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I Introduction

Risk premia in equity markets are a widely researched topic. The risk premium in equity markets is

usually de�ned as the equity premium, e.g. the excess return of equities over risk free bonds. The

literature discusses three di�erent ways for the measurement of the equity premium: Models based

on historical realizations, discounted cash-�ow models and models based on utility functions. While

historical averages have long dominated theory and practical applications, current research suggests

an upward bias for the U.S. market, e.g. the ex post realized equity returns do not correctly

mirror the ex ante expected equity premium. Among other things, this can be explained by

survivorship bias, risk premium volatility, enhanced diversi�cation possibilities, changes in interest

rate levels and states of the economy; cf. for example Illmanen (2003) and Fama/French (2002).

In the U.S., historical averages have been around 7 to 9% depending on the time horizon and

methodology (arithmetic/geometric averages) used (cf. Fama/French (2002) and Ibbotson (2006)).

Discounted cash-�ow models have become more popular recently, but are also subject to debate, in

particular for their high sensitivity to forecasts of dividend- or earnings growth rates. Estimations

based on such models yield implied equity premia in the range from 1%-9%, cf. Claus/Thomas

(2001), Gebhardt/Lee/Swaminathan (2001), Fama/French (2002), Gode/Mohanram (2003),

Easton et.al. (2002) and Easton (2004). Approaches based on utility functions have been

subject to intensive debate in the academic literature - mainly based on the 'Equity Premium

Puzzle' put forward by Mehra/Prescott (1985). Within this approach risk premia larger than 1%

can hardly be derived, however, its importance for practical applications can currently be neglected.

It is obvious that risk aversion of investors in�uences both credit prices and returns as well. As

an example, we have collected information about credit default swap (CDS) contracts of A-rated

obligors in the CDS-index CDX.NA.IG from 2003-2007. The average 5-year CDS spread has been

37 bp, whereas the average annual expected loss (EL) is only appr. 9 bp. Therefore, these 5-year

CDS investments yield an average return of appr. 28 bp (= 37 bp - 9 bp) above the risk free rate,

as can be seen from Table I. In absolute terms, this premium increases with decreasing credit

quality, i.e. the expected net returns increases with increasing riskyness. Measured relative to the

expected loss (or the actual default probability) it decreases with declining credit quality. Over

the last years, research on this default risk premium has developed, but there has not yet emerged

consensus on the methodology for measuring these default premia. Current approaches mainly use

simple ratios or di�erences between risk neutral and actual default probabilities, cf. for example

Berndt et.al. (2005) and Hull et.al. (2005).

We use structural models of default to convert credit spreads into an equity premium. Specify-

ing a speci�c structural model, one can derive the risk neutral and the actual default probability.

Used the other way around, the di�erence between risk neutral and actual default probability yields
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Rating grade Average 5-y-CDS-mid (bp) Average 5-y-EL p.a. (bp) ∆ (bp) Q-to-P

AA 31.53 5.23 26.30 6.03
A 37.37 9.17 28.20 4.07

Baa1 48.43 14.60 33.83 3.32
Baa2 56.91 22.00 34.91 2.59
Baa3 68.51 33.17 35.34 2.07

Table I:
Credit risk premia

Credit risk premia for 5-year CDS (Index CDX.NA.IG, 2003-2007) based on Moody's rating and a recovery
rate of 45%. ∆(bp) is the di�erence in bp between 5-year-CDS spread and 5-year-EL p.a. (based on historical
data per rating grade). Q-to-P is the ratio of CDS spread to EL p.a.

the dynamics of the asset value process, in particular the asset Sharpe ratio. Together with the

asset correlation and the implied volatility, we are then able to derive the market Sharpe ratio and

the equity premium. Our approach is probably most similar to Bohn (2000), Agrawal/Arora/Bohn

(2004) and Huang/Huang (2005). Our contribution is threefold: First, we use a closed form solution

for the estimation of the market Sharpe ratio and the equity premium derived in a Merton frame-

work. Moreover, we extend this estimator to �rst-passage-time-models, strategic default models

and models with incomplete information based on Du�e/Lando (2001). To our best knowledge this

has not been done in the literature yet. Second, we apply the estimator to more than 150,000 CDS

spreads from the major CDS indices in the U.S., Europe and Asia. Using CDS helps to mitigate

the 'risk-free-rate-problem' (c.f. Hull et.al. (2004)), i.e. we do not have to estimate the correct cor-

responding risk-free rate. By using constituents of a liquid CDS index we avoid the 'size-problem'1

and should be less exposed to liquidity risk issues. Third, we perform a rich set of robustness tests

including di�erent speci�cations for the real world default probability based on hazard rate models.

The estimator of the market Sharpe ratio and the equity premium derived in this paper

has three important characteristics which make it very convenient. First, it is only based on

observable parameters, i.e. risk neutral and actual default probabilities, the maturity and the

equity correlation. The risk neutral default probability and the maturity can be derived from

CDS spreads, the actual default probability from ratings2 and the correlation from equity prices.

Unlike other applications of structural models, we do neither have to calibrate the asset value

process nor the default barrier. Second, the estimator is robust with respect to model changes. We

examine a classical �rst-passage-time-model and the Du�e/Lando (2001) model which incorporates

strategic default and unobservable asset values. Third, the estimator is robust with respect to

1Various literature has pointed out to the fact that size plays a role in (expected) returns and Sharpe ratios,
c.f. e.g. Fama/French (1993, 1996). There are also indications that the size e�ect plays an important role in credit
markets as well, c.f. Agrawal/Arora/Bohn (2004).

2We use EDFs (expected default frequencies) from Moody's KMV and - as a robustness test - agencies
(Moody's/S&P/Fitch) ratings and a multi-period hazard rate model.
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noise in the input parameters. As an illustration, we look at a model-based 5-year spread of a

BBB-rated obligor. This credit spread is 37 bp for a company Sharpe ratio of 10%, it is 140 bp for

a company Sharpe ratio of 40% (cf. subsection II.A for a detailled analysis). This large di�erence

indicates that common noise in the data3 will not signi�cantly reduce the possibility to extract the

Sharpe ratio and the equity premium out of credit spreads. Mathematically, the sensitivity of the

model-based credit spread with respect to the Sharpe ratio is 'high' compared to other noise in the

data.

We have applied our equity premium estimator to the constituents of the main CDS indices in

the U.S. (from 2003-2007) and for Europe and Asia (from 2004 to 2007). The risk neutral default

probability was derived from CDS spreads, EDFs (expected default frequencies) from KMV were

used as the primary source for the actual default probability.4 We estimate equity premia of 6.50%

for the U.S., 5.44% for Europe and 6.21% for Asia. Due to some conservative assumptions5 these

estimates are upper limits for the equity premium. This con�rms former research that the historical

equity premium is upward biased. The results are quite stable over time, e.g. for the U.S. equity

premia estimates range from 5.16% in 2004 to 7.18% in 2005. Using di�erent CDS maturities (3-,

7- and 10-year) to estimate the equity premium also results in similar - though slightly smaller -

estimates for the equity premium. Our approach could also be used as a starting point to estimate

the term structure of risk premia.

The remainder of the paper is structured as follows. Section II describes the theoretical frame-

work for credit risk premia based on asset value models. We examine a classical Merton model, a �rst

passage time model and a model based on unobservable asset values as proposed by Du�e/Lando

(2001). Section III describes our data and provides descriptive statistics. The equity premium

estimates for the U.S based on 5-year CDS are reported in section IV, results from other maturities

(3-, 7- and 10-year) and other markets (Europe and Asia) are reported in section V. To con�rm

the robustness of our results, we conducted extensive sensitivity analysis which we report in section

VI. Section VII concludes.

II Model setup

The basic idea is to measure the excess return on debt and postulate a model linking debt valuation

to asset valuation and asset valuation to equity valuation. Excess returns on debt instruments

can then be transformed into excess returns on equity instruments. Technically, we use structural

3E.g. bid-ask spreads, liquidity e�ects and inaccuracies in determining the actual default probability.
4Please note that EDFs from KMV are not calibrated based on KMV's assumption about the asset drift / equity

premium but based on historical data. Therefore there is no circular statement in our arguments. In addition, various
robustness tests are performed.

5In particular we assume that 100% of the CDS spread is attributable to credit risk.
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models of default to derive a relationship between risk neutral and actual default probabilities.

Empirically, most structural models perform poorly, cf. Eom et.al. (2000). One of the main

reasons is the calibration process usually needed to speci�y structural models, e.g. determination

of leverage, asset volatilities etc. In contrast to mainstream literature, we do however not aim to

derive actual and risk neutral default probabilities from structural models. We are simply interested

in the relation between risk neutral and actual default probabilities. Hence, we simply assume that

there exists a structural model that yields the correct actual default probability and from there we

derive the risk neutral default probability. It is therefore not necessary to perform the calibration

process that is usually required. Our approach is probably most similar to Huang/Huang (2005)

and Bohn (2000). Our approach di�ers though in at last three ways: First, we explicitly focus on

models with information uncertainty; second, we use CDS spreads, which should be less sensitive

to liquidity distortions; third, to our best knowledge, this is the �rst paper that directly extracts

the equity premium out of credit prices.

Subsection A starts with the classical Merton model. We derive a simple Merton estimator

for the market Sharpe ratio and the equity premium. This estimator is only based on observable

parameters, i.e. the risk neutral and actual default probability, the maturity and equity correlations.

Subsection B and appendix A expand this framework to �rst passage time models, strategic default

models and models with unobservable asset values based on Du�e/Lando (2001).

A Equity premium estimation in the Merton framework

Structural models for the valuation of debt and the determination of default probabilities are already

mentioned in Black/Scholes (1973). The Merton framework presented in this subsection is based

on Merton (1974), who explicitely focusses on the pricing of corporate debt. In this framework a

company's debt consists of one zero-bond. Default occurs if the asset value of the company falls

below the nominal value N of the zero bond at maturity of the bond. A company can therefore

only default at one point in time, which obviously poses a simpli�cation of the real world. The asset

value Vt is modelled as a geometric Brownian motion with volatility σ and drift µ = µV (actual

drift) and r (risk neutral drift) respectively, i.e. dV P
t = µVtdt+σVtdBt and dV

Q
t = rVtdt+σVtdBt,

where Bt denotes a standard Wiener process. In this framework, the real world default probability

P def (t, T ) between t and T can be calculated as follows:

P def (t, T ) = P [ VT < N ] = P [ Vt · e (µ− 1
2
σ2)·(T−t)+σ·(BT−Bt) < N ]

= Φ

[
lnNVt − (µ− 1

2σ
2) · (T − t)

σ ·
√
T − t

]
. (1)
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Here, Φ denotes the cumulative standard normal distribution function. The default probability

under the risk neutral measure Q can be determined accordingly as

Qdef (t, T ) = Q[ VT < N ] = Φ

[
lnNVt − (r − 1

2σ
2) · (T − t)

σ ·
√
T − t

]
. (2)

Combining (1) and (2) yields (cf. Du�e/Singleton (2003))

Qdef (t, T ) = Φ
[

Φ−1(P def (t, T )) +
µ− r
σ
·
√
T − t

]
, (3)

which can be transformed to estimate the Sharpe ratio of the companies assets (SRV ):

SRV :=
µ− r
σ

=
Φ−1(Qdef (t, T ))− Φ−1(P def (t, T ))√

T − t
, (4)

.

It should be noted, that the formula is still correct if a non-stochastic, constant payout ratio

δ is introduced. Relationship (4) is a central formula in our paper. It has two main advantages

that make it convenient for our purpose: First, it directly yields the Sharpe ratio of the assets, i.e.

neither µV and σV nor Vt, N or r have to be estimated separately. In contrast to other applications of

structural models we do not have to calibrate any parameter of the asset value process. The company

Sharpe ratio can simply be estimated based on actual and risk neutral default probabilities and the

maturity. Second, it is robust with respect to model changes. This will be discussed in the next

subsection and in the appendix.

If we try to extract the market Sharpe ratio out of (4), we are faced with an additional problem:

The Sharpe ratio of the assets µV −r
σV

will usually di�er from the market Sharpe ratio, since the

assets Vt will not necessarily be on the e�cient frontier. The Sharpe ratio of the assets does not

only capture the risk preference of investors, but also depends on the correlation of the assets with

the market portfolio. The market Sharpe ratio can be calculated via a straight forward application

of the continuous time CAPM:6

µV = r +
µM − r
σM

· ρV,M · σV ⇔ µM − r
σM

=
µV − r
σV

· 1
ρV,M

, (5)

where ρV,M denotes the correlation coe�cient between the asset returns and the market returns.

6We assume ρV,M 6= 0.
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Therefore we will need an estimate of the correlation between the asset value and the market

portfolio. This correlation ρV,M can be approximated by the correlation between the corresponding

equity return and the market return (denotet by ρE,M ), i.e. by

ρV,M ≈ ρE,M .

The error of this approximation is negligible, since - within the Merton framework - the equity

value of a company equals a deep-in-the-money call option on the assets. The option is deep-in-the-

money, since annual default probabilities are less than 0.4% for investment grade companies and

less than 10% for all obligors rated B and above. For deep-in-the-money options, gamma is appr.

zero, i.e. we have an almost a�ne linear relationship between asset and equity value, cf. Hull (2005)

for example.7 Hence, the following approximation holds:

µM − r
σM

≈ Φ−1(Qdef (t, T ))− Φ−1(P def (t, T ))√
T − t

· 1
ρE,M

.

Therefore, we de�ne the Merton estimator of the market Sharpe ratio as:

γ̂SRM,Merton :=
Φ−1(Qdef (t, T ))− Φ−1(P def (t, T ))√

T − t
1

ρE,M
(6)

Including the (expected) volatility of the market portfolio σM yields an estimator for the equity

premium:

γ̂EP,Merton :=
Φ−1(Qdef (t, T ))− Φ−1(P def (t, T ))√

T − t
σM
ρE,M

(7)

It is emphasized that we will need a su�cient sensitivity of the risk neutral default probability

Qdef (t, T ) with respect to the Sharpe ratio for an empirical application. Otherwise noise in the

data (e.g. bid-ask-spreads, inaccuracies in determining correlations and actual default probailities)

will result in a very inaccurate estimation.

If we look, for example, at a BBB-rated obligor with a 5-year cumulative actual default prob-

ability of appr. 2.17%, the resulting model-based risk neutral default probability should be either

3.6% (for an asset Sharpe ratio of 10%) or 13% (for an asset Sharpe ratio of 40%) respectively

(based on (3)). Assuming a recovery rate (RR) of 50% transforms this into a CDS spread of either

37 bp or 140 bp.8 This large di�erence indicates that noise in the input parameters will only have a

7For reasonable parameter choices, the approximation error is less than 3% (for rating grades above B) and 1%
(for investment grade ratings) respectively, details are available on request).

8Here we are using the approximation CDS-spread = λQ· (1-RR). The risk neutral default intensity λQ is derived

from the risk neutral cumulative default probability via the relationship Qdef (t, T ) = 1− e−λ
Q·(T−t).
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minor e�ect on our Sharpe ratio estimation. The sensitivity with respect to noise in di�erent input

parameters is analyzed in more detail in section VI.

B Equity premium estimation in other frameworks

Of course, our estimator γ̂EP,Merton for the equity premium is formally only justi�ed in a Merton

framework. Moving to more elaborated structural models of default usually has a signi�cant impact

on actual and risk neutral default probabilities. E.g. in a �rst-passage-time framework with zero

drift in the real world, actual default probabilities are twice as high as actual default probabilities

in the Merton framework for the same parametrisation ('re�ection principle').

Fortunately, our estimator does not only include the actual default probability but the di�erence

between (the inverse of the cumulative normal distribution function of) the risk neutral and

(the inverse of the cumulative normal distribution function of) the actual default probability.

This di�erence can be shown to be very robust with respect to model changes. Intuitively, most

models introduce features (e.g. �rst-passage mechanism, unobservable asset values) which have

an e�ect on both actual and risk neutral default probability in the same direction. The di�erence

between actual and risk neutral default probability therefore remains almost unchanged. The only

parameter that solely has an e�ect on the actual default probability - without in�uencing the risk

neutral default probability - is the Sharpe ratio.

The robustness with respect to model changes is analyzed in more detail in appendix A based on a

�rst-passage-time framework, strategic default frameworks and the Du�e/Lando (2001) framework

with unobservable asset values.

III Data sources and descriptive statistics

In each week our sample consists of the intersection of a) on-the-run companies in the CDX.NA.IG

index9, b) the credit default swap (CDS) database of CMA (credit markets association) and c)

the KMV EDF database. The Dow Jones CDX.NA.IG-index is the main CDS index in North

America. It covers the 125 most liquid North American investment grade CDS.10 We used 5-year

CDS spreads to derive risk neutral default probabilities because the 5-year maturity is the most

liquid one. EDFs (expected default probabilities) from Moody's KMV data base were used as a

proxy for the actual default probabilities and correlations with the S&P500-index as a proxy for

the correlations with the market portfolio. For all parameters, we used weekly data from the period

9Our data sample starts in 04/2003 whereas the �rst CDX.NA.IG index starts in 10/2003. For the dates before
10/2003 we used the constituents of the CDX.NA.IG 1 index. The results do not materially di�er if we start our
sample period in 10/2003.

10Although the CDX.NA.IG index is a North American index we will frequently refer to 'U.S.' since the vast
majority of constituents is based in the U.S. Only two non-U.S.-based companies are in our sample (Bombardier and
Alcan (both from Canada)).
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from April 2003 until June 2007.11

The 5-year CDS spreads (bid/ask/mid) used in our analysis were taken from Datastream.

These data is compiled and provided by Credit Market Analysis (CMA) who collects CDS data

from a range of market contributors from both buy- and sell-side institutions. Only dates with

at least one trade or �rm bid for the respective CDS are used to avoid potential errors from

pure market maker data. We used CDS mid spreads for our analysis. The risk neutral default

probability Qdef was derived by the approximation Qdef = exp
(
− s
LGD · T

)
out of the CDS spread

s with maturity T and the risk neutral loss given default LGD (cf. Du�e/Singleton (2003) and

footnote 8). A recovery rate (1− LGD) of 45% was used and robustness tests were conducted.

We used expected default frequencies (EDFs) from Moody's KMV data base as our primary

proxy for the actual default probabilities. Robustness tests based on agencies ratings and hazard

rate models are provided in the robustness section. EDFs are default probabilities, which are based

on a Merton-style structural framework, cf. Moody's KMV (2007). The calibration is, however,

done more pragmatically based on a large set of historical data and on discriminant analysis.

EDFs are widely used in the banking industry and also constitute a part of some of the internal

rating systems of large banks. They have also been used in academic studies such as in Berndt

et.al. (2005). We used 1-year EDFs (and the respective equivalent rating grades from Aaa to

B3) and derived multi-year EDFs by Moody's cumulative default probabilites per rating grade.12

The cumulative default probabilities were determined via a logarithmic approach based on raw

data from Moody's (2007). The resulting table of cumulative default probabilities can be found in

Appendix B. The main advantage of EDFs compared to other ratings for our purpose is its link to

market data: The current asset volatility and equity value are direct input parameters, therefore

EDFs constitute a 'point-in-time' estimation of the current default probability. In contrast to

EDFs, the ratings of the large rating agencies are de�ned as 'through-the-cycle'-ratings, which - in

e�ect - results in di�erent default probabilities for a speci�c rating grade dependent on the current

overall economic outlook.

We used 3-year weekly13 correlations between the reference entities share price returns and

the S&P-500 index. The share prices were taken from Datastream. We used median industry

correlations since industry wide estimations of correlations have lower standard errors than a

company by company estimation. This procedure also allowed to include companies without a

11EDFs from KMV are only available on a monthly basis. We assumed EDFs to be constant within each month.
12Cf. Appendix B for details. Elton et.al. (2001) use a similar approach based on transition matrices. We have

opted for a direct cumulative estimation because of indications that rating migrations are non-Markovian. The
di�erences are though minimial, robustness tests based on migration matrices are available on request.

13The calibration of correlations has a minor e�ect on the overall result, using 2-year or 1-year correlations did not
alter results signi�cantly.
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Variable N Mean Median Std. dev. 25th Perc 75th Perc

CDS mid 24,785 54.53 39.80 58.41 25.50 61.00
CDS o�er 24,785 56.76 42.00 59.31 27.20 63.50
CDS bid 24,785 52.37 37.70 57.69 23.70 59.00

∆(bid, o�er) 24,785 4.40 4.00 3.02 3.00 5.00
EDF1 24,785 0.17% 0.07% 0.50% 0.04% 0.15%
EDF5 24,785 1.90% 1.26% 2.58% 0.85% 2.14%

ρ 24,785 0.52 0.53 0.08 0.46 0.59
Implied market volatility 24,785 17.14% 16.31% 2.36% 15.43% 18.80%

Table II:
Descriptive statistics

Descriptive statistics for input parameters. The sample consists of the intersection of the KMV database, the
CDX.NA.IG on-the-run companies and the CMA CDS database (via datastream) from April 2003 to June
2007. EDF1/EDF5 denote 1- and 5-year cumulative default probabilities based on KMV EDFs. ρ denotes
the correlation between equity returns and S&P 500 returns. Implied market volatility is taken from the
VIX term structure published by the CBOE based on mid option prices for maturities from 18-23 months.

3-year equity price history. The industry sector classi�cation was based on the sub-indices of the

CDX.NA.IG index.

Expected volatilities for the market portfolio were approximated by implied volatilities from

the VIX term structure. Data was collected directly from the CBOE webpage14. We used implied

volatilities based on mid options prices for maturities from 18-23 months which was the longest

maturity bucket that was consistently available.

Our �nal data set consists of 24,785 date/company-combinations for which 5-year CDS spreads

and EDFs were available. Table II gives an overview of the main input parameters.15

IV Results

Based on the data described in section III and the Merton estimator for the equity premium (7),

the company Sharpe ratio (4) and the market Sharpe ratio (6) derived in section II, we estimate the

implicit equity premium and company and market Sharpe ratios for each of the 24,785 observations.

Table III provides the results on a yearly basis in column (3) to (8).

14Chicago Board Option Exchange, www.cboe.com/publish/vixtermstructure/vixtermstructure.xls.
15Based on 222 weeks in our sample period and 125 on-the-run constituents in the CDX.NA.IG index the theoretical

maximum is 27,750 date/company-combinations. Therefore, we have data available for appr. 90% of the theoretical
maximum. This is probably also due to the fact that we used constituents of the most liquid CDS index and our
sample period starts approximately at the same time when index trading - and therefore also liquidity - took o� in
the CDS markets.
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Our estimation yields an average equity premium of 6.50% for the U.S. market. The average

company Sharpe ratio is 19.33% and the average market Sharpe ratio is 38.77%. The median

values are even lower with 5.95% for the equity premium and 18.17% and 35.30% for the company

and market Sharpe ratio. We would already like to mention here that all these values are upper

limits for the equity premium. This is due to some implicit conservative assumptions, especially

concerning the part of the CDS spread which is due to credit risk (we assume 100%) and the

recovery rate (our assumption of 45% seems to be an upper limit); cf. section VI for details.

Looking at each year of our sample period separately shows a quite homogenous result:

The implicit equity premium estimates range from 5.16% in 2003 to 7.18% in 2005. The year

2005 also exhibits the largest one-year increase in the equity premium up 23% from 5.84%

in 2004. CDS premia were still as high in 2005 as in 2004 - especially due to an increase

in spreads in the second quarter around the downgrades of Ford and General Motors - while

EDFs were decreasing (2.37% vs. 1.54%) due to bullish equity markets and lower volatilities .

Correlations were decreasing from 0.55 to 0.50 while implied volatilities decreased from 18.28%

to 16.04% resulting in an almost unchanged term σM
ρE,M

. It seems plausible to assume that these

downgrades have led to an increase in risk aversion among market participants. We would like

to point out that the implied equity premia also increased in the second quarter of 2007 at

the beginning of the subprime crisis. Due to low CDS spreads in the �rst quarter of 2007, av-

erage estimates for the �rst half of 2007 are though almost the same than in 2006 (7.08% vs. 7.17%).

We would also like to emphasize the fact that our results stem from very di�erent conditions

on the credit markets. Looking at CDS spreads, they averaged 75.10 bp in the year 2003. This

was accompanied by large EDFs (3.72%), large correlations (0.57) and a high implied volatility

(20.93%). In the �rst half of 2007, spreads were less than half the spreads of 2003 (37.10 bp),

EDFs were less than a fourth of their 2003 levels (0.82% vs. 3.71%), correlations were down to

0.50 and implied volatility was also signi�cantly lower than in 2003 (15.39% vs. 20.93%). The fact

that equity premium estimates were very similar throughout this time period indicates, that our

estimates are not simply a result of a speci�c set of parameters but exhibit a certain robustness to

changing market conditions. If at all, there seems to be a small tendency for equity premia to rise

when credit markets are bullish (e.g. default rates and spreads decrease), although this is not or

only partially true for the 2006 and 2007 period (from 2005 to 2006 Sharpe ratios increased but

the implied equity premium decreased due to lower estimates for the implied volatility).

To get a �rst indication why these results are so robust we can decompose the spread into a

part which is due to expected loss and a into a risk premium. In 2007, for example, the average

cumulative actual default probability was 82 bp, i.e. the cumulative expected loss was 45 bp (using

LGD=55%) and the per annum expected loss was appr. 9 bp. If we compare this expected loss
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to the average spread of 37 bp we see that appr. 75% (28bp/37bp) of the spread is due to a risk

premium. Doubling the risk premium while keeping the expected loss constant would require a

75% increase in the CDS spread. Doubling the risk premium by keeping the CDS spread constant

is only possible with negative - and therefore unreasonable - EDFs. This intuitively indicates why

our results are so robust. Small uncertainty or noise in the spread or the actual default probability

simply does not signi�cantly e�ect the results. We will discuss several robustness tests in more

detail in section VI.

V Equity premium estimates for further maturities and from other

markets

We have expanded our analysis to maturities of 3, 7 and 10 years and to European and Asian

reference entities, too. Maturities of 3, 5, 7 and 10 year are the standard maturities for which CDS

indices are provided by 'markit'.

Using other maturities than 5 year serves several purposes: First, they o�er a robustness check

of our results from the previous section. On average, risk premia estimates based on 3, 7 and 10

year maturities should not largely deviate from the results of the respective 5-year maturities.

Second, these results could be used to identify a term structure of risk premia. We are not aware of

any empirical analysis so far which has captured risk premia term structures. Therefore, compari-

son to other studies is of course limited but our results could o�er a starting point for the discussion.

An application of the methodology to Europe and Asia also o�ers several perspectives. First,

the results itself are of course interesting for an estimation of equity premia on these markets.

Second, the results o�er a good possibility to validate the robustness of the U.S.-results. If equity

markets are globally integrated, investors should demand a similar risk premium across di�erent

countries/regions. We would therefore expect equity premium estimates in a similar magnitude

than based on U.S. data. Third, U.S., Europe and Asia o�er a certain diversity concerning the

loss experience and credit quality over our sample period. While the U.S. market was still in the

aftermath of the Enron and Worldcom defaults at the beginning of our sample period and su�ered

the downgrades of Ford and GM in 2005, Europe did not su�er any comparable big-scale losses

and had, on average, a better credit quality than the U.S. market. The Asian market did not su�er

any unexpected large losses, too, but had on average a signi�cantly lower credit quality than the

U.S. market. These markets therefore o�er a good opportunity to check if our estimator is robust

with respect to these di�erent credit market conditions.

Again, our data sample consists of the intersection of the KMV database, the main CDS index

for the respective markets and the CMA CDS database. We used the iTraxx Europe index for
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Europe and the iTraxx Asia ex Japan index for the Asian market.16 Only on-the-run companies

were considered. The iTraxx Europe IG index consists of 125 investment grade constituents and is

rolled over every 6 months. Index trading started later than in the U.S. (June 2004 vs. October

2003). The iTraxx Asia index started with 30 constituents in July 2004, it was later enlargerd to

50 constituents (e�ecive date 9/20/2005).17 Due to the later start of index trading compared with

the U.S. and data availability our sample period starts at the beginning of 2004, so our sample

includes the time period from January 2004 until June 2007. Again, we used the �rst series of

the respective index to de�ne on-the-run companies before the e�ective date of the �rst series.

CDS spreads were based on the CMA database. For comparability, we included only weeks where

spreads for all maturities (3, 5, 7 and 10 years) were available. Actual default probabilities were

determined via EDFs from KMV. We used the same methodology as for the U.S. to transfer 1-year

EDFs to cumulative default probabilities. We do though want to point out that this may be a

source of inaccuracy since we assume the same migration probabilities than for the U.S. Especially

for the Asian market, historical default data is rare. We are though not aware of any arguments

why migration behaviour should be di�erent for Europe or Asia compared to the U.S. However, we

think that this approach gives estimates which are as close as possible to what market participants

would assume. The DJStoxx 600 (Europe) and the S&P Asia 50 (Asia) were used for an estimation

of correlations. Median correlations per industry sector were again used for reasons of robustness.

Implicit volatilities were calculated based on the VSTOXX Volatility sub-index 24 months.18 For

the Asian market, implicit volatility indices are not available, therefore we used rolling 1-year

historical volatilities of the S&P 50 Asia index.

Table IV provides the results for the 3-, 5-, 7- and 10-year maturities for the U.S., Europe

and Asia from 2004-2007. Please note that the 5-year results for the U.S. di�er slightly from the

previous section since only weeks where spreads for all maturities were available have been included

in this data sample.

For the U.S., results based on 3-, 7-, and 10-year maturities are similar - but slightly smaller

- than for the 5-year maturities. For the 2004-2007 period the equity premium estimation based

on 5-year maturities is 7.00% while the estimates for the 3-, 7- and 10-year maturities were

6.43%, 6.62% and 6.26% respectively. The market Sharpe ratio estimates range frome 39.32%

16There is also an iTraxx index covering Japan. We have choosen the iTraxx Asia ex Japan index to cover countries
which seem to o�er the best independent view compared with the U.S. and Europe. The biggest countries in the
iTraxx Asia ex Japan are Korea, Hong Kong, Singapore, Malaysia, China and Taiwan. Together these countries
o�er a good perspective on a region where experience with corporate �nance, derivative products and governance
structures seem to be signi�cantly di�erent from the U.S. and Europe.

17After our sample period, e�ective 9/20/2007, it was again enlargerd to 70 constituents.
18Implied volatiities for longer maturities are not available due to the lack of liquid option markets for longer

maturities. Implied volatilities do though have the characteristic that they are less volatile for longer maturities. If
at all, our results would therefore be even smoother if volatilities for longer maturities were available.
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(T=10) to 43.85% (T=5). All maturities show quite similar results for each year with equity

premium estimates ranging from 4.80% (T=10, 2004) to 7.33% (T=5, 2005). All maturities

exhibit an increase in the implied equity premium from 2004 to 2005 while the e�ect for other

years is quite small. These results con�rm our analysis for the equity premium from the last section.

For Europe, implied equity premium estimates are lower than for the U.S. They range from

5.03% (T=3) to 5.44% (T=5). Estimates for the 7-year maturity (5.24%) and the 10-year

maturity (5.06%) yield similar results. Lower equity premia for Europe compared to the U.S.

are consistent with both historical experience as well as evidence from other implied equity

premium estimates.19 Market Sharpe ratios for Europe are also lower than for the U.S., ranging

from 26.33% (T=3) to 28.39% (T=10) compared to a range of 39.32% to 43.85% for the U.S.

This is also consistent with the theoretical argument that - from a global perspective - the U.S.

market should be closer to the global market portfolio and therefore closer to the capital market

line. The di�erence between estimates for the U.S. and Europe is especially pronounced in

2004 where implied equity premia estimates for Europa are as low as 1.87% (T=3). Excluding

2004 from the analysis does, however, still result in lower estimates for Europe compared to the U.S.

Average equity premia estimates for Asia are between the estimates from the U.S. and Europe.

The lowest average estimates comes from the 10-year maturity (5.60%) and the highest from

the 3-year maturity (6.50%) with estimates for the 5- and 7-year maturities in between (6.21%

and 5.84%). The market Sharpe ratio estimates range from 35.54% to 41.40%. Again, all yearly

estimates are quite similar with the lowest estimate of 4.98% (T=10, 2005) and the highest estimate

of 7.63% (T=3, 2006). Interestingly, the increase in risk premia from 2004 to 2005 which occured

both for the U.S. and for Europe was much less pronounced for Asia. Market Sharpe ratios in

Asia were increasing from 2004 to 2005 - but signi�cantly less than in the U.S. and Europe - while

equity premia estimates were even decreasing due to decreasing volatilities.

All in all, the results based on 3-, 7- and 10-year maturities as well as the estimates for Europe

and Asia con�rm the results of the previous section and even lead to smaller equity premium

estimates. Again, the resulting implicit equity premia are lower than based on historical estimates.

VI Sensitivity analysis and robustness checks

A Sensitivity with respect to noise in input parameters

In subsection II.B and appendix A we have shown that the results are quite robust to model

changes. Besides misspecifying the model, noise in the input parameters poses another possible

19For example, Claus/Thomas (2001) estimates an equity premium of 3.40% for the U.S. while estimates for the
UK, France and Germany are 2.81%, 2.60% and 2.02%.
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source of inaccuracy. We therefore tested the sensitivity of our results with respect to all input

parameters. Parameter changes of 10% relative to its original value result in an equity premium

of appr. 10%/0.6 percentage points higher/lower for all parameters in our model. In addition, the

sensitivity is decreasing with increasing maturity. I.e., if input parameters have the same noise for all

maturities then estimates based on 10-year maturities will be more accurate than estimates based

on 3-year maturities.20 Of course, these sensitivities must be analyzed in combination with the

accuracy of the respective input parameters. I.e. a high sensitivity is worse if the respective input

parameter can not be accurately determined, it is less harmful if the respective input parameter

can be determined with very little noise. We will perform various robustness tests in the following

subsections.

B Robustness: CDS-spread

We have used several measures to ensure that our CDS data is not signi�cantly biased in any

direction. First, our datasource (CMA) is not based on a single market participant but based on

data from several buy and sell side contributors. Second, we have compared our spreads to data

from Bloomberg with no signi�cant di�erences. Third, we have used constituents of the most

liquid indices, which should enhance liquidity and data quality for the respective constituents. In

addition our data sample should be easily comparable and reproducable and is not biased towards

more recent dates.

Besides speci�c shortcomings of OTC markets, bid/ask spreads pose a natural noise in our data.

We have used mean CDS spreads in our analysis. The average bid/ask-spread is only 4 bp in our

sample which is probably also due to the fact that - in each week - we have only used the 125 most

liquid CDS in the market. Using bid or ask quotes changes our average equity premium by less

than 5%/0.3 percentage points. Of course, some part of the CDS spread may not be attributable

to credit risk. In contrast to bonds CDS are, however, seen as a rather pure measure of credit risk.

E.g. Bühler/Trapp (2008) �nd based on a reduced-form credit risk model that the liquidity risk

portions accounts for only appr. 5% of the spread. In any case, our estimate is still valid as an

upper bound for the equity premium.

C Robustness: Recovery rate

Based on Moody's (2007), the average recovery rate from 1982-2006 on senior unsecured bonds

was 38% on an issuer-weighted basis, 37% on a value-weighted basis and 46% if each year

(issuer-weighted) is given the same weight. The recovery rate volatility is signi�cantly smaller than

the default rate volatility, with a coe�cient of variation of appr. 25% on a 1-year basis compared to

appr. 60% for the default probability. The interquartile range for a yearly issuer-weighted recovery

20Detailled results are available on request.
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rate is 39%-54% on a 1-year basis and 43%-51% on a 5-year average basis. Altman/Kishore (1996)

also estimate an average recovery rate of 48% for senior unsecured bonds. Du�ee (1999) and

Driessen (2003) use a recovery rate of 44%. Discussions with market participants indicated that a

value of 40% for the risk neutral recovery rate is frequently used in practical applications.

Research on the recovery rates has soared over the last years, indicating that recovery

rates vary by industry sector and through the business cycle. E.g., Moody's (2007) indicates a

signi�cant negative correlation between the realized recovery rate and the realized default rate. In

out-of-sample tests Chava et.al. (2006) also �nd indications that this relationship holds true for

expected recovery rates as well. These �ndings may a�ect our results in three ways: First, some

of the Sharpe ratio variation over time may also be due to time-varying recovery rates. Second,

the overall level of the market Sharpe ratio may be biased if the average expected recovery rate

for our time period was signi�cantly di�erent from historical averages. Chava et.al. (2006) set

up a model where the expected recovery rate can be explained by the coupon rate, the 3-month

Treasury yield, the issue size and the seniority. Other covariates analyzed by Chava et.al. do not

improve out-of-sample performance. Using their regression results for the expected actual recovery

rate indicates again, that our recovery rate of 45% is an upper limit for the expected recovery

rate.21 In addition, our sample consists of CDS with maturities up to 10 years from 2003-2007

which e�ectively means that recovery rates from 2003-2017 - e.g. a 15-year-horizon - are relevant

for our averages. On the aggregate level, this should also help to mitigate some of the e�ects

induced by time-varying recovery rates. Third, a countercyclical time-varying recovery rate results

in risk neutral recovery rates which are lower than actual recovery rates. Again, our recovery rate

of 45% is an upper limit for the recovery rate.

D Robustness: Actual default probabilities

First, it is very important to note that our main target is to determine the PD estimates that are

used by market participants. E.g. if there was a better estimate for the real world default probabil-

ity than that used by market participants, it could be used to exploit arbitrage opportunities but

it could not be used to gauge market participants risk aversion. Market participants rely almost

entirely on three types of PD estimates: agencies ratings, distance-to-default-based measures such

as KMV EDFs and hazard rate models. So far we have used EDFs as our primary source for the

21Based on Chava et.al. (2006), the expected recovery rate for senior unsecured bonds can be estimated as
0.5183 + 0.0182 · couponrate − 0.0319 · 3 −month − Treasury − yield − 0.0332 · log(issuesize), where coupon rate
and Treasury yield are measured in percentage and the issue size is measured in $'000. Even a very conservative
calibration for our purpose of (couponrate = 6, 3−month−Treasury = 1, issuesize = $10m) results in an expected
recovery rate of appr. 45% (i.e. 46%). Certainly, average coupon rates have been lower than 6%, the average 3-month
Treasury yield has been higher than 1% and the average issue size for our sample has been higher than 10m, therefore
the abovementioned calibration is conservative for our purpose.
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actual default probabilty. Here, we will perform robustness tests based on agencies ratings and a

hazard rate model.

First, we have used agencies ratings with the corresponding cumulative default probabilities

as a robustness check. Unfortunately, these ratings are through-the-cylce estimates of the default

probability. Using agencies ratings therefore requires the assumption that we cover a whole

economic cylce.22 This assumption is probably most realistic for 5-year CDS - where we have

covered the longest period from 2003-2007 including the high-expected default year 2003 - and

for the longest maturity in our sample (10-year). We have averaged the ratings of Moody's, S&P

and Fitch in our calculation and determined multi-period default probabilities based on appendix

B. Only observations where at least one of the agencies ratings was available could be included

which slightly decreased our data sample. Results are reported in Table V. For the 5-year CDS

sample from 2003-2007 we estimate very similar default probabilities (1.77% vs. 1.65%) and

equity premia (6.70% vs. 6.66%). The estimated equity premium based on 10-year CDS spread

are even lower (5.08% (Agencies) vs. 6.35% (EDF)) but this may be due to a good credit en-

vironment from 2004-2007 - an e�ect which is certainly even more pronounced for shorter maturities.

Hazard rate models provide another robustness check for both 1-year and mulit-year default

probabilities. There is a large literature on hazard rate models for the U.S. market, e.g. Shumway

(2001) and Chava/Jarrow (2004). Unfortunately, most of these models only estimate one-year

ahead default probabilities and can therefore only be used as a robustness check for one-year default

probabilities. Lö�er/Maurer (2008) estimate a discrete duration model for conditional default

probabilities up to 5 years ahead. They use accounting covariates (e.g. EBIT, total assets) as

well as market variables (e.g. return, volatility) similar to Shumway (2001) for default prediction.

Details about their model can be found in appendix C. For the estimates based on Lö�er/Maurer

(2008), we excluded �nancial services companies - which are excluded in their methodology - and

all companies where Compustat data was not available. The results are reported in Table V.

The estimates for the cumulative default probability are slightly higher resulting in slightly lower

equity premia estimates, but both are very similar to the EDF model. Five (three) year cumulative

default probabilities are 1.89% (0.72%) for the Lö�er/Maurer model compared to 1.79% (0.59%)

for the EDF model- The resulting equity premia are 6.74% (5-year) and 6.11% (3-year) compared

to 6.96% (5-year) and 6.61% (3-year) for the EDF model.

Of course, accuracies for estimating equity premia in our model should always be interpreted

compared to alternative techniques for estimating equity premia. An inaccuracy of 10% in the

average default probability results in an increase/decrease of our equity premium estimate by appr.

22More exactly, it requires the assumption, that investors average expectations over our sample period correctly
mirror an economic cycle.
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T=3 T=5 T=7 T=10
2004-2007 2003-2007 2004-2007 2004-2007

EDF New EDF New EDF New EDF New
Model Model Model Model Model Model Model Model

Agencies N 16,032 16,032 23,100 23,100 16,032 16,032 16,032 16,032
Rating PD 0.58% 0.78% 1.77% 1.65% 2.25% 2.89% 3.74% 4.78%

EP 6.52% 4.29% 6.70% 6.66% 6.71% 5.26% 6.35% 5.08%

Discrete N 10,078 10,078 14,700 14,700
Duration PD 0.59% 0.72% 1.79% 1.89%
Model EP 6.61% 6.11% 6.96% 6.74%

Table V:
Equity premium estimates based on di�erent proxies for the real world default probability

This table shows equity premium estimates where agencies ratings and default probabilities based on a
discrete duration model have been used as proxies for the real world default probability. Agencies ratings
are based on average ratings of Moody's, S&P and Fitch with corresponding cumulative default probabilities
based on appendix B. The discrete duration model is based on Lö�er/Maurer (2008). EDF Model denotes
the model with EDFs as proxies for the real world default probability. New Model denotes the model
with either PDs based on agencies ratings or based on Lö�er/Maurer (2008). N denotes the number of
observations, PD the average cumulative default probability and EP the equity premium estimation. Equity
premia estimations for the EDF model deviate from the previous sections due to a di�erent sample size.

10%/0.6 percentage points. This sensitivity is comparable to the sensitivity of the long-run growth

rate in dividend discount models.23 In contrast to long-run growth rates we do though have (par-

tially) objective criteria for default prediction. In addition - in contrast to dividend/earnings fore-

casts - default predictions are not systematically biased.

VII Conclusion

In this paper, we have introduced a new framework for estimating the equity premium. We

measure the risk attitude of investors based on credit valuations and transforms it to an equity

premium via structural models of default. Intuitively, the CDS spread can be decomposed into

two parts: First, a part which compensates for the expected loss. Second, a part which covers the

risk premium demanded by investors. We separate these two parts and convert the risk premium

into an equivalent equity premium. This approach o�ers a new line of thought for estimating the

equity premium that is not directly linked to current methods.

We have analyzed the estimation of equity premia from credit valuations based on a simple

Merton model and developed a simple estimator for the equity premium. This estimator only uses

23Based on a Gordon model the equity premium estimate in a dividend discount model is EP = g + d− rf where
EP is the equity premium estimate, g the growth rate of dividends, d the dividend yield and rf the risk-free rate. If
d ≈ rf then the sensitivity with respect to g is approx. 1.
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actual and risk neutral default probabilities, the maturity and equity correlations. We do neither

have to calibrate a structural model nor do we have to estimate earnings or dividend growth.

The theoretical results show an astonishing robustness of this simple estimator with respect to

model changes. Although actual and risk neutral default probabilities are largely a�ected by model

changes, the Merton estimator for the Sharpe ratio is only marginally a�ected.

Compared to traditional DCF-models used for estimating the equity premium, CDS spreads

in our model correspond to the market value of equity and actual default probabilities correspond

to dividend/earnings forecasts and long-run growth assumptions. While CDS spreads and the

market value of equity can both be determined with little noise, the crucial inputs are earnings-

and long-run growth forecasts in the dividend-/earnings-discount models and the actual default

probability in our model. There are though two decisive advantages of estimating default prob-

abilities compared to earnings forecasts and long-run growth rates: First, they only have to be

estimated up to the maturity of the respective CDS. Second, there are (at least partially) objective

criteria for estimating default probabilities. For that reason di�erent sources for the estimation of

real world default probabilities have led to quite robust results.

An empirical analysis of 5-year CDS spreads from 2003-2007 of the constituents of the main

CDS indices in North America, Europa and Asia yielded upper limits for the equity premium

of 6.50% (North America), 5.44% (Europe) and 6.21% (Asia). Di�erent CDS maturities (3-, 7-,

10-year) yield similar, but slightly lower, estimates for the equity premium and could provide an

interesting insight on the term structure of risk premia.

As a �nal remark it should be pointed out that this paper proposes a new framework for

estimating the equity premium based on CDS spread observations. Although we have performed

several robustness checks, our approach will have to be challenged in several ways by future research.

First, because of data limitations for the CDS market we have been able to analyze only a rather

limited period of time and a restricted number of companies. It will be interesting to see whether the

approach remains robust as presumed if a whole economic cycle as well as a larger cross-section of

�rms can be integrated in the analysis. Second, the literature on the estimation of expected actual

default probabilities is still evolving, especially concerning multi-year default prediction. Hence, it

has to be seen whether our approach will remain robust with respect to future calibrations. Third,

our approach still su�ers from limitations that it estimates an upper limit of the equity premium.

By using methods that can split-up the CDS spread in a part due to credit risk and a part due to

other factors (e.g. liquidity) the equity premium estimates could be rendered more precise.
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A Robustness of Sharpe ratio estimator with respect to model

changes

In this section we will show that the Merton estimator for the Sharpe ratio is robust with respect

to model changes. We will analyze the following frameworks: a �rst-passage-time framework based

on Black/Cox (1976), a framework with unobservable asset values based on Du�e/Lando (2001)

and - implicitly - all strategic default frameworks that yield a constant default barrier (e.g. Leland

(1994), Leland/Toft (1996)).

First-passage-time framework: In a �rst-passage-time framework default occurs as soon as the

asset value falls below the (non-stochastic, constant) default threshold. As in the Merton framework

asset values Vt are assumed to follow a geometric Brownian motion but default is now modelled as

the stopping time τ := inf{s > t;Vs ≤ L}, where L ∈ R denotes the default threshold. The actual

(P def (t, T )) and risk neutral (Qdef (t, T )) default probability can be calculated as

P defFP (t, T ) = Φ
(
b−mP (T − t)
σ
√
T − t

)
− e

2mP b
σ2 Φ

(
b+mP (T − t)
σ
√
T − t

)
(8)

QdefFP (t, T ) = Φ
(
b−mQ(T − t)
σ
√
T − t

)
− e

2mQb
σ2 Φ

(
b+mQ(T − t)
σ
√
T − t

)
(9)

with b = ln( LVt ), m
P = µ− 1

2σ
2, mQ = r− 1

2σ
2 and σ = σV . If either the actual or the risk neutral

drift is zero, then - based on the re�ection principle - the respective default probability simply equals

twice the default probability of the Merton framework.

Framework with unobservable asset values (Du�e/Lando (2001): The �rst-passage-time

framework has been extended in numerous ways to better re�ect the default term structure

observed in the markets. These extensions include jumps in the asset value process (Zhou

(1997)), an unobservable default barrier (Finger et.al. (2002)) and unobservable asset values

(Du�e/Lando (2001)). We choose the Du�e/Lando model for our analysis as it is the only

structural model consistent with reduced form credit pricing.24 In addition, the Du�e/Lando

model incorporates a sophisticated structural model of default (i.e. a strategic setting of the

default barrier based on the asset value process, tax shield and insolvency costs) and - given

an appropriate calibration - results in realistic default intensities for short and long term maturities.

24The Du�e/Lando model is the only structural model so far that yields a default intensity. Defaults in a Merton
framework cannot be described by default intensity processes, since the probability of a default from t (today)
until t + δt is always zero or one for a su�cient small δt. A default intensity does also not exist in the Zhou
(1997) framework, since the default time cannot be represented by a totally inaccessible stopping time (which is a
consequence of the fact, that the default barrier may be hit/crossed by the normal di�usion process with positive
probability), cf. Du�e/Lando (2001) for details.
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The calculation of the cumulative default probabilities in the D/L-framework requires a weighted

application of (8) and (9) over all possible asset values Vt, where the weight is - roughly speaking -

the probability of the asset value Vt
25, i.e.26

P defDL (t, T ) =
∫ ∞
L

P defFP (t, T, x)︸ ︷︷ ︸
PD(first passage time) if Vt = x

gP (x|Yt, z0, t)︸ ︷︷ ︸
Prob., that Vt = x

dx (10)

QdefDL(t, T ) =
∫ ∞
L

QdefFP (t, T, x)gQ(x|Yt, z0, t)dx (11)

where P defFP (t, T, x)/QdefFP (t, T, x) denotes the actual/risk neutral probability that an asset value

process starting in t at Vt = x will fall below the default barrier up to time T (cf. (8)and (9)) and

gP /gQ is the actual/risk neutral conditional density of the asset value at t given the �ltration Ht.27

We will now introduce an adjustment factor which captures the di�erence between the Merton

estimator for the Sharpe ratio and the 'true' Sharpe ratio. This adjustment factor will be de�ned

by
µM − r
σM

= γMerton ·AF (12)

where

γMerton =
Φ−1(QdefDL(t, T ))− Φ−1(P defDL (t, T ))√

T
· 1
ρV,M

= γ(Vt/L, µ, r, δ, σ, α, t, T ) (13)

is a function of all parameters in the Du�e/Lando framework and therefore

AF = AF (Vt/L, µ, r, δ, σ, α, t, T )

is also a function of the same parameters. The basic idea is now to substitute Vt/L by the actual

default probability PDP . Fixing all other parameters except Vt/L, di�erent values for Vt/L simply

result in di�erent actual default probabilities PDP , i.e. we can write our adjustment factor as

AF = AF (PDP , µ, r, δ, σ, α, t, T ). (14)

As a special case, α = 0%, δ = 0% yields the classic �rst-passage time framework. Strategic

default frameworks where the default barrier is endogeneously determined but constant are also

25Of course the probability of a single value Vt will be zero for non-degenerated parameter choices, since we operate
in a continuous setting. We will still use this informal notation to allow for a better understanding.

26A detailed derivation can be found in Du�e/Lando (2001).
27Please note that the conditional density itself is dependent on the respective measure (actual/risk neutral). Intu-

itively, the investor in the Du�e/Lando framework 'processes' two pieces of information: First, the noisy information
about the asset value. Second, the fact that no default has occured up to time t. While the �rst piece of information
is the same in both actual and risk neutral world, the second di�ers.
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captured since we will simply cover any reasonable parameter combinations. I.e., for any default

barrier L, we will cover all combinations which result in a rating between Aa and B and where the

other parameters are within a reasonable range (see discussion below).

We have numerically evaluated (14) for all reasonable combinations of input parameters.28

The calculation was carried out in four steps: In the �rst step, a combination of a speci�c rating

grade and all parameters from the Du�e/Lando framework excluding the asset value Vt was

choosen. Please note, that this also involves the speci�cation of the asset Sharpe ratio in order

to determine the real world drift of the asset value process. Then, based on (10), the asset value

Vt was numerically determined as to result in the cumulative actual default probability for the

respective rating category. Given the asset value Vt and the other parameters choosen in the �rst

step, a straight forward application of (11) based on risk neutral parameters was used to determine

the risk neutral default probability. In the fourth step, the Merton estimator (13) was calcualted

based on these model-based actual and risk neutral default probabilities. Comparison with the

asset Sharpe ratio speci�ed in step 1 yields the adjustment factor (based on (12)). These four steps

were repeated for all reasonable parameter combinations.

The results are reported in table VI based on three scenarios: Scenario 1 restricts the asset

volatility to be larger or equal to 10%. Asset volatilities below 10% are usually only observed for

�nancial services companies. Scenario 2 captures all parameter combinations where the average

default time is larger than 0.5 time the maturity. This scenario is based on a usual assumption

for investment grade entities, i.e. that real world annual conditional default probabilities are an

increasing function of the maturity. Scenario 3 sets the risk neutral drift of the asset value relative

to the default boundary to zero. This captures the assumption of constant expected leverage. These

three scenarios were designed to capture realistic parameter combinations.

Based on a 5-year maturity, the adjustment factor for investment grade entities is always between

0.85 and 1.27 in scenario 1, between 0.82 and 1.24 in scenario 2 and between 0.82 and 1.08 in

scenario 3. If one does not restrict the parameter combination to one of these scenarios, very large

adjustment factors may occur for some very rare parameter combination. These are combinations

of a very high asset value drift combined with a low volatility. In these cases, default either happens

'very early' or never at all. Then, the di�erence between risk neutral and actual default probability is

28Input parameters used were: σ : 3% − 30% (the 5% and 95% quantile for the asset volatility from KMV was
6% and 25% respectively), Sharpe ratio of the asset value process: 10% to 40% (The market Sharpe ratio is usually
assumed to be anywhere between 20% and 50%, due to a correlation of lower than 1, the asset Sharpe ratio should
be smaller), m : 0% − 5% (m < 0 would imply, that the payout rate is larger than the risk free rate, m = 5% was
choosen as an upper limit to re�ect (almost) zero payout at a risk free interest rate of 5%.), α : 0%− 30% (α = 0%
re�ects the classical �rst passage model with observable asset values, Du�e/Lando use 10% as a standard value, the

upper limit of 30% is also based on Du�e/Lando(2001)), V̂t = V0 was implicitly choosen to result in the desired

rating grade from Aa to B. The case V̂t > V0 and V̂t < V0 was also analyzed, the results barely di�er from the case
V̂t = Z0 and are available upon request. The correlation coe�cient ρV,M is already captured by the asset Sharpe
ratio (which is the product of market Sharpe ratio and ρV,M ).
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relatively small because the investor is only exposed to systematic risk for a very short time period,

afterwards the large drift and low volatility result in very low default probabilities. Apart from

these unrealistic cases, the adjustment factors are very close to one and the estimator is therefore

robust with respect to model changes. The results are similar for maturities of 3, 7 and 10 years.

B Mapping of Moody's rating grades to default probabilites

For the mapping of Moody's rating grades to default probabilities and one-year EDFs to mulit-year

EDFs, we used the raw data provided by Moody's (2007). We used a log-linear relationship to

calibrate the default probabilities, i.e. we performed the regression

ln(PD) = β1 + β2 ·NRG,

where NRG denotes the numerical rating grade ranging from 1 (Aaa) to 16 (B3) and PD denotes

the historical default probabilities per rating grade.29 The resulting cumulative default probabilities

are shown in table VII.

Maturity

Rating 1 2 3 4 5 6 7 8 9 10

Aaa 0.001 0.006 0.019 0.041 0.071 0.094 0.114 0.125 0.135 0.148

Aa1 0.002 0.011 0.032 0.065 0.108 0.143 0.173 0.190 0.205 0.224

Aa2 0.004 0.018 0.052 0.103 0.166 0.218 0.261 0.287 0.310 0.339

Aa3 0.007 0.032 0.085 0.163 0.255 0.331 0.394 0.434 0.470 0.512

A1 0.013 0.055 0.139 0.256 0.392 0.502 0.596 0.657 0.712 0.775

A2 0.024 0.095 0.228 0.404 0.601 0.763 0.900 0.995 1.078 1.173

A3 0.045 0.164 0.373 0.637 0.922 1.159 1.360 1.506 1.633 1.774

Baa1 0.083 0.285 0.611 1.004 1.416 1.760 2.056 2.278 2.475 2.683

Baa2 0.152 0.493 1.002 1.583 2.173 2.674 3.107 3.447 3.750 4.058

Baa3 0.279 0.855 1.642 2.496 3.335 4.063 4.695 5.217 5.681 6.139

Ba1 0.514 1.482 2.691 3.934 5.120 6.172 7.095 7.894 8.607 9.286

Ba2 0.946 2.569 4.411 6.202 7.858 9.376 10.722 11.946 13.041 14.046

Ba3 1.741 4.452 7.229 9.778 12.061 14.243 16.204 18.076 19.759 21.247

B1 3.204 7.716 11.847 15.414 18.512 21.638 24.488 27.354 29.936 32.139

B2 5.896 13.373 19.417 24.301 28.413 32.871 37.007 41.392 45.356 48.615

B3 10.850 23.178 31.823 38.310 43.611 49.936 55.926 62.635 68.719 73.538

Table VII:
Cumulative default probabilities for Moody's ratings in percent

Cumulative default probabilities based on Moody's (2007) and based on a log-approach ln(PD) = β1 + β2 · NRG,
where NRG denotes the numerical rating grade ranging from 1 (Aaa) to 16 (B3).

29The log-approach is a common approach for the calibration of default probabilities (cf. for example Bluhm et.al
(2003)).
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Table VI:

σ ≥ 10% Default Timing ≥ 50% · T Risk-neutral drift = 0%

Maturity Rating MinAF MaxAF MinAF MaxAF MinAF MaxAF

3 Aa 0.77 1.07 0.73 1.20 0.73 1.03

A 0.78 1.10 0.73 1.23 0.73 1.04

Baa 0.79 1.14 0.74 1.21 0.74 1.06

IG (Total) 0.77 1.14 0.73 1.23 0.73 1.06

5 Aa 0.85 1.14 0.82 1.24 0.82 1.05

A 0.86 1.19 0.82 1.23 0.82 1.06

Baa 0.87 1.27 0.84 1.21 0.84 1.08

IG (Total) 0.85 1.27 0.82 1.24 0.82 1.08

7 Aa 0.90 1.22 0.87 1.23 0.87 1.06

A 0.90 1.29 0.87 1.20 0.87 1.07

Baa 0.91 1.41 0.89 1.18 0.89 1.11

IG (Total) 0.90 1.41 0.87 1.23 0.87 1.11

10 Aa 0.93 1.34 0.91 1.23 0.91 1.07

A 0.94 1.45 0.92 1.22 0.92 1.10

Baa 0.95 1.62 0.94 1.17 0.94 1.14

IG (Total) 0.93 1.62 0.91 1.23 0.91 1.14

All IG (Total) 0.77 1.62 0.73 1.24 0.73 1.14

Adjustment factors in the Du�e/Lando framework

Minimum and maximum adjustment factors for investment grade ratings and maturities from 3 to 10 years. AFMin

and AFMax denote minimum and maximum adjustment factors for the respective scenario. The scenario 'σ ≥ 10%'

represents non-�nancials since asset values below 10% are usually only observed for �nancial services companies. The

scenario 'Default Timing ≥ 50% · T ' captures all parameter combinations where the average default time conditional
on default up to time T (τ̃ := E[τ |τ ≤ T ]) was larger than 0.5 · T . This re�ects the usual assumption that for

investment grade entities the real world default probability is an increasing function of the maturity. The scenario

'Risk-neutral drift = 0%' captures a frequent assumption of zero asset value drift in the risk neutral world, i.e. the

expected leverage Vt/L is assumed to be constant. Rating categories and the respective mid-point PDs are from

Moody's. IG includes all investment grade entities.
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C Discrete duration model based on Lö�er/Maurer (2008)

The model of Lö�er/Maurer (2008) estimates cumulative default probabilities via a discrete duration model.

The hazard function h(t) is de�ned via

h(t+ k) = P (Yt+k,t+k+1 = 1|Yt+k−1,t+k = 0, Xt) =
1

1 + exp(−αk − βkXt)

where Yt+k,t+k+1 ∈ {0, 1} is the default indicator for the period (t+ k, t+ k + 1] and Xt denotes the vector

of covariates. (αk, βk) is the vector of coe�cient estimates, see table VIII below. Multi-period default

probabilities can be derived via

P (Yt,t+k = 1) = 1−
k−1∏
j=0

(1− h(t+ j)).

Prediction Horizon in Years

1 2 3 4 5

L 4.89*** 2.97*** 2.41*** 1.49** 0.99*

(0.53) (0.41) (0.39) (0.46) (0.48)

EBIT/TA -1.85 0.95 -0.24 1.86 2.23

(1.06) (1.16) (1.29) (1.48) (1.68)

EBIT/XINT -0.3** -0.33*** -0.19** -0.29** -0.31***

(0.1) (0.08) (0.07) (0.09) (0.09)

SIZE -0.18*** -0.2*** -0.19*** -0.22*** -0.21***

(0.05) (0.05) (0.05) (0.05) (0.06)

dTA 1.09** 1.13*** 1.12** 1.17* 1.37**

(0.39) (0.34) (0.4) (0.5) (0.45)

RET -1.67*** -0.65*** -0.29 -0.24 -0.11

(0.31) (0.18) (0.16) (0.19) (0.2)

VOLA 4.7*** 4.39*** 3.42** 0.66 0.33

(1.01) (1.11) (1.07) (1.36) (1.39)

Constant -9.05*** -7.53*** -7.08*** -6.47*** -6.12***

(0.54) (0.49) (0.44) (0.5) (0.53)

Table VIII:
Coe�cients for discrete duration model based on Lö�er/Maurer (2008)

This table contains the coe�cient estimates from Lö�er/Maurer (2008). L: leverage (= Total debt / (Total debt +

Marketcap)), XINT: interest expenses, SIZE: log of the market cap divided by the S&P-500 market capitalization,

dTA: one-year asset growth, RET: 12-month cumulative equity return, VOLA: 12-month monthly equity volatility.
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