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1 Introduction

The neoclassical theory of asset pricing (Debreu (1959)) has been confronted by theory and evidence

that highlights the numerous frictions that are faced by �nancial intermediaries in undertaking ar-

bitrage (Shleifer and Vishny (1997)), and the consequent price e¤ects of such frictions. There is

evidence that these price e¤ects are ampli�ed in situations in which �nancial intermediaries are sub-

stantially on one side of the market (say, for instance, when they bear the prepayment and default

risk of households in mortgage markets, or when they provide catastrophe insurance to households

(see Froot (1999)). In this paper, we apply this �limits to arbitrage�view to the analysis of com-

modity futures markets, in which capital constrained commodity investment funds (speculators)

meet the demand for hedging by commodity producing �rms (producers). We demonstrate, both

theoretically and empirically, that these asset-market frictions translate themselves into �limits to

hedging� experienced by producers, and consequently have impacts on real variables such as the

spot commodity price.

Our �rst contribution is theoretical - we build a model in which speculators are subject to a

constraint on their ability to deploy capital in the commodity futures market. This limit on the

risk-taking capacity of speculators implies a price impact of the hedging demand of risk-averse

producers, who are naturally short commodity futures. This price impact constitutes a cost of

hedging, which has consequences for the optimal inventory holding of commodity producers, and in

turn, the commodity spot price. Our model builds on the previous literature on hedging, and nests

the two classical explanations for the behavior of commodity spot and futures prices: The Theory

of Storage (Kaldor (1936), Working (1949), and Brennan (1958)), which has optimal inventory

management as a main determinant of commodity prices, and the Theory of Normal Backwardation

(Keynes (1930)), which posits that hedging pressure a¤ects commodity futures prices.

We clear markets for futures and spot commodities (assuming exogenous spot demand functions)

and derive implications of producer risk aversion and speculator capital constraints for the absolute

and relative levels of futures and spot prices. To understand the comparative statics generated by

the model, consider the following example: suppose that producers as a whole need to hedge more

(perhaps on account of their default risk rising) by shorting futures contracts. Then, all else equal,

their hedging pressure depresses futures prices and makes hedging more expensive. So producers

scale back on holding inventory, releasing it into the market and depressing spot prices. Note that

futures risk premia and expected spot returns have a common driver � the hedging demand of

producers. Due to this common driver, the model predicts that the commodity convenience yield,

or the basis between spot and futures prices, should not be strongly related to commodity futures

risk premia. Increases in the capital constraints of speculators have similar e¤ects.

Our second contribution is to provide empirical evidence for these e¤ects using data on spot and
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futures prices for heating oil, crude oil, gasoline and natural gas over the period 1980 to 2006.1 As

a key feature of our tests, we assume that producers�risk aversion and hedging demand increase in

their default risk. This assumption is driven by extant theoretical and empirical work on hedging,2

and we add to the evidence in this literature by examining the hedging disclosures of commodity

producers between 1998 and 2006, exploiting the fact that the FAS 133 ruling of 1998 required �rms

to disclose their derivatives activities and to report the intended purpose of their derivatives trading

(although not in a manner that is highly standardized). These disclosures allow us to con�rm that

oil and gas producers are in fact signi�cant hedgers in the commodity futures markets, consistent

with the evidence of Ederington and Lee (2002) that trading volume and open-interest positions

in commodity futures are dominated by potential hedgers. While the lack of standardization in

hedging disclosures makes it di¢ cult to provide large-sample evidence linking the extent of hedging

to default risk, we identify a small set of producers (Marathon Oil, Hess Corporation, Valero Energy

Corporation, and Frontier Oil Corporation), which relatively unambiguously report their exact

hedging positions. We �nd a strong time-series relationship between the extent of their hedging

activity and the measures of their default risk that we subsequently employ in the aggregate.

Having established this link, we show that aggregate measures of oil and gas producers�fun-

damental hedging demand �proxied by their default risk �explain futures risk premia (identi�ed

through standard forecasting regressions (as in, e.g., Fama and French (1986)), and changes in spot

prices and inventories, as implied by our model. Our main empirical �ndings are as follows: First,

commodity producer default risk positively forecasts hedging demand as measured by the net short

positions of market participants classi�ed as �hedgers�by the Commodity Futures Trading Com-

mission (CFTC). Second, an increase in the default risk of producers forecasts an increase in excess

returns on short-term futures of these commodities. The e¤ect is robust to business-cycle conditions

and economically signi�cant: a one standard deviation increase in the aggregate commodity sector

default risk is on average associated with a 4% increase in the respective commodity�s quarterly

futures�risk premium. Third, as producer default risk increases, our model implies that producers

will hold less inventory, depressing current spot prices. This prediction is con�rmed in the data �

increases in the default risk of oil and gas producers in a quarter predict higher spot returns in the

subsequent quarter.3 Fourth, the default risk of producers negatively forecasts inventory holdings.

1Our choice of these commodities is partly driven by the data requirement that we have at least ten producers in
each quarter to produce an average measure of default risk for a given commodity, and partly by the fact that these
are the largest commodity markets in existence.

2A large body of theoretical work and empirical evidence on hedging has attributed managerial aversion to risk as
a primary motive for hedging by �rms (Amihud and Lev (1981), Tufano (1996, 1998), Acharya, Amihud and Litov
(2007), and Gormley and Matsa (2008), among others); and has documented that top managers su¤er signi�cantly
from �ring and job relocation di¢ culties when �rms default (Gilson (1989), Baird and Rasmussen (2006) and Ozelge
(2007)). Research has also documented a link between high expected distress costs and �rms�usage of derivatives
(Graham and Rogers (2002)).

3We also verify that the default risk of producers does not explain the convenience yield or basis on the commodity
very well, as implied by the model (these results are available upon request).
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Fifth, we con�rm that the basis does not contain signi�cant forecasting power for the excess returns

on short-term commodity futures, as noted by Fama and French (1986).

We con�rm that our results are driven by changes in producer hedging demand in a number of

ways. First, we employ a �matching�approach. In particular, we divide the sample of producers

into �rms that hedge commodity price exposure using derivatives (as disclosed by them during the

period 1998-2006) and �rms that do not hedge their commodity price exposures. We �nd that

our results are driven only by measures of aggregate hedging demand derived from the hedging

�rms. This �nding provides strong support for our model�s main prediction that hedging pressure

a¤ects commodity prices. It also provides a useful alternative to the classi�cation schemes normally

employed in the literature, namely, the CFTC reported classi�cation of futures market participants

into hedgers and speculators (see De Roon et. al., (2000)),4 and schemes based purely on the

reported functions of commodity �rms (such as producer, re�ner, marketer or distributor) (see

Ederington and Lee (2002) for evidence that such classi�cations are noisy measures of �rms�actual

hedging activities). Second, we employ controls in our forecasting regressions, in the form of

variables commonly employed to predict the equity premium, such as the aggregate dividend yield,

and con�rm that our results are una¤ected by these additions. Third, though our classi�cation

of hedging producers is based on data from 1998 to 2006, we show that our results hold in the

�rst half of our sample period as well as the second half, using the same classi�cation. Finally,

though not the primary focus of our empirical analysis, we con�rm the role of speculative activity

(measured as the growth in the balance-sheets of broker dealers, as in Etula (2009)): when broker-

dealer balance-sheets are shrinking, the commodity futures risk premium is indeed higher. In the

context of the broader asset-pricing literature, our model and empirical results imply that limits

to arbitrage generate limits to hedging for �rms in the real economy. Consequently, factors that

capture time-variation in such limits have predictive power for asset prices, and can potentially also

a¤ect outcomes in underlying product markets.

Besides shedding light on limits to arbitrage and hedging in commodity markets, our model

and results provide a useful lens through which to view an important debate about the causes of

the recent gyrations in commodity prices. Between 2003 and June 2008, energy, base metals, and

precious metals experienced price rises in excess of 100%. Over the same period, there was a huge

increase in the amount of capital committed to long positions in commodity futures contracts �in

July 2008, pension funds and other large institutions were reportedly holding over $250 billion in

commodity futures (mostly invested through indices such as the S&P GSCI) compared to their $10

billion holding in 2000 (Financial Times, July 8 2008). While these trends occurred concurrently,

some market practitioners and economists have vehemently argued that the speculative investments

4Questions about the usefulness of the CFTC classi�cations as an indicator of hedger versus speculator demand
has led to a CFTC-initiated review of reporting (see, e.g., Wall Street Journal �CFTC to Review Hedge-Exemption
Rules�, 12 March, 2009).
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of �nancial players in the futures market have no direct relationship with commodity spot prices.

Other commentators (most notably, Michael Masters, a hedge-fund manager, and George Soros,

who both testi�ed to the US Congress) have blamed speculative activity for recent commodity

price rises. A third group (one that includes former Federal Reserve Chairman Alan Greenspan)

has taken an intermediate view �that commodity spot prices are fundamentally driven by physical

demand, but that �nancial speculation has played some role in recent price rises. This last set of

commentators has also argued that �nancial speculation is in fact stabilizing, for some of the reasons

we outline in the model: the long positions taken by �nancial investors have enabled producers to

take short hedging positions and hold larger inventories, which increases current spot prices and

should stabilize prices going forward.

In support of this last view, we agree with the chain of reasoning speci�ed for the rise in spot

prices. The fallout of the sub-prime crisis in 2008, however, increased speculator risk-aversion and

simultaneously raised producer default risk. This increased producer hedging demand at the same

time that it became costlier to hedge, causing inventories to fall and lowering spot prices. We

acknowledge that our theory, which is based on risk-sharing between producers and speculators,

is unlikely to explain the full magnitude of the rise and fall in oil prices. Rather than a complete

explanation, we view the mechanism we have outlined as a likely contributing factor to recent

price movements. Of course, other potential contributing factors to the observed price pattern

could include shifts in global demand, and the possibility of a �bubble� in commodity prices that

collapsed in the summer of 2008.

The organization of the paper is as follows. The remainder of the introduction relates our

paper to the literature. Section 2 introduces our model. Section 3 presents the data we employ

in our empirical tests. Section 4 establishes the link between the hedging demand of commodity

producers, and measures of their default risk. Section 5 discusses our main empirical results, which

come from our analysis of oil and gas producers at the aggregate level. Section 6 concludes. Proofs

are contained in the Appendix.

1.1 Related Literature

Our paper is related to two main bodies of literature: The emerging work on limits to arbitrage,

which highlights the impacts of these limits on asset prices; and the extensive body of work on

the determinants of commodity spot and futures prices. Two related papers in the �rst group are

Gromb and Vayanos (2002) and Brunnermeier and Pedersen (2008), who assume the presence of

�nancing frictions for intermediaries, and show the ultimate e¤ects of these frictions on market

liquidity. In addition, numerous papers show that contractual limits on the arbitrage activity of

intermediaries arise endogenously due to agency problems. For example, Acharya and Viswanathan

(2007) and Adrian and Shin (2008) consider the risk-shifting problem, a la Jensen and Meckling

(1976), and show that this problem leads either to �hard� debt contracts or value-at-risk style
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constraints on intermediaries. He and Xiong (2009) also consider the agency problem in delegation

and derive investment-style restrictions as part of the e¢ cient contracting outcome. Empirically,

Mitchell, Pulvino and Sta¤ord (2002) show that arbitrage is subject to risk arising from uncertainty

about the distribution of returns as well as from the potential for forced liquidations if capital

requirements bind. Wurgler and Zhuravskaya (2002) present similar evidence, which shows that

the idiosyncratic risk of stock returns can be an impediment to arbitrage, as arbitrage trades are

often not well-diversi�ed. We contribute to this literature with a simple model and supporting

evidence in an attempt to demonstrate that limits to �nancial arbitrage can also impact producers�

decisions, and prices in goods markets through the channel of hedging.

In the commodities literature, there are two classic views on the behavior of forward and futures

prices. The Theory of Normal Backwardation, put forth by Keynes (1930), states that speculators,

who take the long side of a commodity future position, require a risk premium for hedging the

spot price exposure of producers (an early version of the �limits to arbitrage� argument). The

risk premium on long forward positions is thus increasing in the amount of hedging pressure and

should be related to observed hedger and speculator positions in the commodity forward markets.

Bessembinder (1992) and De Roon, Nijman and Veld (2000) empirically link hedging pressure to

futures excess returns, basis and the convenience yield, providing evidence in support of this theory.

On the other hand, the Theory of Storage (Kaldor (1936), Working (1949), and Brennan (1958))

postulates that forward prices are driven by optimal inventory management. In particular, this

theory introduces the notion of a �convenience�yield to explain why anyone would hold inventory

in periods in which spot prices are expected to decline. Tests of the theory include Fama and

French (1988) and Ng and Pirrong (1994). In more recent work, Routledge, Seppi and Spatt (2000)

introduce a forward market into the optimal inventory management model of Deaton and Laroque

(1992) and show that time-varying convenience yields, consistent with those observed in the data,

can arise even in the presence of risk-neutral agents.5 In this case, of course, the risk premium

on commodity forwards is zero. The convenience yield arises because the holder of the spot also

implicitly holds a timing option in terms of taking advantage of temporary spikes in the spot price.

The time-variation in the value of this option is re�ected in the time-variation in the observed

convenience yield. Thus, time-variation in the observed convenience yield need not be due to a

time-varying forward risk premium.

Note, however, that the two theories are not mutually exclusive. A time-varying risk premium

on forwards is consistent with optimal inventory management if producers are not risk-neutral or

face (say) bankruptcy costs; and speculator capital is not unlimited, as in our model. If producers

5There is a large literature on reduced form, no-arbitrage modeling of commodity futures prices (e.g., Brennan,
(1991) Schwartz (1997)). Most recently, Cassasus and Collin-Dufresne (2004) show in a no-arbitrage latent factor
a¢ ne model that the convenience yield is positively related to the spot price under the risk-neutral measure. In
addition, these authors show that the level of convenience yield is increasing in the degree to which an asset serves
for production purposes.
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have hedging demands (absent from the Routledge, Seppi and Spatt model), speculators will take

the opposite long positions if they are compensated with a fair risk premium on the position. In

the data, we �nd that hedgers are on average net short forwards, while speculators are on average

net long, which indicates that producers on average do have hedging demands. In support of this

view, Haushalter (2000, 2001) surveys 100 oil and gas producers and �nds that close to 50 percent

of them hedge their production over the 1992 to 1994 period, and that they hedge, on average,

approximately a quarter of their production each year.6

This unconditional risk premium on commodity futures, however, has proven di¢ cult to explain

with traditional asset pricing theory (see Jagannathan, (1985) for an earlier e¤ort). Fama and

French (1987) present early empirical evidence on the properties of commodity prices and their link

to the Theory of Storage. In a recent paper, Gorton, Hayashi, and Rouwenhorst (2007) argue that

time-varying futures risk premia are driven by inventory levels and not by net speculator or hedger

positions. In particular, they show that a de�nition of hedging pressure based on classi�cation of

traders from the Commodity Futures and Trading Commission do not signi�cantly forecast excess

long forward returns, although the signs are consistent with Keynes� hypothesis. Inventory, on

the other hand, forecasts future forward returns with a negative sign in their sample; i.e., when

inventory levels are low, the forward risk premium is high. Our results are consistent with theirs in

that our model also predicts that inventory should forecast commodity futures returns. However,

the point of departure is that in our model this result is driven by the interaction between capital-

constrained speculators and risk averse producers �whose fundamental hedging demands we proxy

for using measures of default risk. Our most important and novel contribution is to identify and

highlight the role of producers�default risk �the primitive risk that drives producers to hedge using

futures contracts � in simultaneously explaining commodity inventories, spot prices, and futures

hedging positions and risk premia.

Finally, in another closely related paper, Bessembinder and Lemmon (2002) show that hedging

demand a¤ects spot and futures prices in electricity markets when producers are risk averse, as we

also assume in our model. They highlight that the absence of storage is what allows for predictable

intertemporal variation in equilibrium prices. We show in this paper that the price impact can

arise, and empirically does arise, also in the presence of storage in the oil and gas markets.

2 The Model

In this section, we present a two-period model of commodity spot and futures price determination

that incorporates elements of two classes of models previously employed in the literature. First,

6 Indirect evidence is available in Gorton and Rouwenhorst (2006), who show that long positions in commodity
futures contracts on average have earned a risk premium. However, Erb and Harvey (2006) interpret this �nding
with caution, suggesting that much of the return to investing in futures contracts may be attributable to rebalancing
or diversi�cation.

6



the model resembles the optimal inventory management model of Deaton and Laroque (1992).

Second, the model has similar features to the commodity speculation and hedging demand models

of Anderson and Danthine (1981, 1983). The model illustrates how producer hedging demand

a¤ects commodity spot and futures prices in a simple and transparent setting and delivers a set of

empirical predictions that we subsequently investigate using available U.S. data.

There are three types of agents in the model: (1) consumers, whose demand for the spot com-

modity along with the equilibrium supply determine the commodity spot price; (2) commodity

producers, who manage pro�ts by optimally managing their inventory and by hedging with com-

modity futures; and (3) speculators, whose demand for the commodity futures along with the

futures hedging demand of producers determine the commodity futures price.7

2.1 Consumption, Production and the Spot Price

Following Routledge, Seppi, and Spatt (2000), current commodity production Gt(St) and �imme-

diate use� consumption demand Ct(St) are modeled as stochastic, reduced form functions of the

spot price St. The spot price St is determined by market clearing, which demands that incoming

aggregate inventory and current production, Gt(St)+ (1� �) It�1, equals current consumption and
outgoing inventory, Ct(St) + It, where It is the aggregate inventory level. Here, � is the cost of

storage �individual producers can store i units of the commodity at t � 1 yielding (1� �) i units
at t, where � 2 (0; 1) :

The market clearing equality can be rearranged:

Ct (St)�Gt (St) = ��It; (1)

where �It � It � (1� �) It�1. As in Routledge, Seppi, and Spatt (2000), the �immediate use�net
demand Ct (St) � Gt (St) is assumed to be monotone decreasing in the spot price St. This allows
us to summarize the spot market with an inverse net demand function as follows:

St = at + f (�It) ; (2)

where the demand shock at is i.i.d. with variance �2, and f(�) is decreasing in the net supply,
��It.8 This net demand shock represents shifts in the demand and supply of the commodity that

7Note that we model consumers of the commodity as operating only in the spot market. This is an abstraction,
which does not correspond exactly with the evidence - for instance airlines have been known periodically to hedge
their exposure to the price of jet fuel (by taking long positions in the futures market). In the empirical section, we
show that our results are not a¤ected by controlling for a measure of consumers�hedging demand. Furthermore the
CFTC data on hedger positions indicates that speculative capital (e.g., in hedge funds) has historically been allocated
to long positions in the commodity futures, indicating that the sign of net hedger demand for futures is consistent
with our assumption.

8We assume throughout the analysis that at and f(:) are speci�ed such that (a) prices are positive and (b) a
market-clearing spot price exists.
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are exogenous to our model. It captures changes in net demand which arise from sources such as

technological changes in the production of substitutes and complements for the commodity, weather

conditions, or supply shocks that are not explicitly accounted for in the model.

2.2 Producers

There are an in�nite number of commodity producing �rms in the model, with mass normalized

to one, and each individual manager acts competitively as a price taker. The timing of managers�

decisions in the model are as follows: In period 0, the �rm stores an amount i as inventory from

its current supply, g0, and so period 0 pro�ts are simply S0 (g0 � i). In period 0, the �rm also

goes short a number hp of futures contracts, to be delivered in period 1. In period 1, the �rm sells

its current inventory and production supply, honors its futures contracts and realizes a pro�t of

S1 ((1� �) i+ g1) + hp (F � S1), where F is the (period 1) price of the futures contracts and g1 is
supply in period 1.9

We assume that managers of commodity producing �rms are risk averse �they maximize the

value of the �rm subject to a penalty for the variance of next period�s earnings. (In the model the

parameter ~
p governs a manager�s degree of aversion to variance in future earnings.) This variance

penalty generates hedging demand, and is a frequent assumption when modeling commodity pro-

ducer behavior (for one recent example see Bessembinder and Lemmon (2002)). The literature on

corporate hedging provides several justi�cations for this modeling choice. Hedging demand could

result from managers being underdiversi�ed, as in Amihud and Lev (1981) and Stulz (1984), or

better informed about the risks faced by the �rm (Breeden and Viswanathan (1990), and DeMarzo

and Du¢ e (1995)). Managers could also be averse due to private costs su¤ered upon distress, as

documented by Gilson (1989) for example, or the �rm may itself face deadweight costs of �nancial

distress, as argued by Smith and Stulz (1985). Aversion to earnings volatility can also be generated

from costs of external �nancing as in Froot, Scharfstein, and Stein (1993).10

Writing � for the pricing kernel of equity holders in the economy, and r for the risk-free rate,

the �rm�s problem is11:

max
fi;hpg

S0 (g0 � i) + E [� fS1 ((1� �) i+ g1) + hp (F � S1)g] :::

�
~
p
2
V ar [S1 ((1� �) i+ g1) + hp (F � S1)] ; (3)

9Note that the production schedule, g0 and g1, is assumed to be pre-determined. The implicit assumption, which
creates a role for inventory management, is that it is prohibitively costly to change production in the short-run.
10We have also developed a slightly more complicated version of our model which employs the Froot, Scharfstein,

and Stein (1993) framework to model hedging demand as arising from costly external �nancing. This model delivers
similar results to the one presented here, and is available upon request.
11 In our model, E [�] denotes the expectation conditional on the information set at time 0. The setup implicitly

assumes that the equity-holders cannot write a complete contract with the managers, on account of (for instance)
incentive reasons as in Holmstrom (1979).
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subject to:

i � 0; (4)

The �rst order condition with respect to inventory holding i is:

S0 � (1� �)E [�S1] = �~
p (1� �) (i (1� �) + g1 � hp)�2 + �; (5)

where � is the Lagrange multiplier on the inventory constraint. If the current demand shock is

su¢ ciently high, an inventory stock-out occurs (i.e., � > 0), and current spot prices can rise above

expected future spot prices. In such a circumstance, �rms wish to have negative inventory, but

cannot. Thus, a convenience yield for holding the spot arises, as those who hold the spot in the

event of a stock-out get to sell at a temporarily high price. This is the Theory of Storage aspect of

our model.12

Solving for optimal inventory, we have that:

i� (1� �) = (1� �)E [�S1]� S0 + �
(1� �) ~
p�2

� g1 + h�p: (6)

Thus, inventory is increasing in the expected future spot price, decreasing in the current spot price,

and decreasing in the amount produced (g1). Importantly, inventory is also increasing in the amount

hedged in the futures market, hp. That is, hedging allows the producer to hold more inventory as it

reduces the amount of earnings variance that the producer would otherwise be exposed to. Thus,

the futures market provides an important venue for risk sharing.

The �rst order condition for the number hp of futures contracts that the producer goes short is:

E [� (F � S1)] = �~
p (i (1� �) + g1 � hp)�2S (7)

m

h�p = i� (1� �) + g1 �
E [� (S1 � F )]

~
p�
2

: (8)

Note that if the futures price F is such that E [� (S1 � F )] = 0, there are no gains or costs to

hedging activity in terms of expected, risk adjusted pro�ts, and the producer will therefore simply

minimize the variance of period 1 pro�ts by hedging fully. In this case, the manager�s optimal

hedging strategy is independent of the degree of managerial risk aversion. This is a familiar result

that arises by no-arbitrage in frictionless markets.

If, however, the futures price is lower than what is considered fair from the equity-holders

perspective (i.e., E [� (S1 � F )] > 0), it is optimal for the producer to increase the expected pro�ts
by entering a long speculative futures position after having fully hedged the period 1 supply. In

12 In a multi-period setting, a convenience yield of holding the spot arises in these models even if there is no actual
stock-out, but as long as there is a positive probability of a stock-out (see Routledge, Seppi, and Spatt (2000).

9



other words, in this situation, the hedge is costly due to perceived mispricing in the commodity

market. Thus, it is no longer optimal to hedge the period 1 price exposure fully. Since the inventory

manager is naturally short, this entails shorting fewer futures contracts. Note that increases in the

manager�s risk aversion ~
p decrease this implicit speculative futures position.

2.2.1 The Basis

The futures price can be written using the usual no-arbitrage relation (e.g., Hull (2008)) as:

F = S0
1 + r

1� � � S0y; (9)

where the �rst term (the cost of carry) accounts for interest and storage costs, while the second

term implicitly de�nes a convenience yield, y. The futures basis is then:

basis � S0 � F
S0

= y � r + �
1� � : (10)

The second equality shows that the basis can only be positive when there is a positive convenience

yield, as the risk-free rate and cost of storage are both positive.

Combining the �rst order conditions of the �rm, the futures basis in our model is given by:

S0 � F
S0

=
�

S0

�
1 +

� + r

1� �

�
� � + r
1� � ; (11)

which implies that the convenience yield in the model is:

y =
�

S0

1 + r

1� � : (12)

The convenience yield only di¤ers from zero if the shadow price of the inventory constraint (�) is

positive (this is the same as in Routledge, Seppi, and Spatt (2000)). In this case, the expected

future spot price is low relative to the current spot price, and this results in the futures price also

being low relative to the current spot price.

Our model shows that the basis is not a good measure of the futures risk premium. Producers

in the model can obtain exposure to future commodity prices in one of two ways �either by going

long a futures contract, or by holding inventory. In equilibrium, the marginal payo¤ from these

strategies must coincide. Thus, producers managing inventory enforce a common component in the

payo¤ to holding the spot and holding the futures, with o¤setting impacts on the basis.13

13This prediction of the model is borne out in our empirical results, and is consistent with the �ndings of Fama
and French (1986).
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2.3 Speculators

Speculators are the other participants in the futures market. They take the long positions that

o¤set producers�naturally short positions, and allow the market to clear. We assume that these

speculators are specialized investment management companies, with superior investment ability

in the commodity futures market (e.g., commodity hedge funds and investment bank commodity

market trading desks). As a consequence of this superior investment technology, investors in other

�nancial assets (the equity-holders) only invest in commodity markets by delegating their invest-

ments to these specialized funds. As in Berk and Green (2004), the managers of these funds extract

all the surplus of this activity and the outside investors only get their fair risk compensation. The

net present value of a commodity fund�s payo¤ is given by:

hsE [� [S1 � F ]]� hsY; (13)

where Y is the time 0 compensation awarded to the fund managers per futures contract and hs is

the number of futures contracts that the fund goes long. Since the managers extract all the surplus,

we have that Y = E [� (S1 � F )]. Thus, the net present value for equity-holders of investing in a
commodity fund is zero, as dictated by no-arbitrage.

The commodity fund managers are assumed to be risk-neutral, but they are subject to capital

constraints. These constraints could arise from costs of leverage such as margin requirements, as

well as from value-at-risk (VaR) limits. We model these capital constraints as proportional to the

variance of the fund�s position, in the spirit of a VaR constraint, as in Danielsson, Shin, and Zigrand

(2008).14 Commodity funds are assumed to behave competitively, and we assume the existence of

a representative fund. The aggregate objective function for commodity funds can be written as

follows:

max
hs

hsY �
~
s
2
V ar [hs (S1 � F )] (14)

+

hs =
Y

~
s�
2
=
E [� (S1 � F )]

~
s�
2

; (15)

where ~
s is the severity of the capital constraint. If commodity funds were not subject to any

constraints (i.e., ~
s = 0), the market clearing futures price would be the same as that which would

prevail if markets were frictionless: i.e., such that E[�[S1�F ]] = 0. In this case, the producers would
simply hedge fully, as discussed previously, and the futures risk premium would be independent of

the level of managerial risk aversion. With ~
s; ~
p > 0, however, the equilibrium futures price will

in general not satisfy the usual relation, E [� (S1 � F )] = 0, as the risk-adjustment implicit in the
14Such a constraint is also assumed by Etula (2009) who �nds empirical evidence to support the role of speculator

capital constraints in commodity futures pricing.
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speculators�objective function is di¤erent from that of the equity-holders.

This assumption of a capital constraint and its consequential impact on commodity futures

prices places our model in the growing literature on limits-to-arbitrage (Shleifer and Vishny, 1997),

which argues that sustained deviations from the law of one price can arise due to capital constraints

and specialization in the delegated asset management industry. Gromb and Vayanos (2002) show in

an equilibrium setting that arbitrageurs, facing constraints akin to the one we assume in this paper,

will exploit but not fully correct relative mispricing between the same asset traded in otherwise

segmented markets. Motivating such constraints on speculators, He and Xiong (2008) show that

narrow investment mandates and capital immobility are natural outcomes of an optimal contract

in the presence of unobservable e¤ort on the part of the investment manager. In our model, these

limits to speculative arbitrage allow producers�hedging activity to have a direct impact on the

futures risk premium.

2.4 Equilibrium

The futures contracts are in zero net supply and therefore hs = hp, in equilibrium. From equations

(8) and (15) we thus have that

�

s + 
p

�
E [� (S1 � F )] = I� (1� �) + g1; (16)

where 
p � 1=
�
~
p�

2
�
and 
s � 1=

�
~
s�

2
�
. Using the expression for the basis, we have that

(S0 � �) 1+r1�� = F , and we get:�

s + 
p

�
(E [�S1 (I

�)]� (S0 (I�)� � (I�)) = (1� �)) = I� (1� �) + g1: (17)

Since I� (1� �) + g1 > 0, we have that E [� (1� �)S1 (I�)]� S0 (I�) + � > 0, which is a necessary
condition for market clearing. In the case of no stock-out, this implies that E [� (1� �)S1] > S0,
and so future expected risk-adjusted spot prices are higher than the current spot price. When there

is a stock-out, however, current spot prices can be higher than expected future spot prices as � in

this case is greater than zero. Equation (17) gives the solution for I�. Given I� and the inverse

demand function in equation (2), we can calculate E [S1 (I�)]. Since F = (S0 (I�)� � (I�)) 1+r1�� , the

equilibrium supply of short futures contracts can be found using equation (8).

2.5 Model Predictions

We now present the main predictions of the model for commodity spot and futures prices as we vary

the model parameters. In particular, we are interested in comparative statics around producers�

propensity to hedge, ~
p (which we refer to henceforth as producers�fundamental hedging demand),

and the degree of the capital constraint on speculators, ~
s.
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Proofs of the following Propositions are relegated to the Appendix, and we only give the eco-

nomic intuition for the results in this section.

Proposition 1 The futures risk premium and the expected spot price return are increasing in

producers fundamental hedging demand, ~
p:

dE[S1�F ]F

d~
p
> 0 and

dE[S1�S0]S0

d~
p
> 0; (18)

where the latter result only holds if there is not a stock-out. In the case of a stock-out,
d
E[S1�S0]

S0
d~
p

= 0.

The model�s predictions with respect to changes in fundamental hedging demand are summa-

rized in Figure 1a and 1b. Figure 1a illustrates the comparative statics in the case of no inventory

stock-out. Recall that inventory is risky for the �rm since future spot prices are uncertain. It

is never optimal for the �rm to fully hedge its inventory, however, as the abnormal futures risk

premium, E [� (S1 � F )], is positive.15 When fundamental hedging demand increases, this causes
the �rm to have increased sensitivity to the risk of holding unhedged inventory, and the inventory

holding therefore decreases in equilibrium. This means that more of the commodity is sold on the

spot market, which depresses current spot prices and raises future spot prices. Since two equivalent

hedging strategies are to 1.) sell the commodity in the spot market and invest the cash and 2.) hold

an extra unit of inventory and hedge it with a short futures contract, the return to both of these

strategies must be equal in equilibrium. This is the reason why, as Figure 1a illustrates, a high

expected spot price is accompanied by a high futures risk premium. Figure 1b shows the case of an

inventory stock-out. In this situation, current and future expected spot prices are constant. The

increased bene�t of hedging with the futures contract leads to a higher demand for short futures

contracts, which can only be accommodated by increasing the futures risk premium.

In sum, the model predicts that the futures risk premium is increasing in producers�fundamental

hedging demand. Furthermore, in the case of no stock-out, increased hedging demand ceteris

paribus also leads to lower current spot prices and higher expected future spot prices. Optimal

inventory risk management thus induces a common component in expected futures and spot returns,

and the cost of hedging in futures markets (the abnormal futures risk premium) a¤ects the spot

markets.

Corollary 2 The basis, S0�FF ; is not informative of the futures risk premium in times of no stock-

out.
15This makes it costly for the �rm to hedge, since futures are priced less than fairly - relative to a frictionless

no-arbitrage setting - from the perspective of the equity-holders.
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When the expected future spot price is high relative to the current spot price, it encourages

the producer to hold more inventory. This increased inventory holding generates increased hedging

demand for short futures contracts, which increases the futures risk premium needed to induce

speculators to take the opposite side of these contracts. Thus, the futures risk premium and

expected change in the spot price move together in a manner that leaves the basis una¤ected.

Proposition 3 The futures risk premium and the expected spot price return are increasing in the

severity of speculators�capital constraints, ~
s:

dE[S1�F ]F

d~
s
> 0 and

dE[S1�S0]S0

d~
s
> 0; (19)

where the latter result only holds if there is not a stock-out. In the case of a stock-out,
d
E[S1�S0]

S0
d~
s

= 0.

Relaxing the severity of capital constraints on speculators (alternatively increasing speculator

risk appetite) increases speculative demand for long futures positions. This decreases the futures

risk premium in equilibrium, making it cheaper for the producers to hedge their inventory, thus

raising producers�inventory holding. Holding more inventory means that less of the commodity is

sold in the spot market, so the spot price increases. Thus, the model predicts a direct link between

the capital constraints of speculators and the level of the spot price. In a standard model with no

frictions, such a link would not be present. Neither would the impact of producer hedging demand

on the futures risk premium.

We now turn to describing the data employed in the study and, subsequently, to empirically

testing the predictions of the model.

3 Data

3.1 Sample

To construct proxies for fundamental producer hedging demand, we employ data on commodity

producing �rms�accounting and stock returns from the CRSP-Compustat database. The use of

Compustat data limits the study to the oil and gas markets as these are the only commodity markets

where there are enough producer �rms to create a reliable time-series of aggregate commodity

sector producer hedging demand. Our empirical analysis thus focuses on four commodities: crude

oil, heating oil, gasoline, and natural gas.

In particular, the full sample of producers includes all �rms with SIC codes 1310 and 1311

(Petroleum Re�ners) and 2910 and 2911 (Crude Petroleum and Gas Extraction).16 The total

16These SIC classi�cations, however, are rather coarse: �rms designated as �Petroleum Re�ners� (e.g., Exxon)
often also engage in extraction, and vice versa.
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sample of producers consists of 525 �rms with quarterly data going back to 1974 for some �rms. We

also use data on �rms�explicitly disclosed hedging activities from accounting statements available

in the EDGAR database from 1998 to 2006.

3.2 Proxies for Fundamental Hedging Demand

�The amount of production we hedge is driven by the amount of debt on our consolidated

balance sheet and the level of capital commitments we have in place.�

- St. Mary Land & Exploration Co. in their 10-K �ling for 2006.

In the model, we refer to the variance aversion of the producers, ~
p, as producers�fundamental

hedging demand. In the empirical analysis, we propose that variation in the aggregate level of ~
p
can be proxied by using measures of aggregate default risk for the producers of the commodity.

There are both empirical and theoretical motivations for this choice, which we discuss below. In

addition, we show in the following section that the available micro-evidence of individual producer

hedging behavior in our sample supports this assumption.

The driver of hedging demand we appeal to in this paper is managerial aversion to distress and

default. In particular, we postulate that managers act in an increasingly risk averse manner as

the likelihood of distress and default increases. Amihud and Lev (1981) and Stulz (1984) proposes

general aversion of managers to variance of cash �ows as a driver of hedging demand, the rationale

being that while shareholders can diversify across �rms in capital markets, managers are signi�-

cantly exposed to their �rms�cash-�ow risk due to incentive compensation as well as investments

in �rm-speci�c human capital. Empirical evidence has demonstrated that managerial turnover is

indeed higher in �rms with higher leverage and deteriorating performance. For example, Coughlan

and Schmidt (1985), Warner et al. (1988) and Weisbach (1988) provide evidence that top manage-

ment turnover is predicted by declining stock market performance. In an important study, Gilson

(1989) re�nes this evidence, and examines the role of defaults and leverage. He �rst �nds that man-

agement turnover is more likely following poor stock-market performance. He then investigates the

sample of �rms (each year) that are in the bottom �ve percent of stock-market performance over

a preceding three-year period, and �nds that within this group, the �rms that are highly leveraged

or in default on their debt experience higher top management turnover than their counterparts.17

However, management turnover by itself would not to lead to variance aversion (and hence hedging

demand) if the personal costs that managers face from such turnover are small. Gilson documents

that following their resignation from �rms in default, managers are not subsequently employed

by another exchange-listed �rm for at least three years, a result that is consistent with managers

experiencing large personal costs when their �rms default. Finally, Haushalter (2000, 2001) in an

17Gilson�s sample constitutes �rms that are listed on the NYSE and AMEX over the period 1979 to 1984.
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important survey of one hundred oil and gas �rms over the 1992 to 1994 period, uncovers that their

propensity to hedge is highly correlated with their �nancing policies as well as their level of assets

in place. In particular, he �nds that the oil and gas producers in his sample that used more debt

�nancing also hedged a greater fraction of their production, and interprets his result as evidence

that companies hedge to reduce the likelihood of �nancial distress.

Given this theoretical and empirical motivation, we employ both balance-sheet and market-

based measures of default risk as our empirical proxies for the cost of external �nance. The

balance-sheet based measure we employ is the Zmijewski (1984) score. This measure is positively

related to default risk and is a variant of the Z-score of Altman (1968). The methodology for

calculating the Zmijewski-score was developed by identifying the �rm-level balance-sheet variables

that help �discriminate�whether a �rm is likely to default or not. The market-based measures

we employ are �rst, (following Gilson (1989), who relates low cumulative unadjusted three-year

stock returns to default and managerial turnover) the rolling three-year average stock return of

commodity producers, and second, the naive expected default frequency (or naive EDF) computed

by Bharath and Shumway (2008).

Each �rm�s Zmijewski-score is calculated as:

Zmijewski-score = -4:3 - 4:5 �NetIncome=TotalAssets+ 5:7 � TotalDebt=TotalAssets

-0:004 � CurrentAssets=CurrentLiabilities: (20)

Each �rm�s rolling three-year average stock return, writing Rit for the cum-dividend stock return

for a �rm i calculated at the end of month t, is calculated as:

ThreeY earAvgi;t =
1

36

35X
k=0

ln(1 +Ri;t�k) (21)

Finally, we obtain each �rm�s naive EDF. The EDF from the KMV-Merton model is computed

using the formula:

EDF = �

�
�
�
ln(V=F ) + (�� 0:5�2V )T

�v
p
T

��
(22)

where V is the total market value of the �rm, F is the face value of the �rm�s debt, �v is the

volatility of the �rm�s value, � is an estimate of the expected annual return of the �rm�s assets,

and T is the time period, in this case, one year. Bharath and Shumway (2008) compute a �naive�

estimate of the EDF, employing certain assumptions about the variable used as inputs into the

formula above. We use their estimates in our empirical analysis.18 Of the set of 525 �rms, we

have naive EDF estimates for 435 �rms.

In the next section, we �rst con�rm Haushalter�s (2000, 2001) results in our sample of �rms �

18We thank Sreedhar Bharath and Tyler Shumway for providing us with these estimates.
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i.e., that our default risk measures are indeed related to individual producer �rms�hedging activity.

We then aggregate these �rm-speci�c measures within each commodity sector to obtain aggregate

measures of fundamental producer hedging demand, which are used to test the pricing implications

of the model. To arrive at these aggregate measures of producer�s hedging demand, we construct

an equal-weighted Zmijewski-score, 3-year lagged stock returns, and Naive EDF from the producers

in each commodity sector. While our sample of �rms goes back until 1974, the number of �rms in

any given quarter varies with data availability at each point in time. There are, however, always

more than 10 �rms underlying the aggregate hedging measure in any given quarter. Figures 2a

and 2b show the resulting time-series of aggregate Zmijewski-score, 3-year lagged return, and Naive

EDF for the Crude Oil, Heating Oil, and Gasoline sectors, as well as for the Natural Gas sector. For

ease of comparison, the series have been normalized to have zero mean and unit variance. All the

measures are persistent and stationary. The latter is con�rmed in that unit root tests are rejected for

all the measures, but this is not reported. As expected, the aggregate Zmijewski-scores and Naive

EDF�s are positively correlated, while the aggregate 3-year producer lagged stock return measure

is negatively correlated with these measures. Table I reports the mean, standard deviation and

quarterly autocorrelation of the aggregate hedging measures. The reason these summary statistics

are di¤erent for Crude Oil, Heating Oil, and Gasoline is that the futures returns data are of di¤erent

sample sizes across the commodities.

3.3 Commodity Futures and Spot Prices

Our commodity futures price data is for NYMEX contracts and is obtained from Datastream. The

longest futures return sample period available in Datastream goes from the �rst quarter of 1980

until the fourth quarter of 2006 (108 quarters; crude oil).

To create the basis and returns measures, we follow the methodology of Gorton, Hayashi and

Rouwenhorst (2007). We construct rolling commodity futures excess returns at the end of each

month as the one-period price di¤erence in the nearest to maturity contract that would not expire

during the next month. That is, the excess return from the end of month t to the next is calculated

as:
Ft+1;T � Ft;T

Ft;T
; (23)

where Ft;T is the futures price at the end of month t on the nearest contract whose expiration date

T is after the end of month t+ 1, and Ft+1;T is the price of the same contract at the end of month

t+1. The quarterly return is constructed as the product of the three monthly gross returns in the

quarter.

The futures basis is calculated for each commodity as (F1=F2 � 1), where F1 is the nearest
futures contract and F2 is the next nearest futures contract. The statistical properties of our data

match up very closely to those employed by Gorton, Hayashi and Rouwenhorst (2007), summary
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statistics about these quarterly measures are presented in Table I. Note that the means and me-

dians of the basis in the table are computed using the raw data, while the standard deviation

and �rst-order autocorrelation coe¢ cient are computed using the deseasonalized basis, where the

deseasonalized basis is simply the residual from a regression of the actual basis on four quarterly

dummies. The basis is persistent across all commodities once seasonality has been accounted for.

Table I further shows that the excess returns are on average positive for all three commodities,

ranging from 2:5% to 6:7%, with relatively large standard deviations (overall in excess of 20%). As

expected, the sample autocorrelations of excess returns on the futures are close to zero. The spot

returns are de�ned using the nearest-to-expiration futures contract, again consistent with Gorton,

Hayashi and Rouwenhorst (2007):
Ft+1;t+2 � Ft;t+1

Ft;t+1
: (24)

Again, the quarterly return is constructed by aggregating monthly returns as de�ned above. Note

that the spot returns display negative autocorrelation, consistent with mean-reversion in the level

of the spot price.

3.4 Inventory

Aggregate inventories are created as per the speci�cations in Gorton, Hayashi and Rouwenhorst

(2007). For all four energy commodities, these are obtained from the Department of Energy�s

Monthly Energy Review. For Crude Oil, we use the item: �U.S. crude oil ending stocks non-

SPR, thousands of barrels.�For Heating Oil, we use the item: �U.S. total distillate stocks�. For

Gasoline, we use: �U.S. total motor gasoline ending stocks, thousands of barrels.� Finally, for

Natural Gas, we use: �U.S. total natural gas in underground storage (working gas), millions of

cubic feet.� Following Gorton, Hayashi and Rouwenhorst (2007), we compute a measure of the

discretionary level of aggregate inventory by subtracting �tted trend inventory from the quarterly

realized inventory. Quarterly trend inventory is created using a Hodrick-Prescott �lter with the

recommended smoothing parameter (1600). In all speci�cations employing inventories, we employ

quarterly dummy variables. We do so in order to control for the strong seasonality present in

inventories. Table I shows summary statistics of the resulting aggregate inventory measure, i.e.,

the cyclical component of inventory stocks, for the commodities. Once the seasonality in inventories

is accounted for, the trend deviations in inventory are persistent.

3.5 Hedger Positions Data.

The Commodity Futures Trading Commission (CFTC) reports aggregate data on net �hedger�

positions in a variety of commodity futures contracts. These data have been used in several papers

that arrive at di¤ering conclusions about their usefulness. Gorton, Hayashi and Rouwenhorst (2007)
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�nd that this measure of hedger demand does not signi�cantly forecast forward risk premiums,

while De Roon, Nijman and Veld (2000) �nd that they hold some forecasting power for futures

risk premia. The CFTC hedging classi�cation has signi�cant short-comings �in particular, anyone

that reasonably can argue that they have a cash position in the underlying can obtain a hedger

classi�cation. This includes consumers of the commodity, and more prominently, banks that have

o¤setting positions in the commodity (perhaps on account of holding a position in the swap market).

The line between a hedge trade or a speculator trade, as de�ned by this measure, is therefore

blurred. We note these issues with this measure as they may help explain why hedging pressure is

a contentious forecasting variable for futures risk premia, while our measures of default risk do seem

to explain futures risk premia. Nevertheless, we use the CFTC data as a check that our measures

of producers�hedging demand is in fact re�ected in futures positions as noted by the CFTC.

The Hedger Net Positions data are obtained from Pinnacle Inc., which sources data directly from

the Commodity Futures Trading Commission (CFTC). Classi�cation into Hedgers, Speculators and

Small traders is done by the CFTC, and the reported data are the total open positions, both short

and long, of each of these trader types across all maturities of futures contracts. We measure the

net position of all hedgers in each period as:

HedgersNetPositiont =
(HedgersShortPositiont �HedgersLongPositiont)

(HedgersShortPositiont�1 +HedgersLongPositiont�1)
: (25)

This normalization means that the net positions are measured relative to the aggregate open interest

of hedgers in the previous quarter. Summary statistics on these data are shown in Table I. First,

the hedger positions are on average positive, which means investors classi�ed as �hedgers� are

on average short the commodity forwards. However, the standard deviations are relatively large,

indicating that there are times when the CFTC classi�ed �hedgers�are actually net long commodity

futures contracts.

3.6 Other Controls

In our empirical tests, we use controls to account for sources of risk premia that are not due to

hedging pressure. In a standard asset pricing setting, time-varying aggregate risk aversion and/or

aggregate risk can give rise to time-variation in excess returns. This is re�ected in the pricing

kernel, �, of equity-holders in the model. To capture this source of variation, therefore, we include

business cycle variables that have been shown to forecast excess asset returns in previous research.

We include the Default Spread: the yield spread between Baa and Aaa rated corporate bond

yields, which proxies for aggregate default risk in the economy and has been shown to forecast

excess returns on stocks and bonds (see, e.g., Fama and French (1989), and Jagannathan and

Wang (1996)). We also include the Payout Ratio, which is de�ned as ln(1+ Net Payout / Market

Value). Here Net Payout is the aggregate equity market cash dividends plus repurchases minus

19



equity issuance, while Market Value is the aggregate market value of outstanding equity. In a

recent paper, Boudoukh, Michaely, Richardson, and Roberts (2007), show that this measure of

the aggregate dividend yield dominates the cash-dividend-only aggregate dividend yield that is

commonly used to forecast aggregate equity market returns.

We also include business cycle and production variables in our regressions, to account for time-

varying expected commodity spot demand, as well as to capture variation in supply that is exoge-

nous to the model. In particular, we use a forecast of quarterly GDP growth, obtained from the

Philadelphia Fed�s survey of professional forecasters, as well as OPEC production growth. Finally,

we use growth in Broker-Dealer assets relative to Household assets, obtained from the Flow of

Funds data, as a measure of the aggregate capital available to commit to positions by commodity

speculators (see Etula (2009)).

4 Individual Producer�s Hedging Behavior

While the main tests in the paper concern the relationship between spot and futures commodity

prices and the commodity sector�s aggregate fundamental hedging demand, we �rst investigate the

available micro evidence of producer hedging behavior. While Haushalter (2000, 2001) provides

useful evidence of the cross-sectional determinants of hedging behavior among oil and gas �rms, his

evidence pertains to a smaller sample than ours, over the period from 1992 to 1994.19 A natural

question for our purposes is to what extent the oil and natural gas producing �rms in our sample

actually do engage in hedging activity, and if so, in which derivative instruments and using what

strategies. In this section, we use the publicly available data from �rm accounting statements in the

EDGAR database to ascertain the extent and nature of individual commodity producer hedging

behavior.

4.1 Summary of Producer Hedging Behavior

The EDGAR database has available quarterly or annual statements for 231 of the 525 �rms in the

sample. In part, the smaller EDGAR sample is due to the fact that derivative positions are only

reported in accounting statements, in our sample, from 1998 onwards.20 We determine whether

19Another notable study of �rm-level hedging behavior in commodities is Tufano (1996), who relies on proprietary
data from gold mining �rms.
20Since the introduction of Financial Accounting Standards Board�s 133 regulation (Accounting for Derivative

Instruments and Hedging Activities), e¤ective for �scal years beginning after June 15, 2000, �rms are required
to measure all �nancial assets and liabilities on company balance sheets at fair value. In particular, hedging and
derivative activities are usually disclosed in two places. Risk exposures and the accounting policy relating to the use of
derivatives are included in �Market Risk Information.�Any unusual impact on earnings resulting from accounting for
derivatives should be explained in the �Results of Operations.�Additionally, a further discussion of risk management
activity is provided in a footnote disclosure titled �Risk Management Activities & Derivative Financial Instruments.�
Some �rms, however, provided some information on derivative positions also before this date.
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each �rm uses derivatives for hedging commodity price exposure or not by reading at least two

quarterly or annual reports per �rm. Panel A in Table II shows that out of the 231 �rms, there are

172 that explicitly state that they use commodity derivatives, 20 that explicitly state that they do

not use commodity derivatives, and 39 that do not mention any use of derivatives. Of the 172 �rms

that use commodity derivatives, Panel B shows that 146 explicitly state that they use derivatives

only for hedging purposes, while 16 �rms say they both hedge and speculate. For the remaining

10 �rms, we cannot tell. In sum, 74% of the producers in the EDGAR sample state that they use

commodity derivatives, while a maximum of 26% of the �rms do not use commodity derivatives.

Of the �rms that use derivatives, 85% are, by their own admission, pure hedgers.

Panel C of Table II shows the instruments the �rms use and their relative proportions. Forwards

and futures are used in 29% of the �rms, while swaps are used by 52% of the �rms. Options

and strategies, such as put and call spreads and collars, are used by 20% and 33% of the �rms,

respectively. Most options positions are not strong volatility bets. In particular, low-cost collars

that are long out-of-the-money put and short out-of-the-money calls are the most common option

strategy for producers �a position that is very similar to a short futures position. Thus, derivative

hedging strategies that are linear, or close to linear, in the underlying are by far the most common.

We focus on short-term commodity futures - the most liquid derivative instruments in the

commodity markets - in our empirical analysis. However, quite a bit of the hedging is done with

swaps, which are provided by banks over-the-counter, and often are longer term. On the one

hand, this indicates that a signi�cant proportion of producer�s hedging is done outside the futures

markets that we consider. On the other hand, banks in turn hedge their aggregate net exposure

in the underlying futures market and in the most liquid contracts. For instance, it is common to

hedge long-term exposure by rolling over short-term contracts (e.g., Metallgesellschaft). A similar

argument can be made for the net commodity option imbalance held by banks in the aggregate.

Thus, producers�aggregate net hedging pressure is therefore likely to be re�ected in trades in the

underlying short-term futures market.

4.2 The Time-Series Behavior of Producer Hedging

Information about hedging positions from accounting statements could potentially be used directly

to assess the impact of time-varying producer hedging demand on commodity returns. However,

there are signi�cant data limitations for such use. First, FAS 133 requires the �rms to report mark-

to-market values of derivative positions, which are not directly informative of the underlying price

exposure. There is no agreed upon reporting standard or requirement for providing information on

e¤ective price exposure for each �rm�s derivative positions, which leads to either no, or very di¤erent,

reporting of such information. For instance, �rms sometimes report notional outstanding or number

of barrels underlying a contract, but not the direction of the position or the actual derivative

instruments and contracts used, the 5%-, 10%-, or 20%-delta with respect to the underlying, or
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Value-at-Risk measures (again sometimes without mention of direction of hedge). We went through

all the quarterly and annual reports available for the �rms with SIC codes 2910 and 2911 (50

�rms) in the EDGAR database to attempt to extract (a) whether the �rms were long or short the

underlying, and (b) the extent of exposure in each quarter or year as measured by sensitivity to

price changes in the underlying commodity futures price (i.e., a measure of Delta).

Panel D in Table I reports that of the 34 �rms with these SIC codes that we could �nd in

EDGAR, only 19 (56%) gave information about the direction of the hedge (long or short the

underlying). Of these, on average 80% of the �rm-date observations where noted as short the

underlying commodity. Since commodity producers are naturally long the commodity, one would

expect that the producers�derivative hedge positions are always short the underlying. However,

there are complicating factors. First, some �rms do take speculative positions. Second, there are

cases where hedging demand could manifest itself in long positions in the futures market. For

instance, a pure re�ner may have an incentive to go long crude oil futures to hedge its input costs,

but short, say gasoline futures to hedge its production. This suggests that it might be fruitful

to separate producers and producer re�ners (such as Marathon Oil) from pure re�ners (such as

Valero) in the analysis.

Of the 19 �rms that reported whether they were long or short in the futures markets, we

could only extract a reliable, and relatively long, time-series of actual derivative position exposure

to the underlying commodity price for 4 �rms: Marathon Oil, Hess Corporation, Valero Energy

Corporation, and Frontier Oil Corporation. Consequently, the data is not rich enough to provide

a measure of aggregate producer hedging positions based on direct (self-reported) observations of

producers�futures hedging demand, even for the relatively short period for which EDGAR data is

available. Nevertheless, we show the relationship between the time series of hedging behavior and

default risk for the 4 �rms for which we were able to extract this information. This represents an

interesting insight into the time-series variation in hedging, which complements existing analyses

(such as Haushalter (2000, 2001)) of the cross-sectional relation between hedging behavior and

default risk measures.

4.3 Observed Hedging Demand and Default Risk

From the quarterly and annual reports of these four �rms, we extract a measure of each �rm�s

$1 delta exposure to the price of crude oil (i.e., how does the value of the company�s derivative

position change if the price of the underlying increases by $1). This measure of each �rm�s hedging

position is constructed from, for instance, value-at-risk numbers that are provided in the reports

by assuming log-normal price movements and using the historical mean and volatility from the

respective commodity futures returns. In other cases, �rms report delta�s based on 5%, 10% and

20% moves in the underlying price, which are then used to construct the $1 delta number as a

measure of hedging demand.
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We next compare the time-series of each of the �rms�commodity derivatives hedging demand

to each �rm�s Zmijewski-score and 3-year lagged stock return throughout the EDGAR sample.

There are too few observations per �rm to compare with the naive-EDF scores, which is only

provided to us until the end of 2003. Figure 3a shows the negative of the imputed delta and the

Zmijewski-score for each of the four companies. Both variables are normalized to have mean zero

and unit variance. The �gure shows that there is a strong, positive correlation between the level

of default risk, as measured by the Zmijewski-score and the amount of short exposure to crude oil

using derivative positions for Marathon Oil, Hess Corp., and Valero Energy Corp. For Frontier Oil

Corp., the hedging activity is strongly negatively correlated with the Zmijewski-score. The same

pattern can be seen in Figure 3b, where each �rm�s hedging activity is plotted against the negative

of its 3-year average stock returns. Marathon Oil and Hess both extract and re�ne oil and so it is

natural that as default risk and hedging demand increases, these �rms increase their short crude

oil positions. Valero, however, is a pure re�ning company that one might argue should go more

long crude oil as default risk increases. This does not happen, however, because Valero in fact

holds inventory of its input, crude oil, as well as for re�ned products. This was inferred by reading

Valero�s quarterly reports, and is anecdotally quite a common happenstance for re�ners. Thus, an

increase in the demand for hedging leads to increasing hedge of both the input and output good

inventories. Frontier Oil, however, behaves more as one might naively expect of a re�ner, as the

company does not hold signi�cant crude inventory in this sample, and decreases its short crude

positions as default risk increases.

In sum, in these four �rms, which constituted the best sample available in EDGAR of the

producer �rms, it is clear that hedging activity indeed is time-varying and related to the proposed

proxies for fundamental hedging demand. However, the graphs highlight that one must take care

when inferring expected hedging activity from whether a �rm is involved only with extraction, or

extraction and re�ning, or a pure re�ner. Essentially, all �rms are to some extent naturally long

crude oil, but for pure re�ners one can expect this to be less the case than for companies that

engage in both extraction and re�ning - this echoes the analysis in Ederington and Lee (2002).

We now turn to our analysis of the aggregate relationships between our proxies for fundamental

hedging demand, spot returns and futures risk premia in the oil and gas markets.

5 Aggregate Empirical Analysis

In this section, we employ the aggregate measures of producer hedging demand, for which we

reported summary statistics in the Data section, to test the empirical predictions of the model

documented in Section 2. The main novel prediction of our model is that aggregate commodity

sector fundamental hedging demand should be positively related to the respective commodity�s

futures risk premium. We have argued that a proximate determinant of hedging demand is default
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risk, in particular, high default risk on average leads to higher hedging demand. Further, there

should be a common component in the expected change in the spot price and the futures risk

premium, and so the default risk measures should also predict changes in commodity spot prices.

Our model shows that this common component is why the basis, as shown in previous research

(e.g., Fama and French (1986)), is not a strong forecaster of the time-series of commodity futures

risk premiums, but instead should be more tightly linked to �uctuations in inventory, as shown by

Gorton, Hayashi, and Rouwenhorst (2007).

Before we test these predictions of the model, however, we perform one additional check of

our aggregate measures of producers�fundamental hedging demand by relating them to the CFTC

measures of aggregate net hedging demand. We further use the CFTC measure to substantiate a

split of the sample of producing �rms into �rms that state they hedge versus �rms that are self-

stated likely non-hedgers. This split is then used as a robustness check throughout the analysis to

facilitate the interpretation of the regression results as arising from fundamental hedging demand

rather than from any omitted variable in our empirical model.

5.1 CFTC Hedging Positions and Producer Hedging Demand

As previously explained in the Data section, the aggregate CFTC data on hedger positions is noisy.

However, a noisy measure of hedger positions should still contain information about the underlying

true producer hedging demand. Therefore, we regress the CFTC hedger positions on our aggregate

default risk measure as an additional test of the validity of our measures of fundamental hedging

demand.

We construct the hedger net position variables from the CFTC data as the net short position,

so we should expect a positive relation between the default risk and CFTC hedger positions. We

use our default risk measures to predict one-quarter ahead CFTC hedger positions to account for

the possibility that there are lags between the desire for hedging and the implementation of the

hedge, as well as to establish causality.

Table III reports the results of the regression:

HedgerNetPosi;t+1 = �iDefRiski;t + ControlV ariablest + ui;t+1; (26)

where i denotes the relevant commodity (crude oil, heating oil, gasoline, or natural gas). The

controls in these regressions are the lagged aggregate stock market dividend-price ratio, the aggre-

gate default spread, GDP growth forecast, each commodity�s aggregate inventory and basis, net

hedger positions, and quarterly dummy variables. The moniker �DefRisk�denotes in this, and

all following regressions, the aggregate Zmijewski-score, Naive EDF, or the negative of the 3-year

average producer stock returns (so as to make the expected regression coe¢ cient, �i, positive in

all speci�cations). Table III shows that the regression coe¢ cient �i is indeed positive for all the
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default risk measures and across all the commodities. The right-most column of the table gives the

�-coe¢ cient from a pooled regression across all commodities. For all three default risk measures,

� is positive and statistically signi�cant at the 5% level or greater.21

5.1.1 Hedgers Versus Non-Hedgers.

Next, we split the producers into two groups based on whether a producer is a stated hedger or

non-hedger, according to the data we gathered in Section 3 on individual �rms�disclosures about

their hedging policies. If our model is correct, hedging pressure should be driven by the increase

in default risk only for those �rms that engage in hedging, and not when the default risk increases

for �rms that do not engage in hedging. This split also helps assuage concerns that our default risk

measures are a consequence of an unobservable factor that simultaneously drives defaults and the

commodity futures risk premium.

To implement the split, we must implicitly extrapolate the behavior of the sample �rms back-

wards in time. This is because the EDGAR data only contains information back to 1998. Panel

A of Table II identi�es 20 �rms as stated non-hedgers, while 59 �rms are likely non-hedgers, and

146 �rms are stated hedgers. We construct aggregate Zmijewski-scores, Naive EDF�s, and 3-year

average returns based on these three de�nitions. One concern that arises in this context is that

hedging �rms tend to be quite a bit larger than the non-hedgers. In particular, the average market

value of the hedgers is $3,035 million versus only $701 million for likely non-hedgers, and $313

million for stated non-hedgers. Furthermore, the sample of hedging �rms is larger, which reduces

the idiosyncratic noise in aggregate measures constructed for this group of �rms.

To facilitate comparisons that are not driven by these di¤erences, we identify a matched sample

of self-described hedging producer �rms, by removing the �rms with the largest market values until

the number of �rms in the hedger sample is 59 �the same as in the likely non-hedger sample. The

average market value of the matched hedgers is $373 million, with a comparable standard deviation

to that of the non-hedgers, and we run our tests also using this matched sample.

Table IV gives the results of regressions, where the hedger positions are pooled across commodi-

ties, that are run for each of the three default risk measures:

HedgerNetPost+1 = �1 (DefRisk_Hedgerst +DefRisk_NonHedgerst) :::

+�2DefRisk_NonHedgerst + ControlV ariablest + ut+1: (27)

A signi�cant �2 < 0 in these regressions would indicate that the regression coe¢ cient on the default

risk measure of non-hedging producers is signi�cantly smaller than the regression coe¢ cient on the

21Note that in all individual-commodity regressions in this paper, standard errors are constructed using the Newey-
West (1987) method, which is robust to heteroskedasticity and autocorrelation of the error terms, and in all pooled
regressions, we employ Rogers (1983, 1993) errors that are robust to heteroskedasticity, own and cross-autocorrelation
and contemporaneous correlation across all commodities in each quarter.
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default risk measure of hedging producers. Table IV shows that in all the regressions the sign of

�1 is strongly positive, while the sign on �2 is signi�cantly negative 10 out of 12 times. Inspecting

the magnitude of the regression coe¢ cients, the implied regression coe¢ cient on the non-hedgers�

default risk measure (�1+�2) is, as expected, close to zero. Thus, it is the default risk of producers

that hedge their exposure, and not default risk in general, that drives aggregate hedging pressure.

In our analysis to follow, we continue to use these splits of �rms into hedging and non-hedging

producers as additional robustness checks.

5.2 Commodity Futures Returns

In this section we evaluate the �rst part of Proposition 1, namely that increases in fundamental

hedging demand are associated with higher futures risk premia. To do so, we run a standard fore-

casting regression for excess commodity futures return, using our default risk proxy for fundamental

hedging demand. In particular, we regress quarterly (excess) futures returns on one quarter lagged

measures of default risk (DefRisk):

ExcessReturnsi;t+1 = �iDefRiski;t + ControlV ariablest + ui;t+1; (28)

where i denotes the commodity and t denotes time measured in quarters. The controls are: aggre-

gate commodity inventory and basis; the aggregate stock market dividend-price ratio; the aggregate

default spread; the GDP growth forecast; and quarterly dummy variables. All regressions include

quarterly dummy variables to control for the seasonal variation in inventory, basis and returns.

Table V shows the results of the above regression across the four commodities considered, as

well as a pooled regression across all commodities. First, we note that in all cases, the regression

coe¢ cients have the predicted sign: an increase in default risk forecasts higher futures returns over

the next quarter. For ease of interpretation, the default risk measures are in all cases normalized

to have unit variance, and thus the regression coe¢ cients give the expected futures return response

to a one standard deviation change in the aggregate default risk measure. The average expected

return response is highly economically signi�cant at 4% per quarter across the commodities. The

standard deviation of quarterly futures returns of Crude Oil, Heating Oil, and Gasoline is 20%

per quarter, and so the implied quarterly R2 from the e¤ect of the producer fundamental hedging

demand alone is 4% for these commodities. This is a signi�cant number for quarterly forecasting

regressions, considering the high persistence of the predictive default risk variables.22

The pooled regressions show that the e¤ect of producer hedging demand is signi�cant at the 5%

level or greater for all the default measures. In the individual regressions, the evidence is strongest

for Crude Oil and Heating Oil and somewhat weaker for Gasoline and Natural Gas. However,

22The default risk measures are also signi�cant predictors of futures returns in simple univariate regressions (not
reported).
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the two latter have the shortest time-series of 84 and 64 quarters, respectively, which potentially

explains the lower signi�cance. Furthermore, Haushalter (2000, 2001) points out that hedging for

Natural Gas producers in particular is less prevalent and more risky since there is substantial basis

risk depending on the location of the producer relative to the location at which the benchmark price

is set.23 This may also be responsible for the somewhat weaker results we see for this commodity.

In terms of the controls, aggregate measures of investor risk aversion do not play a greatly

important role when producer default risk is accounted for. Consistent with the model, the basis

does not appear to be a good predictive variable for the commodity futures risk premium (with

the exception of gasoline) in our regressions. We do not �nd inventory to be a signi�cant predictor

once producer hedging demand and the other controls are included in the regression.

In sum, we conclude that there is strong evidence that commodity producers� fundamental

hedging demand is positively related to the expected return of commodity futures, consistent with

the model in Section 2. This evidence is robust to the inclusion of a range of standard control

variables that capture variation in investor risk aversion. Additionally, at the end of this section,

we report the robustness of our results to the introduction of alternative controls such as variables

that proxy for speculator risk tolerance and consumer hedging demand.

5.2.1 Hedgers Versus Non-Hedgers.

Next, we consider the forecasting power of default risk measures based on producers that state they

are hedgers versus producers that are non-hedgers, parallel to the analysis conducted for the CFTC

hedger positions. In particular, Table VI gives the results of futures returns forecasting regressions,

where the hedger positions are pooled across commodities, that are run for each of the three default

risk measures:

ExcessReturnst+1 = �1 (DefRisk_Hedgerst +DefRisk_NonHedgerst) :::

+�2DefRisk_NonHedgerst + ControlV ariablest + ut+1: (29)

Table VI shows that for the Zmijewski-score and the Naive EDF, the �1-coe¢ cients are positive

and signi�cant at the 1% level or greater, while the �2-coe¢ cients are negative and signi�cant at

the 5% level or greater. In this case, the default risk measures are not individually normalized to

have unit variance, as this would invalidate the interpretation of �2 as a test of the signi�cance of

the di¤erence in impact of hedger versus non-hedger default risk. Yet again, the implied coe¢ cient

on non-hedger default risk is close to zero in these speci�cations. While the 3-year lagged return

does not yield a signi�cantly di¤erent coe¢ cient between hedgers and non-hedgers, in the pooled

23He mentions, for example, that in 1993 the correlation between the prices of natural gas sold at Wheeling Ridge
Hub in California and gas sold at Henry Hub in Louisiana (the benchmark for prices on NYMEX contracts) was
slightly less than 30%

27



regression, the signs are consistent with that of the other measures.

5.3 Commodity Spot Returns

The model predicts a strong common component in spot and futures returns as arising from the

producers�fundamental hedging demand. Table VII shows forecasting regressions of quarterly spot

returns on the baseline lagged default risk measures, analogous to the regressions in Table V for

the case of the futures returns. In particular, the regression is:

SpotReturnsi;t+1 = �iDefRiski;t + ControlV ariablest + ui;t+1; (30)

where the control variables are the same as before. Table VII shows that there is a clear positive

relation between default risk and spot returns on commodities. In particular, all the default risk

measures are signi�cant at the 5% level or better in the pooled regressions. The regression coef-

�cients are very close to those found in the futures returns forecasting regressions, as predicted

by the model. That is, the common component in the expected futures and spot returns are of a

similar size. Unlike in the results for futures returns, however, the basis is highly signi�cant in the

pooled regressions. This is also consistent with the model, which predicts that the basis will indeed

be more informative about future spot prices than futures risk premia.

In the model, a decrease in the futures risk premium leads to an increase in the spot price

as producers are willing to hold more inventory when the cost of hedging is lower. The spot

regressions are consistent with this result, as an increase in the spot price all else equal leads to a

lower expected spot return. To the extent that the massive increase in speculator demand for long

commodity futures positions over the recent years led to a decrease in the futures risk premium, we

should expect to have seen an increase in the spot price. This e¤ect is due to the increased risk-

sharing between producers and speculators enabled on account of the lower futures risk premium.

Note that an increase in spot prices can occur through this channel even if there are no changes in

the fundamentals of the commodity spot market.

5.4 Robustness and Additional Model Implications

5.4.1 Speculators, Consumers, and Other Producers.

The model (Proposition 3) also predicts that changes in the capital constraints of speculators will

have an impact on expected futures and spot returns. In particular, with more capital �owing to

commodity funds, ~
s should decrease and thus so should futures risk premium. Following Etula

(2009), we use the growth in aggregate broker-dealer asset growth relative to household asset growth

as a proxy for this speculator constraint (see Etula (2009) for details on the construction of this

variable using the Flow of Funds data). In addition to this, we add three other controls to address
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e¤ects that might be important for the futures risk premium, but that are outside the model. First,

consumer hedging demand may also impact the futures risk premium. Consumers, however, are

a more di¢ cult group to pinpoint. First, several di¤erent industries have oil and gas products as

one of their factor inputs. The basis risk in terms of hedging in these markets are likely larger for

these agents exactly because energy is just one of several factors in�uencing pro�ts, as opposed

to the case of producers, where the source of risk is relatively clear. Nevertheless, we create an

aggregate Zmijewski-score based on airlines (SIC code 4512), as a proxy for consumer hedging

demand analogous to our measures for producers. Second, we add the conditional volatility of

the commodity futures returns obtained from a GARCH(1,1) model to control for time-variation

in return volatility. Third, we use OPEC production growth to control for production changes of

producers outside the model that in�uence the price of oil.

Table VIII shows the results of pooled forecasting regressions of the futures returns, using the

above variables as well as the controls applied in the previous regressions. All the measures of

producer fundamental hedging demand are still signi�cant. Notably, the measure of speculator

investment constraint comes in strongly signi�cant in all regressions with the sign predicted by our

model, consistent with the �ndings in Etula (2009). None of the other controls are strongly signi�-

cant. In sum, the main result of the paper is robust to these controls, and the fact that the measure

of the extent of capital available to the speculators is signi�cant in addition to standard measures

of investor risk appetite (the payout ratio and the default spread) supports the assumptions that

underpin our model.

Figure 4 presents the estimated Crude Oil quarterly futures risk premium based on all the

variables employed in Table VIII versus the estimated risk premium based on the Zmijewski-score

alone, in one case just for hedging producers and in the other case just for non-hedging producers.

The producer hedging demand based on hedgers can be seen to be a economically signi�cant

component of the futures risk premium. In particular, it accounts for 34% of the total estimated

variation in the futures risk premium. In contrast, the producer hedging demand based on non-

hedgers is essentially �at and has little explanatory power for the futures risk premium.

5.4.2 Inventory

Finally, we check whether the speci�c mechanism predicted by the theory operates correctly, i.e.,

whether changes in default risk translate into changes in discretionary holdings of inventory. Again,

rather than a contemporaneous regression, we run a forecasting regression for changes in aggregate

inventory, in the event there is some friction preventing hedgers from immediately implementing

their strategies and to establish causality:

Inventoryi;t+1 = �iDefRiski;t +

4X
k=1


iChangeInventoryi;t�k +ControlV ariablest + ui;t+1; (31)

29



We augment the set of controls with four lagged values of changes in inventory, in case there are

seasonalities in changes in inventory that are not captured by the quarterly dummy variables.

Table IX shows the signs are as predicted in all but three of the regressions - an increase in default

risk decreases the level of inventory. Moreover, the joint test results all have the predicted sign

and they are statistically signi�cant for AV G3Y and Naive EDF. For AV GZm, the t-statistic for

the joint test results is 1.52. Natural Gas is the culprit for the weaker evidence here, as for this

commodity the sign is in fact positive. This again raises the possibility that the high location-

speci�c basis risk identi�ed by Haushalter (2000, 2001) for natural gas producers in particular,

is clouding our inferences in this case. If the pooled regressions exclude Natural Gas, the sign

is negative and signi�cant at the 5% level of better for all the measures. This evidence suggests

that the mechanism we identify in the paper connecting discretionary changes in inventory with

measures of default risk is a reasonable one.

As in the model, the empirical results presented in this paper con�rm that the primitive driving

force is producers�fundamental hedging demand: An increase in default risk leads to a subsequent

decrease in the optimal inventory holding, which in turn lowers the current spot price and increases

future expected spot prices. The increase in default risk also increases commodity producers�

demand for hedging in the futures market, which in turn increases the futures risk premium.

5.4.3 Splitting the Sample and Producers versus Re�ners24

When splitting the sample, all the pooled regression coe¢ cients indicate a positive relation between

producer fundamental hedging demand and the futures risk premium in the �rst half of the sample.

However, only for the 3 year lagged return measure is this e¤ect statistically signi�cant. The

predictability evidence is stronger in the second half of the sample. Here all the pooled regressions

are signi�cant at the 1% level or better. The magnitude of the regression coe¢ cients are, however,

comparable across the samples.

We also performed a split of the sample of producers into pure re�ners versus producer-re�ners,

as given by the information in accounting statements in EDGAR. The idea is that re�ners are

less likely to hold short futures positions in crude oil as their natural hedging position, as crude

oil is an input to these �rms� production. As discussed in Section 4, however, this hypothesis

is complicated by the fact that many pure re�ners hold signi�cant inventories of crude oil. We

�nd that the predictive power of producer-re�ners�default measure tends to be stronger than that

of pure re�ners. In particular, the producer versus pure re�ner split does lead to a signi�cantly

di¤erent impact on the CFTC measure of aggregate hedger activity in the crude oil commodity

market. The split leads to a signi�cant di¤erence in the forecasting regression coe¢ cients across

re�ners and producers only in the case of the return measure. The other two default risk measures

24These results are not reported, but they are available upon request.
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yield an insigni�cant di¤erence in the e¤ect. This is not unexpected, however, given that some pure

re�ners do hold inventory of crude oil to hedge input purchase costs and, as explained in Section

4, therefore sometimes hedge by going short crude oil futures, just as a producer would.

6 Conclusion

In this paper, we build a theoretical model in which the interaction between commodity producers

who are averse to price �uctuations, and capital constrained speculators investing in commodity

markets, determines commodity spot prices and commodity futures risk premia in equilibrium.

Using a theoretically and empirically motivated proxy for the fundamental hedging demand of

commodity producers - their default risk - we �nd evidence to support the predictions of the model

in the oil and gas markets.

Our main insight is that the hedging demand of producers is an important channel through

which trading in commodity futures markets can a¤ect spot prices. This occurs in our model

because futures markets allow producers�inventory holdings to better adjust to current and future

demand shocks, reminiscent of the Litzenberger and Rabinowitz (1995) model in which the optimal

adjustment of production schedules is the main focus. Our model allows us to shed light on an

important recent debate �whether speculative activity in the oil futures market has been responsible

for the gyrations in oil spot prices. The model reveals that changes in speculative positions change

the costs of hedging for producers, which in turn change inventory holdings and thus spot prices.

Empirically we verify this line of reasoning - the default risk of oil and gas producers (a proxy for

their fundamental hedging demand) is a signi�cant determinant of producers�hedging demand in

oil and gas futures markets, and in turn, of spot and futures prices and futures risk premia.

Much work remains to be done in order to understand these relationships fully, especially from

an empirical standpoint. First, even though aggregate default risk proxies are hard to come by

for other commodities due to the paucity of identi�able producers, it would be interesting to see if

our results are veri�ed for a broader set of commodities than oil and gas. Second, in recent times,

demand shocks to commodity markets have largely arisen from increased demand for commodities

from fast developing countries like India and China. An interesting avenue for further research

would be to investigate the role of such global demand shifts on commodity inventories and spot

and futures prices. Exploring the role of such demand shocks in a model such as ours would open

the possibility of understanding their contribution to the recent volatility in commodity prices,

relative to the contribution of increased speculative activity in futures markets.
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7 Appendix

7.1 Proofs of results given in the main body of paper

It is useful to establish some prelimenary results. Note that for the futures market to clear when ~
p, ~
s > 0, the condition

E [� (S1 � F )] > 0 must be satis�ed (see Equation (16)). Since this implies that h�p < I (1� �)+g1 (see Equation (8)), we have

from Equation (5) that E [�S1]� S0= (1� �) > 0 when there is no stock-out (� = 0).

Proof of Proposition 1
It is, for ease of exposition, useful to de�ne speculator and producer risk tolerance as 
s � 1=

�
~
s�

2
�
and 
p � 1=

�
~
p�

2
�
,

respectively.25 We �rst consider the e¤ect an increase in producer risk tolerance, 
p, has on inventory.

First, consider the case of no stock-out, � = 0. In this case, we have from the equilibrium condition given in Equation (17)

that: �

s + 
p

�
(E [�S1 (I

�)]� S0 (I�) = (1� �)) = I� (1� �) + g1: (32)

Then

(E [�S1 (I)]� S0 (I) = (1� �)) +
�

s + 
p

� dI
d
p

�
E

�
�
dS1

dI

�
� dS0

dI
= (1� �)

�
=

dI

d
p
(1� �) (33)

m

(E [�S1 (I)]� S0 (I) = (1� �))
�
1�

�

s + 
p

��
E

�
�
dS1

dI

�
� dS0

dI
= (1� �)

���1
=

dI

d
p
(1� �) (34)

Remember that S0 = a0 + f (�I) and S1 = a1 + f (I). Thus, since f 0 < 0, we have that dS0
dI

> 0, and dS1
dI

< 0, and

E
h
� dS1

dI

i
� dS0

dI
= (1� �) < 0. Since E [�S1]� S0= (1� �) > 0, it follows that dI

d
p
> 0. In the case of an inventory stock-out,

we have trivially that dI
d
p

= 0.

The derivative of the expected spot return with respect to producer risk tolerance is then:

d

d
p

E [S1]� S0
S0

=

�
E
h
dS1
dI

dI
d
p

i
� dS0

dI
dI
d
p

�
S0 � (E [S1]� S0) dS0dI

dI
d
p

S20
(35)

=
E
h
dS1
dI

i
S0 � E [S1] dS0dI
S20

dI

d
p
< 0: (36)

Thus, the expected spot return is increasing in the producers� risk aversion, ~
p, as stated in the proposition. If there is a

stock-out, there is no change in the expected spot return, since in this case dI
d
p

= 0.

Next, we turn to the futures risk premium. Consider the impact on the futures risk premium of a change in inventory in

the case of no stock-out, when F = S0 1+r1�� (using Equations (9) and (12)):

@

@I

 
E [S1]� S0 1+r1��

S0
1+r
1��

!
=

�
E
h
@S1
@I

i
� @S0

@I
1+r
1��

�
S0 �

�
E [S1]� S0 1+r1��

�
@S0
@I

S20
1+r
1��

(37)

=
S0E

h
@S1
@I

i
� E [S1] @S0@I

S20
1+r
1��

< 0: (38)

25This transformation of variables does not a¤ect the sign of the derivatives other than in the obvious way (tolerance
versus aversion means it is �ipped) as the price volatility is constant in this model.
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Since E
h
@S1
@I

i
< 0, and @S0

@I
> 0, we have that the sign on the change in the futures risk premium relative to the aggregate

inventory level is negative. Since dI
d
p

> 0, the futures risk premium is increasing in producer risk aversion ( ~
p) if there is no

stock-out:
d
E(S1)�F

F
d~ap

> 0.

Next, consider the case of a stock-out. Now, price in period 0 and expected price in period 1 stay constant. In this case

the futures price can be written: F = S0 1+r1�� � �
1+r
1�� . The futures risk premium is then:

E [S1]� F
F

=
E [S1]� S0 1+r1�� + �

1+r
1��

S0
1+r
1�� � �

1+r
1��

: (39)

From Equation (17), we have that:

�

s + 
p

�
(E [�S1 (I

�)]� (S0 (I�)� � (I�)) = (1� �)) = I� (1� �) + g1: (40)

First consider the derivative of � with respect to 
p:

(E [�S1 (I)]� S0 (I) = (1� �) + �= (1� �)) + :::

�

s + 
p

� @E [�S1 (I)]
@I

dI

d
p
� @S0 (I) = (1� �)

@I

dI

d
p
+
d�

d
p
= (1� �)

!
=

dI

d
p
(1� �) : (41)

Since in a stock-out dI
d
p

= 0, we have that

(E [�S1 (I)]� S0 (I) = (1� �) + �= (1� �)) +
�

s + 
p

� d�
das

= (1� �) = 0

d�

das
= �E [� (S1 � F )] (1� �) =

�

s + 
p

�
: (42)

Since we only achieve market clearing in the futures market if E [� (S1 � F )] > 0, it must be that d�
das

< 0. Given this, the

derivative of the futures risk premium in the case of a stock-out is:

d

das

E [S1]
1��
1+r

� S0 + �
S0 � �

=

d�
das

(S0 � �) +
�
E [S1]

1��
1+r

� S0 + �
�

d�
das

(S0 � �)2
< 0; (43)

since E [S1] 1��1+r
� S0 + � > 0; S0 � � > 0, and d�

das
< 0.

Proof of Corollary 2
The basis is de�ned as S0�F

S0
in this paper. Combining the producers��rst order conditions given in equations (5) and (8),

we have that:

S0 � (1� �)E [�S1]� (1� �)E [� (F � S1)] = � (44)

m

S0 �
1� �
1 + r

F = �; (45)

38



where we have used the fact that 1 + r = 1=E [�]. Manipulating the above expression, we obtain:

S0 � F
S0

=
�

S0
� F

S0

� + r

1 + r
(46)

=
�

S0
�
S0

1+r
1�� � S0y
S0

� + r

1 + r
(47)

=
�

S0
� � + r

1� �
+ y

� + r

1 + r
; (48)

where we used the no-arbitrage relation F = S0 1+r1���S0y from Equation (9). Since the convenience yield is given by y = �
S0

1+r
1�� ,

we can write the basis as:
S0 � F
S0

=
�

S0

1 + r

1� �
� � + r

1� �
: (49)

The basis re�ects storage � and interest r costs, as expected. Otherwise, the basis only re�ects the shadow price of the inventory

constraint, which is only positive in an inventory stock-out in this model. Thus, the basis is not a good signal of time-variation

in the futures risk premium. This is because of the common component in the spot and futures returns, as implies by equation

(44) above.

Proof of Proposition 3.
Here we consider the e¤ect of speculator risk aversion. We focus on 
s � 1=

�
~
s�

2
�
as it simpli�es the exposition.

First, we note that the market clearing level of aggregate inventory is increasing in speculator risk tolerance unless there is

an inventory stock-out, for which case it remains at zero. Consider the case of no stock-out, � = 0. In this case, we have from

the equilibrium condition given in Equation (17) that:

�

s + 
p

�
(E [�S1 (I

�)]� S0 (I�) = (1� �)) = I� (1� �) + g1: (50)

Then

(E [�S1 (I)]� S0 (I) = (1� �)) +
�

s + 
p

� dI
das

�
E

�
�
dS1

dI

�
� dS0

dI
= (1� �)

�
=

dI

das
(1� �) (51)

m

(E [�S1 (I)]� S0 (I) = (1� �))
�
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�
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��
E

�
�
dS1

dI

�
� dS0

dI
= (1� �)

���1
=

dI

das
(1� �) (52)

Remember that S0 = a0 + f (�I) and S1 = a1 + f (I). Thus, since f 0 < 0, we have that dS0
dI

> 0, and dS1
dI

< 0, and

E
h
� dS1

dI

i
� dS0

dI
= (1� �) < 0. Since E [�S1]� S0= (1� �) > 0, it follows that dI

das
> 0. In the case of an inventory stock-out,

we have trivially that dI
das

= 0. Given this and the results established in the proof of Proposition 1, it follows that the expected

spot return and futures risk premium are both increasing in speculator risk aversion.
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Table I 
Summary Statistics 

 
This table reports summary statistics (mean, standard deviation, and the first autocorrelation coefficient AR(1)) of the 
variables AVGZm (cross-sectional average quarterly Zmijewski-score); AVG3Y (cross-sectional average of the time-
series average stock return per producer-firm over the past three years, each quarter); cross-sectional average naïve EDF 
(expected default frequency) from Bharath and Shumway (2008); basis (standard deviation and AR(1) computed for the 
deseasonalized series); spot returns; futures excess returns; net change in hedger’s short positions and the change in 
aggregate inventory (standard deviation and AR(1) computed for the deseasonalized series), all measured quarterly as 
specified in the Data section.  These statistics are computed for each of Crude Oil, Heating Oil, Gasoline and Natural 
Gas.    
 

  Crude Oil Heating Oil Gasoline Natural Gas 
     
AVGZm     
Mean -2.689 -2.727 -2.692 -2.587 
StdDev 0.318 0.323 0.329 0.417 
AR(1) 0.951 0.939 0.969 0.702 
 
AVG3Y     
Mean 0.009 0.009 0.009 0.004 
StdDev 0.010 0.010 0.010 0.013 
AR(1) 0.930 0.930 0.953 0.923 
 
Naïve EDF     
Mean 0.037 0.040 0.036 0.099 
StdDev 0.030 0.032 0.029 0.073 
AR(1) 0.726 0.743 0.719 0.829 
 
Basis     
Mean 0.018 0.026 0.040 -0.039 
StdDev 0.059 0.131 0.081 0.136 
AR(1) 0.462 0.146 0.390 0.342 
 
Spot Return     
Mean 0.031 0.033 0.039 0.042 
StdDev 0.170 0.179 0.175 0.226 
AR(1) -0.132 -0.143 -0.137 -0.194 
 
Futures Excess Return     
Mean 0.043 0.044 0.067 0.025 
StdDev 0.206 0.200 0.210 0.298 
AR(1) -0.123 -0.078 -0.183 0.035 
 
Hedgers Net Position     
Mean 0.003 0.080 0.069 0.067 
StdDev 0.072 0.114 0.099 0.068 
AR(1) 0.135 -0.010 0.256 0.206 
 
Change in Inventory     
Mean -0.001 0.002 0.001 -0.004 
StdDev 0.044 0.088 0.035 0.156 
AR(1) 0.551 0.506 0.138 0.415 
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Table II 
Producer Hedging – Summary Statistics 

 
The data in this table is taken from 10-Q and 10-K filings in the Edgar database of firms with SIC codes 1310, 1311 
(mainly Natural Gas), and 2910 and 2911 (mainly Crude Oil and Refined Products). The Edgar files have only been 
obtained for firms that are verified to be crude oil or natural gas producers, oil refiners, and oil refined product 
marketers.  
 
Panel A:    
 Number Proportion  
Firms in CompuStat sample (SIC 1310, 1311, 2910, 2911) 570   
Firms where Edgar filings could be found 231   

- # firms where cannot tell if use commodity derivatives 
- # firms that do not use commodity derivatives 

39 
20 

17% 
9% 

 

- # firms that use commodity derivatives 172 74%  
 
Panel B: 

   

    
Hedging vs. Speculation Number Proportion  
Firms that hedge 146 85%  
Firms that both speculate and hedge 16 9%  
Firms that do not specify 10 6%  
 172 100%  
Panel C: 
   

 

Instruments Number Proportion  
Futures 47 20%  
Forwards 21 9%  
Options 48 20%  
Swaps* 124 52%  
Strategies** 80 33%  
Not Specified 9 4%  
    
* Mainly of two types: Price Swaps and Spread Swaps    
** Usually Collars, sometimes Put Spreads, Call Spreads 

 
Panel D:      
Commodity Class 
and Direction (SIC 
2910, 2911) 

Firms in Edgar 
where direction of 

hedge is known 

Proportion of 
all Edgar 

firms 

# of time- 
series obs. 

# of obs. where  
firm is short 

Proportion of 
all time-series 

observations 
Crude Oil* 7 88% 113 98 87% 
Natural Gas* 3 50% 42 32 76% 
Crude Oil + Natural 
Gas** 2 100% 2 2 100% 
Refined Products*** 4 44% 50 41 82% 
Various**** 3 33% 20 8 40% 
All Commodity 
classes 19 56% 227 181 80% 

      
* Including positions reported as dominated by, but not exclusively comprising, this class 
** Where reported as a combined class 
*** Includes Gasoline, Diesel, Heating Oil, Jet Fuel and Asphalt 
**** Where firms report all or some of the above classes together, sometimes combined with other classes such 
as electricity 
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Table III 
CFTC Hedger Position Forecasting Regressions 

 
The independent variables are CFTC aggregate net short hedger positions in Crude Oil, Heating Oil, Gasoline, and 
Natural Gas. The measures of fundamental hedging demand are the average Zmijewski-score (avgZm), the average 
Naive EDF (avgEDF), and the negative of the average returns the last 3 years (-avg3yr) for the sample of producers in 
each commodity. These dependent variables are normalized to have unit variance. The data is quarterly and the 
dependent variables are lagged one quarter relative to the independent variables. The controls are GDP forecast, the 
dividiend yield, the default spread, the relevant commodity basis and inventory. For the case of hedging positions, lagged 
net hedging positions  are also included. Heteroskedasticity and autocorrelation consistent standard errors (using 3 lags) 
are given in parentheses; *** means p-value < 0.01, ** p < 0.05, * p < 0.1. 
 

    Crude Heating   Natural Pooled 
    Oil Oil Gasoline Gas Regression 

avgZm  0.226* 0.287*** 0.070 0.326** 0.176** 
  (0.122) (0.075) (0.086) (0.166) (0.088) 

R2  13.2% 31.4% 29.0% 34.0% 12.3% 
# obs  79 91 82 52 304 

       

avgEDF  0.243* 0.252** 0.227*** 0.099 0.213*** 
  (0.131) (0.073) (0.095) (0.079) (0.050) 

R2  15.2% 33.9% 30.7% 29.4% 13.8% 
# obs  69 81 72 42 264 

       

-avg3yr  0.141 0.300*** 0.034 0.257*** 0.159** 
  (0.109) (0.090) (0.076) (0.082) (0.073) 

R2  12.6% 31.7% 35.5% 32.7% 13.8% 
# obs  79 91 82 52 304 

       
Controls?  yes yes yes yes yes 
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Table IV 
Forecasting CFTC Hedger Positions with FAS 133 Classified Hedgers and Non-Hedgers   

 
The independent variables is CFTC aggregate net short hedger positions in Crude Oil, Heating Oil, Gasoline, and 
Natural Gas. The regressions are pooled across the commodity classes. The measures of fundamental hedging demand 
are the average Zmijewski-score (avgZm), the average Naive EDF (avgEDF), and the negative of the average returns the 
last 3 years (-avg3yr) for the sample of producers in each commodity. These dependent variables are calculated for both 
hedgers and non-hedgers and, unlike in Table III, the values are not normalized. The data is quarterly and the dependent 
variables are lagged one quarter relative to the independent variables. The controls are GDP forecast, the dividend yield, 
the default spread, the relevant commodity basis and inventory, and lagged net hedging positions. Heteroskedasticity and 
autocorrelation consistent standard errors (using 3 lags) are given in parentheses; *** means p-value < 0.01, ** p < 0.05, 
* p < 0.1. 
 

  All hedgers + All hedgers + Matched hedgers + Matched hedgers + 
  Stated non-hedgers Likely non-hedgers Stated non-hedgers Likely  non-hedgers

HedgeZm + NoHedgeZm 0.024*** 0.025*** 0.022*** 0.021*** 
 (0.005) (0.005) (0.005) (0.004) 

NoHedgeZm -0.023*** -0.026*** -0.019*** -0.017*** 
 (0.006) (0.005) (0.005) (0.004) 

R2 20.5% 20.5% 21.8% 21.7% 
# obs 304 304 304 304 

     

HedgeEDF + NoHedgeEDF 0.088*** 0.094*** 0.058*** 0.051** 
 (0.024) (0.025) (0.020) (0.025) 

NoHedgeEDF -0.091** -0.104** -0.043 -0.025 
 (0.042) (0.047) (0.041) (0.051) 

R2 15.8% 15.8% 14.9% 15.0% 
# obs 264 264 264 264 

     

-Hedge3yr - NoHedge3yr 0.507** 0.710*** 0.452*** 0.688*** 
 (0.228) (0.257) (0.180) (0.203) 

-NoHedge3yr -0.761** -1.267*** -0.717** -1.352*** 
 (0.371) (0.486) (0.351) (0.453) 

R2 12.2% 12.9% 12.6% 13.9% 
# obs 304 304 304 304 

     
Controls? yes yes yes yes 
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Table V 
Forecasting Commodity Futures Returns 

 
The independent variables are excess returns of futures on Crude Oil, Heating Oil, Gasoline, and Natural Gas. The 
measures of fundamental hedging demand are the average Zmijewski-score (avgZm), the average Naive EDF (avgEDF), 
and the negative of the average returns the last 3 years (-avg3yr) for the sample of producers in each commodity. These 
dependent variables are normalized to have unit variance. The data is quarterly and the dependent variables are lagged 
one quarter relative to the independent variables. The controls are GDP forecast, the dividend yield, the default spread, 
the relevant commodity basis and inventory. Heteroskedasticity and autocorrelation consistent standard errors (using 3 
lags) are given in parentheses; *** means p-value < 0.01, ** p < 0.05, * p < 0.1. 
 

      

 
Hedging Demand 

Measures  
Commodity 
Variables  

Other Return 
predictors         

                    ΔGDP Dividend Default      
      avgZm avgEDF -avg3yr   Inventory Basis   forecast yield Spread  N R2 

 1 0.043**    0.523 -0.235  0.016 -0.015 -0.018  91 12.3%
   (0.019)    (0.508) (0.667)  (0.015) (0.061) (0.078)    
Crude Oil 2  0.045***   0.780 -0.104  0.006 0.035 -0.041  77 13.6%

    (0.018)   (0.565) (0.681)  (0.016) (0.059) (0.078)    
 3   0.040**  0.697 -0.140  0.009 0.016 -0.015  91 11.8%
     (0.019)  (0.508) (0.654)  (0.015) (0.066) (0.082)    
                
 4 0.035***    -0.116 -0.016  0.010 -0.004 -0.020  108 9.3%

Heating   (0.014)    (0.172) (0.191)  (0.008) (0.081) (0.036)    
Oil 5  0.034***   -0.041 0.022  0.008 0.026 -0.061*  93 8.1%

    (0.013)   (0.175) (0.196)  (0.008) (0.076) (0.032)    
 6   0.036***  -0.040 -0.000  0.008 0.010 -0.038  108 9.5%
     (0.013)  (0.169) (0.173)  (0.008) (0.082) (0.036)    
                
 7 0.026    0.123 0.654***  0.026** -0.036 0.025  84 14.4%
   (0.018)    (0.734) (0.220)  (0.013) (0.052) (0.071)    

Gasoline 8  0.061***   -0.447 0.626***  0.018 0.029 -0.002  70 21.8%
    (0.014)   (0.696) (0.231)  (0.013) (0.048) (0.067)    
 9   0.027  0.158 0.632***  0.023* -0.014 0.030  84 14.5%
     (0.019)  (0.722) (0.210)  (0.013) (0.060) (0.076)    
                
 10 0.070*    0.072 0.221  0.065 -0.094 0.112  64 11.3%

Natural   (0.042)    (0.233) (0.195)  (0.040) (0.193) (0.135)    
Gas 11  0.011   0.118 0.063  0.076* -0.114 0.148  50 10.6%

    (0.031)   (0.298) (0.310)  (0.044) (0.197) (0.172)    
 12   0.085**  0.179 0.147  0.065* -0.059 0.080  64 14.0%
     (0.036)  (0.235) (0.226)  (0.039) (0.182) (0.147)    
                
 13 0.038**    0.038 0.117  0.019* -0.031 -0.019  347 8.2%
Pooled   (0.016)    (0.070) (0.106)  (0.012) (0.076) (0.042)    
regression 14  0.039***   0.042 0.119  0.014 -0.002 -0.046  290 7.2%
    (0.008)   (0.085) (0.108)  (0.012) (0.073) (0.034)    
 15   0.040**  0.067 0.114  0.015 -0.005 -0.029  347 8.5%
          (0.016)   (0.072) (0.099)  (0.011) (0.072) (0.049)      
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Table VI 
Forecasting Futures Returns With FAS 133 Classified Hedgers and Non-Hedgers 

 
The independent variable is excess returns of futures on Crude Oil, Heating Oil, Gasoline, and Natural Gas. The 
regressions are pooled across the commodity classes. The measures of fundamental hedging demand are the average 
Zmijewski-score (avgZm), the average Naive EDF (avgEDF), and the negative of the average returns the last 3 years     
(-avg3yr) for the sample of producers in each commodity. These dependent variables are calculated for both hedgers and 
non-hedgers and, unlike in Table VII, the values are not normalized. The controls are GDP forecast, the dividend yield, 
the default spread, the relevant commodity basis and inventory. For the case of hedging positions, lagged net hedging 
positions  are also included. Heteroskedasticity and autocorrelation consistent standard errors (using 3 lags) are given in 
parentheses; *** means p-value < 0.01, ** p < 0.05, * p < 0.1. 
 

  All hedgers + All hedgers + Matched hedgers + Matched hedgers + 
  Stated non-hedgers Likely non-hedgers Stated non-hedgers Likely  non-hedgers

HedgeZm + NoHedgeZm 0.148*** 0.490*** 0.106*** 0.308*** 
 (0.049) (0.155) (0.035) (0.069) 

NoHedgeZm -0.138** -0.392** -0.083* -0.191** 
 (0.059) (0.192) (0.045) (0.094) 

R2 9.6% 9.4% 8.8% 8.7% 
# obs 347 347 347 347 

     

HedgeEDF + NoHedgeEDF 0.770*** 0.439*** 0.533*** 0.292*** 
 (0.231) (0.073) (0.088) (0.048) 

NoHedgeEDF -1.060** -0.323*** -0.690*** -0.155** 
 (0.439) (0.115) (0.224) (0.074) 

R2 7.8% 7.9% 7.7% 7.7% 
# obs 290 290 290 290 

     

-Hedge3yr - NoHedge3yr 2.942 0.056 1.618 -0.097 
 (2.417) (0.322) (1.601) (0.328) 

-NoHedge3yr -2.245 0.148 -0.470 0.295 
 (3.389) (0.321) (2.495) (0.337) 

R2 8.7% 9.6% 8.3% 9.7% 
# obs 347 347 347 347 

     
Controls? yes yes yes yes 
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Table VII 
Forecasting Commodity Spot Returns  

 
The independent variables are percentage price changes in spot Crude Oil, Heating Oil, Gasoline, and Natural Gas. The 
measures of fundamental hedging demand are the average Zmijewski-score (avgZm), the average Naive EDF (avgEDF), 
and the negative of the average returns the last 3 years (-avg3yr) for the sample of producers in each commodity. These 
dependent variables are normalized to have unit variance. The data is quarterly and the dependent variables are lagged 
one quarter relative to the independent variables. The controls are GDP forecast, the dividend yield, the default spread, 
the relevant commodity basis and inventory. Heteroskedasticity and autocorrelation consistent standard errors (using 3 
lags) are given in parentheses; *** means p-value < 0.01, ** p < 0.05, * p < 0.1. 
 

   

 
Hedging Demand 

Measures  
Commodity 
Variables 

 
Other Return 

Predictors    
                   ΔGDP Dividend Default       
      avgZm avgEDF -avg3yr   Inventory Basis  forecast yield Spread   N R2 

 1 0.035*    0.683 -0.885 0.013 -0.007 -0.020  91 19.6%
   (0.019)    (0.494) (0.616) (0.013) (0.058) (0.074)    
Crude Oil 2  0.038**   0.944* -0.744 0.004 0.034 -0.034  77 21.7%

    (0.016)   (0.541) (0.621) (0.014) (0.055) (0.070)    
 3   0.033*  0.830* -0.812 0.008 0.019 -0.018  91 19.5%
     (0.019)  (0.509) (0.608) (0.014) (0.062) (0.076)    
               
 4 0.020    0.136 -0.297*** 0.012 0.010 -0.043  108 17.5%

Heating   (0.015)    (0.158) (0.086) (0.008) (0.063) (0.037)    
Oil 5  0.027**   0.235 -0.247*** 0.009 0.030 -0.063**  93 20.1%

    (0.013)   (0.148) (0.084) (0.008) (0.059) (0.029)    
 6   0.017  0.173 -0.286*** 0.010 0.018 -0.053*  108 17.4%
     (0.012)  (0.160) (0.079) (0.008) (0.064) (0.034)    
               
 7 0.018    0.660 -0.077 0.018 -0.026 -0.020  88 19.9%
   (0.015)    (0.485) (0.187) (0.120) (0.052) (0.068)    

Gasoline 8  0.048***   0.306 -0.121 0.010 0.024 -0.039  74 21.7%
    (0.014)   (0.456) (0.200) (0.012) (0.048) (0.067)    
 9   0.013  0.682 -0.078 0.015 -0.014 -0.016  88 19.4%
     (0.014)  (0.483) (0.185) (0.012) (0.058) (0.072)    
               
 10 0.055    0.156 -0.279* 0.060* -0.104 0.117  64 15.3%

Natural   (0.035)    (0.227) (0.157) (0.036) (0.175) (0.086)    
Gas 11  0.008   0.190 -0.417* 0.067 -0.124 0.148  50 17.0%

    (0.026)   (0.284) (0.232) (0.043) (0.192) (0.110)    
 12   0.072**  0.237 -0.346** 0.061* -0.072 0.094  64 17.8%
     (0.030)  (0.225) (0.178) (0.035) (0.159) (0.095)    
               
 13 0.028**    0.007 -0.397*** 0.016 -0.016 -0.021  351 11.5%
Pooled   (0.013)    (0.068) (0.059) (0.010) (0.053) (0.044)    
regression 14  0.031***   0.009 -0.406*** 0.011 0.004 -0.035  294 12.6%
    (0.008)   (0.087) (0.036) (0.010) (0.058) (0.031)    
 15   0.026**  0.029 -0.394*** 0.013 0.001 -0.028  351 11.4%
          (0.011)   (0.071) (0.053)  (0.010) (0.050) (0.047)       
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Table VIII 
Forecasting Futures Returns with Speculator and Consumer Demand 

 
The independent variable is excess returns of futures on Crude Oil, Heating Oil, Gasoline, and Natural Gas. The 
regressions are pooled across the commodity classes. The measures of fundamental hedging demand are the average 
Zmijewski-score (avgZm), the average Naive EDF (avgEDF), and the negative of the average returns the last 3 years  (-
avg3yr) for the sample of producers in each commodity. In addition lagged conditional volatility from a GARCH(1,1) 
estimation for each commodity, a measure of consumers (Airlines) aggregate Zmijewski-score, OPEC production 
growth, as well as speculator capital (growth in Broker-Dealer assets; BD_growth) are included as lagged independent 
variables. The other controls are GDP forecast, the dividend yield, the default spread, the relevant commodity basis and 
inventory. For the case of hedging positions, lagged net hedging positions  are also included. Heteroskedasticity and 
autocorrelation consistent standard errors (using 3 lags) are given in parentheses; *** means p-value < 0.01, ** p < 0.05, 
* p < 0.1. 
 

      Specification   
    1 2 3 

avgZm  0.025*   
  (0.015)   

naiveEDF   0.029***  
   (0.005)  

-avg3yr    0.035*** 
    (0.014) 

CondVol  -0.012 -0.019 -0.020 
  (0.017) (0.018) (0.017) 
OPEC_Prod  -0.006 -0.004 -0.007 
  (0.025) (0.024) (0.025) 

Cons_Zm  0.019 0.014 0.021 
  (0.022) (0.031) (0.023) 

BD_growth  -0.056*** -0.053*** -0.058*** 
  (0.012) (0.013) (0.010) 

R2  15.0% 13.8% 16.0% 
# obs  345 288 345 
     
Controls?  yes yes yes 
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Table IX 
Inventory Forecasting Regressions 

 
The independent variables are aggregate inventory above trend value in Crude Oil, Heating Oil, Gasoline, and Natural 
Gas. The measures of fundamental hedging demand are the average Zmijewski-score (avgZm), the average Naive EDF 
(avgEDF), and the negative of the average returns the last 3 years (-avg3yr) for the sample of producers in each 
commodity. These dependent variables are normalized to have unit variance. The data is quarterly and the dependent 
variables are lagged one quarter relative to the independent variables. The controls are GDP forecast, the dividend yield, 
the default spread, the relevant commodity basis and inventory. For the case of hedging positions, lagged net hedging 
positions  are also included. Heteroskedasticity and autocorrelation consistent standard errors (using 3 lags) are given in 
parentheses; *** means p-value < 0.01, ** p < 0.05, * p < 0.1. 
 

    Crude Heating   Natural Pooled Pooled regression 
    Oil Oil Gasoline Gas regression ex Nat. Gas 

avgZm  -0.062 -0.016 -0.017 0.103** -0.061 -0.085** 
  (0.067) (0.043) (0.086) (0.046) (0.051) (0.041) 

R2  51.8% 73.5% 15.0% 92.0% 34.2% 29.3% 
# obs  91 108 88 64 351 287 

        

avgEDF  -0.138 -0.143** -0.315** 0.106*** -0.188* -0.240** 
  (0.092) (0.074) (0.135) (0.035) (0.109) (0.122) 

R2  52.8% 76.5% 24.8% 92.7% 35.8% 32.3% 
# obs  77 93 74 50 294 244 

        

-avg3yr  -0.176** -0.086 -0.023 0.028 -0.125** -0.156** 
  (0.077) (0.050) (0.109) (0.046) (0.058) (0.062) 

R2  54.0% 74.3% 17.6% 91.4% 35.2% 30.8% 
# obs  91 108 88 64 351 351 

        
Controls?  yes yes yes yes yes yes 
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Figure 1a 

 
This figure shows how futures and spot prices change in response to an increase in fundamental hedging demand () in 
the case of no inventory stock-out. The solid lines denote equilibrium values before the change. Here the basis before the 
change is noted on the vertical axis: Basis = S0 – F. The dashed lines denote equilibrium values with higher hedging 
demand. 
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Figure 1b 

 
This figure shows how futures and spot prices change in response to an increase in fundamental hedging demand in the 
case of an inventory stock-out. The solid lines denote equilibrium values before the change. Here the basis before the 
change is noted on the vertical axis: Basis = S0 – F. The dashed lines denote equilibrium values with higher hedging 
demand. 
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Figure 2a 
 

This figure plots the default risk measures (AVG3Y, AVGZm and Naïve EDF) for Crude Oil, Heating Oil and Gasoline 
(the series used for all three commodities are the same, since the producer firms are in the same SIC classification 
codes).  The series are normalized by subtracting their means and dividing by their standard deviations for ease of 
plotting. 

Default Risk Measures for Crude Oil, Heating Oil and Gasoline
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Figure 2b 
 

This figure plots the default risk measures (AVG3Y, AVGZm and Naïve EDF) for Natural Gas producers.  The series 
are normalized by subtracting their means and dividing by their standard deviations for ease of plotting. 
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Figure 3a – Firm Crude Oil Hedging and the Zmijewski-score 
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Figure 3b – Firm Crude Oil Hedging and the Negative of the 3 Year Average Stock Return 
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Figure 4 – Crude Oil Futures Risk Premium 
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