of capital structure decisions with investment/disinvestment
decisions. The same can be said about debt transaction costs. In the end, apart from
the fluctuations of economic conditions, it is the financing policies influenced by - and
influencing - the investment policies that really affects credit risk of corporate debt.
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A. Numerical solution of the fixed point problem

In this section we describe the numerical procedure we use to solve the dynamic programs
introduced in Section I. For the sake of brevity, here we will refer only to the more general
model with dynamic investment and dynamic capital structure, assuming equity value
maximization.

The general valuation model for equity and debt presented in this paper belongs
to the class of continuous decision infinite horizon Markov Decision Processes. The
solution method is based on successive approximations of the fixed point solution of the
valuation operator using a dynamic programming approach. For numerical purposes we
apply this method to an approximate discrete state-space and discrete decision valuation
operator.36

Gauss-Hermite quadrature method (see Tauchen (1986)) is used to approximate the
dynamics of the AR(1) process of z = log(x) with a finite state Markov chain. We take S
discrete, equally spaced, abscissae in an interval of semi-width Ip = 3.5σ/

√
1− ρ2, and

centered on the long term mean of process, z∗. The set of the discretized state variable
is Z̃ = {z̃(s) | s = 1, . . . , S}. Let w be the distance between two successive elements

of Z̃ and η = z∗(1 − ρ). The transition probability matrix from z̃(i) to z̃(j), for all
i = 1, . . . , S is

Π(i, 1) = N
(
z̃(1)− η − ρz̃(i) + w/2

σ

)
;

Π(i, j) = N
(
z̃(j)− η − ρz̃(i) + w/2

σ

)
−N

(
z̃(j)− η − ρz̃(i)− w/2

σ

)
,

for i = 2, . . . , S − 1, and

Π(i, S) = 1−N
(
z̃(S)− η − ρz̃(j)− w/2

σ

)
.

Then we define the actual state space X̃ =
{
eez(s) | s = 1, . . . , S

}
.

We set the upper bound for capital stock, ku, and for the face value of the debt, bu
respectively, in a way that they are never binding for the optimization problem. We

discretize [0, ku], to obtain K̃ =
{
k̃j = ku(1− d)j | j = 1, . . . , Nk

}
. The interval [0, bu]

is discretized into Nb equally spaced values, gathered into the set B̃. We denote (k, b, x)
as the discretized control variable.

We solve the problem

E(k, b, x) = max

{
max
(k′,b′)

{e(k, b, k′, b′, x) + βEk,b,x [E(k′, b′, x′)]} , 0
}
,

36See Rust (1996) or Burnside (1999) for a survey on numerical methods for continuous decision
infinite horizon Markov Decision Processes.
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where function e(k, b, k′, b′, x), defined in equation (7), depends also on D(k, b, x) =
βEk,b,x [cfd(k′, b′, x′, ϕ)] and

cfd(k, b, x, ϕ) =


rb(1− τb) + βEk,b,x [D(k∗, b, x′)] if b = b∗ and E(k, b, x) > 0

rb(1− τb) + b if b 6= b∗ and E(k, b, x) > 0

(1− c) min {max {E(k(1− d), 0, x), 0} , b} if E(k, b, x) = 0

in all points of the discrete state space. More succinctly, the fixed point problem is

E = Γ(E,D)

D = Ψ(E,D)
(15)

where Γ and Ψ denote the approximate Bellman operators.

The fixed point solution of the system of non-linear equations (15) is found by suc-
cessive approximations. This means that, given the guesses E0 and D0, we iterate the
following

Ej = Γ(Ej−1, Dj−1)

Dj = Ψ(Ej−1, Dj−1)

until convergence. For the optimal set of parameters in Table I, we use ku = 13 and
bu = 6. We solve the model using S = 27, Nk = 27 Nb = 37. Tolerance is set at 10−14.

Given the optimal solution, we can determine the optimal policy ϕ(k, b, x) by looking
for the arg-max of equity at the discrete states (k, b, x).

B. Calibration

In this section we first describe the dataset and next explain in more detail the calibration
method. Specifically, we elaborate on the selection of the criterion to assort companies
into credit classes, the simulation procedure, the classification of simulated firms into
credit classes, and the computation of the estimated metrics.

Empirical data on US firm are obtained from Compustat. We exclude financial,
insurance and real estate firms (SIC code 6000-6999) and also regulated utility firms
(SIC code 4900-4999). Second, we drop any firm-year observation with (i) non listed
share price in the Center for Research on Security Prices (CRSP)/Compustat Data
Merged files, (ii) non available Standard & Poor’s Long Term Issuer Credit Rating or
(iii) any missing data for the variables considered. We end up with an unbalanced panel
of firms from years 1997 to 2005 with between 887 and 1110 companies per year (in total
the data set has 9048 observations).
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Data variables used in the computation of company metrics are: book value of com-
mon equity (Compustat item 60),37 book value of long-term debt (item 9), book value
of short-term debt (item 44), earnings before interest and taxes or EBIT (item 178), in-
terest expenses (item 15), fiscal year end share price (CRSP item PRCC12) and, finally,
number of outstanding shares (CRSP item CSHOQ12). The firms’ metrics built upon
these variables and their definitions are: (1) quasi-market leverage, defined as total debt
(long-term plus short-term) over total debt plus the product of market price of share and
number of outstanding shares; (2) total debt over EBIT; (3) interest coverage, defined
as EBIT over interest expenses; and (4) return on assets (ROA) computed as EBIT over
total debt plus the product of market price of share and number of outstanding shares.38

Next, based on the S&P’s Long Term Issuer Credit Rating, we sort firms in seven
(whole letter) risk classes, ranging from AAA/Aaa (companies with extremely strong
capacity to meet financial obligations, code 2) to C (class made of companies with rating
CCC/Caa or worse; i.e., code 17 and higher).39 Within each risk class, from the panel
data we compute the mean of each metric relevant for our analysis.

The average annual default rates are obtained as 1−exp (1/10 · log(1−DR10)), where
DR10 is the Moody’s 10 year default rate (Average issuer-weighted corporate percentage
default rates by whole letter rating, 1983-2005. Moody’s Investors Service (2006)). In
particular, the 10 year default rate we used are (in %): 0.208 for AAA, 0.415 for AA,
1.248 for A, 4.721 for BBB, 21.038 for BB, 46.931 for B, and 78.673 for C. The average
credit spreads paid by industrial bonds in each specific rating class are obtained from
Reuters and are referred to year 2004. All the above results are summarized in Table V.

As for the selection of the best credit class assorting criterion, we run several ordered
probit models on our Compustat sample. In all of them, the dependent variable is the
S&P’s seven (whole letter) risk classes discussed previously. It takes values from 1 (class
AAA) to 7 (class C). As potential independent variables (i.e., as sorting criteria), we
have selected the following metrics: book-leverage (debt over debt plus book value of
equity), quasi-market-leverage (debt over debt plus the product of market share price
and number of outstanding shares), debt over EBITDA, debt over EBIT, EBITDA over
interest expenses, EBIT over interest expenses, and finally ROA (EBIT over total debt
plus the book value of equity).

37Alternatively, it is total assets (item 6) less total liabilities (item 181) less preferred stocks (item
10).

38Total debt over EBIT, the interest rate coverage, and ROA are used in the classification procedure
described below.

39Originally, our data time period was 1995-2005. As a stability check, we split the sample into
two subsamples (1995-1999, and 2000- 2005) and computed the median for each subsample. We also
carried out the analysis on a yearly basis. On this last analysis, we noticed that for years 1995 and 1996
companies in class C were very few, and more importantly, a great number of them had a zero figure
for long-term debt in the data base. To avoid distortions, we decided not to include these two years in
the sample.

28



In unreported analysis, we estimated the model using each of the potential criteria
as the sole independent variable. We observed that the independent variable is always
statistically significant except for EBITDA and EBIT over interest expenses. However,
when book leverage together with quasi-market-leverage is considered, the first variable
is no longer significant. Quasi-market-leverage then carries the same information on the
credit worthiness of a firm as book leverage. As a result, we dropped book leverage from
the final model specification. Similarly, when both debt over EBITDA (or, alternatively,
debt over EBIT) and quasi-market-leverage are introduced, the first variable becomes
not significant. Again, the same conclusion follows.

Our final specification (Table VI) only includes quasi-market leverage and ROA as
independent variables. The large t-ratio on quasi-market leverage lead us to conclude
that this metric constitutes the primary credit risk sorting criterion. As such, we clas-
sify a firm by minimizing the distance between the simulated quasi-market leverage,
b/(E(k, b, x) + b), and the same measure, specific for each rating class, from Table V.

As for the simulation procedure, we simulate 20, 000 paths for the state variable x
using the stochastic model in equation (1) for 150 steps (years). Next, we apply the
optimal policy ϕ from equation (9). At every step, along each path, the realization of
the exogenous state variable, combined with the current debt level and stock of capital
provides the endogenous values of equity, debt and yield spread as determined by the
optimization problem. To get rid of the influence of the initial condition, we drop the
first 50 steps.

In case of default, the new equity holders carry on operations for the current de-
preciated capital k(1− d), pay bankruptcy costs and, in case, optimally issue new debt
and invest in new capital stock. For a particularly low level of capital stock, the firm
would remain unlevered and would never find optimal to restart operations. To keep the
size of the sample of active firms constant, we assume that a lower bound for capital,
denoted kd, is set in our simulation so that the condition Pr{π(kd, x) > dkd} > 0 holds
true. This means that there is a positive probability that the EBIT will be positive in
the next step and the firm is restarted.40

At every step from 50 to 149 we classify firms into the seven credit classes (from
AAA to C) by minimizing the distance between the simulated quasi-market leverage
of the firm and the mean for the empirical quasi-market leverage for the specific class.
Firms in default and firms which are optimally unlevered are not considered.

Once companies are classified into credit classes, we compute the other two target
measures of credit risk in the following manner. First, at every t for the ω-th firm, we
compute the yield spread as rbt/D(ω, t) − r, where D(ω, t) is the ex coupon price and
bt is the current par value of debt. Next, we take the average of the simulated yield

40Alternatively, we can say that the state (k, b, x) with k = kd is not absorbing. In our simulations,
we set kd such that Pr{π(kd, x)dkd} = 0.5.
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spreads within each class, and compute the time average of this for years from year 50
to 149. Second, we compute the annual default rate for each class as the default relative
frequency on the number of non-default firms at the beginning of the year. Then, we
take the time average of the simulated frequencies for each class from year 50 to 149.

At this point we compare the simulated values of the selected metrics to the target
values. If the fitting is not good, we change the parameters to improve it. The procedure
is repeated until a satisfactory fitting is obtained. Table V shows the simulated values
of the metrics for the “best fit” parameters.
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ρ AR(1) persistence 0.80
σ annual volatility of the state variable 0.20
x̄ long term value of the state variable 1
r annual risk-free borrowing rate 5%
φ premium on cash flows risk 6%
τe personal tax rate on equity flows 15%
τb personal tax rate on coupon 20%
τ+
c corporate tax rate for positive earnings 40%
τ−c corporate tax rate for negative earnings 15%
α production return-to-scale parameter 0.476
d annual depreciation rate 10%
f fixed production cost 1.35
s fire-sale discount for asset sales 0.45
` liquidation price for disinvestment 0.90
c proportional bankruptcy costs 0.70
λ0 fixed flotation cost for equity 0.08
λ1 variable flotation cost for equity 0.09
q0 fixed issuance cost for debt 0.04
q1 variable issuance cost for debt 0.04

Table I: Model parameters



x 0.53 0.64 0.76 1.00 1.31 1.57 1.87
DF-DI(F) 0.92 1.11 1.15 1.29 1.63 1.77 1.88
DF-DI(F,S) 0.49 0.83 1.02 1.67 1.43 1.50 1.64
DF-DI(S,F) 0.88 1.09 1.15 1.29 1.63 1.77 1.88
DF-DI(S) 0.74 0.93 1.02 1.29 1.38 1.42 1.49
DF-DI(zero debt) 0.94 1.04 1.29 1.33 1.35 1.41 1.48
DF-DI(no disinv.) 0.95 0.99 1.02 1.25 1.38 1.42 1.49
DF-DI(reversible) 0.41 0.89 0.98 1.26 1.39 1.42 1.49
SF-DI(S) 0.74 0.93 1.02 1.29 1.38 1.42 1.49

Table II: Investment policy. The table provides the investment ratio k∗/(k(1−d)) at b = 2,
averaged with respect to k, vs the productivity parameter, x. k∗ is the optimal investment.
We consider the baseline model, DF-DI (dynamic financing and dynamic investment), for the
base case parameters and for the first best case (F), second best case (S), second best invest-
ment conditional on first best financing (F,S), second best financing conditional on first best
investment (S,F). Moreover, we consider the second best DF-DI for for zero debt transaction
costs (q0 = q1 = 0). We consider also the second best DF-DI either with fully reversible asset
` = 1, or with no disinvestment (k′ − (1− d)k ≥ 0). Lastly, we compute the investment policy
of a firm constrained to stay unlevered (zero debt or b = 0 = b′). The plots are obtained using
S = 27, Nb = 27 and Nk = 37 points for the approximate solution.



x 0.53 0.64 0.76 1.00 1.31 1.57 1.87
DS-DI(F) 0.90 0.90 0.91 1.00 1.29 1.91 2.64
DS-DI(F,S) 0.90 0.94 0.99 1.00 1.29 1.91 2.64
DS-DI(S,F) 1.00 1.00 1.00 1.00 1.40 2.13 2.63
DF-DI(S) 1.00 1.00 1.00 1.00 1.00 1.28 1.49
DF-DI(reversible) 1.00 1.00 1.00 1.00 1.00 1.28 1.33
DF-SI(F) 0.95 1.13 1.02 0.92 0.89 0.84 0.81
DS-SI(S) 1.04 1.23 1.10 1.00 0.98 1.00 1.00
DF-SI(no debt trans. cost) 1.36 1.25 1.09 0.91 0.90 1.25 1.69
DF-DI(no debt trans. cost) 1.00 1.00 0.91 1.00 1.05 1.05 1.89

Table III: Debt policy. The table provides the debt ratio b∗/b at k = 7.68, averaged with
respect to b, vs x. b∗ is the optimal debt level. We consider the baseline model, DF-DI
(dynamic financing and dynamic investment), and DF-SI model (dynamic financing and static
investment), for the base case parameters and for the first best case (F), second best case
(S), second best investment conditional on first best financing (F,S), second best financing
conditional on first best investment (S,F). Moreover, we consider both the second best DF-DI
and DF-SI cases for zero debt transaction costs (q0 = q1 = 0) and for fully reversible investment
(` = 1). The plots are obtained using S = 27, Nb = 27 and Nk = 37 points for the approximate
solution.



k 4 7 10
CF (k) 0.4507 0.9250 1.3254
µCF -0.0025 0.0205 0.0203
σCF 0.6005 0.3577 0.2912

Table IV: Volatility of the Cash Flow Rate. We compute the volatility of the cash flow
rate, σCF , for three different capital levels, k = 4, 7, 10, assuming that the productivity is at
its long-term average value, x = 1 and the current face value of debt is b = 2. The cash flow
for a given k and x, is CF (k, x) = π(k, x) − g(π(k, x) − dk − rb) − rb, where the EBITDA,
π(k, x), is defined in equation (2) and the corporate tax function, g, is from (3). The growth
rate of cash flow is defined as CF (k, x′)/CF (k, 1)−1. µCF is the expected value of the growth
rate and σCF is the standard deviation of the cash flow rate.
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Figure 1: Yield spread. The upper panel plots the spread between the yield on corporate
debt and the risk-free rate, rb/D(k, b, x) − r, with respect to the productivity parameter, x.
D(k, b, x) is the ex–coupon price of debt from equation (12). The bottom panel plots yield
spread assuming the current capital, k, and debt, b, cannot be changed. The debt price is D0

from equation (14). The yield spreads (in basis points/year) are determined for a current face
value of debt b = 2 and for a current capital stock k = 7.68. We consider the baseline model,
DF-DI (dynamic financing and dynamic investment), and three restrictions of the model: DF-
SI (dynamic financing and static investment), SF-DI (static financing and dynamic investment),
and SF-SI (static financing and static investment). All policies maximize shareholders’ value.
The plots are obtained using S = 27, Nb = 27 and Nk = 37 points for the approximate solution.
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Figure 2: First best. The graph plots the spread between the yield on corporate debt and
the risk-free rate, rb/D(k, b, x) − r, with respect to the productivity parameter, x. D(k, b, x)
is the ex–coupon price of debt from equation (12). The yield spread (in basis points/year) is
determined for a current face value of debt b = 2 and for a current capital stock k = 7.68. We
consider the baseline model, DF-DI (dynamic financing and dynamic investment), and three
restrictions of the model: DF-SI (dynamic financing and static investment), SF-DI (static
financing and dynamic investment), and SF-SI (static financing and static investment). All
these cases are considered under first best. The plots are obtained using S = 27, Nb = 27 and
Nk = 37 points for the approximate solution.
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Figure 3: First best vs second best policy. The graph plots the spread between the yield
on corporate debt and the risk-free rate, rb/D(k, b, x) − r, with respect to the productivity
parameter, x. D(k, b, x) is the ex–coupon price of debt from equation (12). The yield spread (in
basis points/year) is determined for a current face value of debt b = 2 and for a current capital
stock k = 7.68. We consider the baseline model, DF-DI (dynamic financing and dynamic
investment), with four different possible goals of firm’s policy: second best investment and
financing (S); first best investment and financing (F); second best investment conditional on
first best financing (F,S); second best financing conditional on first best investment (S,F). The
plots are obtained using S = 27, Nb = 27 and Nk = 37 points for the approximate solution.
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Figure 4: Asset flexibility. The figure plots the spread between the yield on corporate
debt and the risk-free rate, rb/D(k, b, x) − r, with respect to the productivity parameter,
x. D(k, b, x) is the ex coupon price of debt from equation (12). The yield spread (in basis
points/year) is determined for a current face value of debt b = 2 and for a current capital
stock k = 7.68. We consider the DF-DI model (dynamic financing and dynamic investment)
for the baseline parameters and for either no-disinvestment (k′ − (1 − d)k ≥ 0, when there is
no financial distress), or fully reversible asset (` = 1). All cases are under second best. The
plots are obtained using S = 27, Nb = 27 and Nk = 37 points for the approximate solution.
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Figure 5: Dynamic capital structure only. The graph plots the spread between the yield
on corporate debt and the risk-free rate, rb/D(k, b, x) − r, with respect to the productivity
parameter, x. D(k, b, x) is the ex–coupon price of debt from equation (12). The yield spread (in
basis points/year) is determined for a current face value of debt b = 2 and for a current capital
stock k = 7.68. We consider the DF-SI model (dynamic financing and static investment) either
under first or second best, and the static model SF-SI. The plots are obtained using S = 27,
Nb = 27 and Nk = 37 points for the approximate solution.
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Figure 6: Personal and corporate taxes. The upper panel plots the spread between the
yield on corporate debt and the risk-free rate, rb/D(k, b, x)−r, with respect to the productivity
parameter, x. D(k, b, x) is the ex–coupon price of debt from equation (12). The yield spread (in
basis points/year) is determined for a current face value of debt b = 2 and for a current capital
stock k = 7.68. We consider the SF-SI model (static financing and static investment) with the
baseline tax parameters, and with either lower personal taxes on equity flows (τe = 10.23%),
or lower corporate taxes on positive earnings (τ+

c = 0.35). The bottom panel plots the spread,
computed in exactly the same manner, for the DF-DI model. The plots are obtained using
S = 27, Nb = 27 and Nk = 37 points for the approximate solution.
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Figure 7: Transaction costs. The upper panel plots the spread between the yield on corpo-
rate debt and the risk-free rate, rb/D(k, b, x)− r, with respect to the productivity parameter,
x. D(k, b, x) is the ex coupon price of debt from equation (12). The yield spread (in basis
points/year) is determined for a current face value of debt b = 2 and for a current capital
stock k = 7.68. We consider the DF-SI model (dynamic financing and static investment) and
the DF-DI model (dynamic financing and dynamic investment) under second best with the
baseline parameters, and with zero transaction costs (no TC) on debt changes (q0 = q1 = 0).
The bottom panel plots the debt ratio b∗/b at k = 7.68, averaged with respect to b, vs x.
We consider the DF-DI and DF-SI models with the baseline tax parameters, and with zero
transaction costs on debt changes. The plots are obtained using S = 27, Nb = 27 and Nk = 37
points for the approximate solution.
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Ind. Var. coefficient std. error t p-value [95% Conf. Interval]
QML .02433 .0005 45.27 0.000 [.0233, .0254]
ROA -.2439 .0283 -8.61 0.000 [-.2994, -.1884]

Table VI: Ordered Probit Model for the S&P’s credit risk classes. Results of the
ordered probit analysis of firm classification criterion. Data are from Compustat North America
Industrial Annual files. Financial, insurance and real state firms (SIC code 6000- 6999) and
regulated utility firms (SIC code 4900-4999) are excluded. The dependent variable is the S&P’s
seven (whole letter) risk classes discussed previously. It takes values from 1 (class AAA) to 7
(class C). QML (quasi-market leverage) is given by total debt over total debt plus the product
of market price of share and number of outstanding shares. ROA (return on assets) is given by
EBIT over total debt plus the book value of equity. t is the t-ratio. p-value is the probability
of getting a value of the test statistic as or more extreme than that observed by chance alone,
if the null hypothesis H0, is true.


